| /* |
| * NET3 Protocol independent device support routines. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| * Derived from the non IP parts of dev.c 1.0.19 |
| * Authors: Ross Biro |
| * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> |
| * Mark Evans, <evansmp@uhura.aston.ac.uk> |
| * |
| * Additional Authors: |
| * Florian la Roche <rzsfl@rz.uni-sb.de> |
| * Alan Cox <gw4pts@gw4pts.ampr.org> |
| * David Hinds <dahinds@users.sourceforge.net> |
| * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> |
| * Adam Sulmicki <adam@cfar.umd.edu> |
| * Pekka Riikonen <priikone@poesidon.pspt.fi> |
| * |
| * Changes: |
| * D.J. Barrow : Fixed bug where dev->refcnt gets set |
| * to 2 if register_netdev gets called |
| * before net_dev_init & also removed a |
| * few lines of code in the process. |
| * Alan Cox : device private ioctl copies fields back. |
| * Alan Cox : Transmit queue code does relevant |
| * stunts to keep the queue safe. |
| * Alan Cox : Fixed double lock. |
| * Alan Cox : Fixed promisc NULL pointer trap |
| * ???????? : Support the full private ioctl range |
| * Alan Cox : Moved ioctl permission check into |
| * drivers |
| * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI |
| * Alan Cox : 100 backlog just doesn't cut it when |
| * you start doing multicast video 8) |
| * Alan Cox : Rewrote net_bh and list manager. |
| * Alan Cox : Fix ETH_P_ALL echoback lengths. |
| * Alan Cox : Took out transmit every packet pass |
| * Saved a few bytes in the ioctl handler |
| * Alan Cox : Network driver sets packet type before |
| * calling netif_rx. Saves a function |
| * call a packet. |
| * Alan Cox : Hashed net_bh() |
| * Richard Kooijman: Timestamp fixes. |
| * Alan Cox : Wrong field in SIOCGIFDSTADDR |
| * Alan Cox : Device lock protection. |
| * Alan Cox : Fixed nasty side effect of device close |
| * changes. |
| * Rudi Cilibrasi : Pass the right thing to |
| * set_mac_address() |
| * Dave Miller : 32bit quantity for the device lock to |
| * make it work out on a Sparc. |
| * Bjorn Ekwall : Added KERNELD hack. |
| * Alan Cox : Cleaned up the backlog initialise. |
| * Craig Metz : SIOCGIFCONF fix if space for under |
| * 1 device. |
| * Thomas Bogendoerfer : Return ENODEV for dev_open, if there |
| * is no device open function. |
| * Andi Kleen : Fix error reporting for SIOCGIFCONF |
| * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF |
| * Cyrus Durgin : Cleaned for KMOD |
| * Adam Sulmicki : Bug Fix : Network Device Unload |
| * A network device unload needs to purge |
| * the backlog queue. |
| * Paul Rusty Russell : SIOCSIFNAME |
| * Pekka Riikonen : Netdev boot-time settings code |
| * Andrew Morton : Make unregister_netdevice wait |
| * indefinitely on dev->refcnt |
| * J Hadi Salim : - Backlog queue sampling |
| * - netif_rx() feedback |
| */ |
| |
| #include <linux/uaccess.h> |
| #include <linux/bitops.h> |
| #include <linux/capability.h> |
| #include <linux/cpu.h> |
| #include <linux/types.h> |
| #include <linux/kernel.h> |
| #include <linux/hash.h> |
| #include <linux/slab.h> |
| #include <linux/sched.h> |
| #include <linux/mutex.h> |
| #include <linux/string.h> |
| #include <linux/mm.h> |
| #include <linux/socket.h> |
| #include <linux/sockios.h> |
| #include <linux/errno.h> |
| #include <linux/interrupt.h> |
| #include <linux/if_ether.h> |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <linux/ethtool.h> |
| #include <linux/notifier.h> |
| #include <linux/skbuff.h> |
| #include <linux/bpf.h> |
| #include <net/net_namespace.h> |
| #include <net/sock.h> |
| #include <net/busy_poll.h> |
| #include <linux/rtnetlink.h> |
| #include <linux/stat.h> |
| #include <net/dst.h> |
| #include <net/dst_metadata.h> |
| #include <net/pkt_sched.h> |
| #include <net/checksum.h> |
| #include <net/xfrm.h> |
| #include <linux/highmem.h> |
| #include <linux/init.h> |
| #include <linux/module.h> |
| #include <linux/netpoll.h> |
| #include <linux/rcupdate.h> |
| #include <linux/delay.h> |
| #include <net/iw_handler.h> |
| #include <asm/current.h> |
| #include <linux/audit.h> |
| #include <linux/dmaengine.h> |
| #include <linux/err.h> |
| #include <linux/ctype.h> |
| #include <linux/if_arp.h> |
| #include <linux/if_vlan.h> |
| #include <linux/ip.h> |
| #include <net/ip.h> |
| #include <net/mpls.h> |
| #include <linux/ipv6.h> |
| #include <linux/in.h> |
| #include <linux/jhash.h> |
| #include <linux/random.h> |
| #include <trace/events/napi.h> |
| #include <trace/events/net.h> |
| #include <trace/events/skb.h> |
| #include <linux/pci.h> |
| #include <linux/inetdevice.h> |
| #include <linux/cpu_rmap.h> |
| #include <linux/static_key.h> |
| #include <linux/hashtable.h> |
| #include <linux/vmalloc.h> |
| #include <linux/if_macvlan.h> |
| #include <linux/errqueue.h> |
| #include <linux/hrtimer.h> |
| #include <linux/netfilter_ingress.h> |
| #include <linux/crash_dump.h> |
| |
| #include "net-sysfs.h" |
| |
| /* Instead of increasing this, you should create a hash table. */ |
| #define MAX_GRO_SKBS 8 |
| |
| /* This should be increased if a protocol with a bigger head is added. */ |
| #define GRO_MAX_HEAD (MAX_HEADER + 128) |
| |
| static DEFINE_SPINLOCK(ptype_lock); |
| static DEFINE_SPINLOCK(offload_lock); |
| struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; |
| struct list_head ptype_all __read_mostly; /* Taps */ |
| static struct list_head offload_base __read_mostly; |
| |
| static int netif_rx_internal(struct sk_buff *skb); |
| static int call_netdevice_notifiers_info(unsigned long val, |
| struct net_device *dev, |
| struct netdev_notifier_info *info); |
| |
| /* |
| * The @dev_base_head list is protected by @dev_base_lock and the rtnl |
| * semaphore. |
| * |
| * Pure readers hold dev_base_lock for reading, or rcu_read_lock() |
| * |
| * Writers must hold the rtnl semaphore while they loop through the |
| * dev_base_head list, and hold dev_base_lock for writing when they do the |
| * actual updates. This allows pure readers to access the list even |
| * while a writer is preparing to update it. |
| * |
| * To put it another way, dev_base_lock is held for writing only to |
| * protect against pure readers; the rtnl semaphore provides the |
| * protection against other writers. |
| * |
| * See, for example usages, register_netdevice() and |
| * unregister_netdevice(), which must be called with the rtnl |
| * semaphore held. |
| */ |
| DEFINE_RWLOCK(dev_base_lock); |
| EXPORT_SYMBOL(dev_base_lock); |
| |
| /* protects napi_hash addition/deletion and napi_gen_id */ |
| static DEFINE_SPINLOCK(napi_hash_lock); |
| |
| static unsigned int napi_gen_id = NR_CPUS; |
| static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); |
| |
| static seqcount_t devnet_rename_seq; |
| |
| static inline void dev_base_seq_inc(struct net *net) |
| { |
| while (++net->dev_base_seq == 0); |
| } |
| |
| static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) |
| { |
| unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); |
| |
| return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; |
| } |
| |
| static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) |
| { |
| return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; |
| } |
| |
| static inline void rps_lock(struct softnet_data *sd) |
| { |
| #ifdef CONFIG_RPS |
| spin_lock(&sd->input_pkt_queue.lock); |
| #endif |
| } |
| |
| static inline void rps_unlock(struct softnet_data *sd) |
| { |
| #ifdef CONFIG_RPS |
| spin_unlock(&sd->input_pkt_queue.lock); |
| #endif |
| } |
| |
| /* Device list insertion */ |
| static void list_netdevice(struct net_device *dev) |
| { |
| struct net *net = dev_net(dev); |
| |
| ASSERT_RTNL(); |
| |
| write_lock_bh(&dev_base_lock); |
| list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); |
| hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); |
| hlist_add_head_rcu(&dev->index_hlist, |
| dev_index_hash(net, dev->ifindex)); |
| write_unlock_bh(&dev_base_lock); |
| |
| dev_base_seq_inc(net); |
| } |
| |
| /* Device list removal |
| * caller must respect a RCU grace period before freeing/reusing dev |
| */ |
| static void unlist_netdevice(struct net_device *dev) |
| { |
| ASSERT_RTNL(); |
| |
| /* Unlink dev from the device chain */ |
| write_lock_bh(&dev_base_lock); |
| list_del_rcu(&dev->dev_list); |
| hlist_del_rcu(&dev->name_hlist); |
| hlist_del_rcu(&dev->index_hlist); |
| write_unlock_bh(&dev_base_lock); |
| |
| dev_base_seq_inc(dev_net(dev)); |
| } |
| |
| /* |
| * Our notifier list |
| */ |
| |
| static RAW_NOTIFIER_HEAD(netdev_chain); |
| |
| /* |
| * Device drivers call our routines to queue packets here. We empty the |
| * queue in the local softnet handler. |
| */ |
| |
| DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); |
| EXPORT_PER_CPU_SYMBOL(softnet_data); |
| |
| #ifdef CONFIG_LOCKDEP |
| /* |
| * register_netdevice() inits txq->_xmit_lock and sets lockdep class |
| * according to dev->type |
| */ |
| static const unsigned short netdev_lock_type[] = |
| {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, |
| ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, |
| ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, |
| ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, |
| ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, |
| ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, |
| ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, |
| ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, |
| ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, |
| ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, |
| ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, |
| ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, |
| ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, |
| ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, |
| ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; |
| |
| static const char *const netdev_lock_name[] = |
| {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", |
| "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", |
| "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", |
| "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", |
| "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", |
| "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", |
| "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", |
| "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", |
| "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", |
| "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", |
| "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", |
| "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", |
| "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", |
| "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", |
| "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; |
| |
| static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; |
| static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; |
| |
| static inline unsigned short netdev_lock_pos(unsigned short dev_type) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) |
| if (netdev_lock_type[i] == dev_type) |
| return i; |
| /* the last key is used by default */ |
| return ARRAY_SIZE(netdev_lock_type) - 1; |
| } |
| |
| static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, |
| unsigned short dev_type) |
| { |
| int i; |
| |
| i = netdev_lock_pos(dev_type); |
| lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], |
| netdev_lock_name[i]); |
| } |
| |
| static inline void netdev_set_addr_lockdep_class(struct net_device *dev) |
| { |
| int i; |
| |
| i = netdev_lock_pos(dev->type); |
| lockdep_set_class_and_name(&dev->addr_list_lock, |
| &netdev_addr_lock_key[i], |
