| /* |
| * Copyright (c) 2000-2006 Silicon Graphics, Inc. |
| * All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it would be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write the Free Software Foundation, |
| * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| #include <linux/log2.h> |
| |
| #include "xfs.h" |
| #include "xfs_fs.h" |
| #include "xfs_shared.h" |
| #include "xfs_format.h" |
| #include "xfs_log_format.h" |
| #include "xfs_trans_resv.h" |
| #include "xfs_sb.h" |
| #include "xfs_mount.h" |
| #include "xfs_defer.h" |
| #include "xfs_inode.h" |
| #include "xfs_da_format.h" |
| #include "xfs_da_btree.h" |
| #include "xfs_dir2.h" |
| #include "xfs_attr_sf.h" |
| #include "xfs_attr.h" |
| #include "xfs_trans_space.h" |
| #include "xfs_trans.h" |
| #include "xfs_buf_item.h" |
| #include "xfs_inode_item.h" |
| #include "xfs_ialloc.h" |
| #include "xfs_bmap.h" |
| #include "xfs_bmap_util.h" |
| #include "xfs_error.h" |
| #include "xfs_quota.h" |
| #include "xfs_filestream.h" |
| #include "xfs_cksum.h" |
| #include "xfs_trace.h" |
| #include "xfs_icache.h" |
| #include "xfs_symlink.h" |
| #include "xfs_trans_priv.h" |
| #include "xfs_log.h" |
| #include "xfs_bmap_btree.h" |
| #include "xfs_reflink.h" |
| |
| kmem_zone_t *xfs_inode_zone; |
| |
| /* |
| * Used in xfs_itruncate_extents(). This is the maximum number of extents |
| * freed from a file in a single transaction. |
| */ |
| #define XFS_ITRUNC_MAX_EXTENTS 2 |
| |
| STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *); |
| STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *); |
| STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *); |
| |
| /* |
| * helper function to extract extent size hint from inode |
| */ |
| xfs_extlen_t |
| xfs_get_extsz_hint( |
| struct xfs_inode *ip) |
| { |
| if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize) |
| return ip->i_d.di_extsize; |
| if (XFS_IS_REALTIME_INODE(ip)) |
| return ip->i_mount->m_sb.sb_rextsize; |
| return 0; |
| } |
| |
| /* |
| * Helper function to extract CoW extent size hint from inode. |
| * Between the extent size hint and the CoW extent size hint, we |
| * return the greater of the two. If the value is zero (automatic), |
| * use the default size. |
| */ |
| xfs_extlen_t |
| xfs_get_cowextsz_hint( |
| struct xfs_inode *ip) |
| { |
| xfs_extlen_t a, b; |
| |
| a = 0; |
| if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) |
| a = ip->i_d.di_cowextsize; |
| b = xfs_get_extsz_hint(ip); |
| |
| a = max(a, b); |
| if (a == 0) |
| return XFS_DEFAULT_COWEXTSZ_HINT; |
| return a; |
| } |
| |
| /* |
| * These two are wrapper routines around the xfs_ilock() routine used to |
| * centralize some grungy code. They are used in places that wish to lock the |
| * inode solely for reading the extents. The reason these places can't just |
| * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to |
| * bringing in of the extents from disk for a file in b-tree format. If the |
| * inode is in b-tree format, then we need to lock the inode exclusively until |
| * the extents are read in. Locking it exclusively all the time would limit |
| * our parallelism unnecessarily, though. What we do instead is check to see |
| * if the extents have been read in yet, and only lock the inode exclusively |
| * if they have not. |
| * |
| * The functions return a value which should be given to the corresponding |
| * xfs_iunlock() call. |
| */ |
| uint |
| xfs_ilock_data_map_shared( |
| struct xfs_inode *ip) |
| { |
| uint lock_mode = XFS_ILOCK_SHARED; |
| |
| if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE && |
| (ip->i_df.if_flags & XFS_IFEXTENTS) == 0) |
| lock_mode = XFS_ILOCK_EXCL; |
| xfs_ilock(ip, lock_mode); |
| return lock_mode; |
| } |
| |
| uint |
| xfs_ilock_attr_map_shared( |
| struct xfs_inode *ip) |
| { |
| uint lock_mode = XFS_ILOCK_SHARED; |
| |
| if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE && |
| (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0) |
| lock_mode = XFS_ILOCK_EXCL; |
| xfs_ilock(ip, lock_mode); |
| return lock_mode; |
| } |
| |
| /* |
| * In addition to i_rwsem in the VFS inode, the xfs inode contains 2 |
| * multi-reader locks: i_mmap_lock and the i_lock. This routine allows |
| * various combinations of the locks to be obtained. |
| * |
| * The 3 locks should always be ordered so that the IO lock is obtained first, |
| * the mmap lock second and the ilock last in order to prevent deadlock. |
| * |
| * Basic locking order: |
| * |
| * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock |
| * |
| * mmap_sem locking order: |
| * |
| * i_rwsem -> page lock -> mmap_sem |
| * mmap_sem -> i_mmap_lock -> page_lock |
| * |
| * The difference in mmap_sem locking order mean that we cannot hold the |
| * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can |
| * fault in pages during copy in/out (for buffered IO) or require the mmap_sem |
| * in get_user_pages() to map the user pages into the kernel address space for |
| * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because |
| * page faults already hold the mmap_sem. |
| * |
| * Hence to serialise fully against both syscall and mmap based IO, we need to |
| * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both |
| * taken in places where we need to invalidate the page cache in a race |
| * free manner (e.g. truncate, hole punch and other extent manipulation |
| * functions). |
| */ |
| void |
| xfs_ilock( |
| xfs_inode_t *ip, |
| uint lock_flags) |
| { |
| trace_xfs_ilock(ip, lock_flags, _RET_IP_); |
| |
| /* |
| * You can't set both SHARED and EXCL for the same lock, |
| * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, |
| * and XFS_ILOCK_EXCL are valid values to set in lock_flags. |
| */ |
| ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != |
| (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); |
| ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != |
| (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); |
| ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != |
| (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); |
| ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); |
| |
| if (lock_flags & XFS_IOLOCK_EXCL) { |
| down_write_nested(&VFS_I(ip)->i_rwsem, |
| XFS_IOLOCK_DEP(lock_flags)); |
| } else if (lock_flags & XFS_IOLOCK_SHARED) { |
| down_read_nested(&VFS_I(ip)->i_rwsem, |
| XFS_IOLOCK_DEP(lock_flags)); |
| } |
| |
| if (lock_flags & XFS_MMAPLOCK_EXCL) |
| mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); |
| else if (lock_flags & XFS_MMAPLOCK_SHARED) |
| mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); |
| |
| if (lock_flags & XFS_ILOCK_EXCL) |
| mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); |
| else if (lock_flags & XFS_ILOCK_SHARED) |
| mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); |
| } |
| |
| /* |
| * This is just like xfs_ilock(), except that the caller |
| * is guaranteed not to sleep. It returns 1 if it gets |
| * the requested locks and 0 otherwise. If the IO lock is |
| * obtained but the inode lock cannot be, then the IO lock |
| * is dropped before returning. |
| * |
| * ip -- the inode being locked |
| * lock_flags -- this parameter indicates the inode's locks to be |
| * to be locked. See the comment for xfs_ilock() for a list |
| * of valid values. |
| */ |
| int |
| xfs_ilock_nowait( |
| xfs_inode_t *ip, |
| uint lock_flags) |
| { |
| trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); |
| |
| /* |
| * You can't set both SHARED and EXCL for the same lock, |
| * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, |
| * and XFS_ILOCK_EXCL are valid values to set in lock_flags. |
| */ |
| ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != |
| (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); |
| ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != |
| (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); |
| ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != |
| (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); |
| ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); |
| |
| if (lock_flags & XFS_IOLOCK_EXCL) { |
| if (!down_write_trylock(&VFS_I(ip)->i_rwsem)) |
| goto out; |
| } else if (lock_flags & XFS_IOLOCK_SHARED) { |
| if (!down_read_trylock(&VFS_I(ip)->i_rwsem)) |
| goto out; |
| } |
| |
| if (lock_flags & XFS_MMAPLOCK_EXCL) { |
| if (!mrtryupdate(&ip->i_mmaplock)) |
| goto out_undo_iolock; |
| } else if (lock_flags & XFS_MMAPLOCK_SHARED) { |
| if (!mrtryaccess(&ip->i_mmaplock)) |
| goto out_undo_iolock; |
| } |
| |
| if (lock_flags & XFS_ILOCK_EXCL) { |
| if (!mrtryupdate(&ip->i_lock)) |
| goto out_undo_mmaplock; |
| } else if (lock_flags & XFS_ILOCK_SHARED) { |
| if (!mrtryaccess(&ip->i_lock)) |
| goto out_undo_mmaplock; |
| } |
| return 1; |
| |
| out_undo_mmaplock: |
| if (lock_flags & XFS_MMAPLOCK_EXCL) |
| mrunlock_excl(&ip->i_mmaplock); |
| else if (lock_flags & XFS_MMAPLOCK_SHARED) |
| mrunlock_shared(&ip->i_mmaplock); |
| out_undo_iolock: |
| if (lock_flags & XFS_IOLOCK_EXCL) |
| up_write(&VFS_I(ip)->i_rwsem); |
| else if (lock_flags & XFS_IOLOCK_SHARED) |
| up_read(&VFS_I(ip)->i_rwsem); |
| out: |
| return 0; |
| } |
| |
| /* |
| * xfs_iunlock() is used to drop the inode locks acquired with |
| * xfs_ilock() and xfs_ilock_nowait(). The caller must pass |
| * in the flags given to xfs_ilock() or xfs_ilock_nowait() so |
| * that we know which locks to drop. |
| * |
| * ip -- the inode being unlocked |
| * lock_flags -- this parameter indicates the inode's locks to be |
| * to be unlocked. See the comment for xfs_ilock() for a list |
| * of valid values for this parameter. |
| * |
| */ |
| void |
| xfs_iunlock( |
| xfs_inode_t *ip, |
| uint lock_flags) |
| { |
| /* |
| * You can't set both SHARED and EXCL for the same lock, |
| * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, |
| * and XFS_ILOCK_EXCL are valid values to set in lock_flags. |
| */ |
| ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != |
| (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); |
| ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != |
| (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); |
| ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != |
| (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); |
| ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); |
| ASSERT(lock_flags != 0); |
| |
| if (lock_flags & XFS_IOLOCK_EXCL) |
| up_write(&VFS_I(ip)->i_rwsem); |
| else if (lock_flags & XFS_IOLOCK_SHARED) |
| up_read(&VFS_I(ip)->i_rwsem); |
| |
| if (lock_flags & XFS_MMAPLOCK_EXCL) |
| mrunlock_excl(&ip->i_mmaplock); |
| else if (lock_flags & XFS_MMAPLOCK_SHARED) |
| mrunlock_shared(&ip->i_mmaplock); |
| |
| if (lock_flags & XFS_ILOCK_EXCL) |
| mrunlock_excl(&ip->i_lock); |
| else if (lock_flags & XFS_ILOCK_SHARED) |
| mrunlock_shared(&ip->i_lock); |
| |
| trace_xfs_iunlock(ip, lock_flags, _RET_IP_); |
| } |
| |
| /* |
| * give up write locks. the i/o lock cannot be held nested |
| * if it is being demoted. |
| */ |
| void |
| xfs_ilock_demote( |
| xfs_inode_t *ip, |
| uint lock_flags) |
| { |
| ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)); |
| ASSERT((lock_flags & |
| ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); |
| |
| if (lock_flags & XFS_ILOCK_EXCL) |
| mrdemote(&ip->i_lock); |
| if (lock_flags & XFS_MMAPLOCK_EXCL) |
| mrdemote(&ip->i_mmaplock); |
| if (lock_flags & XFS_IOLOCK_EXCL) |
| downgrade_write(&VFS_I(ip)->i_rwsem); |
| |
| trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); |
| } |
| |
| #if defined(DEBUG) || defined(XFS_WARN) |
| int |
| xfs_isilocked( |
| xfs_inode_t *ip, |
| uint lock_flags) |
| { |
| if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) { |
| if (!(lock_flags & XFS_ILOCK_SHARED)) |
| return !!ip->i_lock.mr_writer; |
| return rwsem_is_locked(&ip->i_lock.mr_lock); |
| } |
| |
| if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) { |
| if (!(lock_flags & XFS_MMAPLOCK_SHARED)) |
| return !!ip->i_mmaplock.mr_writer; |
| return rwsem_is_locked(&ip->i_mmaplock.mr_lock); |
| } |
| |
| if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) { |
| if (!(lock_flags & XFS_IOLOCK_SHARED)) |
| return !debug_locks || |
| lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0); |
| return rwsem_is_locked(&VFS_I(ip)->i_rwsem); |
| } |
| |
| ASSERT(0); |
| return 0; |
| } |
| #endif |
| |
| #ifdef DEBUG |
| int xfs_locked_n; |
| int xfs_small_retries; |
| int xfs_middle_retries; |
| int xfs_lots_retries; |
| int xfs_lock_delays; |
| #endif |
| |
| /* |
| * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when |
| * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined |
| * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build |
| * errors and warnings. |
| */ |
| #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP) |
| static bool |
| xfs_lockdep_subclass_ok( |
| int subclass) |
| { |
| return subclass < MAX_LOCKDEP_SUBCLASSES; |
| } |
| #else |
| #define xfs_lockdep_subclass_ok(subclass) (true) |
| #endif |
| |
| /* |
| * Bump the subclass so xfs_lock_inodes() acquires each lock with a different |
| * value. This can be called for any type of inode lock combination, including |
| * parent locking. Care must be taken to ensure we don't overrun the subclass |
| * storage fields in the class mask we build. |
| */ |
| static inline int |
| xfs_lock_inumorder(int lock_mode, int subclass) |
| { |
| int class = 0; |
| |
| ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP | |
| XFS_ILOCK_RTSUM))); |
| ASSERT(xfs_lockdep_subclass_ok(subclass)); |
| |
| if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { |
| ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS); |
| class += subclass << XFS_IOLOCK_SHIFT; |
| } |
| |
| if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) { |
| ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS); |
| class += subclass << XFS_MMAPLOCK_SHIFT; |
| } |
| |
| if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) { |
| ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS); |
| class += subclass << XFS_ILOCK_SHIFT; |
| } |
| |
| return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class; |
| } |
| |
| /* |
| * The following routine will lock n inodes in exclusive mode. We assume the |
| * caller calls us with the inodes in i_ino order. |
| * |
| * We need to detect deadlock where an inode that we lock is in the AIL and we |
| * start waiting for another inode that is locked by a thread in a long running |
| * transaction (such as truncate). This can result in deadlock since the long |
| * running trans might need to wait for the inode we just locked in order to |
| * push the tail and free space in the log. |
| * |
| * xfs_lock_inodes() can only be used to lock one type of lock at a time - |
| * the iolock, the mmaplock or the ilock, but not more than one at a time. If we |
| * lock more than one at a time, lockdep will report false positives saying we |
| * have violated locking orders. |
| */ |
| static void |
| xfs_lock_inodes( |
| xfs_inode_t **ips, |
| int inodes, |
| uint lock_mode) |
| { |
| int attempts = 0, i, j, try_lock; |
| xfs_log_item_t *lp; |
| |
| /* |
| * Currently supports between 2 and 5 inodes with exclusive locking. We |
| * support an arbitrary depth of locking here, but absolute limits on |
| * inodes depend on the the type of locking and the limits placed by |
| * lockdep annotations in xfs_lock_inumorder. These are all checked by |
| * the asserts. |
| */ |
| ASSERT(ips && inodes >= 2 && inodes <= 5); |
| ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL | |
| XFS_ILOCK_EXCL)); |
| ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED | |
| XFS_ILOCK_SHARED))); |
| ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) || |
| inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1); |
| ASSERT(!(lock_mode & XFS_ILOCK_EXCL) || |
| inodes <= XFS_ILOCK_MAX_SUBCLASS + 1); |
| |
| if (lock_mode & XFS_IOLOCK_EXCL) { |
| ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL))); |
| } else if (lock_mode & XFS_MMAPLOCK_EXCL) |
| ASSERT(!(lock_mode & XFS_ILOCK_EXCL)); |
| |
| try_lock = 0; |
| i = 0; |
| again: |
| for (; i < inodes; i++) { |
| ASSERT(ips[i]); |
| |
| if (i && (ips[i] == ips[i - 1])) /* Already locked */ |
| continue; |
| |
| /* |
| * If try_lock is not set yet, make sure all locked inodes are |
| * not in the AIL. If any are, set try_lock to be used later. |
| */ |
| if (!try_lock) { |
| for (j = (i - 1); j >= 0 && !try_lock; j--) { |
| lp = (xfs_log_item_t *)ips[j]->i_itemp; |
| if (lp && (lp->li_flags & XFS_LI_IN_AIL)) |
| try_lock++; |
| } |
| } |
| |
| /* |
| * If any of the previous locks we have locked is in the AIL, |
| * we must TRY to get the second and subsequent locks. If |
| * we can't get any, we must release all we have |
| * and try again. |
| */ |
| if (!try_lock) { |
| xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); |
| continue; |
| } |
| |
| /* try_lock means we have an inode locked that is in the AIL. */ |
| ASSERT(i != 0); |
| if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) |
| continue; |
| |
| /* |
| * Unlock all previous guys and try again. xfs_iunlock will try |
| * to push the tail if the inode is in the AIL. |
| */ |
| attempts++; |
| for (j = i - 1; j >= 0; j--) { |
| /* |
| * Check to see if we've already unlocked this one. Not |
| * the first one going back, and the inode ptr is the |
| * same. |
| */ |
| if (j != (i - 1) && ips[j] == ips[j + 1]) |
| continue; |
| |
| xfs_iunlock(ips[j], lock_mode); |
| } |
| |
| if ((attempts % 5) == 0) { |
| delay(1); /* Don't just spin the CPU */ |
| #ifdef DEBUG |
| xfs_lock_delays++; |
| #endif |
| } |
| i = 0; |
| try_lock = 0; |
| goto again; |
| } |
| |
| #ifdef DEBUG |
| if (attempts) { |
| if (attempts < 5) xfs_small_retries++; |
| else if (attempts < 100) xfs_middle_retries++; |
| else xfs_lots_retries++; |
| } else { |
| xfs_locked_n++; |
| } |
| #endif |
| } |
| |
| /* |
| * xfs_lock_two_inodes() can only be used to lock one type of lock at a time - |
| * the iolock, the mmaplock or the ilock, but not more than one at a time. If we |
| * lock more than one at a time, lockdep will report false positives saying we |
| * have violated locking orders. |
| */ |
| void |
| xfs_lock_two_inodes( |
| xfs_inode_t *ip0, |
| xfs_inode_t *ip1, |
| uint lock_mode) |
| { |
| xfs_inode_t *temp; |
| int attempts = 0; |
| xfs_log_item_t *lp; |
| |
| ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); |
| if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) |
| ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); |
| |
| ASSERT(ip0->i_ino != ip1->i_ino); |
| |
| if (ip0->i_ino > ip1->i_ino) { |
| temp = ip0; |
| ip0 = ip1; |
| ip1 = temp; |
| } |
| |
| again: |
| xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0)); |
| |
| /* |
| * If the first lock we have locked is in the AIL, we must TRY to get |
| * the second lock. If we can't get it, we must release the first one |
| * and try again. |
| */ |
| lp = (xfs_log_item_t *)ip0->i_itemp; |
| if (lp && (lp->li_flags & XFS_LI_IN_AIL)) { |
| if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) { |
| xfs_iunlock(ip0, lock_mode); |
| if ((++attempts % 5) == 0) |
| delay(1); /* Don't just spin the CPU */ |
| goto again; |
| } |
| } else { |
| xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1)); |
| } |
| } |
| |
| |
| void |
| __xfs_iflock( |
| struct xfs_inode *ip) |
| { |
| wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT); |
| DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT); |
| |
| do { |
| prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE); |
| if (xfs_isiflocked(ip)) |
| io_schedule(); |
| } while (!xfs_iflock_nowait(ip)); |
| |
| finish_wait(wq, &wait.wait); |
| } |
| |
| STATIC uint |
| _xfs_dic2xflags( |
| __uint16_t di_flags, |
| uint64_t di_flags2, |
| bool has_attr) |
| { |
| uint flags = 0; |
| |
| if (di_flags & XFS_DIFLAG_ANY) { |
| if (di_flags & XFS_DIFLAG_REALTIME) |
| flags |= FS_XFLAG_REALTIME; |
| if (di_flags & XFS_DIFLAG_PREALLOC) |
| flags |= FS_XFLAG_PREALLOC; |
| if (di_flags & XFS_DIFLAG_IMMUTABLE) |
| flags |= FS_XFLAG_IMMUTABLE; |
| if (di_flags & XFS_DIFLAG_APPEND) |
| flags |= FS_XFLAG_APPEND; |
| if (di_flags & XFS_DIFLAG_SYNC) |
| flags |= FS_XFLAG_SYNC; |
| if (di_flags & XFS_DIFLAG_NOATIME) |
| flags |= FS_XFLAG_NOATIME; |
| if (di_flags & XFS_DIFLAG_NODUMP) |
| flags |= FS_XFLAG_NODUMP; |
| if (di_flags & XFS_DIFLAG_RTINHERIT) |
| flags |= FS_XFLAG_RTINHERIT; |
| if (di_flags & XFS_DIFLAG_PROJINHERIT) |
| flags |= FS_XFLAG_PROJINHERIT; |
| if (di_flags & XFS_DIFLAG_NOSYMLINKS) |
| flags |= FS_XFLAG_NOSYMLINKS; |
| if (di_flags & XFS_DIFLAG_EXTSIZE) |
| flags |= FS_XFLAG_EXTSIZE; |
| if (di_flags & XFS_DIFLAG_EXTSZINHERIT) |
| flags |= FS_XFLAG_EXTSZINHERIT; |
| if (di_flags & XFS_DIFLAG_NODEFRAG) |
| flags |= FS_XFLAG_NODEFRAG; |
| if (di_flags & XFS_DIFLAG_FILESTREAM) |
| flags |= FS_XFLAG_FILESTREAM; |
| } |
| |
| if (di_flags2 & XFS_DIFLAG2_ANY) { |
| if (di_flags2 & XFS_DIFLAG2_DAX) |
| flags |= FS_XFLAG_DAX; |
| if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE) |
| flags |= FS_XFLAG_COWEXTSIZE; |
| } |
| |
| if (has_attr) |
| flags |= FS_XFLAG_HASATTR; |
| |
| return flags; |
| } |
| |
| uint |
| xfs_ip2xflags( |
| struct xfs_inode *ip) |
| { |
| struct xfs_icdinode *dic = &ip->i_d; |
| |
| return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip)); |
| } |
| |
| /* |
| * Lookups up an inode from "name". If ci_name is not NULL, then a CI match |
| * is allowed, otherwise it has to be an exact match. If a CI match is found, |
| * ci_name->name will point to a the actual name (caller must free) or |
| * will be set to NULL if an exact match is found. |
| */ |
| int |
| xfs_lookup( |
| xfs_inode_t *dp, |
| struct xfs_name *name, |
| xfs_inode_t **ipp, |
| struct xfs_name *ci_name) |
| { |
| xfs_ino_t inum; |
| int error; |
| |
| trace_xfs_lookup(dp, name); |
| |
| if (XFS_FORCED_SHUTDOWN(dp->i_mount)) |
| return -EIO; |
| |
| error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); |
| if (error) |
| goto out_unlock; |
| |
| error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); |
| if (error) |
| goto out_free_name; |
| |
| return 0; |
| |
| out_free_name: |
| if (ci_name) |
| kmem_free(ci_name->name); |
| out_unlock: |
| *ipp = NULL; |
| return error; |
| } |
| |
| /* |
| * Allocate an inode on disk and return a copy of its in-core version. |
| * The in-core inode is locked exclusively. Set mode, nlink, and rdev |
| * appropriately within the inode. The uid and gid for the inode are |
| * set according to the contents of the given cred structure. |
| * |
| * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() |
| * has a free inode available, call xfs_iget() to obtain the in-core |
| * version of the allocated inode. Finally, fill in the inode and |
| * log its initial contents. In this case, ialloc_context would be |
| * set to NULL. |
| * |
| * If xfs_dialloc() does not have an available inode, it will replenish |
| * its supply by doing an allocation. Since we can only do one |
| * allocation within a transaction without deadlocks, we must commit |
| * the current transaction before returning the inode itself. |
| * In this case, therefore, we will set ialloc_context and return. |
| * The caller should then commit the current transaction, start a new |
| * transaction, and call xfs_ialloc() again to actually get the inode. |
| * |
| * To ensure that some other process does not grab the inode that |
| * was allocated during the first call to xfs_ialloc(), this routine |
| * also returns the [locked] bp pointing to the head of the freelist |
| * as ialloc_context. The caller should hold this buffer across |
| * the commit and pass it back into this routine on the second call. |
| * |
| * If we are allocating quota inodes, we do not have a parent inode |
| * to attach to or associate with (i.e. pip == NULL) because they |
| * are not linked into the directory structure - they are attached |
| * directly to the superblock - and so have no parent. |
| */ |
| static int |
| xfs_ialloc( |
| xfs_trans_t *tp, |
| xfs_inode_t *pip, |
| umode_t mode, |
| xfs_nlink_t nlink, |
| xfs_dev_t rdev, |
| prid_t prid, |
| int okalloc, |
| xfs_buf_t **ialloc_context, |
| xfs_inode_t **ipp) |
| { |
| struct xfs_mount *mp = tp->t_mountp; |
| xfs_ino_t ino; |
| xfs_inode_t *ip; |
| uint flags; |
| int error; |
| struct timespec tv; |
| struct inode *inode; |
| |
| /* |
| * Call the space management code to pick |
| * the on-disk inode to be allocated. |
| */ |
| error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc, |
| ialloc_context, &ino); |
| if (error) |
| return error; |
| if (*ialloc_context || ino == NULLFSINO) { |
| *ipp = NULL; |
| return 0; |
| } |
| ASSERT(*ialloc_context == NULL); |
| |
| /* |
| * Get the in-core inode with the lock held exclusively. |
| * This is because we're setting fields here we need |
| * to prevent others from looking at until we're done. |
| */ |
| error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, |
| XFS_ILOCK_EXCL, &ip); |
| if (error) |
| return error; |
| ASSERT(ip != NULL); |
| inode = VFS_I(ip); |
| |
| /* |
| * We always convert v1 inodes to v2 now - we only support filesystems |
| * with >= v2 inode capability, so there is no reason for ever leaving |
| * an inode in v1 format. |
| */ |
| if (ip->i_d.di_version == 1) |
| ip->i_d.di_version = 2; |
| |
| inode->i_mode = mode; |
| set_nlink(inode, nlink); |
| ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid()); |
| ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid()); |
| xfs_set_projid(ip, prid); |
| |
| if (pip && XFS_INHERIT_GID(pip)) { |
| ip->i_d.di_gid = pip->i_d.di_gid; |
| if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode)) |
| inode->i_mode |= S_ISGID; |
| } |
| |
| /* |
| * If the group ID of the new file does not match the effective group |
| * ID or one of the supplementary group IDs, the S_ISGID bit is cleared |
| * (and only if the irix_sgid_inherit compatibility variable is set). |
| */ |
| if ((irix_sgid_inherit) && |
| (inode->i_mode & S_ISGID) && |
| (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) |
| inode->i_mode &= ~S_ISGID; |
| |
| ip->i_d.di_size = 0; |
| ip->i_d.di_nextents = 0; |
| ASSERT(ip->i_d.di_nblocks == 0); |
| |
| tv = current_time(inode); |
| inode->i_mtime = tv; |
| inode->i_atime = tv; |
| inode->i_ctime = tv; |
| |
| ip->i_d.di_extsize = 0; |
| ip->i_d.di_dmevmask = 0; |
| ip->i_d.di_dmstate = 0; |
| ip->i_d.di_flags = 0; |
| |
| if (ip->i_d.di_version == 3) { |
| inode->i_version = 1; |
| ip->i_d.di_flags2 = 0; |
| ip->i_d.di_cowextsize = 0; |
| ip->i_d.di_crtime.t_sec = (__int32_t)tv.tv_sec; |
| ip->i_d.di_crtime.t_nsec = (__int32_t)tv.tv_nsec; |
| } |
| |
| |
| flags = XFS_ILOG_CORE; |
| switch (mode & S_IFMT) { |
| case S_IFIFO: |
| case S_IFCHR: |
| case S_IFBLK: |
| case S_IFSOCK: |
| ip->i_d.di_format = XFS_DINODE_FMT_DEV; |
| ip->i_df.if_u2.if_rdev = rdev; |
| ip->i_df.if_flags = 0; |
| flags |= XFS_ILOG_DEV; |
| break; |
| case S_IFREG: |
| case S_IFDIR: |