| netdev_lock_name[i]); |
| } |
| #else |
| static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, |
| unsigned short dev_type) |
| { |
| } |
| static inline void netdev_set_addr_lockdep_class(struct net_device *dev) |
| { |
| } |
| #endif |
| |
| /******************************************************************************* |
| |
| Protocol management and registration routines |
| |
| *******************************************************************************/ |
| |
| /* |
| * Add a protocol ID to the list. Now that the input handler is |
| * smarter we can dispense with all the messy stuff that used to be |
| * here. |
| * |
| * BEWARE!!! Protocol handlers, mangling input packets, |
| * MUST BE last in hash buckets and checking protocol handlers |
| * MUST start from promiscuous ptype_all chain in net_bh. |
| * It is true now, do not change it. |
| * Explanation follows: if protocol handler, mangling packet, will |
| * be the first on list, it is not able to sense, that packet |
| * is cloned and should be copied-on-write, so that it will |
| * change it and subsequent readers will get broken packet. |
| * --ANK (980803) |
| */ |
| |
| static inline struct list_head *ptype_head(const struct packet_type *pt) |
| { |
| if (pt->type == htons(ETH_P_ALL)) |
| return pt->dev ? &pt->dev->ptype_all : &ptype_all; |
| else |
| return pt->dev ? &pt->dev->ptype_specific : |
| &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; |
| } |
| |
| /** |
| * dev_add_pack - add packet handler |
| * @pt: packet type declaration |
| * |
| * Add a protocol handler to the networking stack. The passed &packet_type |
| * is linked into kernel lists and may not be freed until it has been |
| * removed from the kernel lists. |
| * |
| * This call does not sleep therefore it can not |
| * guarantee all CPU's that are in middle of receiving packets |
| * will see the new packet type (until the next received packet). |
| */ |
| |
| void dev_add_pack(struct packet_type *pt) |
| { |
| struct list_head *head = ptype_head(pt); |
| |
| spin_lock(&ptype_lock); |
| list_add_rcu(&pt->list, head); |
| spin_unlock(&ptype_lock); |
| } |
| EXPORT_SYMBOL(dev_add_pack); |
| |
| /** |
| * __dev_remove_pack - remove packet handler |
| * @pt: packet type declaration |
| * |
| * Remove a protocol handler that was previously added to the kernel |
| * protocol handlers by dev_add_pack(). The passed &packet_type is removed |
| * from the kernel lists and can be freed or reused once this function |
| * returns. |
| * |
| * The packet type might still be in use by receivers |
| * and must not be freed until after all the CPU's have gone |
| * through a quiescent state. |
| */ |
| void __dev_remove_pack(struct packet_type *pt) |
| { |
| struct list_head *head = ptype_head(pt); |
| struct packet_type *pt1; |
| |
| spin_lock(&ptype_lock); |
| |
| list_for_each_entry(pt1, head, list) { |
| if (pt == pt1) { |
| list_del_rcu(&pt->list); |
| goto out; |
| } |
| } |
| |
| pr_warn("dev_remove_pack: %p not found\n", pt); |
| out: |
| spin_unlock(&ptype_lock); |
| } |
| EXPORT_SYMBOL(__dev_remove_pack); |
| |
| /** |
| * dev_remove_pack - remove packet handler |
| * @pt: packet type declaration |
| * |
| * Remove a protocol handler that was previously added to the kernel |
| * protocol handlers by dev_add_pack(). The passed &packet_type is removed |
| * from the kernel lists and can be freed or reused once this function |
| * returns. |
| * |
| * This call sleeps to guarantee that no CPU is looking at the packet |
| * type after return. |
| */ |
| void dev_remove_pack(struct packet_type *pt) |
| { |
| __dev_remove_pack(pt); |
| |
| synchronize_net(); |
| } |
| EXPORT_SYMBOL(dev_remove_pack); |
| |
| |
| /** |
| * dev_add_offload - register offload handlers |
| * @po: protocol offload declaration |
| * |
| * Add protocol offload handlers to the networking stack. The passed |
| * &proto_offload is linked into kernel lists and may not be freed until |
| * it has been removed from the kernel lists. |
| * |
| * This call does not sleep therefore it can not |
| * guarantee all CPU's that are in middle of receiving packets |
| * will see the new offload handlers (until the next received packet). |
| */ |
| void dev_add_offload(struct packet_offload *po) |
| { |
| struct packet_offload *elem; |
| |
| spin_lock(&offload_lock); |
| list_for_each_entry(elem, &offload_base, list) { |
| if (po->priority < elem->priority) |
| break; |
| } |
| list_add_rcu(&po->list, elem->list.prev); |
| spin_unlock(&offload_lock); |
| } |
| EXPORT_SYMBOL(dev_add_offload); |
| |
| /** |
| * __dev_remove_offload - remove offload handler |
| * @po: packet offload declaration |
| * |
| * Remove a protocol offload handler that was previously added to the |
| * kernel offload handlers by dev_add_offload(). The passed &offload_type |
| * is removed from the kernel lists and can be freed or reused once this |
| * function returns. |
| * |
| * The packet type might still be in use by receivers |
| * and must not be freed until after all the CPU's have gone |
| * through a quiescent state. |
| */ |
| static void __dev_remove_offload(struct packet_offload *po) |
| { |
| struct list_head *head = &offload_base; |
| struct packet_offload *po1; |
| |
| spin_lock(&offload_lock); |
| |
| list_for_each_entry(po1, head, list) { |
| if (po == po1) { |
| list_del_rcu(&po->list); |
| goto out; |
| } |
| } |
| |
| pr_warn("dev_remove_offload: %p not found\n", po); |
| out: |
| spin_unlock(&offload_lock); |
| } |
| |
| /** |
| * dev_remove_offload - remove packet offload handler |
| * @po: packet offload declaration |
| * |
| * Remove a packet offload handler that was previously added to the kernel |
| * offload handlers by dev_add_offload(). The passed &offload_type is |
| * removed from the kernel lists and can be freed or reused once this |
| * function returns. |
| * |
| * This call sleeps to guarantee that no CPU is looking at the packet |
| * type after return. |
| */ |
| void dev_remove_offload(struct packet_offload *po) |
| { |
| __dev_remove_offload(po); |
| |
| synchronize_net(); |
| } |
| EXPORT_SYMBOL(dev_remove_offload); |
| |
| /****************************************************************************** |
| |
| Device Boot-time Settings Routines |
| |
| *******************************************************************************/ |
| |
| /* Boot time configuration table */ |
| static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; |
| |
| /** |
| * netdev_boot_setup_add - add new setup entry |
| * @name: name of the device |
| * @map: configured settings for the device |
| * |
| * Adds new setup entry to the dev_boot_setup list. The function |
| * returns 0 on error and 1 on success. This is a generic routine to |
| * all netdevices. |
| */ |
| static int netdev_boot_setup_add(char *name, struct ifmap *map) |
| { |
| struct netdev_boot_setup *s; |
| int i; |
| |
| s = dev_boot_setup; |
| for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { |
| if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { |
| memset(s[i].name, 0, sizeof(s[i].name)); |
| strlcpy(s[i].name, name, IFNAMSIZ); |
| memcpy(&s[i].map, map, sizeof(s[i].map)); |
| break; |
| } |
| } |
| |
| return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; |
| } |
| |
| /** |
| * netdev_boot_setup_check - check boot time settings |
| * @dev: the netdevice |
| * |
| * Check boot time settings for the device. |
| * The found settings are set for the device to be used |
| * later in the device probing. |
| * Returns 0 if no settings found, 1 if they are. |
| */ |
| int netdev_boot_setup_check(struct net_device *dev) |
| { |
| struct netdev_boot_setup *s = dev_boot_setup; |
| int i; |
| |
| for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { |
| if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && |
| !strcmp(dev->name, s[i].name)) { |
| dev->irq = s[i].map.irq; |
| dev->base_addr = s[i].map.base_addr; |
| dev->mem_start = s[i].map.mem_start; |
| dev->mem_end = s[i].map.mem_end; |
| return 1; |
| } |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL(netdev_boot_setup_check); |
| |
| |
| /** |
| * netdev_boot_base - get address from boot time settings |
| * @prefix: prefix for network device |
| * @unit: id for network device |
| * |
| * Check boot time settings for the base address of device. |
| * The found settings are set for the device to be used |
| * later in the device probing. |
| * Returns 0 if no settings found. |
| */ |
| unsigned long netdev_boot_base(const char *prefix, int unit) |
| { |
| const struct netdev_boot_setup *s = dev_boot_setup; |
| char name[IFNAMSIZ]; |
| int i; |
| |
| sprintf(name, "%s%d", prefix, unit); |
| |
| /* |
| * If device already registered then return base of 1 |
| * to indicate not to probe for this interface |
| */ |
| if (__dev_get_by_name(&init_net, name)) |
| return 1; |
| |
| for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) |
| if (!strcmp(name, s[i].name)) |
| return s[i].map.base_addr; |
| return 0; |
| } |
| |
| /* |
| * Saves at boot time configured settings for any netdevice. |
| */ |
| int __init netdev_boot_setup(char *str) |
| { |
| int ints[5]; |
| struct ifmap map; |
| |
| str = get_options(str, ARRAY_SIZE(ints), ints); |
| if (!str || !*str) |
| return 0; |
| |
| /* Save settings */ |
| memset(&map, 0, sizeof(map)); |
| if (ints[0] > 0) |
| map.irq = ints[1]; |
| if (ints[0] > 1) |
| map.base_addr = ints[2]; |
| if (ints[0] > 2) |
| map.mem_start = ints[3]; |
| if (ints[0] > 3) |
| map.mem_end = ints[4]; |
| |
| /* Add new entry to the list */ |
| return netdev_boot_setup_add(str, &map); |
| } |
| |
| __setup("netdev=", netdev_boot_setup); |
| |
| /******************************************************************************* |
| |
| Device Interface Subroutines |
| |
| *******************************************************************************/ |
| |
| /** |
| * dev_get_iflink - get 'iflink' value of a interface |
| * @dev: targeted interface |
| * |
| * Indicates the ifindex the interface is linked to. |
| * Physical interfaces have the same 'ifindex' and 'iflink' values. |
| */ |
| |
| int dev_get_iflink(const struct net_device *dev) |
| { |
| if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) |
| return dev->netdev_ops->ndo_get_iflink(dev); |
| |
| return dev->ifindex; |
| } |
| EXPORT_SYMBOL(dev_get_iflink); |
| |
| /** |
| * dev_fill_metadata_dst - Retrieve tunnel egress information. |
| * @dev: targeted interface |
| * @skb: The packet. |
| * |
| * For better visibility of tunnel traffic OVS needs to retrieve |
| * egress tunnel information for a packet. Following API allows |
| * user to get this info. |
| */ |
| int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) |
| { |
| struct ip_tunnel_info *info; |
| |
| if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) |
| return -EINVAL; |
| |
| info = skb_tunnel_info_unclone(skb); |
| if (!info) |
| return -ENOMEM; |
| if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) |
| return -EINVAL; |
| |
| return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); |
| } |
| EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); |
| |
| /** |
| * __dev_get_by_name - find a device by its name |
| * @net: the applicable net namespace |
| * @name: name to find |
| * |
| * Find an interface by name. Must be called under RTNL semaphore |
| * or @dev_base_lock. If the name is found a pointer to the device |
| * is returned. If the name is not found then %NULL is returned. The |
| * reference counters are not incremented so the caller must be |
| * careful with locks. |
| */ |
| |
| struct net_device *__dev_get_by_name(struct net *net, const char *name) |
| { |