| if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) { |
| uint64_t di_flags2 = 0; |
| uint di_flags = 0; |
| |
| if (S_ISDIR(mode)) { |
| if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) |
| di_flags |= XFS_DIFLAG_RTINHERIT; |
| if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { |
| di_flags |= XFS_DIFLAG_EXTSZINHERIT; |
| ip->i_d.di_extsize = pip->i_d.di_extsize; |
| } |
| if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) |
| di_flags |= XFS_DIFLAG_PROJINHERIT; |
| } else if (S_ISREG(mode)) { |
| if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) |
| di_flags |= XFS_DIFLAG_REALTIME; |
| if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { |
| di_flags |= XFS_DIFLAG_EXTSIZE; |
| ip->i_d.di_extsize = pip->i_d.di_extsize; |
| } |
| } |
| if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && |
| xfs_inherit_noatime) |
| di_flags |= XFS_DIFLAG_NOATIME; |
| if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && |
| xfs_inherit_nodump) |
| di_flags |= XFS_DIFLAG_NODUMP; |
| if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && |
| xfs_inherit_sync) |
| di_flags |= XFS_DIFLAG_SYNC; |
| if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && |
| xfs_inherit_nosymlinks) |
| di_flags |= XFS_DIFLAG_NOSYMLINKS; |
| if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) && |
| xfs_inherit_nodefrag) |
| di_flags |= XFS_DIFLAG_NODEFRAG; |
| if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM) |
| di_flags |= XFS_DIFLAG_FILESTREAM; |
| if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX) |
| di_flags2 |= XFS_DIFLAG2_DAX; |
| |
| ip->i_d.di_flags |= di_flags; |
| ip->i_d.di_flags2 |= di_flags2; |
| } |
| if (pip && |
| (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) && |
| pip->i_d.di_version == 3 && |
| ip->i_d.di_version == 3) { |
| if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) { |
| ip->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE; |
| ip->i_d.di_cowextsize = pip->i_d.di_cowextsize; |
| } |
| } |
| /* FALLTHROUGH */ |
| case S_IFLNK: |
| ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; |
| ip->i_df.if_flags = XFS_IFEXTENTS; |
| ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0; |
| ip->i_df.if_u1.if_extents = NULL; |
| break; |
| default: |
| ASSERT(0); |
| } |
| /* |
| * Attribute fork settings for new inode. |
| */ |
| ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; |
| ip->i_d.di_anextents = 0; |
| |
| /* |
| * Log the new values stuffed into the inode. |
| */ |
| xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); |
| xfs_trans_log_inode(tp, ip, flags); |
| |
| /* now that we have an i_mode we can setup the inode structure */ |
| xfs_setup_inode(ip); |
| |
| *ipp = ip; |
| return 0; |
| } |
| |
| /* |
| * Allocates a new inode from disk and return a pointer to the |
| * incore copy. This routine will internally commit the current |
| * transaction and allocate a new one if the Space Manager needed |
| * to do an allocation to replenish the inode free-list. |
| * |
| * This routine is designed to be called from xfs_create and |
| * xfs_create_dir. |
| * |
| */ |
| int |
| xfs_dir_ialloc( |
| xfs_trans_t **tpp, /* input: current transaction; |
| output: may be a new transaction. */ |
| xfs_inode_t *dp, /* directory within whose allocate |
| the inode. */ |
| umode_t mode, |
| xfs_nlink_t nlink, |
| xfs_dev_t rdev, |
| prid_t prid, /* project id */ |
| int okalloc, /* ok to allocate new space */ |
| xfs_inode_t **ipp, /* pointer to inode; it will be |
| locked. */ |
| int *committed) |
| |
| { |
| xfs_trans_t *tp; |
| xfs_inode_t *ip; |
| xfs_buf_t *ialloc_context = NULL; |
| int code; |
| void *dqinfo; |
| uint tflags; |
| |
| tp = *tpp; |
| ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); |
| |
| /* |
| * xfs_ialloc will return a pointer to an incore inode if |
| * the Space Manager has an available inode on the free |
| * list. Otherwise, it will do an allocation and replenish |
| * the freelist. Since we can only do one allocation per |
| * transaction without deadlocks, we will need to commit the |
| * current transaction and start a new one. We will then |
| * need to call xfs_ialloc again to get the inode. |
| * |
| * If xfs_ialloc did an allocation to replenish the freelist, |
| * it returns the bp containing the head of the freelist as |
| * ialloc_context. We will hold a lock on it across the |
| * transaction commit so that no other process can steal |
| * the inode(s) that we've just allocated. |
| */ |
| code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc, |
| &ialloc_context, &ip); |
| |
| /* |
| * Return an error if we were unable to allocate a new inode. |
| * This should only happen if we run out of space on disk or |
| * encounter a disk error. |
| */ |
| if (code) { |
| *ipp = NULL; |
| return code; |
| } |
| if (!ialloc_context && !ip) { |
| *ipp = NULL; |
| return -ENOSPC; |
| } |
| |
| /* |
| * If the AGI buffer is non-NULL, then we were unable to get an |
| * inode in one operation. We need to commit the current |
| * transaction and call xfs_ialloc() again. It is guaranteed |
| * to succeed the second time. |
| */ |
| if (ialloc_context) { |
| /* |
| * Normally, xfs_trans_commit releases all the locks. |
| * We call bhold to hang on to the ialloc_context across |
| * the commit. Holding this buffer prevents any other |
| * processes from doing any allocations in this |
| * allocation group. |
| */ |
| xfs_trans_bhold(tp, ialloc_context); |
| |
| /* |
| * We want the quota changes to be associated with the next |
| * transaction, NOT this one. So, detach the dqinfo from this |
| * and attach it to the next transaction. |
| */ |
| dqinfo = NULL; |
| tflags = 0; |
| if (tp->t_dqinfo) { |
| dqinfo = (void *)tp->t_dqinfo; |
| tp->t_dqinfo = NULL; |
| tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY; |
| tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY); |
| } |
| |
| code = xfs_trans_roll(&tp, NULL); |
| if (committed != NULL) |
| *committed = 1; |
| |
| /* |
| * Re-attach the quota info that we detached from prev trx. |
| */ |
| if (dqinfo) { |
| tp->t_dqinfo = dqinfo; |
| tp->t_flags |= tflags; |
| } |
| |
| if (code) { |
| xfs_buf_relse(ialloc_context); |
| *tpp = tp; |
| *ipp = NULL; |
| return code; |
| } |
| xfs_trans_bjoin(tp, ialloc_context); |
| |
| /* |
| * Call ialloc again. Since we've locked out all |
| * other allocations in this allocation group, |
| * this call should always succeed. |
| */ |
| code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, |
| okalloc, &ialloc_context, &ip); |
| |
| /* |
| * If we get an error at this point, return to the caller |
| * so that the current transaction can be aborted. |
| */ |
| if (code) { |
| *tpp = tp; |
| *ipp = NULL; |
| return code; |
| } |
| ASSERT(!ialloc_context && ip); |
| |
| } else { |
| if (committed != NULL) |
| *committed = 0; |
| } |
| |
| *ipp = ip; |
| *tpp = tp; |
| |
| return 0; |
| } |
| |
| /* |
| * Decrement the link count on an inode & log the change. If this causes the |
| * link count to go to zero, move the inode to AGI unlinked list so that it can |
| * be freed when the last active reference goes away via xfs_inactive(). |
| */ |
| static int /* error */ |
| xfs_droplink( |
| xfs_trans_t *tp, |
| xfs_inode_t *ip) |
| { |
| xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); |
| |
| drop_nlink(VFS_I(ip)); |
| xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); |
| |
| if (VFS_I(ip)->i_nlink) |
| return 0; |
| |
| return xfs_iunlink(tp, ip); |
| } |
| |
| /* |
| * Increment the link count on an inode & log the change. |
| */ |
| static int |
| xfs_bumplink( |
| xfs_trans_t *tp, |
| xfs_inode_t *ip) |
| { |
| xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); |
| |
| ASSERT(ip->i_d.di_version > 1); |
| inc_nlink(VFS_I(ip)); |
| xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); |
| return 0; |
| } |
| |
| int |
| xfs_create( |
| xfs_inode_t *dp, |
| struct xfs_name *name, |
| umode_t mode, |
| xfs_dev_t rdev, |
| xfs_inode_t **ipp) |
| { |
| int is_dir = S_ISDIR(mode); |
| struct xfs_mount *mp = dp->i_mount; |
| struct xfs_inode *ip = NULL; |
| struct xfs_trans *tp = NULL; |
| int error; |
| struct xfs_defer_ops dfops; |
| xfs_fsblock_t first_block; |
| bool unlock_dp_on_error = false; |
| prid_t prid; |
| struct xfs_dquot *udqp = NULL; |
| struct xfs_dquot *gdqp = NULL; |
| struct xfs_dquot *pdqp = NULL; |
| struct xfs_trans_res *tres; |
| uint resblks; |
| |
| trace_xfs_create(dp, name); |
| |
| if (XFS_FORCED_SHUTDOWN(mp)) |
| return -EIO; |
| |
| prid = xfs_get_initial_prid(dp); |
| |
| /* |
| * Make sure that we have allocated dquot(s) on disk. |
| */ |
| error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()), |
| xfs_kgid_to_gid(current_fsgid()), prid, |
| XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, |
| &udqp, &gdqp, &pdqp); |
| if (error) |
| return error; |
| |
| if (is_dir) { |
| rdev = 0; |
| resblks = XFS_MKDIR_SPACE_RES(mp, name->len); |
| tres = &M_RES(mp)->tr_mkdir; |
| } else { |
| resblks = XFS_CREATE_SPACE_RES(mp, name->len); |
| tres = &M_RES(mp)->tr_create; |
| } |
| |
| /* |
| * Initially assume that the file does not exist and |
| * reserve the resources for that case. If that is not |
| * the case we'll drop the one we have and get a more |
| * appropriate transaction later. |
| */ |
| error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); |
| if (error == -ENOSPC) { |
| /* flush outstanding delalloc blocks and retry */ |
| xfs_flush_inodes(mp); |
| error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); |
| } |
| if (error == -ENOSPC) { |
| /* No space at all so try a "no-allocation" reservation */ |
| resblks = 0; |
| error = xfs_trans_alloc(mp, tres, 0, 0, 0, &tp); |
| } |
| if (error) |
| goto out_release_inode; |
| |
| xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT); |
| unlock_dp_on_error = true; |
| |
| xfs_defer_init(&dfops, &first_block); |
| |
| /* |
| * Reserve disk quota and the inode. |
| */ |
| error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, |
| pdqp, resblks, 1, 0); |
| if (error) |
| goto out_trans_cancel; |
| |
| if (!resblks) { |
| error = xfs_dir_canenter(tp, dp, name); |
| if (error) |
| goto out_trans_cancel; |
| } |
| |
| /* |
| * A newly created regular or special file just has one directory |
| * entry pointing to them, but a directory also the "." entry |
| * pointing to itself. |
| */ |
| error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, |
| prid, resblks > 0, &ip, NULL); |
| if (error) |
| goto out_trans_cancel; |
| |
| /* |
| * Now we join the directory inode to the transaction. We do not do it |
| * earlier because xfs_dir_ialloc might commit the previous transaction |
| * (and release all the locks). An error from here on will result in |
| * the transaction cancel unlocking dp so don't do it explicitly in the |
| * error path. |
| */ |
| xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); |
| unlock_dp_on_error = false; |
| |
| error = xfs_dir_createname(tp, dp, name, ip->i_ino, |
| &first_block, &dfops, resblks ? |
| resblks - XFS_IALLOC_SPACE_RES(mp) : 0); |
| if (error) { |
| ASSERT(error != -ENOSPC); |
| goto out_trans_cancel; |
| } |
| xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); |
| xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); |
| |
| if (is_dir) { |
| error = xfs_dir_init(tp, ip, dp); |
| if (error) |
| goto out_bmap_cancel; |
| |
| error = xfs_bumplink(tp, dp); |
| if (error) |
| goto out_bmap_cancel; |
| } |
| |
| /* |
| * If this is a synchronous mount, make sure that the |
| * create transaction goes to disk before returning to |
| * the user. |
| */ |
| if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) |
| xfs_trans_set_sync(tp); |
| |
| /* |
| * Attach the dquot(s) to the inodes and modify them incore. |
| * These ids of the inode couldn't have changed since the new |
| * inode has been locked ever since it was created. |
| */ |
| xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); |
| |
| error = xfs_defer_finish(&tp, &dfops, NULL); |
| if (error) |
| goto out_bmap_cancel; |
| |
| error = xfs_trans_commit(tp); |
| if (error) |
| goto out_release_inode; |
| |
| xfs_qm_dqrele(udqp); |
| xfs_qm_dqrele(gdqp); |
| xfs_qm_dqrele(pdqp); |
| |
| *ipp = ip; |
| return 0; |
| |
| out_bmap_cancel: |
| xfs_defer_cancel(&dfops); |
| out_trans_cancel: |
| xfs_trans_cancel(tp); |
| out_release_inode: |
| /* |
| * Wait until after the current transaction is aborted to finish the |
| * setup of the inode and release the inode. This prevents recursive |
| * transactions and deadlocks from xfs_inactive. |
| */ |
| if (ip) { |
| xfs_finish_inode_setup(ip); |
| IRELE(ip); |
| } |
| |
| xfs_qm_dqrele(udqp); |
| xfs_qm_dqrele(gdqp); |
| xfs_qm_dqrele(pdqp); |
| |
| if (unlock_dp_on_error) |
| xfs_iunlock(dp, XFS_ILOCK_EXCL); |
| return error; |
| } |
| |
| int |
| xfs_create_tmpfile( |
| struct xfs_inode *dp, |
| struct dentry *dentry, |
| umode_t mode, |
| struct xfs_inode **ipp) |
| { |
| struct xfs_mount *mp = dp->i_mount; |
| struct xfs_inode *ip = NULL; |
| struct xfs_trans *tp = NULL; |
| int error; |
| prid_t prid; |
| struct xfs_dquot *udqp = NULL; |
| struct xfs_dquot *gdqp = NULL; |
| struct xfs_dquot *pdqp = NULL; |
| struct xfs_trans_res *tres; |
| uint resblks; |
| |
| if (XFS_FORCED_SHUTDOWN(mp)) |
| return -EIO; |
| |
| prid = xfs_get_initial_prid(dp); |
| |
| /* |
| * Make sure that we have allocated dquot(s) on disk. |
| */ |
| error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()), |
| xfs_kgid_to_gid(current_fsgid()), prid, |
| XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, |
| &udqp, &gdqp, &pdqp); |
| if (error) |
| return error; |
| |
| resblks = XFS_IALLOC_SPACE_RES(mp); |
| tres = &M_RES(mp)->tr_create_tmpfile; |
| |
| error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); |
| if (error == -ENOSPC) { |
| /* No space at all so try a "no-allocation" reservation */ |
| resblks = 0; |
| error = xfs_trans_alloc(mp, tres, 0, 0, 0, &tp); |
| } |
| if (error) |
| goto out_release_inode; |
| |
| error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, |
| pdqp, resblks, 1, 0); |
| if (error) |
| goto out_trans_cancel; |
| |
| error = xfs_dir_ialloc(&tp, dp, mode, 1, 0, |
| prid, resblks > 0, &ip, NULL); |
| if (error) |
| goto out_trans_cancel; |
| |
| if (mp->m_flags & XFS_MOUNT_WSYNC) |
| xfs_trans_set_sync(tp); |
| |
| /* |
| * Attach the dquot(s) to the inodes and modify them incore. |
| * These ids of the inode couldn't have changed since the new |
| * inode has been locked ever since it was created. |
| */ |
| xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); |
| |
| error = xfs_iunlink(tp, ip); |
| if (error) |
| goto out_trans_cancel; |
| |
| error = xfs_trans_commit(tp); |
| if (error) |
| goto out_release_inode; |
| |
| xfs_qm_dqrele(udqp); |
| xfs_qm_dqrele(gdqp); |
| xfs_qm_dqrele(pdqp); |
| |
| *ipp = ip; |
| return 0; |
| |
| out_trans_cancel: |
| xfs_trans_cancel(tp); |
| out_release_inode: |
| /* |
| * Wait until after the current transaction is aborted to finish the |
| * setup of the inode and release the inode. This prevents recursive |
| * transactions and deadlocks from xfs_inactive. |
| */ |
| if (ip) { |
| xfs_finish_inode_setup(ip); |
| IRELE(ip); |
| } |
| |
| xfs_qm_dqrele(udqp); |
| xfs_qm_dqrele(gdqp); |
| xfs_qm_dqrele(pdqp); |
| |
| return error; |
| } |
| |
| int |
| xfs_link( |
| xfs_inode_t *tdp, |
| xfs_inode_t *sip, |
| struct xfs_name *target_name) |
| { |
| xfs_mount_t *mp = tdp->i_mount; |
| xfs_trans_t *tp; |
| int error; |
| struct xfs_defer_ops dfops; |
| xfs_fsblock_t first_block; |
| int resblks; |
| |
| trace_xfs_link(tdp, target_name); |
| |
| ASSERT(!S_ISDIR(VFS_I(sip)->i_mode)); |
| |
| if (XFS_FORCED_SHUTDOWN(mp)) |
| return -EIO; |
| |
| error = xfs_qm_dqattach(sip, 0); |
| if (error) |
| goto std_return; |
| |
| error = xfs_qm_dqattach(tdp, 0); |
| if (error) |
| goto std_return; |
| |
| resblks = XFS_LINK_SPACE_RES(mp, target_name->len); |
| error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp); |
| if (error == -ENOSPC) { |
| resblks = 0; |
| error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp); |
| } |
| if (error) |
| goto std_return; |
| |
| xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL); |
| |
| xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL); |
| xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL); |
| |
| /* |
| * If we are using project inheritance, we only allow hard link |
| * creation in our tree when the project IDs are the same; else |
| * the tree quota mechanism could be circumvented. |
| */ |
| if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && |
| (xfs_get_projid(tdp) != xfs_get_projid(sip)))) { |
| error = -EXDEV; |
| goto error_return; |
| } |
| |
| if (!resblks) { |
| error = xfs_dir_canenter(tp, tdp, target_name); |
| if (error) |
| goto error_return; |
| } |
| |
| xfs_defer_init(&dfops, &first_block); |
| |
| /* |
| * Handle initial link state of O_TMPFILE inode |
| */ |
| if (VFS_I(sip)->i_nlink == 0) { |
| error = xfs_iunlink_remove(tp, sip); |
| if (error) |
| goto error_return; |
| } |
| |
| error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino, |
| &first_block, &dfops, resblks); |
| if (error) |
| goto error_return; |
| xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); |
| xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE); |
| |
| error = xfs_bumplink(tp, sip); |
| if (error) |
| goto error_return; |
| |
| /* |
| * If this is a synchronous mount, make sure that the |
| * link transaction goes to disk before returning to |
| * the user. |
| */ |
| if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) |
| xfs_trans_set_sync(tp); |
| |
| error = xfs_defer_finish(&tp, &dfops, NULL); |
| if (error) { |
| xfs_defer_cancel(&dfops); |
| goto error_return; |
| } |
| |
| return xfs_trans_commit(tp); |
| |
| error_return: |
| xfs_trans_cancel(tp); |
| std_return: |
| return error; |
| } |
| |
| /* |
| * Free up the underlying blocks past new_size. The new size must be smaller |
| * than the current size. This routine can be used both for the attribute and |
| * data fork, and does not modify the inode size, which is left to the caller. |
| * |
| * The transaction passed to this routine must have made a permanent log |
| * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the |
| * given transaction and start new ones, so make sure everything involved in |
| * the transaction is tidy before calling here. Some transaction will be |
| * returned to the caller to be committed. The incoming transaction must |
| * already include the inode, and both inode locks must be held exclusively. |
| * The inode must also be "held" within the transaction. On return the inode |
| * will be "held" within the returned transaction. This routine does NOT |
| * require any disk space to be reserved for it within the transaction. |
| * |
| * If we get an error, we must return with the inode locked and linked into the |
| * current transaction. This keeps things simple for the higher level code, |
| * because it always knows that the inode is locked and held in the transaction |
| * that returns to it whether errors occur or not. We don't mark the inode |
| * dirty on error so that transactions can be easily aborted if possible. |
| */ |
| int |
| xfs_itruncate_extents( |
| struct xfs_trans **tpp, |
| struct xfs_inode *ip, |
| int whichfork, |
| xfs_fsize_t new_size) |
| { |
| struct xfs_mount *mp = ip->i_mount; |
| struct xfs_trans *tp = *tpp; |
| struct xfs_defer_ops dfops; |
| xfs_fsblock_t first_block; |
| xfs_fileoff_t first_unmap_block; |
| xfs_fileoff_t last_block; |
| xfs_filblks_t unmap_len; |
| int error = 0; |
| int done = 0; |
| |
| ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); |
| ASSERT(!atomic_read(&VFS_I(ip)->i_count) || |
| xfs_isilocked(ip, XFS_IOLOCK_EXCL)); |
| ASSERT(new_size <= XFS_ISIZE(ip)); |
| ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); |
| ASSERT(ip->i_itemp != NULL); |
| ASSERT(ip->i_itemp->ili_lock_flags == 0); |
| ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); |
| |
| trace_xfs_itruncate_extents_start(ip, new_size); |
| |
| /* |
| * Since it is possible for space to become allocated beyond |
| * the end of the file (in a crash where the space is allocated |
| * but the inode size is not yet updated), simply remove any |
| * blocks which show up between the new EOF and the maximum |
| * possible file size. If the first block to be removed is |
| * beyond the maximum file size (ie it is the same as last_block), |
| * then there is nothing to do. |
| */ |
| first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); |
| last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes); |
| if (first_unmap_block == last_block) |
| return 0; |
| |
| ASSERT(first_unmap_block < last_block); |
| unmap_len = last_block - first_unmap_block + 1; |
| while (!done) { |
| xfs_defer_init(&dfops, &first_block); |
| error = xfs_bunmapi(tp, ip, |
| first_unmap_block, unmap_len, |
| xfs_bmapi_aflag(whichfork), |
| XFS_ITRUNC_MAX_EXTENTS, |
| &first_block, &dfops, |
| &done); |
| if (error) |
| goto out_bmap_cancel; |
| |
| /* |
| * Duplicate the transaction that has the permanent |
| * reservation and commit the old transaction. |
| */ |
| error = xfs_defer_finish(&tp, &dfops, ip); |
| if (error) |
| goto out_bmap_cancel; |
| |
| error = xfs_trans_roll(&tp, ip); |
| if (error) |
| goto out; |
| } |
| |
| /* Remove all pending CoW reservations. */ |
| error = xfs_reflink_cancel_cow_blocks(ip, &tp, first_unmap_block, |
| last_block); |
| if (error) |
| goto out; |
| |
| /* |
| * Clear the reflink flag if we truncated everything. |
| */ |
| if (ip->i_d.di_nblocks == 0 && xfs_is_reflink_inode(ip)) { |
| ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK; |
| xfs_inode_clear_cowblocks_tag(ip); |
| } |
| |
| /* |
| * Always re-log the inode so that our permanent transaction can keep |
| * on rolling it forward in the log. |
| */ |
| xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); |
| |
| trace_xfs_itruncate_extents_end(ip, new_size); |
| |
| out: |
| *tpp = tp; |
| return error; |
| out_bmap_cancel: |
| /* |
| * If the bunmapi call encounters an error, return to the caller where |
| * the transaction can be properly aborted. We just need to make sure |
| * we're not holding any resources that we were not when we came in. |
| */ |
| xfs_defer_cancel(&dfops); |
| goto out; |
| } |
| |
| int |
| xfs_release( |
| xfs_inode_t *ip) |
| { |
| xfs_mount_t *mp = ip->i_mount; |
| int error; |
| |
| if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0)) |
| return 0; |
| |
| /* If this is a read-only mount, don't do this (would generate I/O) */ |
| if (mp->m_flags & XFS_MOUNT_RDONLY) |
| return 0; |
| |
| if (!XFS_FORCED_SHUTDOWN(mp)) { |
| int truncated; |
| |
| /* |
| * If we previously truncated this file and removed old data |
| * in the process, we want to initiate "early" writeout on |
| * the last close. This is an attempt to combat the notorious |
| * NULL files problem which is particularly noticeable from a |
| * truncate down, buffered (re-)write (delalloc), followed by |
| * a crash. What we are effectively doing here is |
| * significantly reducing the time window where we'd otherwise |
| * be exposed to that problem. |
| */ |
| truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED); |
| if (truncated) { |
| xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE); |
| if (ip->i_delayed_blks > 0) { |
| error = filemap_flush(VFS_I(ip)->i_mapping); |
| if (error) |
| return error; |
| } |
| } |
| } |
| |
| if (VFS_I(ip)->i_nlink == 0) |
| return 0; |
| |
| if (xfs_can_free_eofblocks(ip, false)) { |
| |
| /* |
| * Check if the inode is being opened, written and closed |
| * frequently and we have delayed allocation blocks outstanding |
| * (e.g. streaming writes from the NFS server), truncating the |
| * blocks past EOF will cause fragmentation to occur. |
| * |
| * In this case don't do the truncation, but we have to be |
| * careful how we detect this case. Blocks beyond EOF show up as |
| * i_delayed_blks even when the inode is clean, so we need to |
| * truncate them away first before checking for a dirty release. |
| * Hence on the first dirty close we will still remove the |
| * speculative allocation, but after that we will leave it in |
| * place. |
| */ |
| if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE)) |
| return 0; |
| /* |
| * If we can't get the iolock just skip truncating the blocks |
| * past EOF because we could deadlock with the mmap_sem |
| * otherwise. We'll get another chance to drop them once the |
| * last reference to the inode is dropped, so we'll never leak |
| * blocks permanently. |
| */ |
| if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { |
| error = xfs_free_eofblocks(ip); |
| xfs_iunlock(ip, XFS_IOLOCK_EXCL); |
| if (error) |
| return error; |
| } |
| |
| /* delalloc blocks after truncation means it really is dirty */ |
| if (ip->i_delayed_blks) |
| xfs_iflags_set(ip, XFS_IDIRTY_RELEASE); |
| } |
| return 0; |
| } |
| |
| /* |
| * xfs_inactive_truncate |
| * |
| * Called to perform a truncate when an inode becomes unlinked. |
| */ |
| STATIC int |
| xfs_inactive_truncate( |
| struct xfs_inode *ip) |
| { |
| struct xfs_mount *mp = ip->i_mount; |
| struct xfs_trans *tp; |
| int error; |
| |
| error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); |
| if (error) { |
| ASSERT(XFS_FORCED_SHUTDOWN(mp)); |
| return error; |
| } |
| |
| xfs_ilock(ip, XFS_ILOCK_EXCL); |
| xfs_trans_ijoin(tp, ip, 0); |
| |
| /* |
| * Log the inode size first to prevent stale data exposure in the event |
| * of a system crash before the truncate completes. See the related |
| * comment in xfs_vn_setattr_size() for details. |
| */ |
| ip->i_d.di_size = 0; |
| xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); |
| |
| error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); |
| if (error) |
| goto error_trans_cancel; |
| |
| ASSERT(ip->i_d.di_nextents == 0); |
| |
| error = xfs_trans_commit(tp); |
| if (error) |
| goto error_unlock; |
| |
| xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| return 0; |
| |
| error_trans_cancel: |
| xfs_trans_cancel(tp); |
| error_unlock: |
| xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| return error; |
| } |
| |
| /* |
| * xfs_inactive_ifree() |
| * |
| * Perform the inode free when an inode is unlinked. |
| */ |
| STATIC int |
| xfs_inactive_ifree( |
| struct xfs_inode *ip) |
| { |
| struct xfs_defer_ops dfops; |
| xfs_fsblock_t first_block; |
| struct xfs_mount *mp = ip->i_mount; |
| struct xfs_trans *tp; |
| int error; |
| |
| /* |
| * We try to use a per-AG reservation for any block needed by the finobt |
| * tree, but as the finobt feature predates the per-AG reservation |
| * support a degraded file system might not have enough space for the |
| * reservation at mount time. In that case try to dip into the reserved |
| * pool and pray. |
| * |
| * Send a warning if the reservation does happen to fail, as the inode |