| struct net_device *dev; |
| struct hlist_head *head = dev_name_hash(net, name); |
| |
| hlist_for_each_entry(dev, head, name_hlist) |
| if (!strncmp(dev->name, name, IFNAMSIZ)) |
| return dev; |
| |
| return NULL; |
| } |
| EXPORT_SYMBOL(__dev_get_by_name); |
| |
| /** |
| * dev_get_by_name_rcu - find a device by its name |
| * @net: the applicable net namespace |
| * @name: name to find |
| * |
| * Find an interface by name. |
| * If the name is found a pointer to the device is returned. |
| * If the name is not found then %NULL is returned. |
| * The reference counters are not incremented so the caller must be |
| * careful with locks. The caller must hold RCU lock. |
| */ |
| |
| struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) |
| { |
| struct net_device *dev; |
| struct hlist_head *head = dev_name_hash(net, name); |
| |
| hlist_for_each_entry_rcu(dev, head, name_hlist) |
| if (!strncmp(dev->name, name, IFNAMSIZ)) |
| return dev; |
| |
| return NULL; |
| } |
| EXPORT_SYMBOL(dev_get_by_name_rcu); |
| |
| /** |
| * dev_get_by_name - find a device by its name |
| * @net: the applicable net namespace |
| * @name: name to find |
| * |
| * Find an interface by name. This can be called from any |
| * context and does its own locking. The returned handle has |
| * the usage count incremented and the caller must use dev_put() to |
| * release it when it is no longer needed. %NULL is returned if no |
| * matching device is found. |
| */ |
| |
| struct net_device *dev_get_by_name(struct net *net, const char *name) |
| { |
| struct net_device *dev; |
| |
| rcu_read_lock(); |
| dev = dev_get_by_name_rcu(net, name); |
| if (dev) |
| dev_hold(dev); |
| rcu_read_unlock(); |
| return dev; |
| } |
| EXPORT_SYMBOL(dev_get_by_name); |
| |
| /** |
| * __dev_get_by_index - find a device by its ifindex |
| * @net: the applicable net namespace |
| * @ifindex: index of device |
| * |
| * Search for an interface by index. Returns %NULL if the device |
| * is not found or a pointer to the device. The device has not |
| * had its reference counter increased so the caller must be careful |
| * about locking. The caller must hold either the RTNL semaphore |
| * or @dev_base_lock. |
| */ |
| |
| struct net_device *__dev_get_by_index(struct net *net, int ifindex) |
| { |
| struct net_device *dev; |
| struct hlist_head *head = dev_index_hash(net, ifindex); |
| |
| hlist_for_each_entry(dev, head, index_hlist) |
| if (dev->ifindex == ifindex) |
| return dev; |
| |
| return NULL; |
| } |
| EXPORT_SYMBOL(__dev_get_by_index); |
| |
| /** |
| * dev_get_by_index_rcu - find a device by its ifindex |
| * @net: the applicable net namespace |
| * @ifindex: index of device |
| * |
| * Search for an interface by index. Returns %NULL if the device |
| * is not found or a pointer to the device. The device has not |
| * had its reference counter increased so the caller must be careful |
| * about locking. The caller must hold RCU lock. |
| */ |
| |
| struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) |
| { |
| struct net_device *dev; |
| struct hlist_head *head = dev_index_hash(net, ifindex); |
| |
| hlist_for_each_entry_rcu(dev, head, index_hlist) |
| if (dev->ifindex == ifindex) |
| return dev; |
| |
| return NULL; |
| } |
| EXPORT_SYMBOL(dev_get_by_index_rcu); |
| |
| |
| /** |
| * dev_get_by_index - find a device by its ifindex |
| * @net: the applicable net namespace |
| * @ifindex: index of device |
| * |
| * Search for an interface by index. Returns NULL if the device |
| * is not found or a pointer to the device. The device returned has |
| * had a reference added and the pointer is safe until the user calls |
| * dev_put to indicate they have finished with it. |
| */ |
| |
| struct net_device *dev_get_by_index(struct net *net, int ifindex) |
| { |
| struct net_device *dev; |
| |
| rcu_read_lock(); |
| dev = dev_get_by_index_rcu(net, ifindex); |
| if (dev) |
| dev_hold(dev); |
| rcu_read_unlock(); |
| return dev; |
| } |
| EXPORT_SYMBOL(dev_get_by_index); |
| |
| /** |
| * netdev_get_name - get a netdevice name, knowing its ifindex. |
| * @net: network namespace |
| * @name: a pointer to the buffer where the name will be stored. |
| * @ifindex: the ifindex of the interface to get the name from. |
| * |
| * The use of raw_seqcount_begin() and cond_resched() before |
| * retrying is required as we want to give the writers a chance |
| * to complete when CONFIG_PREEMPT is not set. |
| */ |
| int netdev_get_name(struct net *net, char *name, int ifindex) |
| { |
| struct net_device *dev; |
| unsigned int seq; |
| |
| retry: |
| seq = raw_seqcount_begin(&devnet_rename_seq); |
| rcu_read_lock(); |
| dev = dev_get_by_index_rcu(net, ifindex); |
| if (!dev) { |
| rcu_read_unlock(); |
| return -ENODEV; |
| } |
| |
| strcpy(name, dev->name); |
| rcu_read_unlock(); |
| if (read_seqcount_retry(&devnet_rename_seq, seq)) { |
| cond_resched(); |
| goto retry; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * dev_getbyhwaddr_rcu - find a device by its hardware address |
| * @net: the applicable net namespace |
| * @type: media type of device |
| * @ha: hardware address |
| * |
| * Search for an interface by MAC address. Returns NULL if the device |
| * is not found or a pointer to the device. |
| * The caller must hold RCU or RTNL. |
| * The returned device has not had its ref count increased |
| * and the caller must therefore be careful about locking |
| * |
| */ |
| |
| struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, |
| const char *ha) |
| { |
| struct net_device *dev; |
| |
| for_each_netdev_rcu(net, dev) |
| if (dev->type == type && |
| !memcmp(dev->dev_addr, ha, dev->addr_len)) |
| return dev; |
| |
| return NULL; |
| } |
| EXPORT_SYMBOL(dev_getbyhwaddr_rcu); |
| |
| struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) |
| { |
| struct net_device *dev; |
| |
| ASSERT_RTNL(); |
| for_each_netdev(net, dev) |
| if (dev->type == type) |
| return dev; |
| |
| return NULL; |
| } |
| EXPORT_SYMBOL(__dev_getfirstbyhwtype); |
| |
| struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) |
| { |
| struct net_device *dev, *ret = NULL; |
| |
| rcu_read_lock(); |
| for_each_netdev_rcu(net, dev) |
| if (dev->type == type) { |
| dev_hold(dev); |
| ret = dev; |
| break; |
| } |
| rcu_read_unlock(); |
| return ret; |
| } |
| EXPORT_SYMBOL(dev_getfirstbyhwtype); |
| |
| /** |
| * __dev_get_by_flags - find any device with given flags |
| * @net: the applicable net namespace |
| * @if_flags: IFF_* values |
| * @mask: bitmask of bits in if_flags to check |
| * |
| * Search for any interface with the given flags. Returns NULL if a device |
| * is not found or a pointer to the device. Must be called inside |
| * rtnl_lock(), and result refcount is unchanged. |
| */ |
| |
| struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, |
| unsigned short mask) |
| { |
| struct net_device *dev, *ret; |
| |
| ASSERT_RTNL(); |
| |
| ret = NULL; |
| for_each_netdev(net, dev) { |
| if (((dev->flags ^ if_flags) & mask) == 0) { |
| ret = dev; |
| break; |
| } |
| } |
| return ret; |
| } |
| EXPORT_SYMBOL(__dev_get_by_flags); |
| |
| /** |
| * dev_valid_name - check if name is okay for network device |
| * @name: name string |
| * |
| * Network device names need to be valid file names to |
| * to allow sysfs to work. We also disallow any kind of |
| * whitespace. |
| */ |
| bool dev_valid_name(const char *name) |
| { |
| if (*name == '\0') |
| return false; |
| if (strlen(name) >= IFNAMSIZ) |
| return false; |
| if (!strcmp(name, ".") || !strcmp(name, "..")) |
| return false; |
| |
| while (*name) { |
| if (*name == '/' || *name == ':' || isspace(*name)) |
| return false; |
| name++; |
| } |
| return true; |
| } |
| EXPORT_SYMBOL(dev_valid_name); |
| |
| /** |
| * __dev_alloc_name - allocate a name for a device |
| * @net: network namespace to allocate the device name in |
| * @name: name format string |
| * @buf: scratch buffer and result name string |
| * |
| * Passed a format string - eg "lt%d" it will try and find a suitable |
| * id. It scans list of devices to build up a free map, then chooses |
| * the first empty slot. The caller must hold the dev_base or rtnl lock |
| * while allocating the name and adding the device in order to avoid |
| * duplicates. |
| * Limited to bits_per_byte * page size devices (ie 32K on most platforms). |
| * Returns the number of the unit assigned or a negative errno code. |
| */ |
| |
| static int __dev_alloc_name(struct net *net, const char *name, char *buf) |
| { |
| int i = 0; |
| const char *p; |
| const int max_netdevices = 8*PAGE_SIZE; |
| unsigned long *inuse; |
| struct net_device *d; |
| |
| p = strnchr(name, IFNAMSIZ-1, '%'); |
| if (p) { |
| /* |
| * Verify the string as this thing may have come from |
| * the user. There must be either one "%d" and no other "%" |
| * characters. |
| */ |
| if (p[1] != 'd' || strchr(p + 2, '%')) |
| return -EINVAL; |
| |
| /* Use one page as a bit array of possible slots */ |
| inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); |
| if (!inuse) |
| return -ENOMEM; |
| |
| for_each_netdev(net, d) { |
| if (!sscanf(d->name, name, &i)) |
| continue; |
| if (i < 0 || i >= max_netdevices) |
| continue; |
| |
| /* avoid cases where sscanf is not exact inverse of printf */ |
| snprintf(buf, IFNAMSIZ, name, i); |
| if (!strncmp(buf, d->name, IFNAMSIZ)) |
| set_bit(i, inuse); |
| } |
| |
| i = find_first_zero_bit(inuse, max_netdevices); |
| free_page((unsigned long) inuse); |
| } |
| |
| if (buf != name) |
| snprintf(buf, IFNAMSIZ, name, i); |
| if (!__dev_get_by_name(net, buf)) |
| return i; |
| |
| /* It is possible to run out of possible slots |
| * when the name is long and there isn't enough space left |
| * for the digits, or if all bits are used. |
| */ |
| return -ENFILE; |
| } |
| |
| /** |
| * dev_alloc_name - allocate a name for a device |
| * @dev: device |
| * @name: name format string |
| * |
| * Passed a format string - eg "lt%d" it will try and find a suitable |
| * id. It scans list of devices to build up a free map, then chooses |
| * the first empty slot. The caller must hold the dev_base or rtnl lock |
| * while allocating the name and adding the device in order to avoid |
| * duplicates. |
| * Limited to bits_per_byte * page size devices (ie 32K on most platforms). |
| * Returns the number of the unit assigned or a negative errno code. |
| */ |
| |
| int dev_alloc_name(struct net_device *dev, const char *name) |
| { |
| char buf[IFNAMSIZ]; |
| struct net *net; |
| int ret; |
| |
| BUG_ON(!dev_net(dev)); |
| net = dev_net(dev); |
| ret = __dev_alloc_name(net, name, buf); |
| if (ret >= 0) |
| strlcpy(dev->name, buf, IFNAMSIZ); |
| return ret; |
| } |
| EXPORT_SYMBOL(dev_alloc_name); |
| |
| static int dev_alloc_name_ns(struct net *net, |
| struct net_device *dev, |
| const char *name) |
| { |
| char buf[IFNAMSIZ]; |
| int ret; |
| |
| ret = __dev_alloc_name(net, name, buf); |
| if (ret >= 0) |
| strlcpy(dev->name, buf, IFNAMSIZ); |
| return ret; |
| } |
| |
| static int dev_get_valid_name(struct net *net, |
| struct net_device *dev, |
| const char *name) |
| { |
| BUG_ON(!net); |
| |
| if (!dev_valid_name(name)) |
| return -EINVAL; |
| |
| if (strchr(name, '%')) |
| return dev_alloc_name_ns(net, dev, name); |
| else if (__dev_get_by_name(net, name)) |
| return -EEXIST; |
| else if (dev->name != name) |
| strlcpy(dev->name, name, IFNAMSIZ); |
| |
| return 0; |
| } |
| |
| /** |
| * dev_change_name - change name of a device |
| * @dev: device |
| * @newname: name (or format string) must be at least IFNAMSIZ |
| * |
| * Change name of a device, can pass format strings "eth%d". |
| * for wildcarding. |
| */ |