| * now remains allocated and sits on the unlinked list until the fs is |
| * repaired. |
| */ |
| if (unlikely(mp->m_inotbt_nores)) { |
| error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, |
| XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, |
| &tp); |
| } else { |
| error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp); |
| } |
| if (error) { |
| if (error == -ENOSPC) { |
| xfs_warn_ratelimited(mp, |
| "Failed to remove inode(s) from unlinked list. " |
| "Please free space, unmount and run xfs_repair."); |
| } else { |
| ASSERT(XFS_FORCED_SHUTDOWN(mp)); |
| } |
| return error; |
| } |
| |
| xfs_ilock(ip, XFS_ILOCK_EXCL); |
| xfs_trans_ijoin(tp, ip, 0); |
| |
| xfs_defer_init(&dfops, &first_block); |
| error = xfs_ifree(tp, ip, &dfops); |
| if (error) { |
| /* |
| * If we fail to free the inode, shut down. The cancel |
| * might do that, we need to make sure. Otherwise the |
| * inode might be lost for a long time or forever. |
| */ |
| if (!XFS_FORCED_SHUTDOWN(mp)) { |
| xfs_notice(mp, "%s: xfs_ifree returned error %d", |
| __func__, error); |
| xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); |
| } |
| xfs_trans_cancel(tp); |
| xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| return error; |
| } |
| |
| /* |
| * Credit the quota account(s). The inode is gone. |
| */ |
| xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); |
| |
| /* |
| * Just ignore errors at this point. There is nothing we can do except |
| * to try to keep going. Make sure it's not a silent error. |
| */ |
| error = xfs_defer_finish(&tp, &dfops, NULL); |
| if (error) { |
| xfs_notice(mp, "%s: xfs_defer_finish returned error %d", |
| __func__, error); |
| xfs_defer_cancel(&dfops); |
| } |
| error = xfs_trans_commit(tp); |
| if (error) |
| xfs_notice(mp, "%s: xfs_trans_commit returned error %d", |
| __func__, error); |
| |
| xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| return 0; |
| } |
| |
| /* |
| * xfs_inactive |
| * |
| * This is called when the vnode reference count for the vnode |
| * goes to zero. If the file has been unlinked, then it must |
| * now be truncated. Also, we clear all of the read-ahead state |
| * kept for the inode here since the file is now closed. |
| */ |
| void |
| xfs_inactive( |
| xfs_inode_t *ip) |
| { |
| struct xfs_mount *mp; |
| int error; |
| int truncate = 0; |
| |
| /* |
| * If the inode is already free, then there can be nothing |
| * to clean up here. |
| */ |
| if (VFS_I(ip)->i_mode == 0) { |
| ASSERT(ip->i_df.if_real_bytes == 0); |
| ASSERT(ip->i_df.if_broot_bytes == 0); |
| return; |
| } |
| |
| mp = ip->i_mount; |
| ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY)); |
| |
| /* If this is a read-only mount, don't do this (would generate I/O) */ |
| if (mp->m_flags & XFS_MOUNT_RDONLY) |
| return; |
| |
| if (VFS_I(ip)->i_nlink != 0) { |
| /* |
| * force is true because we are evicting an inode from the |
| * cache. Post-eof blocks must be freed, lest we end up with |
| * broken free space accounting. |
| */ |
| if (xfs_can_free_eofblocks(ip, true)) { |
| xfs_ilock(ip, XFS_IOLOCK_EXCL); |
| xfs_free_eofblocks(ip); |
| xfs_iunlock(ip, XFS_IOLOCK_EXCL); |
| } |
| |
| return; |
| } |
| |
| if (S_ISREG(VFS_I(ip)->i_mode) && |
| (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 || |
| ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0)) |
| truncate = 1; |
| |
| error = xfs_qm_dqattach(ip, 0); |
| if (error) |
| return; |
| |
| if (S_ISLNK(VFS_I(ip)->i_mode)) |
| error = xfs_inactive_symlink(ip); |
| else if (truncate) |
| error = xfs_inactive_truncate(ip); |
| if (error) |
| return; |
| |
| /* |
| * If there are attributes associated with the file then blow them away |
| * now. The code calls a routine that recursively deconstructs the |
| * attribute fork. If also blows away the in-core attribute fork. |
| */ |
| if (XFS_IFORK_Q(ip)) { |
| error = xfs_attr_inactive(ip); |
| if (error) |
| return; |
| } |
| |
| ASSERT(!ip->i_afp); |
| ASSERT(ip->i_d.di_anextents == 0); |
| ASSERT(ip->i_d.di_forkoff == 0); |
| |
| /* |
| * Free the inode. |
| */ |
| error = xfs_inactive_ifree(ip); |
| if (error) |
| return; |
| |
| /* |
| * Release the dquots held by inode, if any. |
| */ |
| xfs_qm_dqdetach(ip); |
| } |
| |
| /* |
| * This is called when the inode's link count goes to 0 or we are creating a |
| * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be |
| * set to true as the link count is dropped to zero by the VFS after we've |
| * created the file successfully, so we have to add it to the unlinked list |
| * while the link count is non-zero. |
| * |
| * We place the on-disk inode on a list in the AGI. It will be pulled from this |
| * list when the inode is freed. |
| */ |
| STATIC int |
| xfs_iunlink( |
| struct xfs_trans *tp, |
| struct xfs_inode *ip) |
| { |
| xfs_mount_t *mp = tp->t_mountp; |
| xfs_agi_t *agi; |
| xfs_dinode_t *dip; |
| xfs_buf_t *agibp; |
| xfs_buf_t *ibp; |
| xfs_agino_t agino; |
| short bucket_index; |
| int offset; |
| int error; |
| |
| ASSERT(VFS_I(ip)->i_mode != 0); |
| |
| /* |
| * Get the agi buffer first. It ensures lock ordering |
| * on the list. |
| */ |
| error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp); |
| if (error) |
| return error; |
| agi = XFS_BUF_TO_AGI(agibp); |
| |
| /* |
| * Get the index into the agi hash table for the |
| * list this inode will go on. |
| */ |
| agino = XFS_INO_TO_AGINO(mp, ip->i_ino); |
| ASSERT(agino != 0); |
| bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; |
| ASSERT(agi->agi_unlinked[bucket_index]); |
| ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino); |
| |
| if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) { |
| /* |
| * There is already another inode in the bucket we need |
| * to add ourselves to. Add us at the front of the list. |
| * Here we put the head pointer into our next pointer, |
| * and then we fall through to point the head at us. |
| */ |
| error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, |
| 0, 0); |
| if (error) |
| return error; |
| |
| ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO)); |
| dip->di_next_unlinked = agi->agi_unlinked[bucket_index]; |
| offset = ip->i_imap.im_boffset + |
| offsetof(xfs_dinode_t, di_next_unlinked); |
| |
| /* need to recalc the inode CRC if appropriate */ |
| xfs_dinode_calc_crc(mp, dip); |
| |
| xfs_trans_inode_buf(tp, ibp); |
| xfs_trans_log_buf(tp, ibp, offset, |
| (offset + sizeof(xfs_agino_t) - 1)); |
| xfs_inobp_check(mp, ibp); |
| } |
| |
| /* |
| * Point the bucket head pointer at the inode being inserted. |
| */ |
| ASSERT(agino != 0); |
| agi->agi_unlinked[bucket_index] = cpu_to_be32(agino); |
| offset = offsetof(xfs_agi_t, agi_unlinked) + |
| (sizeof(xfs_agino_t) * bucket_index); |
| xfs_trans_log_buf(tp, agibp, offset, |
| (offset + sizeof(xfs_agino_t) - 1)); |
| return 0; |
| } |
| |
| /* |
| * Pull the on-disk inode from the AGI unlinked list. |
| */ |
| STATIC int |
| xfs_iunlink_remove( |
| xfs_trans_t *tp, |
| xfs_inode_t *ip) |
| { |
| xfs_ino_t next_ino; |
| xfs_mount_t *mp; |
| xfs_agi_t *agi; |
| xfs_dinode_t *dip; |
| xfs_buf_t *agibp; |
| xfs_buf_t *ibp; |
| xfs_agnumber_t agno; |
| xfs_agino_t agino; |
| xfs_agino_t next_agino; |
| xfs_buf_t *last_ibp; |
| xfs_dinode_t *last_dip = NULL; |
| short bucket_index; |
| int offset, last_offset = 0; |
| int error; |
| |
| mp = tp->t_mountp; |
| agno = XFS_INO_TO_AGNO(mp, ip->i_ino); |
| |
| /* |
| * Get the agi buffer first. It ensures lock ordering |
| * on the list. |
| */ |
| error = xfs_read_agi(mp, tp, agno, &agibp); |
| if (error) |
| return error; |
| |
| agi = XFS_BUF_TO_AGI(agibp); |
| |
| /* |
| * Get the index into the agi hash table for the |
| * list this inode will go on. |
| */ |
| agino = XFS_INO_TO_AGINO(mp, ip->i_ino); |
| ASSERT(agino != 0); |
| bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; |
| ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)); |
| ASSERT(agi->agi_unlinked[bucket_index]); |
| |
| if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) { |
| /* |
| * We're at the head of the list. Get the inode's on-disk |
| * buffer to see if there is anyone after us on the list. |
| * Only modify our next pointer if it is not already NULLAGINO. |
| * This saves us the overhead of dealing with the buffer when |
| * there is no need to change it. |
| */ |
| error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, |
| 0, 0); |
| if (error) { |
| xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.", |
| __func__, error); |
| return error; |
| } |
| next_agino = be32_to_cpu(dip->di_next_unlinked); |
| ASSERT(next_agino != 0); |
| if (next_agino != NULLAGINO) { |
| dip->di_next_unlinked = cpu_to_be32(NULLAGINO); |
| offset = ip->i_imap.im_boffset + |
| offsetof(xfs_dinode_t, di_next_unlinked); |
| |
| /* need to recalc the inode CRC if appropriate */ |
| xfs_dinode_calc_crc(mp, dip); |
| |
| xfs_trans_inode_buf(tp, ibp); |
| xfs_trans_log_buf(tp, ibp, offset, |
| (offset + sizeof(xfs_agino_t) - 1)); |
| xfs_inobp_check(mp, ibp); |
| } else { |
| xfs_trans_brelse(tp, ibp); |
| } |
| /* |
| * Point the bucket head pointer at the next inode. |
| */ |
| ASSERT(next_agino != 0); |
| ASSERT(next_agino != agino); |
| agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino); |
| offset = offsetof(xfs_agi_t, agi_unlinked) + |
| (sizeof(xfs_agino_t) * bucket_index); |
| xfs_trans_log_buf(tp, agibp, offset, |
| (offset + sizeof(xfs_agino_t) - 1)); |
| } else { |
| /* |
| * We need to search the list for the inode being freed. |
| */ |
| next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); |
| last_ibp = NULL; |
| while (next_agino != agino) { |
| struct xfs_imap imap; |
| |
| if (last_ibp) |
| xfs_trans_brelse(tp, last_ibp); |
| |
| imap.im_blkno = 0; |
| next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino); |
| |
| error = xfs_imap(mp, tp, next_ino, &imap, 0); |
| if (error) { |
| xfs_warn(mp, |
| "%s: xfs_imap returned error %d.", |
| __func__, error); |
| return error; |
| } |
| |
| error = xfs_imap_to_bp(mp, tp, &imap, &last_dip, |
| &last_ibp, 0, 0); |
| if (error) { |
| xfs_warn(mp, |
| "%s: xfs_imap_to_bp returned error %d.", |
| __func__, error); |
| return error; |
| } |
| |
| last_offset = imap.im_boffset; |
| next_agino = be32_to_cpu(last_dip->di_next_unlinked); |
| ASSERT(next_agino != NULLAGINO); |
| ASSERT(next_agino != 0); |
| } |
| |
| /* |
| * Now last_ibp points to the buffer previous to us on the |
| * unlinked list. Pull us from the list. |
| */ |
| error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, |
| 0, 0); |
| if (error) { |
| xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.", |
| __func__, error); |
| return error; |
| } |
| next_agino = be32_to_cpu(dip->di_next_unlinked); |
| ASSERT(next_agino != 0); |
| ASSERT(next_agino != agino); |
| if (next_agino != NULLAGINO) { |
| dip->di_next_unlinked = cpu_to_be32(NULLAGINO); |
| offset = ip->i_imap.im_boffset + |
| offsetof(xfs_dinode_t, di_next_unlinked); |
| |
| /* need to recalc the inode CRC if appropriate */ |
| xfs_dinode_calc_crc(mp, dip); |
| |
| xfs_trans_inode_buf(tp, ibp); |
| xfs_trans_log_buf(tp, ibp, offset, |
| (offset + sizeof(xfs_agino_t) - 1)); |
| xfs_inobp_check(mp, ibp); |
| } else { |
| xfs_trans_brelse(tp, ibp); |
| } |
| /* |
| * Point the previous inode on the list to the next inode. |
| */ |
| last_dip->di_next_unlinked = cpu_to_be32(next_agino); |
| ASSERT(next_agino != 0); |
| offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked); |
| |
| /* need to recalc the inode CRC if appropriate */ |
| xfs_dinode_calc_crc(mp, last_dip); |
| |
| xfs_trans_inode_buf(tp, last_ibp); |
| xfs_trans_log_buf(tp, last_ibp, offset, |
| (offset + sizeof(xfs_agino_t) - 1)); |
| xfs_inobp_check(mp, last_ibp); |
| } |
| return 0; |
| } |
| |
| /* |
| * A big issue when freeing the inode cluster is that we _cannot_ skip any |
| * inodes that are in memory - they all must be marked stale and attached to |
| * the cluster buffer. |
| */ |
| STATIC int |
| xfs_ifree_cluster( |
| xfs_inode_t *free_ip, |
| xfs_trans_t *tp, |
| struct xfs_icluster *xic) |
| { |
| xfs_mount_t *mp = free_ip->i_mount; |
| int blks_per_cluster; |
| int inodes_per_cluster; |
| int nbufs; |
| int i, j; |
| int ioffset; |
| xfs_daddr_t blkno; |
| xfs_buf_t *bp; |
| xfs_inode_t *ip; |
| xfs_inode_log_item_t *iip; |
| xfs_log_item_t *lip; |
| struct xfs_perag *pag; |
| xfs_ino_t inum; |
| |
| inum = xic->first_ino; |
| pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum)); |
| blks_per_cluster = xfs_icluster_size_fsb(mp); |
| inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog; |
| nbufs = mp->m_ialloc_blks / blks_per_cluster; |
| |
| for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) { |
| /* |
| * The allocation bitmap tells us which inodes of the chunk were |
| * physically allocated. Skip the cluster if an inode falls into |
| * a sparse region. |
| */ |
| ioffset = inum - xic->first_ino; |
| if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) { |
| ASSERT(do_mod(ioffset, inodes_per_cluster) == 0); |
| continue; |
| } |
| |
| blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), |
| XFS_INO_TO_AGBNO(mp, inum)); |
| |
| /* |
| * We obtain and lock the backing buffer first in the process |
| * here, as we have to ensure that any dirty inode that we |
| * can't get the flush lock on is attached to the buffer. |
| * If we scan the in-memory inodes first, then buffer IO can |
| * complete before we get a lock on it, and hence we may fail |
| * to mark all the active inodes on the buffer stale. |
| */ |
| bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, |
| mp->m_bsize * blks_per_cluster, |
| XBF_UNMAPPED); |
| |
| if (!bp) |
| return -ENOMEM; |
| |
| /* |
| * This buffer may not have been correctly initialised as we |
| * didn't read it from disk. That's not important because we are |
| * only using to mark the buffer as stale in the log, and to |
| * attach stale cached inodes on it. That means it will never be |
| * dispatched for IO. If it is, we want to know about it, and we |
| * want it to fail. We can acheive this by adding a write |
| * verifier to the buffer. |
| */ |
| bp->b_ops = &xfs_inode_buf_ops; |
| |
| /* |
| * Walk the inodes already attached to the buffer and mark them |
| * stale. These will all have the flush locks held, so an |
| * in-memory inode walk can't lock them. By marking them all |
| * stale first, we will not attempt to lock them in the loop |
| * below as the XFS_ISTALE flag will be set. |
| */ |
| lip = bp->b_fspriv; |
| while (lip) { |
| if (lip->li_type == XFS_LI_INODE) { |
| iip = (xfs_inode_log_item_t *)lip; |
| ASSERT(iip->ili_logged == 1); |
| lip->li_cb = xfs_istale_done; |
| xfs_trans_ail_copy_lsn(mp->m_ail, |
| &iip->ili_flush_lsn, |
| &iip->ili_item.li_lsn); |
| xfs_iflags_set(iip->ili_inode, XFS_ISTALE); |
| } |
| lip = lip->li_bio_list; |
| } |
| |
| |
| /* |
| * For each inode in memory attempt to add it to the inode |
| * buffer and set it up for being staled on buffer IO |
| * completion. This is safe as we've locked out tail pushing |
| * and flushing by locking the buffer. |
| * |
| * We have already marked every inode that was part of a |
| * transaction stale above, which means there is no point in |
| * even trying to lock them. |
| */ |
| for (i = 0; i < inodes_per_cluster; i++) { |
| retry: |
| rcu_read_lock(); |
| ip = radix_tree_lookup(&pag->pag_ici_root, |
| XFS_INO_TO_AGINO(mp, (inum + i))); |
| |
| /* Inode not in memory, nothing to do */ |
| if (!ip) { |
| rcu_read_unlock(); |
| continue; |
| } |
| |
| /* |
| * because this is an RCU protected lookup, we could |
| * find a recently freed or even reallocated inode |
| * during the lookup. We need to check under the |
| * i_flags_lock for a valid inode here. Skip it if it |
| * is not valid, the wrong inode or stale. |
| */ |
| spin_lock(&ip->i_flags_lock); |
| if (ip->i_ino != inum + i || |
| __xfs_iflags_test(ip, XFS_ISTALE)) { |
| spin_unlock(&ip->i_flags_lock); |
| rcu_read_unlock(); |
| continue; |
| } |
| spin_unlock(&ip->i_flags_lock); |
| |
| /* |
| * Don't try to lock/unlock the current inode, but we |
| * _cannot_ skip the other inodes that we did not find |
| * in the list attached to the buffer and are not |
| * already marked stale. If we can't lock it, back off |
| * and retry. |
| */ |
| if (ip != free_ip && |
| !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { |
| rcu_read_unlock(); |
| delay(1); |
| goto retry; |
| } |
| rcu_read_unlock(); |
| |
| xfs_iflock(ip); |
| xfs_iflags_set(ip, XFS_ISTALE); |
| |
| /* |
| * we don't need to attach clean inodes or those only |
| * with unlogged changes (which we throw away, anyway). |
| */ |
| iip = ip->i_itemp; |
| if (!iip || xfs_inode_clean(ip)) { |
| ASSERT(ip != free_ip); |
| xfs_ifunlock(ip); |
| xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| continue; |
| } |
| |
| iip->ili_last_fields = iip->ili_fields; |
| iip->ili_fields = 0; |
| iip->ili_fsync_fields = 0; |
| iip->ili_logged = 1; |
| xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, |
| &iip->ili_item.li_lsn); |
| |
| xfs_buf_attach_iodone(bp, xfs_istale_done, |
| &iip->ili_item); |
| |
| if (ip != free_ip) |
| xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| } |
| |
| xfs_trans_stale_inode_buf(tp, bp); |
| xfs_trans_binval(tp, bp); |
| } |
| |
| xfs_perag_put(pag); |
| return 0; |
| } |
| |
| /* |
| * This is called to return an inode to the inode free list. |
| * The inode should already be truncated to 0 length and have |
| * no pages associated with it. This routine also assumes that |
| * the inode is already a part of the transaction. |
| * |
| * The on-disk copy of the inode will have been added to the list |
| * of unlinked inodes in the AGI. We need to remove the inode from |
| * that list atomically with respect to freeing it here. |
| */ |
| int |
| xfs_ifree( |
| xfs_trans_t *tp, |
| xfs_inode_t *ip, |
| struct xfs_defer_ops *dfops) |
| { |
| int error; |
| struct xfs_icluster xic = { 0 }; |
| |
| ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); |
| ASSERT(VFS_I(ip)->i_nlink == 0); |
| ASSERT(ip->i_d.di_nextents == 0); |
| ASSERT(ip->i_d.di_anextents == 0); |
| ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode)); |
| ASSERT(ip->i_d.di_nblocks == 0); |
| |
| /* |
| * Pull the on-disk inode from the AGI unlinked list. |
| */ |
| error = xfs_iunlink_remove(tp, ip); |
| if (error) |
| return error; |
| |
| error = xfs_difree(tp, ip->i_ino, dfops, &xic); |
| if (error) |
| return error; |
| |
| VFS_I(ip)->i_mode = 0; /* mark incore inode as free */ |
| ip->i_d.di_flags = 0; |
| ip->i_d.di_dmevmask = 0; |
| ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ |
| ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; |
| ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; |
| /* |
| * Bump the generation count so no one will be confused |
| * by reincarnations of this inode. |
| */ |
| VFS_I(ip)->i_generation++; |
| xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); |
| |
| if (xic.deleted) |
| error = xfs_ifree_cluster(ip, tp, &xic); |
| |
| return error; |
| } |
| |
| /* |
| * This is called to unpin an inode. The caller must have the inode locked |
| * in at least shared mode so that the buffer cannot be subsequently pinned |
| * once someone is waiting for it to be unpinned. |
| */ |
| static void |
| xfs_iunpin( |
| struct xfs_inode *ip) |
| { |
| ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); |
| |
| trace_xfs_inode_unpin_nowait(ip, _RET_IP_); |
| |
| /* Give the log a push to start the unpinning I/O */ |
| xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0); |
| |
| } |
| |
| static void |
| __xfs_iunpin_wait( |
| struct xfs_inode *ip) |
| { |
| wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); |
| DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); |
| |
| xfs_iunpin(ip); |
| |
| do { |
| prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); |
| if (xfs_ipincount(ip)) |
| io_schedule(); |
| } while (xfs_ipincount(ip)); |
| finish_wait(wq, &wait.wait); |
| } |
| |
| void |
| xfs_iunpin_wait( |
| struct xfs_inode *ip) |
| { |
| if (xfs_ipincount(ip)) |
| __xfs_iunpin_wait(ip); |
| } |
| |
| /* |
| * Removing an inode from the namespace involves removing the directory entry |
| * and dropping the link count on the inode. Removing the directory entry can |
| * result in locking an AGF (directory blocks were freed) and removing a link |
| * count can result in placing the inode on an unlinked list which results in |
| * locking an AGI. |
| * |
| * The big problem here is that we have an ordering constraint on AGF and AGI |
| * locking - inode allocation locks the AGI, then can allocate a new extent for |
| * new inodes, locking the AGF after the AGI. Similarly, freeing the inode |
| * removes the inode from the unlinked list, requiring that we lock the AGI |
| * first, and then freeing the inode can result in an inode chunk being freed |
| * and hence freeing disk space requiring that we lock an AGF. |
| * |
| * Hence the ordering that is imposed by other parts of the code is AGI before |
| * AGF. This means we cannot remove the directory entry before we drop the inode |
| * reference count and put it on the unlinked list as this results in a lock |
| * order of AGF then AGI, and this can deadlock against inode allocation and |
| * freeing. Therefore we must drop the link counts before we remove the |
| * directory entry. |
| * |
| * This is still safe from a transactional point of view - it is not until we |
| * get to xfs_defer_finish() that we have the possibility of multiple |
| * transactions in this operation. Hence as long as we remove the directory |
| * entry and drop the link count in the first transaction of the remove |
| * operation, there are no transactional constraints on the ordering here. |
| */ |
| int |
| xfs_remove( |
| xfs_inode_t *dp, |
| struct xfs_name *name, |
| xfs_inode_t *ip) |
| { |
| xfs_mount_t *mp = dp->i_mount; |
| xfs_trans_t *tp = NULL; |
| int is_dir = S_ISDIR(VFS_I(ip)->i_mode); |
| int error = 0; |
| struct xfs_defer_ops dfops; |
| xfs_fsblock_t first_block; |
| uint resblks; |
| |
| trace_xfs_remove(dp, name); |
| |
| if (XFS_FORCED_SHUTDOWN(mp)) |
| return -EIO; |
| |
| error = xfs_qm_dqattach(dp, 0); |
| if (error) |
| goto std_return; |
| |
| error = xfs_qm_dqattach(ip, 0); |
| if (error) |
| goto std_return; |
| |
| /* |
| * We try to get the real space reservation first, |
| * allowing for directory btree deletion(s) implying |
| * possible bmap insert(s). If we can't get the space |
| * reservation then we use 0 instead, and avoid the bmap |
| * btree insert(s) in the directory code by, if the bmap |
| * insert tries to happen, instead trimming the LAST |
| * block from the directory. |
| */ |
| resblks = XFS_REMOVE_SPACE_RES(mp); |
| error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp); |
| if (error == -ENOSPC) { |
| resblks = 0; |
| error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0, |
| &tp); |
| } |
| if (error) { |
| ASSERT(error != -ENOSPC); |
| goto std_return; |
| } |
| |
| xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL); |
| |
| xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); |
| xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); |
| |
| /* |
| * If we're removing a directory perform some additional validation. |
| */ |
| if (is_dir) { |
| ASSERT(VFS_I(ip)->i_nlink >= 2); |
| if (VFS_I(ip)->i_nlink != 2) { |
| error = -ENOTEMPTY; |
| goto out_trans_cancel; |
| } |
| if (!xfs_dir_isempty(ip)) { |
| error = -ENOTEMPTY; |
| goto out_trans_cancel; |
| } |
| |
| /* Drop the link from ip's "..". */ |
| error = xfs_droplink(tp, dp); |
| if (error) |
| goto out_trans_cancel; |
| |
| /* Drop the "." link from ip to self. */ |
| error = xfs_droplink(tp, ip); |
| if (error) |
| goto out_trans_cancel; |
| } else { |
| /* |
| * When removing a non-directory we need to log the parent |
| * inode here. For a directory this is done implicitly |
| * by the xfs_droplink call for the ".." entry. |
| */ |
| xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); |
| } |
| xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); |
| |
| /* Drop the link from dp to ip. */ |
| error = xfs_droplink(tp, ip); |
| if (error) |
| goto out_trans_cancel; |
| |
| xfs_defer_init(&dfops, &first_block); |
| error = xfs_dir_removename(tp, dp, name, ip->i_ino, |
| &first_block, &dfops, resblks); |
| if (error) { |
| ASSERT(error != -ENOENT); |
| goto out_bmap_cancel; |
| } |
| |
| /* |
| * If this is a synchronous mount, make sure that the |
| * remove transaction goes to disk before returning to |
| * the user. |
| */ |
| if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) |
| xfs_trans_set_sync(tp); |
| |
| error = xfs_defer_finish(&tp, &dfops, NULL); |
| if (error) |
| goto out_bmap_cancel; |
| |
| error = xfs_trans_commit(tp); |
| if (error) |
| goto std_return; |
| |
| if (is_dir && xfs_inode_is_filestream(ip)) |
| xfs_filestream_deassociate(ip); |
| |
| return 0; |
| |
| out_bmap_cancel: |
| xfs_defer_cancel(&dfops); |
| out_trans_cancel: |
| xfs_trans_cancel(tp); |
| std_return: |
| return error; |
| } |
| |
| /* |
| * Enter all inodes for a rename transaction into a sorted array. |
| */ |
| #define __XFS_SORT_INODES 5 |
| STATIC void |
| xfs_sort_for_rename( |
| struct xfs_inode *dp1, /* in: old (source) directory inode */ |
| struct xfs_inode *dp2, /* in: new (target) directory inode */ |
| struct xfs_inode *ip1, /* in: inode of old entry */ |
| struct xfs_inode *ip2, /* in: inode of new entry */ |
| struct xfs_inode *wip, /* in: whiteout inode */ |
| struct xfs_inode **i_tab,/* out: sorted array of inodes */ |
| int *num_inodes) /* in/out: inodes in array */ |
| { |
| int i, j; |
| |
| ASSERT(*num_inodes == __XFS_SORT_INODES); |
| memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *)); |
| |
| /* |
| * i_tab contains a list of pointers to inodes. We initialize |
| * the table here & we'll sort it. We will then use it to |
| * order the acquisition of the inode locks. |
| * |
| * Note that the table may contain duplicates. e.g., dp1 == dp2. |
| */ |
| i = 0; |
| i_tab[i++] = dp1; |
| i_tab[i++] = dp2; |
| i_tab[i++] = ip1; |
| if (ip2) |
| i_tab[i++] = ip2; |
| if (wip) |
| i_tab[i++] = wip; |
| *num_inodes = i; |
| |
| /* |
| * Sort the elements via bubble sort. (Remember, there are at |
| * most 5 elements to sort, so this is adequate.) |
| */ |
| for (i = 0; i < *num_inodes; i++) { |
| for (j = 1; j < *num_inodes; j++) { |
| if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) { |
| struct xfs_inode *temp = i_tab[j]; |
| i_tab[j] = i_tab[j-1]; |
| i_tab[j-1] = temp; |
| } |
| } |
| } |
| } |
| |
| static int |
| xfs_finish_rename( |
| struct xfs_trans *tp, |
| struct xfs_defer_ops *dfops) |
| { |
| int error; |
| |
| /* |
| * If this is a synchronous mount, make sure that the rename transaction |
| * goes to disk before returning to the user. |
| */ |
| if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) |
| xfs_trans_set_sync(tp); |
| |