| int dev_change_name(struct net_device *dev, const char *newname) |
| { |
| unsigned char old_assign_type; |
| char oldname[IFNAMSIZ]; |
| int err = 0; |
| int ret; |
| struct net *net; |
| |
| ASSERT_RTNL(); |
| BUG_ON(!dev_net(dev)); |
| |
| net = dev_net(dev); |
| if (dev->flags & IFF_UP) |
| return -EBUSY; |
| |
| write_seqcount_begin(&devnet_rename_seq); |
| |
| if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { |
| write_seqcount_end(&devnet_rename_seq); |
| return 0; |
| } |
| |
| memcpy(oldname, dev->name, IFNAMSIZ); |
| |
| err = dev_get_valid_name(net, dev, newname); |
| if (err < 0) { |
| write_seqcount_end(&devnet_rename_seq); |
| return err; |
| } |
| |
| if (oldname[0] && !strchr(oldname, '%')) |
| netdev_info(dev, "renamed from %s\n", oldname); |
| |
| old_assign_type = dev->name_assign_type; |
| dev->name_assign_type = NET_NAME_RENAMED; |
| |
| rollback: |
| ret = device_rename(&dev->dev, dev->name); |
| if (ret) { |
| memcpy(dev->name, oldname, IFNAMSIZ); |
| dev->name_assign_type = old_assign_type; |
| write_seqcount_end(&devnet_rename_seq); |
| return ret; |
| } |
| |
| write_seqcount_end(&devnet_rename_seq); |
| |
| netdev_adjacent_rename_links(dev, oldname); |
| |
| write_lock_bh(&dev_base_lock); |
| hlist_del_rcu(&dev->name_hlist); |
| write_unlock_bh(&dev_base_lock); |
| |
| synchronize_rcu(); |
| |
| write_lock_bh(&dev_base_lock); |
| hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); |
| write_unlock_bh(&dev_base_lock); |
| |
| ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); |
| ret = notifier_to_errno(ret); |
| |
| if (ret) { |
| /* err >= 0 after dev_alloc_name() or stores the first errno */ |
| if (err >= 0) { |
| err = ret; |
| write_seqcount_begin(&devnet_rename_seq); |
| memcpy(dev->name, oldname, IFNAMSIZ); |
| memcpy(oldname, newname, IFNAMSIZ); |
| dev->name_assign_type = old_assign_type; |
| old_assign_type = NET_NAME_RENAMED; |
| goto rollback; |
| } else { |
| pr_err("%s: name change rollback failed: %d\n", |
| dev->name, ret); |
| } |
| } |
| |
| return err; |
| } |
| |
| /** |
| * dev_set_alias - change ifalias of a device |
| * @dev: device |
| * @alias: name up to IFALIASZ |
| * @len: limit of bytes to copy from info |
| * |
| * Set ifalias for a device, |
| */ |
| int dev_set_alias(struct net_device *dev, const char *alias, size_t len) |
| { |
| char *new_ifalias; |
| |
| ASSERT_RTNL(); |
| |
| if (len >= IFALIASZ) |
| return -EINVAL; |
| |
| if (!len) { |
| kfree(dev->ifalias); |
| dev->ifalias = NULL; |
| return 0; |
| } |
| |
| new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); |
| if (!new_ifalias) |
| return -ENOMEM; |
| dev->ifalias = new_ifalias; |
| |
| strlcpy(dev->ifalias, alias, len+1); |
| return len; |
| } |
| |
| |
| /** |
| * netdev_features_change - device changes features |
| * @dev: device to cause notification |
| * |
| * Called to indicate a device has changed features. |
| */ |
| void netdev_features_change(struct net_device *dev) |
| { |
| call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); |
| } |
| EXPORT_SYMBOL(netdev_features_change); |
| |
| /** |
| * netdev_state_change - device changes state |
| * @dev: device to cause notification |
| * |
| * Called to indicate a device has changed state. This function calls |
| * the notifier chains for netdev_chain and sends a NEWLINK message |
| * to the routing socket. |
| */ |
| void netdev_state_change(struct net_device *dev) |
| { |
| if (dev->flags & IFF_UP) { |
| struct netdev_notifier_change_info change_info; |
| |
| change_info.flags_changed = 0; |
| call_netdevice_notifiers_info(NETDEV_CHANGE, dev, |
| &change_info.info); |
| rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); |
| } |
| } |
| EXPORT_SYMBOL(netdev_state_change); |
| |
| /** |
| * netdev_notify_peers - notify network peers about existence of @dev |
| * @dev: network device |
| * |
| * Generate traffic such that interested network peers are aware of |
| * @dev, such as by generating a gratuitous ARP. This may be used when |
| * a device wants to inform the rest of the network about some sort of |
| * reconfiguration such as a failover event or virtual machine |
| * migration. |
| */ |
| void netdev_notify_peers(struct net_device *dev) |
| { |
| rtnl_lock(); |
| call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); |
| rtnl_unlock(); |
| } |
| EXPORT_SYMBOL(netdev_notify_peers); |
| |
| static int __dev_open(struct net_device *dev) |
| { |
| const struct net_device_ops *ops = dev->netdev_ops; |
| int ret; |
| |
| ASSERT_RTNL(); |
| |
| if (!netif_device_present(dev)) |
| return -ENODEV; |
| |
| /* Block netpoll from trying to do any rx path servicing. |
| * If we don't do this there is a chance ndo_poll_controller |
| * or ndo_poll may be running while we open the device |
| */ |
| netpoll_poll_disable(dev); |
| |
| ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); |
| ret = notifier_to_errno(ret); |
| if (ret) |
| return ret; |
| |
| set_bit(__LINK_STATE_START, &dev->state); |
| |
| if (ops->ndo_validate_addr) |
| ret = ops->ndo_validate_addr(dev); |
| |
| if (!ret && ops->ndo_open) |
| ret = ops->ndo_open(dev); |
| |
| netpoll_poll_enable(dev); |
| |
| if (ret) |
| clear_bit(__LINK_STATE_START, &dev->state); |
| else { |
| dev->flags |= IFF_UP; |
| dev_set_rx_mode(dev); |
| dev_activate(dev); |
| add_device_randomness(dev->dev_addr, dev->addr_len); |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * dev_open - prepare an interface for use. |
| * @dev: device to open |
| * |
| * Takes a device from down to up state. The device's private open |
| * function is invoked and then the multicast lists are loaded. Finally |
| * the device is moved into the up state and a %NETDEV_UP message is |
| * sent to the netdev notifier chain. |
| * |
| * Calling this function on an active interface is a nop. On a failure |
| * a negative errno code is returned. |
| */ |
| int dev_open(struct net_device *dev) |
| { |
| int ret; |
| |
| if (dev->flags & IFF_UP) |
| return 0; |
| |
| ret = __dev_open(dev); |
| if (ret < 0) |
| return ret; |
| |
| rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); |
| call_netdevice_notifiers(NETDEV_UP, dev); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(dev_open); |
| |
| static int __dev_close_many(struct list_head *head) |
| { |
| struct net_device *dev; |
| |
| ASSERT_RTNL(); |
| might_sleep(); |
| |
| list_for_each_entry(dev, head, close_list) { |
| /* Temporarily disable netpoll until the interface is down */ |
| netpoll_poll_disable(dev); |
| |
| call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); |
| |
| clear_bit(__LINK_STATE_START, &dev->state); |
| |
| /* Synchronize to scheduled poll. We cannot touch poll list, it |
| * can be even on different cpu. So just clear netif_running(). |
| * |
| * dev->stop() will invoke napi_disable() on all of it's |
| * napi_struct instances on this device. |
| */ |
| smp_mb__after_atomic(); /* Commit netif_running(). */ |
| } |
| |
| dev_deactivate_many(head); |
| |
| list_for_each_entry(dev, head, close_list) { |
| const struct net_device_ops *ops = dev->netdev_ops; |
| |
| /* |
| * Call the device specific close. This cannot fail. |
| * Only if device is UP |
| * |
| * We allow it to be called even after a DETACH hot-plug |
| * event. |
| */ |
| if (ops->ndo_stop) |
| ops->ndo_stop(dev); |
| |
| dev->flags &= ~IFF_UP; |
| netpoll_poll_enable(dev); |
| } |
| |
| return 0; |
| } |
| |
| static int __dev_close(struct net_device *dev) |
| { |
| int retval; |
| LIST_HEAD(single); |
| |
| list_add(&dev->close_list, &single); |
| retval = __dev_close_many(&single); |
| list_del(&single); |
| |
| return retval; |
| } |
| |
| int dev_close_many(struct list_head *head, bool unlink) |
| { |
| struct net_device *dev, *tmp; |
| |
| /* Remove the devices that don't need to be closed */ |
| list_for_each_entry_safe(dev, tmp, head, close_list) |
| if (!(dev->flags & IFF_UP)) |
| list_del_init(&dev->close_list); |
| |
| __dev_close_many(head); |
| |
| list_for_each_entry_safe(dev, tmp, head, close_list) { |
| rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); |
| call_netdevice_notifiers(NETDEV_DOWN, dev); |
| if (unlink) |
| list_del_init(&dev->close_list); |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(dev_close_many); |
| |
| /** |
| * dev_close - shutdown an interface. |
| * @dev: device to shutdown |
| * |
| * This function moves an active device into down state. A |
| * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device |
| * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier |
| * chain. |
| */ |
| int dev_close(struct net_device *dev) |
| { |
| if (dev->flags & IFF_UP) { |
| LIST_HEAD(single); |
| |
| list_add(&dev->close_list, &single); |
| dev_close_many(&single, true); |
| list_del(&single); |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL(dev_close); |
| |
| |
| /** |
| * dev_disable_lro - disable Large Receive Offload on a device |
| * @dev: device |
| * |
| * Disable Large Receive Offload (LRO) on a net device. Must be |
| * called under RTNL. This is needed if received packets may be |
| * forwarded to another interface. |
| */ |
| void dev_disable_lro(struct net_device *dev) |
| { |
| struct net_device *lower_dev; |
| struct list_head *iter; |
| |
| dev->wanted_features &= ~NETIF_F_LRO; |
| netdev_update_features(dev); |
| |
| if (unlikely(dev->features & NETIF_F_LRO)) |
| netdev_WARN(dev, "failed to disable LRO!\n"); |
| |
| netdev_for_each_lower_dev(dev, lower_dev, iter) |
| dev_disable_lro(lower_dev); |
| } |
| EXPORT_SYMBOL(dev_disable_lro); |
| |
| static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, |
| struct net_device *dev) |
| { |
| struct netdev_notifier_info info; |
| |
| netdev_notifier_info_init(&info, dev); |
| return nb->notifier_call(nb, val, &info); |
| } |
| |
| static int dev_boot_phase = 1; |
| |
| /** |
| * register_netdevice_notifier - register a network notifier block |
| * @nb: notifier |
| * |
| * Register a notifier to be called when network device events occur. |
| * The notifier passed is linked into the kernel structures and must |
| * not be reused until it has been unregistered. A negative errno code |
| * is returned on a failure. |
| * |
| * When registered all registration and up events are replayed |
| * to the new notifier to allow device to have a race free |
| * view of the network device list. |
| */ |
| |
| int register_netdevice_notifier(struct notifier_block *nb) |
| { |
| struct net_device *dev; |
| struct net_device *last; |
| struct net *net; |
| int err; |
| |
| rtnl_lock(); |
| err = raw_notifier_chain_register(&netdev_chain, nb); |
| if (err) |
| goto unlock; |
| if (dev_boot_phase) |
| goto unlock; |
| for_each_net(net) { |
| for_each_netdev(net, dev) { |
| err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); |
| err = notifier_to_errno(err); |
| if (err) |
| goto rollback; |
| |
| if (!(dev->flags & IFF_UP)) |
| continue; |
| |
| call_netdevice_notifier(nb, NETDEV_UP, dev); |
| } |
| } |
| |
| unlock: |
| rtnl_unlock(); |
| return err; |
| |
| rollback: |
| last = dev; |
| for_each_net(net) { |
| for_each_netdev(net, dev) { |
| if (dev == last) |
| goto outroll; |
| |
| if (dev->flags & IFF_UP) { |
| call_netdevice_notifier(nb, NETDEV_GOING_DOWN, |
| dev); |
| call_netdevice_notifier(nb, NETDEV_DOWN, dev); |
| } |
| call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); |
| } |
| } |
| |
| outroll: |
| raw_notifier_chain_unregister(&netdev_chain, nb); |
| goto unlock; |
| } |
| EXPORT_SYMBOL(register_netdevice_notifier); |
| |
| /** |
| * unregister_netdevice_notifier - unregister a network notifier block |
| * @nb: notifier |
| * |
| * Unregister a notifier previously registered by |