| error = xfs_defer_finish(&tp, dfops, NULL); |
| if (error) { |
| xfs_defer_cancel(dfops); |
| xfs_trans_cancel(tp); |
| return error; |
| } |
| |
| return xfs_trans_commit(tp); |
| } |
| |
| /* |
| * xfs_cross_rename() |
| * |
| * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall |
| */ |
| STATIC int |
| xfs_cross_rename( |
| struct xfs_trans *tp, |
| struct xfs_inode *dp1, |
| struct xfs_name *name1, |
| struct xfs_inode *ip1, |
| struct xfs_inode *dp2, |
| struct xfs_name *name2, |
| struct xfs_inode *ip2, |
| struct xfs_defer_ops *dfops, |
| xfs_fsblock_t *first_block, |
| int spaceres) |
| { |
| int error = 0; |
| int ip1_flags = 0; |
| int ip2_flags = 0; |
| int dp2_flags = 0; |
| |
| /* Swap inode number for dirent in first parent */ |
| error = xfs_dir_replace(tp, dp1, name1, |
| ip2->i_ino, |
| first_block, dfops, spaceres); |
| if (error) |
| goto out_trans_abort; |
| |
| /* Swap inode number for dirent in second parent */ |
| error = xfs_dir_replace(tp, dp2, name2, |
| ip1->i_ino, |
| first_block, dfops, spaceres); |
| if (error) |
| goto out_trans_abort; |
| |
| /* |
| * If we're renaming one or more directories across different parents, |
| * update the respective ".." entries (and link counts) to match the new |
| * parents. |
| */ |
| if (dp1 != dp2) { |
| dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; |
| |
| if (S_ISDIR(VFS_I(ip2)->i_mode)) { |
| error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot, |
| dp1->i_ino, first_block, |
| dfops, spaceres); |
| if (error) |
| goto out_trans_abort; |
| |
| /* transfer ip2 ".." reference to dp1 */ |
| if (!S_ISDIR(VFS_I(ip1)->i_mode)) { |
| error = xfs_droplink(tp, dp2); |
| if (error) |
| goto out_trans_abort; |
| error = xfs_bumplink(tp, dp1); |
| if (error) |
| goto out_trans_abort; |
| } |
| |
| /* |
| * Although ip1 isn't changed here, userspace needs |
| * to be warned about the change, so that applications |
| * relying on it (like backup ones), will properly |
| * notify the change |
| */ |
| ip1_flags |= XFS_ICHGTIME_CHG; |
| ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; |
| } |
| |
| if (S_ISDIR(VFS_I(ip1)->i_mode)) { |
| error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot, |
| dp2->i_ino, first_block, |
| dfops, spaceres); |
| if (error) |
| goto out_trans_abort; |
| |
| /* transfer ip1 ".." reference to dp2 */ |
| if (!S_ISDIR(VFS_I(ip2)->i_mode)) { |
| error = xfs_droplink(tp, dp1); |
| if (error) |
| goto out_trans_abort; |
| error = xfs_bumplink(tp, dp2); |
| if (error) |
| goto out_trans_abort; |
| } |
| |
| /* |
| * Although ip2 isn't changed here, userspace needs |
| * to be warned about the change, so that applications |
| * relying on it (like backup ones), will properly |
| * notify the change |
| */ |
| ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; |
| ip2_flags |= XFS_ICHGTIME_CHG; |
| } |
| } |
| |
| if (ip1_flags) { |
| xfs_trans_ichgtime(tp, ip1, ip1_flags); |
| xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE); |
| } |
| if (ip2_flags) { |
| xfs_trans_ichgtime(tp, ip2, ip2_flags); |
| xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE); |
| } |
| if (dp2_flags) { |
| xfs_trans_ichgtime(tp, dp2, dp2_flags); |
| xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE); |
| } |
| xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); |
| xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE); |
| return xfs_finish_rename(tp, dfops); |
| |
| out_trans_abort: |
| xfs_defer_cancel(dfops); |
| xfs_trans_cancel(tp); |
| return error; |
| } |
| |
| /* |
| * xfs_rename_alloc_whiteout() |
| * |
| * Return a referenced, unlinked, unlocked inode that that can be used as a |
| * whiteout in a rename transaction. We use a tmpfile inode here so that if we |
| * crash between allocating the inode and linking it into the rename transaction |
| * recovery will free the inode and we won't leak it. |
| */ |
| static int |
| xfs_rename_alloc_whiteout( |
| struct xfs_inode *dp, |
| struct xfs_inode **wip) |
| { |
| struct xfs_inode *tmpfile; |
| int error; |
| |
| error = xfs_create_tmpfile(dp, NULL, S_IFCHR | WHITEOUT_MODE, &tmpfile); |
| if (error) |
| return error; |
| |
| /* |
| * Prepare the tmpfile inode as if it were created through the VFS. |
| * Otherwise, the link increment paths will complain about nlink 0->1. |
| * Drop the link count as done by d_tmpfile(), complete the inode setup |
| * and flag it as linkable. |
| */ |
| drop_nlink(VFS_I(tmpfile)); |
| xfs_setup_iops(tmpfile); |
| xfs_finish_inode_setup(tmpfile); |
| VFS_I(tmpfile)->i_state |= I_LINKABLE; |
| |
| *wip = tmpfile; |
| return 0; |
| } |
| |
| /* |
| * xfs_rename |
| */ |
| int |
| xfs_rename( |
| struct xfs_inode *src_dp, |
| struct xfs_name *src_name, |
| struct xfs_inode *src_ip, |
| struct xfs_inode *target_dp, |
| struct xfs_name *target_name, |
| struct xfs_inode *target_ip, |
| unsigned int flags) |
| { |
| struct xfs_mount *mp = src_dp->i_mount; |
| struct xfs_trans *tp; |
| struct xfs_defer_ops dfops; |
| xfs_fsblock_t first_block; |
| struct xfs_inode *wip = NULL; /* whiteout inode */ |
| struct xfs_inode *inodes[__XFS_SORT_INODES]; |
| int num_inodes = __XFS_SORT_INODES; |
| bool new_parent = (src_dp != target_dp); |
| bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode); |
| int spaceres; |
| int error; |
| |
| trace_xfs_rename(src_dp, target_dp, src_name, target_name); |
| |
| if ((flags & RENAME_EXCHANGE) && !target_ip) |
| return -EINVAL; |
| |
| /* |
| * If we are doing a whiteout operation, allocate the whiteout inode |
| * we will be placing at the target and ensure the type is set |
| * appropriately. |
| */ |
| if (flags & RENAME_WHITEOUT) { |
| ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE))); |
| error = xfs_rename_alloc_whiteout(target_dp, &wip); |
| if (error) |
| return error; |
| |
| /* setup target dirent info as whiteout */ |
| src_name->type = XFS_DIR3_FT_CHRDEV; |
| } |
| |
| xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip, |
| inodes, &num_inodes); |
| |
| spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len); |
| error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp); |
| if (error == -ENOSPC) { |
| spaceres = 0; |
| error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0, |
| &tp); |
| } |
| if (error) |
| goto out_release_wip; |
| |
| /* |
| * Attach the dquots to the inodes |
| */ |
| error = xfs_qm_vop_rename_dqattach(inodes); |
| if (error) |
| goto out_trans_cancel; |
| |
| /* |
| * Lock all the participating inodes. Depending upon whether |
| * the target_name exists in the target directory, and |
| * whether the target directory is the same as the source |
| * directory, we can lock from 2 to 4 inodes. |
| */ |
| xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); |
| |
| /* |
| * Join all the inodes to the transaction. From this point on, |
| * we can rely on either trans_commit or trans_cancel to unlock |
| * them. |
| */ |
| xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL); |
| if (new_parent) |
| xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL); |
| xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL); |
| if (target_ip) |
| xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL); |
| if (wip) |
| xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL); |
| |
| /* |
| * If we are using project inheritance, we only allow renames |
| * into our tree when the project IDs are the same; else the |
| * tree quota mechanism would be circumvented. |
| */ |
| if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && |
| (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) { |
| error = -EXDEV; |
| goto out_trans_cancel; |
| } |
| |
| xfs_defer_init(&dfops, &first_block); |
| |
| /* RENAME_EXCHANGE is unique from here on. */ |
| if (flags & RENAME_EXCHANGE) |
| return xfs_cross_rename(tp, src_dp, src_name, src_ip, |
| target_dp, target_name, target_ip, |
| &dfops, &first_block, spaceres); |
| |
| /* |
| * Set up the target. |
| */ |
| if (target_ip == NULL) { |
| /* |
| * If there's no space reservation, check the entry will |
| * fit before actually inserting it. |
| */ |
| if (!spaceres) { |
| error = xfs_dir_canenter(tp, target_dp, target_name); |
| if (error) |
| goto out_trans_cancel; |
| } |
| /* |
| * If target does not exist and the rename crosses |
| * directories, adjust the target directory link count |
| * to account for the ".." reference from the new entry. |
| */ |
| error = xfs_dir_createname(tp, target_dp, target_name, |
| src_ip->i_ino, &first_block, |
| &dfops, spaceres); |
| if (error) |
| goto out_bmap_cancel; |
| |
| xfs_trans_ichgtime(tp, target_dp, |
| XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); |
| |
| if (new_parent && src_is_directory) { |
| error = xfs_bumplink(tp, target_dp); |
| if (error) |
| goto out_bmap_cancel; |
| } |
| } else { /* target_ip != NULL */ |
| /* |
| * If target exists and it's a directory, check that both |
| * target and source are directories and that target can be |
| * destroyed, or that neither is a directory. |
| */ |
| if (S_ISDIR(VFS_I(target_ip)->i_mode)) { |
| /* |
| * Make sure target dir is empty. |
| */ |
| if (!(xfs_dir_isempty(target_ip)) || |
| (VFS_I(target_ip)->i_nlink > 2)) { |
| error = -EEXIST; |
| goto out_trans_cancel; |
| } |
| } |
| |
| /* |
| * Link the source inode under the target name. |
| * If the source inode is a directory and we are moving |
| * it across directories, its ".." entry will be |
| * inconsistent until we replace that down below. |
| * |
| * In case there is already an entry with the same |
| * name at the destination directory, remove it first. |
| */ |
| error = xfs_dir_replace(tp, target_dp, target_name, |
| src_ip->i_ino, |
| &first_block, &dfops, spaceres); |
| if (error) |
| goto out_bmap_cancel; |
| |
| xfs_trans_ichgtime(tp, target_dp, |
| XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); |
| |
| /* |
| * Decrement the link count on the target since the target |
| * dir no longer points to it. |
| */ |
| error = xfs_droplink(tp, target_ip); |
| if (error) |
| goto out_bmap_cancel; |
| |
| if (src_is_directory) { |
| /* |
| * Drop the link from the old "." entry. |
| */ |
| error = xfs_droplink(tp, target_ip); |
| if (error) |
| goto out_bmap_cancel; |
| } |
| } /* target_ip != NULL */ |
| |
| /* |
| * Remove the source. |
| */ |
| if (new_parent && src_is_directory) { |
| /* |
| * Rewrite the ".." entry to point to the new |
| * directory. |
| */ |
| error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot, |
| target_dp->i_ino, |
| &first_block, &dfops, spaceres); |
| ASSERT(error != -EEXIST); |
| if (error) |
| goto out_bmap_cancel; |
| } |
| |
| /* |
| * We always want to hit the ctime on the source inode. |
| * |
| * This isn't strictly required by the standards since the source |
| * inode isn't really being changed, but old unix file systems did |
| * it and some incremental backup programs won't work without it. |
| */ |
| xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG); |
| xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE); |
| |
| /* |
| * Adjust the link count on src_dp. This is necessary when |
| * renaming a directory, either within one parent when |
| * the target existed, or across two parent directories. |
| */ |
| if (src_is_directory && (new_parent || target_ip != NULL)) { |
| |
| /* |
| * Decrement link count on src_directory since the |
| * entry that's moved no longer points to it. |
| */ |
| error = xfs_droplink(tp, src_dp); |
| if (error) |
| goto out_bmap_cancel; |
| } |
| |
| /* |
| * For whiteouts, we only need to update the source dirent with the |
| * inode number of the whiteout inode rather than removing it |
| * altogether. |
| */ |
| if (wip) { |
| error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino, |
| &first_block, &dfops, spaceres); |
| } else |
| error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino, |
| &first_block, &dfops, spaceres); |
| if (error) |
| goto out_bmap_cancel; |
| |
| /* |
| * For whiteouts, we need to bump the link count on the whiteout inode. |
| * This means that failures all the way up to this point leave the inode |
| * on the unlinked list and so cleanup is a simple matter of dropping |
| * the remaining reference to it. If we fail here after bumping the link |
| * count, we're shutting down the filesystem so we'll never see the |
| * intermediate state on disk. |
| */ |
| if (wip) { |
| ASSERT(VFS_I(wip)->i_nlink == 0); |
| error = xfs_bumplink(tp, wip); |
| if (error) |
| goto out_bmap_cancel; |
| error = xfs_iunlink_remove(tp, wip); |
| if (error) |
| goto out_bmap_cancel; |
| xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE); |
| |
| /* |
| * Now we have a real link, clear the "I'm a tmpfile" state |
| * flag from the inode so it doesn't accidentally get misused in |
| * future. |
| */ |
| VFS_I(wip)->i_state &= ~I_LINKABLE; |
| } |
| |
| xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); |
| xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE); |
| if (new_parent) |
| xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE); |
| |
| error = xfs_finish_rename(tp, &dfops); |
| if (wip) |
| IRELE(wip); |
| return error; |
| |
| out_bmap_cancel: |
| xfs_defer_cancel(&dfops); |
| out_trans_cancel: |
| xfs_trans_cancel(tp); |
| out_release_wip: |
| if (wip) |
| IRELE(wip); |
| return error; |
| } |
| |
| STATIC int |
| xfs_iflush_cluster( |
| struct xfs_inode *ip, |
| struct xfs_buf *bp) |
| { |
| struct xfs_mount *mp = ip->i_mount; |
| struct xfs_perag *pag; |