| * register_netdevice_notifier(). The notifier is unlinked into the |
| * kernel structures and may then be reused. A negative errno code |
| * is returned on a failure. |
| * |
| * After unregistering unregister and down device events are synthesized |
| * for all devices on the device list to the removed notifier to remove |
| * the need for special case cleanup code. |
| */ |
| |
| int unregister_netdevice_notifier(struct notifier_block *nb) |
| { |
| struct net_device *dev; |
| struct net *net; |
| int err; |
| |
| rtnl_lock(); |
| err = raw_notifier_chain_unregister(&netdev_chain, nb); |
| if (err) |
| goto unlock; |
| |
| for_each_net(net) { |
| for_each_netdev(net, dev) { |
| if (dev->flags & IFF_UP) { |
| call_netdevice_notifier(nb, NETDEV_GOING_DOWN, |
| dev); |
| call_netdevice_notifier(nb, NETDEV_DOWN, dev); |
| } |
| call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); |
| } |
| } |
| unlock: |
| rtnl_unlock(); |
| return err; |
| } |
| EXPORT_SYMBOL(unregister_netdevice_notifier); |
| |
| /** |
| * call_netdevice_notifiers_info - call all network notifier blocks |
| * @val: value passed unmodified to notifier function |
| * @dev: net_device pointer passed unmodified to notifier function |
| * @info: notifier information data |
| * |
| * Call all network notifier blocks. Parameters and return value |
| * are as for raw_notifier_call_chain(). |
| */ |
| |
| static int call_netdevice_notifiers_info(unsigned long val, |
| struct net_device *dev, |
| struct netdev_notifier_info *info) |
| { |
| ASSERT_RTNL(); |
| netdev_notifier_info_init(info, dev); |
| return raw_notifier_call_chain(&netdev_chain, val, info); |
| } |
| |
| /** |
| * call_netdevice_notifiers - call all network notifier blocks |
| * @val: value passed unmodified to notifier function |
| * @dev: net_device pointer passed unmodified to notifier function |
| * |
| * Call all network notifier blocks. Parameters and return value |
| * are as for raw_notifier_call_chain(). |
| */ |
| |
| int call_netdevice_notifiers(unsigned long val, struct net_device *dev) |
| { |
| struct netdev_notifier_info info; |
| |
| return call_netdevice_notifiers_info(val, dev, &info); |
| } |
| EXPORT_SYMBOL(call_netdevice_notifiers); |
| |
| #ifdef CONFIG_NET_INGRESS |
| static struct static_key ingress_needed __read_mostly; |
| |
| void net_inc_ingress_queue(void) |
| { |
| static_key_slow_inc(&ingress_needed); |
| } |
| EXPORT_SYMBOL_GPL(net_inc_ingress_queue); |
| |
| void net_dec_ingress_queue(void) |
| { |
| static_key_slow_dec(&ingress_needed); |
| } |
| EXPORT_SYMBOL_GPL(net_dec_ingress_queue); |
| #endif |
| |
| #ifdef CONFIG_NET_EGRESS |
| static struct static_key egress_needed __read_mostly; |
| |
| void net_inc_egress_queue(void) |
| { |
| static_key_slow_inc(&egress_needed); |
| } |
| EXPORT_SYMBOL_GPL(net_inc_egress_queue); |
| |
| void net_dec_egress_queue(void) |
| { |
| static_key_slow_dec(&egress_needed); |
| } |
| EXPORT_SYMBOL_GPL(net_dec_egress_queue); |
| #endif |
| |
| static struct static_key netstamp_needed __read_mostly; |
| #ifdef HAVE_JUMP_LABEL |
| /* We are not allowed to call static_key_slow_dec() from irq context |
| * If net_disable_timestamp() is called from irq context, defer the |
| * static_key_slow_dec() calls. |
| */ |
| static atomic_t netstamp_needed_deferred; |
| #endif |
| |
| void net_enable_timestamp(void) |
| { |
| #ifdef HAVE_JUMP_LABEL |
| int deferred = atomic_xchg(&netstamp_needed_deferred, 0); |
| |
| if (deferred) { |
| while (--deferred) |
| static_key_slow_dec(&netstamp_needed); |
| return; |
| } |
| #endif |
| static_key_slow_inc(&netstamp_needed); |
| } |
| EXPORT_SYMBOL(net_enable_timestamp); |
| |
| void net_disable_timestamp(void) |
| { |
| #ifdef HAVE_JUMP_LABEL |
| if (in_interrupt()) { |
| atomic_inc(&netstamp_needed_deferred); |
| return; |
| } |
| #endif |
| static_key_slow_dec(&netstamp_needed); |
| } |
| EXPORT_SYMBOL(net_disable_timestamp); |
| |
| static inline void net_timestamp_set(struct sk_buff *skb) |
| { |
| skb->tstamp = 0; |
| if (static_key_false(&netstamp_needed)) |
| __net_timestamp(skb); |
| } |
| |
| #define net_timestamp_check(COND, SKB) \ |
| if (static_key_false(&netstamp_needed)) { \ |
| if ((COND) && !(SKB)->tstamp) \ |
| __net_timestamp(SKB); \ |
| } \ |
| |
| bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) |
| { |
| unsigned int len; |
| |
| if (!(dev->flags & IFF_UP)) |
| return false; |
| |
| len = dev->mtu + dev->hard_header_len + VLAN_HLEN; |
| if (skb->len <= len) |
| return true; |
| |
| /* if TSO is enabled, we don't care about the length as the packet |
| * could be forwarded without being segmented before |
| */ |
| if (skb_is_gso(skb)) |
| return true; |
| |
| return false; |
| } |
| EXPORT_SYMBOL_GPL(is_skb_forwardable); |
| |
| int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) |
| { |
| int ret = ____dev_forward_skb(dev, skb); |
| |
| if (likely(!ret)) { |
| skb->protocol = eth_type_trans(skb, dev); |
| skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); |
| } |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(__dev_forward_skb); |
| |
| /** |
| * dev_forward_skb - loopback an skb to another netif |
| * |
| * @dev: destination network device |
| * @skb: buffer to forward |
| * |
| * return values: |
| * NET_RX_SUCCESS (no congestion) |
| * NET_RX_DROP (packet was dropped, but freed) |
| * |
| * dev_forward_skb can be used for injecting an skb from the |
| * start_xmit function of one device into the receive queue |
| * of another device. |
| * |
| * The receiving device may be in another namespace, so |
| * we have to clear all information in the skb that could |
| * impact namespace isolation. |
| */ |
| int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) |
| { |
| return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); |
| } |
| EXPORT_SYMBOL_GPL(dev_forward_skb); |
| |
| static inline int deliver_skb(struct sk_buff *skb, |
| struct packet_type *pt_prev, |
| struct net_device *orig_dev) |
| { |
| if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) |
| return -ENOMEM; |
| atomic_inc(&skb->users); |
| return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); |
| } |
| |
| static inline void deliver_ptype_list_skb(struct sk_buff *skb, |
| struct packet_type **pt, |
| struct net_device *orig_dev, |
| __be16 type, |
| struct list_head *ptype_list) |
| { |
| struct packet_type *ptype, *pt_prev = *pt; |
| |
| list_for_each_entry_rcu(ptype, ptype_list, list) { |
| if (ptype->type != type) |
| continue; |
| if (pt_prev) |
| deliver_skb(skb, pt_prev, orig_dev); |
| pt_prev = ptype; |
| } |
| *pt = pt_prev; |
| } |
| |
| static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) |
| { |
| if (!ptype->af_packet_priv || !skb->sk) |
| return false; |
| |
| if (ptype->id_match) |
| return ptype->id_match(ptype, skb->sk); |
| else if ((struct sock *)ptype->af_packet_priv == skb->sk) |
| return true; |
| |
| return false; |
| } |
| |
| /* |
| * Support routine. Sends outgoing frames to any network |
| * taps currently in use. |
| */ |
| |
| void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) |
| { |
| struct packet_type *ptype; |
| struct sk_buff *skb2 = NULL; |
| struct packet_type *pt_prev = NULL; |
| struct list_head *ptype_list = &ptype_all; |
| |
| rcu_read_lock(); |
| again: |
| list_for_each_entry_rcu(ptype, ptype_list, list) { |
| /* Never send packets back to the socket |
| * they originated from - MvS (miquels@drinkel.ow.org) |
| */ |
| if (skb_loop_sk(ptype, skb)) |
| continue; |
| |
| if (pt_prev) { |
| deliver_skb(skb2, pt_prev, skb->dev); |
| pt_prev = ptype; |
| continue; |
| } |
| |
| /* need to clone skb, done only once */ |
| skb2 = skb_clone(skb, GFP_ATOMIC); |
| if (!skb2) |
| goto out_unlock; |
| |
| net_timestamp_set(skb2); |
| |
| /* skb->nh should be correctly |
| * set by sender, so that the second statement is |
| * just protection against buggy protocols. |
| */ |
| skb_reset_mac_header(skb2); |
| |
| if (skb_network_header(skb2) < skb2->data || |
| skb_network_header(skb2) > skb_tail_pointer(skb2)) { |
| net_crit_ratelimited("protocol %04x is buggy, dev %s\n", |
| ntohs(skb2->protocol), |
| dev->name); |
| skb_reset_network_header(skb2); |
| } |
| |
| skb2->transport_header = skb2->network_header; |
| skb2->pkt_type = PACKET_OUTGOING; |
| pt_prev = ptype; |
| } |
| |
| if (ptype_list == &ptype_all) { |
| ptype_list = &dev->ptype_all; |
| goto again; |
| } |
| out_unlock: |
| if (pt_prev) |
| pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); |
| rcu_read_unlock(); |
| } |
| EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); |
| |
| /** |
| * netif_setup_tc - Handle tc mappings on real_num_tx_queues change |
| * @dev: Network device |
| * @txq: number of queues available |
| * |
| * If real_num_tx_queues is changed the tc mappings may no longer be |
| * valid. To resolve this verify the tc mapping remains valid and if |
| * not NULL the mapping. With no priorities mapping to this |
| * offset/count pair it will no longer be used. In the worst case TC0 |
| * is invalid nothing can be done so disable priority mappings. If is |
| * expected that drivers will fix this mapping if they can before |
| * calling netif_set_real_num_tx_queues. |
| */ |
| static void netif_setup_tc(struct net_device *dev, unsigned int txq) |
| { |
| int i; |
| struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; |
| |
| /* If TC0 is invalidated disable TC mapping */ |
| if (tc->offset + tc->count > txq) { |
| pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); |
| dev->num_tc = 0; |
| return; |
| } |
| |
| /* Invalidated prio to tc mappings set to TC0 */ |
| for (i = 1; i < TC_BITMASK + 1; i++) { |
| int q = netdev_get_prio_tc_map(dev, i); |
| |
| tc = &dev->tc_to_txq[q]; |
| if (tc->offset + tc->count > txq) { |
| pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", |
| i, q); |
| netdev_set_prio_tc_map(dev, i, 0); |
| } |
| } |
| } |
| |
| int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) |
| { |
| if (dev->num_tc) { |
| struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; |
| int i; |
| |
| for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { |
| if ((txq - tc->offset) < tc->count) |
| return i; |
| } |
| |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_XPS |
| static DEFINE_MUTEX(xps_map_mutex); |
| #define xmap_dereference(P) \ |
| rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) |
| |
| static bool remove_xps_queue(struct xps_dev_maps *dev_maps, |
| int tci, u16 index) |
| { |
| struct xps_map *map = NULL; |
| int pos; |
| |
| if (dev_maps) |
| map = xmap_dereference(dev_maps->cpu_map[tci]); |
| if (!map) |
| return false; |
| |
| for (pos = map->len; pos--;) { |
| if (map->queues[pos] != index) |
| continue; |
| |
| if (map->len > 1) { |
| map->queues[pos] = map->queues[--map->len]; |
| break; |
| } |
| |
| RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL); |
| kfree_rcu(map, rcu); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool remove_xps_queue_cpu(struct net_device *dev, |
| struct xps_dev_maps *dev_maps, |
| int cpu, u16 offset, u16 count) |
| { |
| int num_tc = dev->num_tc ? : 1; |
| bool active = false; |
| int tci; |
| |
| for (tci = cpu * num_tc; num_tc--; tci++) { |
| int i, j; |
| |
| for (i = count, j = offset; i--; j++) { |
| if (!remove_xps_queue(dev_maps, cpu, j)) |
| break; |
| } |
| |
| active |= i < 0; |
| } |
| |
| return active; |
| } |
| |
| static void netif_reset_xps_queues(struct net_device *dev, u16 offset, |
| u16 count) |
| { |
| struct xps_dev_maps *dev_maps; |
| int cpu, i; |
| bool active = false; |
| |
| mutex_lock(&xps_map_mutex); |
| dev_maps = xmap_dereference(dev->xps_maps); |
| |
| if (!dev_maps) |
| goto out_no_maps; |
| |
| for_each_possible_cpu(cpu) |
| active |= remove_xps_queue_cpu(dev, dev_maps, cpu, |
| offset, count); |
| |
| if (!active) { |
| RCU_INIT_POINTER(dev->xps_maps, NULL); |
| kfree_rcu(dev_maps, rcu); |
| } |
| |
| for (i = offset + (count - 1); count--; i--) |
| netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), |
| NUMA_NO_NODE); |
| |
| out_no_maps: |
| mutex_unlock(&xps_map_mutex); |
| } |
| |
| static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) |
| { |
| netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); |
| } |
| |
| static struct xps_map *expand_xps_map(struct xps_map *map, |
| int cpu, u16 index) |
| { |
| struct xps_map *new_map; |
| int alloc_len = XPS_MIN_MAP_ALLOC; |
| int i, pos; |
| |
| for (pos = 0; map && pos < map->len; pos++) { |
| if (map->queues[pos] != index) |
| continue; |
| return map; |
| } |
| |
| /* Need to add queue to this CPU's existing map */ |
| if (map) { |
| if (pos < map->alloc_len) |
| return map; |
| |
| alloc_len = map->alloc_len * 2; |
| } |
| |
| /* Need to allocate new map to store queue on this CPU's map */ |
| new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, |
| cpu_to_node(cpu)); |
| if (!new_map) |
| return NULL; |
| |
| for (i = 0; i < pos; i++) |
| new_map->queues[i] = map->queues[i]; |
| new_map->alloc_len = alloc_len; |
| new_map->len = pos; |
| |
| return new_map; |
| } |
| |
| int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, |
| u16 index) |
| { |
| struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; |
| int i, cpu, tci, numa_node_id = -2; |
| int maps_sz, num_tc = 1, tc = 0; |
| struct xps_map *map, *new_map; |
| bool active = false; |
| |
| if (dev->num_tc) { |
| num_tc = dev->num_tc; |
| tc = netdev_txq_to_tc(dev, index); |
| if (tc < 0) |
| return -EINVAL; |
| } |
| |
| maps_sz = XPS_DEV_MAPS_SIZE(num_tc); |
| if (maps_sz < L1_CACHE_BYTES) |
| maps_sz = L1_CACHE_BYTES; |
| |
| mutex_lock(&xps_map_mutex); |
| |
| dev_maps = xmap_dereference(dev->xps_maps); |
| |
| /* allocate memory for queue storage */ |
| for_each_cpu_and(cpu, cpu_online_mask, mask) { |
| if (!new_dev_maps) |
| new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); |
| if (!new_dev_maps) { |
| mutex_unlock(&xps_map_mutex); |
| return -ENOMEM; |
| } |
| |
| tci = cpu * num_tc + tc; |
| map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) : |
| NULL; |
| |
| map = expand_xps_map(map, cpu, index); |
| if (!map) |
| goto error; |
| |
| RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); |
| } |
| |
| if (!new_dev_maps) |
| goto out_no_new_maps; |
| |
| for_each_possible_cpu(cpu) { |
| /* copy maps belonging to foreign traffic classes */ |
| for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) { |
| /* fill in the new device map from the old device map */ |
| map = xmap_dereference(dev_maps->cpu_map[tci]); |
| RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); |
| } |
| |
| /* We need to explicitly update tci as prevous loop |
| * could break out early if dev_maps is NULL. |
| */ |
| tci = cpu * num_tc + tc; |
| |
| if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { |
| /* add queue to CPU maps */ |
| int pos = 0; |
| |
| map = xmap_dereference(new_dev_maps->cpu_map[tci]); |
| while ((pos < map->len) && (map->queues[pos] != index)) |
| pos++; |
| |
| if (pos == map->len) |
| map->queues[map->len++] = index; |
| #ifdef CONFIG_NUMA |
| if (numa_node_id == -2) |
| numa_node_id = cpu_to_node(cpu); |
| else if (numa_node_id != cpu_to_node(cpu)) |
| numa_node_id = -1; |
| #endif |
| } else if (dev_maps) { |
| /* fill in the new device map from the old device map */ |
| map = xmap_dereference(dev_maps->cpu_map[tci]); |
| RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); |
| } |
| |
| /* copy maps belonging to foreign traffic classes */ |
| for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { |
| /* fill in the new device map from the old device map */ |
| map = xmap_dereference(dev_maps->cpu_map[tci]); |
| RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); |
| } |
| } |
| |
| rcu_assign_pointer(dev->xps_maps, new_dev_maps); |
| |
| /* Cleanup old maps */ |
| if (!dev_maps) |
| goto out_no_old_maps; |
| |
| for_each_possible_cpu(cpu) { |
| for (i = num_tc, tci = cpu * num_tc; i--; tci++) { |
| new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); |
| map = xmap_dereference(dev_maps->cpu_map[tci]); |
| if (map && map != new_map) |
| kfree_rcu(map, rcu); |
| } |
| } |
| |
| kfree_rcu(dev_maps, rcu); |
| |
| out_no_old_maps: |
| dev_maps = new_dev_maps; |
| active = true; |
| |
| out_no_new_maps: |
| /* update Tx queue numa node */ |
| netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), |
| (numa_node_id >= 0) ? numa_node_id : |
| NUMA_NO_NODE); |
| |
| if (!dev_maps) |
| goto out_no_maps; |
| |
| /* removes queue from unused CPUs */ |
| for_each_possible_cpu(cpu) { |
| for (i = tc, tci = cpu * num_tc; i--; tci++) |
| active |= remove_xps_queue(dev_maps, tci, index); |
| if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu)) |
| active |= remove_xps_queue(dev_maps, tci, index); |
| for (i = num_tc - tc, tci++; --i; tci++) |
| active |= remove_xps_queue(dev_maps, tci, index); |
| } |
| |
| /* free map if not active */ |
| if (!active) { |
| RCU_INIT_POINTER(dev->xps_maps, NULL); |
| kfree_rcu(dev_maps, rcu); |
| } |
| |
| out_no_maps: |
| mutex_unlock(&xps_map_mutex); |
| |
| return 0; |
| error: |
| /* remove any maps that we added */ |
| for_each_possible_cpu(cpu) { |
| for (i = num_tc, tci = cpu * num_tc; i--; tci++) { |
| new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); |
| map = dev_maps ? |
| xmap_dereference(dev_maps->cpu_map[tci]) : |
| NULL; |
| if (new_map && new_map != map) |
| kfree(new_map); |
| } |
| } |
| |
| mutex_unlock(&xps_map_mutex); |
| |
| kfree(new_dev_maps); |
| return -ENOMEM; |
| } |
| EXPORT_SYMBOL(netif_set_xps_queue); |
| |
| #endif |
| void netdev_reset_tc(struct net_device *dev) |
| { |
| #ifdef CONFIG_XPS |
| netif_reset_xps_queues_gt(dev, 0); |
| #endif |
| dev->num_tc = 0; |
| memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); |
| memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); |
| } |
| EXPORT_SYMBOL(netdev_reset_tc); |
| |
| int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) |
| { |
| if (tc >= dev->num_tc) |
| return -EINVAL; |
| |
| #ifdef CONFIG_XPS |
| netif_reset_xps_queues(dev, offset, count); |
| #endif |
| dev->tc_to_txq[tc].count = count; |
| dev->tc_to_txq[tc].offset = offset; |
| return 0; |
| } |
| EXPORT_SYMBOL(netdev_set_tc_queue); |
| |
| int netdev_set_num_tc(struct net_device *dev, u8 num_tc) |
| { |
| if (num_tc > TC_MAX_QUEUE) |
| return -EINVAL; |
| |
| #ifdef CONFIG_XPS |
| netif_reset_xps_queues_gt(dev, 0); |
| #endif |
| dev->num_tc = num_tc; |
| return 0; |
| } |
| EXPORT_SYMBOL(netdev_set_num_tc); |
| |
| /* |
| * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues |
| * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. |
| */ |
| int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) |
| { |
| int rc; |
| |
| if (txq < 1 || txq > dev->num_tx_queues) |
| return -EINVAL; |
| |
| if (dev->reg_state == NETREG_REGISTERED || |
| dev->reg_state == NETREG_UNREGISTERING) { |
| ASSERT_RTNL(); |
| |
| rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, |
| txq); |
| if (rc) |
| return rc; |
| |
| if (dev->num_tc) |
| netif_setup_tc(dev, txq); |
| |
| if (txq < dev->real_num_tx_queues) { |
| qdisc_reset_all_tx_gt(dev, txq); |
| #ifdef CONFIG_XPS |
| netif_reset_xps_queues_gt(dev, txq); |
| #endif |
| } |
| } |
| |
| dev->real_num_tx_queues = txq; |
| return 0; |
| } |
| EXPORT_SYMBOL(netif_set_real_num_tx_queues); |
| |
| #ifdef CONFIG_SYSFS |
| /** |
| * netif_set_real_num_rx_queues - set actual number of RX queues used |
| * @dev: Network device |
| * @rxq: Actual number of RX queues |
| * |
| * This must be called either with the rtnl_lock held or before |
| * registration of the net device. Returns 0 on success, or a |
| * negative error code. If called before registration, it always |
| * succeeds. |
| */ |
| int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) |
| { |
| int rc; |
| |
| if (rxq < 1 || rxq > dev->num_rx_queues) |
| return -EINVAL; |
| |
| if (dev->reg_state == NETREG_REGISTERED) { |
| ASSERT_RTNL(); |
| |
| rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, |
| rxq); |
| if (rc) |
| return rc; |
| } |
| |
| dev->real_num_rx_queues = rxq; |
| return 0; |
| } |
| EXPORT_SYMBOL(netif_set_real_num_rx_queues); |
| #endif |
| |
| /** |
| * netif_get_num_default_rss_queues - default number of RSS queues |
| * |
| * This routine should set an upper limit on the number of RSS queues |
| * used by default by multiqueue devices. |
| */ |
| int netif_get_num_default_rss_queues(void) |
| { |
| return is_kdump_kernel() ? |
| 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); |
| } |
| EXPORT_SYMBOL(netif_get_num_default_rss_queues); |
| |
| static void __netif_reschedule(struct Qdisc *q) |
| { |
| struct softnet_data *sd; |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| sd = this_cpu_ptr(&softnet_data); |
| q->next_sched = NULL; |
| *sd->output_queue_tailp = q; |
| sd->output_queue_tailp = &q->next_sched; |
| raise_softirq_irqoff(NET_TX_SOFTIRQ); |
| local_irq_restore(flags); |
| } |
| |
| void __netif_schedule(struct Qdisc *q) |
| { |
| if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) |
| __netif_reschedule(q); |
| } |
| EXPORT_SYMBOL(__netif_schedule); |
| |
| struct dev_kfree_skb_cb { |
| enum skb_free_reason reason; |
| }; |
| |
| static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) |
| { |
| return (struct dev_kfree_skb_cb *)skb->cb; |
| } |
| |
| void netif_schedule_queue(struct netdev_queue *txq) |
| { |
| rcu_read_lock(); |
| if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { |
| struct Qdisc *q = rcu_dereference(txq->qdisc); |
| |
| __netif_schedule(q); |
| } |
| rcu_read_unlock(); |
| } |
| EXPORT_SYMBOL(netif_schedule_queue); |
| |
| void netif_tx_wake_queue(struct netdev_queue *dev_queue) |
| { |
| if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { |
| struct Qdisc *q; |
| |
| rcu_read_lock(); |
| q = rcu_dereference(dev_queue->qdisc); |
| __netif_schedule(q); |
| rcu_read_unlock(); |
| } |
| } |
| EXPORT_SYMBOL(netif_tx_wake_queue); |
| |
| void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) |
| { |
| unsigned long flags; |
| |
| if (likely(atomic_read(&skb->users) == 1)) { |
| smp_rmb(); |
| atomic_set(&skb->users, 0); |
| } else if (likely(!atomic_dec_and_test(&skb->users))) { |
| return; |
| } |
| get_kfree_skb_cb(skb)->reason = reason; |
| local_irq_save(flags); |
| skb->next = __this_cpu_read(softnet_data.completion_queue); |
| __this_cpu_write(softnet_data.completion_queue, skb); |
| raise_softirq_irqoff(NET_TX_SOFTIRQ); |
| local_irq_restore(flags); |
| } |
| EXPORT_SYMBOL(__dev_kfree_skb_irq); |
| |
| void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) |
| { |
| if (in_irq() || irqs_disabled()) |
| __dev_kfree_skb_irq(skb, reason); |
| else |
| dev_kfree_skb(skb); |
| } |
| EXPORT_SYMBOL(__dev_kfree_skb_any); |
| |
| |
| /** |
| * netif_device_detach - mark device as removed |
| * @dev: network device |
| * |
| * Mark device as removed from system and therefore no longer available. |
| */ |
| void netif_device_detach(struct net_device *dev) |
| { |
| if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && |
| netif_running(dev)) { |
| netif_tx_stop_all_queues(dev); |
| } |
| } |
| EXPORT_SYMBOL(netif_device_detach); |
| |
| /** |
| * netif_device_attach - mark device as attached |
| * @dev: network device |
| * |
| * Mark device as attached from system and restart if needed. |