| unsigned long first_index, mask; |
| unsigned long inodes_per_cluster; |
| int cilist_size; |
| struct xfs_inode **cilist; |
| struct xfs_inode *cip; |
| int nr_found; |
| int clcount = 0; |
| int bufwasdelwri; |
| int i; |
| |
| pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); |
| |
| inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; |
| cilist_size = inodes_per_cluster * sizeof(xfs_inode_t *); |
| cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS); |
| if (!cilist) |
| goto out_put; |
| |
| mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1); |
| first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask; |
| rcu_read_lock(); |
| /* really need a gang lookup range call here */ |
| nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist, |
| first_index, inodes_per_cluster); |
| if (nr_found == 0) |
| goto out_free; |
| |
| for (i = 0; i < nr_found; i++) { |
| cip = cilist[i]; |
| if (cip == ip) |
| continue; |
| |
| /* |
| * because this is an RCU protected lookup, we could find a |
| * recently freed or even reallocated inode during the lookup. |
| * We need to check under the i_flags_lock for a valid inode |
| * here. Skip it if it is not valid or the wrong inode. |
| */ |
| spin_lock(&cip->i_flags_lock); |
| if (!cip->i_ino || |
| __xfs_iflags_test(cip, XFS_ISTALE)) { |
| spin_unlock(&cip->i_flags_lock); |
| continue; |
| } |
| |
| /* |
| * Once we fall off the end of the cluster, no point checking |
| * any more inodes in the list because they will also all be |
| * outside the cluster. |
| */ |
| if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) { |
| spin_unlock(&cip->i_flags_lock); |
| break; |
| } |
| spin_unlock(&cip->i_flags_lock); |
| |
| /* |
| * Do an un-protected check to see if the inode is dirty and |
| * is a candidate for flushing. These checks will be repeated |
| * later after the appropriate locks are acquired. |
| */ |
| if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0) |
| continue; |
| |
| /* |
| * Try to get locks. If any are unavailable or it is pinned, |
| * then this inode cannot be flushed and is skipped. |
| */ |
| |
| if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED)) |
| continue; |
| if (!xfs_iflock_nowait(cip)) { |
| xfs_iunlock(cip, XFS_ILOCK_SHARED); |
| continue; |
| } |
| if (xfs_ipincount(cip)) { |
| xfs_ifunlock(cip); |
| xfs_iunlock(cip, XFS_ILOCK_SHARED); |
| continue; |
| } |
| |
| |
| /* |
| * Check the inode number again, just to be certain we are not |
| * racing with freeing in xfs_reclaim_inode(). See the comments |
| * in that function for more information as to why the initial |
| * check is not sufficient. |
| */ |
| if (!cip->i_ino) { |
| xfs_ifunlock(cip); |
| xfs_iunlock(cip, XFS_ILOCK_SHARED); |
| continue; |
| } |
| |
| /* |
| * arriving here means that this inode can be flushed. First |
| * re-check that it's dirty before flushing. |
| */ |
| if (!xfs_inode_clean(cip)) { |
| int error; |
| error = xfs_iflush_int(cip, bp); |
| if (error) { |
| xfs_iunlock(cip, XFS_ILOCK_SHARED); |
| goto cluster_corrupt_out; |
| } |
| clcount++; |
| } else { |
| xfs_ifunlock(cip); |
| } |
| xfs_iunlock(cip, XFS_ILOCK_SHARED); |
| } |
| |
| if (clcount) { |
| XFS_STATS_INC(mp, xs_icluster_flushcnt); |
| XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount); |
| } |
| |
| out_free: |
| rcu_read_unlock(); |
| kmem_free(cilist); |
| out_put: |
| xfs_perag_put(pag); |
| return 0; |
| |
| |
| cluster_corrupt_out: |
| /* |
| * Corruption detected in the clustering loop. Invalidate the |
| * inode buffer and shut down the filesystem. |
| */ |
| rcu_read_unlock(); |
| /* |
| * Clean up the buffer. If it was delwri, just release it -- |
| * brelse can handle it with no problems. If not, shut down the |
| * filesystem before releasing the buffer. |
| */ |
| bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q); |
| if (bufwasdelwri) |
| xfs_buf_relse(bp); |
| |
| xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); |
| |
| if (!bufwasdelwri) { |
| /* |
| * Just like incore_relse: if we have b_iodone functions, |
| * mark the buffer as an error and call them. Otherwise |
| * mark it as stale and brelse. |
| */ |
| if (bp->b_iodone) { |
| bp->b_flags &= ~XBF_DONE; |
| xfs_buf_stale(bp); |
| xfs_buf_ioerror(bp, -EIO); |
| xfs_buf_ioend(bp); |
| } else { |
| xfs_buf_stale(bp); |
| xfs_buf_relse(bp); |
| } |
| } |
| |
| /* |
| * Unlocks the flush lock |
| */ |
| xfs_iflush_abort(cip, false); |
| kmem_free(cilist); |
| xfs_perag_put(pag); |
| return -EFSCORRUPTED; |
| } |
| |
| /* |
| * Flush dirty inode metadata into the backing buffer. |
| * |
| * The caller must have the inode lock and the inode flush lock held. The |
| * inode lock will still be held upon return to the caller, and the inode |
| * flush lock will be released after the inode has reached the disk. |
| * |
| * The caller must write out the buffer returned in *bpp and release it. |
| */ |
| int |
| xfs_iflush( |
| struct xfs_inode *ip, |
| struct xfs_buf **bpp) |
| { |
| struct xfs_mount *mp = ip->i_mount; |
| struct xfs_buf *bp = NULL; |
| struct xfs_dinode *dip; |
| int error; |
| |
| XFS_STATS_INC(mp, xs_iflush_count); |
| |
| ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); |
| ASSERT(xfs_isiflocked(ip)); |
| ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || |
| ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); |
| |
| *bpp = NULL; |
| |
| xfs_iunpin_wait(ip); |
| |
| /* |
| * For stale inodes we cannot rely on the backing buffer remaining |
| * stale in cache for the remaining life of the stale inode and so |
| * xfs_imap_to_bp() below may give us a buffer that no longer contains |
| * inodes below. We have to check this after ensuring the inode is |
| * unpinned so that it is safe to reclaim the stale inode after the |
| * flush call. |
| */ |
| if (xfs_iflags_test(ip, XFS_ISTALE)) { |
| xfs_ifunlock(ip); |
| return 0; |
| } |
| |
| /* |
| * This may have been unpinned because the filesystem is shutting |
| * down forcibly. If that's the case we must not write this inode |
| * to disk, because the log record didn't make it to disk. |
| * |
| * We also have to remove the log item from the AIL in this case, |
| * as we wait for an empty AIL as part of the unmount process. |
| */ |
| if (XFS_FORCED_SHUTDOWN(mp)) { |
| error = -EIO; |
| goto abort_out; |
| } |
| |
| /* |
| * Get the buffer containing the on-disk inode. We are doing a try-lock |
| * operation here, so we may get an EAGAIN error. In that case, we |
| * simply want to return with the inode still dirty. |
| * |
| * If we get any other error, we effectively have a corruption situation |
| * and we cannot flush the inode, so we treat it the same as failing |
| * xfs_iflush_int(). |
| */ |
| error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK, |
| 0); |
| if (error == -EAGAIN) { |
| xfs_ifunlock(ip); |
| return error; |
| } |
| if (error) |
| goto corrupt_out; |
| |
| /* |
| * First flush out the inode that xfs_iflush was called with. |
| */ |
| error = xfs_iflush_int(ip, bp); |
| if (error) |
| goto corrupt_out; |
| |
| /* |
| * If the buffer is pinned then push on the log now so we won't |
| * get stuck waiting in the write for too long. |
| */ |
| if (xfs_buf_ispinned(bp)) |
| xfs_log_force(mp, 0); |
| |
| /* |
| * inode clustering: |
| * see if other inodes can be gathered into this write |
| */ |
| error = xfs_iflush_cluster(ip, bp); |
| if (error) |
| goto cluster_corrupt_out; |
| |
| *bpp = bp; |
| return 0; |
| |
| corrupt_out: |
| if (bp) |
| xfs_buf_relse(bp); |
| xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); |
| cluster_corrupt_out: |
| error = -EFSCORRUPTED; |
| abort_out: |
| /* |
| * Unlocks the flush lock |
| */ |
| xfs_iflush_abort(ip, false); |
| return error; |
| } |
| |
| STATIC int |
| xfs_iflush_int( |
| struct xfs_inode *ip, |
| struct xfs_buf *bp) |
| { |
| struct xfs_inode_log_item *iip = ip->i_itemp; |
| struct xfs_dinode *dip; |
| struct xfs_mount *mp = ip->i_mount; |
| |
| ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); |
| ASSERT(xfs_isiflocked(ip)); |
| ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || |
| ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); |
| ASSERT(iip != NULL && iip->ili_fields != 0); |
| ASSERT(ip->i_d.di_version > 1); |
| |
| /* set *dip = inode's place in the buffer */ |
| dip = xfs_buf_offset(bp, ip->i_imap.im_boffset); |
| |
| if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), |
| mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) { |
| xfs_alert_tag(mp, XFS_PTAG_IFLUSH, |
| "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p", |
| __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); |
| goto corrupt_out; |
| } |
| if (S_ISREG(VFS_I(ip)->i_mode)) { |
| if (XFS_TEST_ERROR( |
| (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && |
| (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), |
| mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) { |
| xfs_alert_tag(mp, XFS_PTAG_IFLUSH, |
| "%s: Bad regular inode %Lu, ptr 0x%p", |
| __func__, ip->i_ino, ip); |
| goto corrupt_out; |
| } |
| } else if (S_ISDIR(VFS_I(ip)->i_mode)) { |
| if (XFS_TEST_ERROR( |
| (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && |
| (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && |
| (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), |
| mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) { |
| xfs_alert_tag(mp, XFS_PTAG_IFLUSH, |
| "%s: Bad directory inode %Lu, ptr 0x%p", |
| __func__, ip->i_ino, ip); |
| goto corrupt_out; |
| } |
| } |
| if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > |
| ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5, |
| XFS_RANDOM_IFLUSH_5)) { |
| xfs_alert_tag(mp, XFS_PTAG_IFLUSH, |
| "%s: detected corrupt incore inode %Lu, " |
| "total extents = %d, nblocks = %Ld, ptr 0x%p", |
| __func__, ip->i_ino, |
| ip->i_d.di_nextents + ip->i_d.di_anextents, |
| ip->i_d.di_nblocks, ip); |
| goto corrupt_out; |
| } |
| if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, |
| mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) { |
| xfs_alert_tag(mp, XFS_PTAG_IFLUSH, |
| "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p", |
| __func__, ip->i_ino, ip->i_d.di_forkoff, ip); |
| goto corrupt_out; |
| } |
| |
| /* |
| * Inode item log recovery for v2 inodes are dependent on the |
| * di_flushiter count for correct sequencing. We bump the flush |
| * iteration count so we can detect flushes which postdate a log record |
| * during recovery. This is redundant as we now log every change and |
| * hence this can't happen but we need to still do it to ensure |
| * backwards compatibility with old kernels that predate logging all |
| * inode changes. |
| */ |
| if (ip->i_d.di_version < 3) |
| ip->i_d.di_flushiter++; |
| |
| /* |
| * Copy the dirty parts of the inode into the on-disk inode. We always |
| * copy out the core of the inode, because if the inode is dirty at all |
| * the core must be. |
| */ |
| xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn); |
| |
| /* Wrap, we never let the log put out DI_MAX_FLUSH */ |
| if (ip->i_d.di_flushiter == DI_MAX_FLUSH) |
| ip->i_d.di_flushiter = 0; |
| |
| xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK); |
| if (XFS_IFORK_Q(ip)) |
| xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK); |
| xfs_inobp_check(mp, bp); |
| |
| /* |
| * We've recorded everything logged in the inode, so we'd like to clear |
| * the ili_fields bits so we don't log and flush things unnecessarily. |
| * However, we can't stop logging all this information until the data |
| * we've copied into the disk buffer is written to disk. If we did we |
| * might overwrite the copy of the inode in the log with all the data |
| * after re-logging only part of it, and in the face of a crash we |
| * wouldn't have all the data we need to recover. |
| * |
| * What we do is move the bits to the ili_last_fields field. When |
| * logging the inode, these bits are moved back to the ili_fields field. |
| * In the xfs_iflush_done() routine we clear ili_last_fields, since we |
| * know that the information those bits represent is permanently on |
| * disk. As long as the flush completes before the inode is logged |
| * again, then both ili_fields and ili_last_fields will be cleared. |
| * |
| * We can play with the ili_fields bits here, because the inode lock |
| * must be held exclusively in order to set bits there and the flush |
| * lock protects the ili_last_fields bits. Set ili_logged so the flush |
| * done routine can tell whether or not to look in the AIL. Also, store |
| * the current LSN of the inode so that we can tell whether the item has |
| * moved in the AIL from xfs_iflush_done(). In order to read the lsn we |
| * need the AIL lock, because it is a 64 bit value that cannot be read |
| * atomically. |
| */ |
| iip->ili_last_fields = iip->ili_fields; |
| iip->ili_fields = 0; |
| iip->ili_fsync_fields = 0; |
| iip->ili_logged = 1; |
| |
| xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, |
| &iip->ili_item.li_lsn); |
| |
| /* |
| * Attach the function xfs_iflush_done to the inode's |
| * buffer. This will remove the inode from the AIL |
| * and unlock the inode's flush lock when the inode is |
| * completely written to disk. |
| */ |
| xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item); |
| |
| /* generate the checksum. */ |
| xfs_dinode_calc_crc(mp, dip); |
| |
| ASSERT(bp->b_fspriv != NULL); |
| ASSERT(bp->b_iodone != NULL); |
| return 0; |
| |
| corrupt_out: |
| return -EFSCORRUPTED; |
| } |