| */ |
| void netif_device_attach(struct net_device *dev) |
| { |
| if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && |
| netif_running(dev)) { |
| netif_tx_wake_all_queues(dev); |
| __netdev_watchdog_up(dev); |
| } |
| } |
| EXPORT_SYMBOL(netif_device_attach); |
| |
| /* |
| * Returns a Tx hash based on the given packet descriptor a Tx queues' number |
| * to be used as a distribution range. |
| */ |
| u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, |
| unsigned int num_tx_queues) |
| { |
| u32 hash; |
| u16 qoffset = 0; |
| u16 qcount = num_tx_queues; |
| |
| if (skb_rx_queue_recorded(skb)) { |
| hash = skb_get_rx_queue(skb); |
| while (unlikely(hash >= num_tx_queues)) |
| hash -= num_tx_queues; |
| return hash; |
| } |
| |
| if (dev->num_tc) { |
| u8 tc = netdev_get_prio_tc_map(dev, skb->priority); |
| qoffset = dev->tc_to_txq[tc].offset; |
| qcount = dev->tc_to_txq[tc].count; |
| } |
| |
| return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; |
| } |
| EXPORT_SYMBOL(__skb_tx_hash); |
| |
| static void skb_warn_bad_offload(const struct sk_buff *skb) |
| { |
| static const netdev_features_t null_features; |
| struct net_device *dev = skb->dev; |
| const char *name = ""; |
| |
| if (!net_ratelimit()) |
| return; |
| |
| if (dev) { |
| if (dev->dev.parent) |
| name = dev_driver_string(dev->dev.parent); |
| else |
| name = netdev_name(dev); |
| } |
| WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " |
| "gso_type=%d ip_summed=%d\n", |
| name, dev ? &dev->features : &null_features, |
| skb->sk ? &skb->sk->sk_route_caps : &null_features, |
| skb->len, skb->data_len, skb_shinfo(skb)->gso_size, |
| skb_shinfo(skb)->gso_type, skb->ip_summed); |
| } |
| |
| /* |
| * Invalidate hardware checksum when packet is to be mangled, and |
| * complete checksum manually on outgoing path. |
| */ |
| int skb_checksum_help(struct sk_buff *skb) |
| { |
| __wsum csum; |
| int ret = 0, offset; |
| |
| if (skb->ip_summed == CHECKSUM_COMPLETE) |
| goto out_set_summed; |
| |
| if (unlikely(skb_shinfo(skb)->gso_size)) { |
| skb_warn_bad_offload(skb); |
| return -EINVAL; |
| } |
| |
| /* Before computing a checksum, we should make sure no frag could |
| * be modified by an external entity : checksum could be wrong. |
| */ |
| if (skb_has_shared_frag(skb)) { |
| ret = __skb_linearize(skb); |
| if (ret) |
| goto out; |
| } |
| |
| offset = skb_checksum_start_offset(skb); |
| BUG_ON(offset >= skb_headlen(skb)); |
| csum = skb_checksum(skb, offset, skb->len - offset, 0); |
| |
| offset += skb->csum_offset; |
| BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); |
| |
| if (skb_cloned(skb) && |
| !skb_clone_writable(skb, offset + sizeof(__sum16))) { |
| ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); |
| if (ret) |
| goto out; |
| } |
| |
| *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; |
| out_set_summed: |
| skb->ip_summed = CHECKSUM_NONE; |
| out: |
| return ret; |
| } |
| EXPORT_SYMBOL(skb_checksum_help); |
| |
| __be16 skb_network_protocol(struct sk_buff *skb, int *depth) |
| { |
| __be16 type = skb->protocol; |
| |
| /* Tunnel gso handlers can set protocol to ethernet. */ |
| if (type == htons(ETH_P_TEB)) { |
| struct ethhdr *eth; |
| |
| if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) |
| return 0; |
| |
| eth = (struct ethhdr *)skb_mac_header(skb); |
| type = eth->h_proto; |
| } |
| |
| return __vlan_get_protocol(skb, type, depth); |
| } |
| |
| /** |
| * skb_mac_gso_segment - mac layer segmentation handler. |
| * @skb: buffer to segment |
| * @features: features for the output path (see dev->features) |
| */ |
| struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, |
| netdev_features_t features) |
| { |
| struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); |
| struct packet_offload *ptype; |
| int vlan_depth = skb->mac_len; |
| __be16 type = skb_network_protocol(skb, &vlan_depth); |
| |
| if (unlikely(!type)) |
| return ERR_PTR(-EINVAL); |
| |
| __skb_pull(skb, vlan_depth); |
| |
| rcu_read_lock(); |
| list_for_each_entry_rcu(ptype, &offload_base, list) { |
| if (ptype->type == type && ptype->callbacks.gso_segment) { |
| segs = ptype->callbacks.gso_segment(skb, features); |
| break; |
| } |
| } |
| rcu_read_unlock(); |
| |
| __skb_push(skb, skb->data - skb_mac_header(skb)); |
| |
| return segs; |
| } |
| EXPORT_SYMBOL(skb_mac_gso_segment); |
| |
| |
| /* openvswitch calls this on rx path, so we need a different check. |
| */ |
| static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) |
| { |
| if (tx_path) |
| return skb->ip_summed != CHECKSUM_PARTIAL; |
| else |
| return skb->ip_summed == CHECKSUM_NONE; |
| } |
| |
| /** |
| * __skb_gso_segment - Perform segmentation on skb. |
| * @skb: buffer to segment |
| * @features: features for the output path (see dev->features) |
| * @tx_path: whether it is called in TX path |
| * |
| * This function segments the given skb and returns a list of segments. |
| * |
| * It may return NULL if the skb requires no segmentation. This is |
| * only possible when GSO is used for verifying header integrity. |
| * |
| * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb. |
| */ |
| struct sk_buff *__skb_gso_segment(struct sk_buff *skb, |
| netdev_features_t features, bool tx_path) |
| { |
| if (unlikely(skb_needs_check(skb, tx_path))) { |
| int err; |
| |
| skb_warn_bad_offload(skb); |
| |
| err = skb_cow_head(skb, 0); |
| if (err < 0) |
| return ERR_PTR(err); |
| } |
| |
| /* Only report GSO partial support if it will enable us to |
| * support segmentation on this frame without needing additional |
| * work. |
| */ |
| if (features & NETIF_F_GSO_PARTIAL) { |
| netdev_features_t partial_features = NETIF_F_GSO_ROBUST; |
| struct net_device *dev = skb->dev; |
| |
| partial_features |= dev->features & dev->gso_partial_features; |
| if (!skb_gso_ok(skb, features | partial_features)) |
| features &= ~NETIF_F_GSO_PARTIAL; |
| } |
| |
| BUILD_BUG_ON(SKB_SGO_CB_OFFSET + |
| sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); |
| |
| SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); |
| SKB_GSO_CB(skb)->encap_level = 0; |
| |
| skb_reset_mac_header(skb); |
| skb_reset_mac_len(skb); |
| |
| return skb_mac_gso_segment(skb, features); |
| } |
| EXPORT_SYMBOL(__skb_gso_segment); |
| |
| /* Take action when hardware reception checksum errors are detected. */ |
| #ifdef CONFIG_BUG |
| void netdev_rx_csum_fault(struct net_device *dev) |
| { |
| if (net_ratelimit()) { |
| pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); |
| dump_stack(); |
| } |
| } |
| EXPORT_SYMBOL(netdev_rx_csum_fault); |
| #endif |
| |
| /* Actually, we should eliminate this check as soon as we know, that: |
| * 1. IOMMU is present and allows to map all the memory. |
| * 2. No high memory really exists on this machine. |
| */ |
| |
| static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) |
| { |
| #ifdef CONFIG_HIGHMEM |
| int i; |
| if (!(dev->features & NETIF_F_HIGHDMA)) { |
| for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { |
| skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; |
| if (PageHighMem(skb_frag_page(frag))) |
| return 1; |
| } |
| } |
| |
| if (PCI_DMA_BUS_IS_PHYS) { |
| struct device *pdev = dev->dev.parent; |
| |
| if (!pdev) |
| return 0; |
| for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { |
| skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; |
| dma_addr_t addr = page_to_phys(skb_frag_page(frag)); |
| if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) |
| return 1; |
| } |
| } |
| #endif |
| return 0; |
| } |
| |
| /* If MPLS offload request, verify we are testing hardware MPLS features |
| * instead of standard features for the netdev. |
| */ |
| #if IS_ENABLED(CONFIG_NET_MPLS_GSO) |
| static netdev_features_t net_mpls_features(struct sk_buff *skb, |
| netdev_features_t features, |
| __be16 type) |
| { |
| if (eth_p_mpls(type)) |
| features &= skb->dev->mpls_features; |
| |
| return features; |
| } |
| #else |
| static netdev_features_t net_mpls_features(struct sk_buff *skb, |
| netdev_features_t features, |
| __be16 type) |
| { |
| return features; |
| } |
| #endif |
| |
| static netdev_features_t harmonize_features(struct sk_buff *skb, |
| netdev_features_t features) |
| { |
| int tmp; |
| __be16 type; |
| |
| type = skb_network_protocol(skb, &tmp); |
| features = net_mpls_features(skb, features, type); |
| |
| if (skb->ip_summed != CHECKSUM_NONE && |
| !can_checksum_protocol(features, type)) { |
| features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); |
| } else if (illegal_highdma(skb->dev, skb)) { |
| features &= ~NETIF_F_SG; |
| } |
| |
| return features; |
| } |
| |
| netdev_features_t passthru_features_check(struct sk_buff *skb, |
| struct net_device *dev, |
| netdev_features_t features) |
| { |
| return features; |
| } |
| EXPORT_SYMBOL(passthru_features_check); |
| |
| static netdev_features_t dflt_features_check(const struct sk_buff *skb, |
| struct net_device *dev, |
| netdev_features_t features) |
| { |
| return vlan_features_check(skb, features); |
| } |
| |
| static netdev_features_t gso_features_check(const struct sk_buff *skb, |
| struct net_device *dev, |
| netdev_features_t features) |
| { |
| u16 gso_segs = skb_shinfo(skb)->gso_segs; |
| |
| if (gso_segs > dev->gso_max_segs) |
| return features & ~NETIF_F_GSO_MASK; |
| |
| /* Support for GSO partial features requires software |
| * intervention before we can actually process the packets |
| * so we need to strip support for any partial features now |
| * and we can pull them back in after we have partially |
| * segmented the frame. |
| */ |
| if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) |
| features &= ~dev->gso_partial_features; |
| |
| /* Make sure to clear the IPv4 ID mangling feature if the |
| * IPv4 header has the potential to be fragmented. |
| */ |
| if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { |
| struct iphdr *iph = skb->encapsulation ? |
| inner_ip_hdr(skb) : ip_hdr(skb); |
| |
| if (!(iph->frag_off & htons(IP_DF))) |
| features &= ~NETIF_F_TSO_MANGLEID; |
| } |
| |
| return features; |
| } |
| |
| netdev_features_t netif_skb_features(struct sk_buff *skb) |
| { |
| struct net_device *dev = skb->dev; |
| netdev_features_t features = dev->features; |
| |
| if (skb_is_gso(skb)) |
| features = gso_features_check(skb, dev, features); |
| |
| /* If encapsulation offload request, verify we are testing |
| * hardware encapsulation features instead of standard |
| * features for the netdev |
| */ |
| if (skb->encapsulation) |
| features &= dev->hw_enc_features; |
| |
| if (skb_vlan_tagged(skb)) |
| features = netdev_intersect_features(features, |
| dev->vlan_features | |
| NETIF_F_HW_VLAN_CTAG_TX | |
| NETIF_F_HW_VLAN_STAG_TX); |
| |
| if (dev->netdev_ops->ndo_features_check) |
| features &= dev->netdev_ops->ndo_features_check(skb, dev, |
| features); |
| else |
| features &= dflt_features_check(skb, dev, features); |
| |
| return harmonize_features(skb, features); |
| } |
| EXPORT_SYMBOL(netif_skb_features); |
| |
| static int xmit_one(struct sk_buff *skb, struct net_device *dev, |
| struct netdev_queue *txq, bool more) |
| { |
| unsigned int len; |
| int rc; |
| |
| if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all)) |
| dev_queue_xmit_nit(skb, dev); |
| |
| len = skb->len; |
| trace_net_dev_start_xmit(skb, dev); |
| rc = netdev_start_xmit(skb, dev, txq, more); |
| trace_net_dev_xmit(skb, rc, dev, len); |
| |
| return rc; |
| } |
| |
| struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, |
| struct netdev_queue *txq, int *ret) |
| { |
| struct sk_buff *skb = first; |
| int rc = NETDEV_TX_OK; |
| |
| while (skb) { |
| struct sk_buff *next = skb->next; |
| |
| skb->next = NULL; |
| rc = xmit_one(skb, dev, txq, next != NULL); |
| if (unlikely(!dev_xmit_complete(rc))) { |
| skb->next = next; |
| goto out; |
| } |
| |
| skb = next; |
| if (netif_xmit_stopped(txq) && skb) { |
| rc = NETDEV_TX_BUSY; |
| break; |
| } |
| } |
| |
| out: |
| *ret = rc; |
| return skb; |
| } |
| |
| static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, |
| netdev_features_t features) |
| { |
| if (skb_vlan_tag_present(skb) && |
| !vlan_hw_offload_capable(features, skb->vlan_proto)) |
| skb = __vlan_hwaccel_push_inside(skb); |
| return skb; |
| } |
| |
| static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev) |
| { |
| netdev_features_t features; |
| |
| features = netif_skb_features(skb); |
| skb = validate_xmit_vlan(skb, features); |
| if (unlikely(!skb)) |
| goto out_null; |
| |
| if (netif_needs_gso(skb, features)) { |
| struct sk_buff *segs; |
| |
| segs = skb_gso_segment(skb, features); |
| if (IS_ERR(segs)) { |
| goto out_kfree_skb; |
| } else if (segs) { |
| consume_skb(skb); |
| skb = segs; |
| } |
| } else { |
| if (skb_needs_linearize(skb, features) && |
| __skb_linearize(skb)) |
| goto out_kfree_skb; |
| |
| /* If packet is not checksummed and device does not |
| * support checksumming for this protocol, complete |
| * checksumming here. |
| */ |
| if (skb->ip_summed == CHECKSUM_PARTIAL) { |
| if (skb->encapsulation) |
| skb_set_inner_transport_header(skb, |
| skb_checksum_start_offset(skb)); |
| else |
| skb_set_transport_header(skb, |
| skb_checksum_start_offset(skb)); |
| if (!(features & NETIF_F_CSUM_MASK) && |
| skb_checksum_help(skb)) |
| goto out_kfree_skb; |
| } |
| } |
| |
| return skb; |
| |
| out_kfree_skb: |
| kfree_skb(skb); |
| out_null: |
| atomic_long_inc(&dev->tx_dropped); |
| return NULL; |
| } |
| |
| struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev) |
| { |
| struct sk_buff *next, *head = NULL, *tail; |
| |
| for (; skb != NULL; skb = next) { |
| next = skb->next; |
| skb->next = NULL; |
| |
| /* in case skb wont be segmented, point to itself */ |
| skb->prev = skb; |
| |
| skb = validate_xmit_skb(skb, dev); |
| if (!skb) |
| continue; |
| |
| if (!head) |
| head = skb; |
| else |
| tail->next = skb; |
| /* If skb was segmented, skb->prev points to |
| * the last segment. If not, it still contains skb. |
| */ |
| tail = skb->prev; |
| } |
| return head; |
| } |
| EXPORT_SYMBOL_GPL(validate_xmit_skb_list); |
| |
| static void qdisc_pkt_len_init(struct sk_buff *skb) |
| { |
| const struct skb_shared_info *shinfo = skb_shinfo(skb); |
| |
| qdisc_skb_cb(skb)->pkt_len = skb->len; |
| |
| /* To get more precise estimation of bytes sent on wire, |
| * we add to pkt_len the headers size of all segments |
| */ |
| if (shinfo->gso_size) { |
| unsigned int hdr_len; |
| u16 gso_segs = shinfo->gso_segs; |
| |
| /* mac layer + network layer */ |
| hdr_len = skb_transport_header(skb) - skb_mac_header(skb); |
| |
| /* + transport layer */ |
| if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) |
| hdr_len += tcp_hdrlen(skb); |
| else |
| hdr_len += sizeof(struct udphdr); |
| |
| if (shinfo->gso_type & SKB_GSO_DODGY) |
| gso_segs = DIV_ROUND_UP(skb->len - hdr_len, |
| shinfo->gso_size); |
| |
| qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; |
| } |
| } |
| |
| static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, |
| struct net_device *dev, |
| struct netdev_queue *txq) |
| { |
| spinlock_t *root_lock = qdisc_lock(q); |
| struct sk_buff *to_free = NULL; |
| bool contended; |
| int rc; |
| |
| qdisc_calculate_pkt_len(skb, q); |
| /* |
| * Heuristic to force contended enqueues to serialize on a |
| * separate lock before trying to get qdisc main lock. |
| * This permits qdisc->running owner to get the lock more |
| * often and dequeue packets faster. |
| */ |
| contended = qdisc_is_running(q); |
| if (unlikely(contended)) |
| spin_lock(&q->busylock); |
| |
| spin_lock(root_lock); |
| if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { |
| __qdisc_drop(skb, &to_free); |
| rc = NET_XMIT_DROP; |
| } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && |
| qdisc_run_begin(q)) { |
| /* |
| * This is a work-conserving queue; there are no old skbs |
| * waiting to be sent out; and the qdisc is not running - |
| * xmit the skb directly. |
| */ |
| |
| qdisc_bstats_update(q, skb); |
| |
| if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { |
| if (unlikely(contended)) { |
| spin_unlock(&q->busylock); |
| contended = false; |
| } |
| __qdisc_run(q); |
| } else |
| qdisc_run_end(q); |
| |
| rc = NET_XMIT_SUCCESS; |
| } else { |
| rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; |
| if (qdisc_run_begin(q)) { |
| if (unlikely(contended)) { |
| spin_unlock(&q->busylock); |
| contended = false; |
| } |
| __qdisc_run(q); |
| } |
| } |
| spin_unlock(root_lock); |
| if (unlikely(to_free)) |
| kfree_skb_list(to_free); |
| if (unlikely(contended)) |
| spin_unlock(&q->busylock); |
| return rc; |
| } |
| |
| #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) |
| static void skb_update_prio(struct sk_buff *skb) |
| { |
| struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); |
| |
| if (!skb->priority && skb->sk && map) { |
| unsigned int prioidx = |
| sock_cgroup_prioidx(&skb->sk->sk_cgrp_data); |
| |
| if (prioidx < map->priomap_len) |
| skb->priority = map->priomap[prioidx]; |
| } |
| } |
| #else |
| #define skb_update_prio(skb) |
| #endif |
| |
| DEFINE_PER_CPU(int, xmit_recursion); |
| EXPORT_SYMBOL(xmit_recursion); |
| |
| /** |
| * dev_loopback_xmit - loop back @skb |
| * @net: network namespace this loopback is happening in |
| * @sk: sk needed to be a netfilter okfn |
| * @skb: buffer to transmit |
| */ |
| int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) |
| { |
| skb_reset_mac_header(skb); |
| __skb_pull(skb, skb_network_offset(skb)); |
| skb->pkt_type = PACKET_LOOPBACK; |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| WARN_ON(!skb_dst(skb)); |
| skb_dst_force(skb); |
| netif_rx_ni(skb); |
| return 0; |
| } |
| EXPORT_SYMBOL(dev_loopback_xmit); |
| |
| #ifdef CONFIG_NET_EGRESS |
| static struct sk_buff * |
| sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) |
| { |
| struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list); |
| struct tcf_result cl_res; |
| |
| if (!cl) |
| return skb; |
| |
| /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ |
| qdisc_bstats_cpu_update(cl->q, skb); |
| |
| switch (tc_classify(skb, cl, &cl_res, false)) { |
| case TC_ACT_OK: |
| case TC_ACT_RECLASSIFY: |
| skb->tc_index = TC_H_MIN(cl_res.classid); |
| break; |
| case TC_ACT_SHOT: |
| qdisc_qstats_cpu_drop(cl->q); |
| *ret = NET_XMIT_DROP; |
| kfree_skb(skb); |
| return NULL; |
| case TC_ACT_STOLEN: |
| case TC_ACT_QUEUED: |
| *ret = NET_XMIT_SUCCESS; |
| consume_skb(skb); |
| return NULL; |
| case TC_ACT_REDIRECT: |
| /* No need to push/pop skb's mac_header here on egress! */ |
| skb_do_redirect(skb); |
| *ret = NET_XMIT_SUCCESS; |
| return NULL; |
| default: |
| break; |
| } |
| |
| return skb; |
| } |
| #endif /* CONFIG_NET_EGRESS */ |
| |
| static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) |
| { |
| #ifdef CONFIG_XPS |
| struct xps_dev_maps *dev_maps; |
| struct xps_map *map; |
| int queue_index = -1; |
| |
| rcu_read_lock(); |
| dev_maps = rcu_dereference(dev->xps_maps); |
| if (dev_maps) { |
| unsigned int tci = skb->sender_cpu - 1; |
| |
| if (dev->num_tc) { |
| tci *= dev->num_tc; |
| tci += netdev_get_prio_tc_map(dev, skb->priority); |
| } |
| |
| map = rcu_dereference(dev_maps->cpu_map[tci]); |
| if (map) { |
| if (map->len == 1) |
| queue_index = map->queues[0]; |
| else |
| queue_index = map->queues[reciprocal_scale(skb_get_hash(skb), |
| map->len)]; |
| if (unlikely(queue_index >= dev->real_num_tx_queues)) |
| queue_index = -1; |
| } |
| } |
| rcu_read_unlock(); |
| |
| return queue_index; |
| #else |
| return -1; |
| #endif |
| } |
| |
| static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb) |
| { |
| struct sock *sk = skb->sk; |
| int queue_index = sk_tx_queue_get(sk); |
| |
| if (queue_index < 0 || skb->ooo_okay || |
| queue_index >= dev->real_num_tx_queues) { |
| int new_index = get_xps_queue(dev, skb); |
| if (new_index < 0) |
| new_index = skb_tx_hash(dev, skb); |
| |
| if (queue_index != new_index && sk && |
| sk_fullsock(sk) && |
| rcu_access_pointer(sk->sk_dst_cache)) |
| sk_tx_queue_set(sk, new_index); |
| |
| queue_index = new_index; |
| } |
| |
| return queue_index; |
| } |
| |
| struct netdev_queue *netdev_pick_tx(struct net_device *dev, |
| struct sk_buff *skb, |
| void *accel_priv) |
| { |
| int queue_index = 0; |
| |
| #ifdef CONFIG_XPS |
| u32 sender_cpu = skb->sender_cpu - 1; |
| |
| if (sender_cpu >= (u32)NR_CPUS) |
| skb->sender_cpu = raw_smp_processor_id() + 1; |
| #endif |
| |
| if (dev->real_num_tx_queues != 1) { |
| const struct net_device_ops *ops = dev->netdev_ops; |
| if (ops->ndo_select_queue) |
| queue_index = ops->ndo_select_queue(dev, skb, accel_priv, |
| __netdev_pick_tx); |
| else |
| queue_index = __netdev_pick_tx(dev, skb); |
| |
| if (!accel_priv) |
| queue_index = netdev_cap_txqueue(dev, queue_index); |
| } |
| |
| skb_set_queue_mapping(skb, queue_index); |
| return netdev_get_tx_queue(dev, queue_index); |
| } |
| |
| /** |
| * __dev_queue_xmit - transmit a buffer |
| * @skb: buffer to transmit |
| * @accel_priv: private data used for L2 forwarding offload |
| * |
| * Queue a buffer for transmission to a network device. The caller must |
| * have set the device and priority and built the buffer before calling |
| * this function. The function can be called from an interrupt. |
| * |
| * A negative errno code is returned on a failure. A success does not |
| * guarantee the frame will be transmitted as it may be dropped due |
| * to congestion or traffic shaping. |
| * |
| * ----------------------------------------------------------------------------------- |
| * I notice this method can also return errors from the queue disciplines, |
| * including NET_XMIT_DROP, which is a positive value. So, errors can also |
| * be positive. |
| * |
| * Regardless of the return value, the skb is consumed, so it is currently |
| * difficult to retry a send to this method. (You can bump the ref count |
| * before sending to hold a reference for retry if you are careful.) |
| * |
| * When calling this method, interrupts MUST be enabled. This is because |
| * the BH enable code must have IRQs enabled so that it will not deadlock. |
| * --BLG |
| */ |
| static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv) |
| { |
| struct net_device *dev = skb->dev; |
| struct netdev_queue *txq; |
| struct Qdisc *q; |
| int rc = -ENOMEM; |
| |
| skb_reset_mac_header(skb); |
| |
| if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) |
| __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); |
| |
| /* Disable soft irqs for various locks below. Also |
| * stops preemption for RCU. |
| */ |
| rcu_read_lock_bh(); |
| |
| skb_update_prio(skb); |
| |
| qdisc_pkt_len_init(skb); |
| #ifdef CONFIG_NET_CLS_ACT |
| skb->tc_at_ingress = 0; |
| # ifdef CONFIG_NET_EGRESS |
| if (static_key_false(&egress_needed)) { |
| skb = sch_handle_egress(skb, &rc, dev); |
| if (!skb) |
| goto out; |
| } |
| # endif |
| #endif |
| /* If device/qdisc don't need skb->dst, release it right now while |
| * its hot in this cpu cache. |
| */ |
| if (dev->priv_flags & IFF_XMIT_DST_RELEASE) |
| skb_dst_drop(skb); |
| else |
| skb_dst_force(skb); |
| |
| txq = netdev_pick_tx(dev, skb, accel_priv); |
| q = rcu_dereference_bh(txq->qdisc); |
| |
| trace_net_dev_queue(skb); |
| if (q->enqueue) { |
| rc = __dev_xmit_skb(skb, q, dev, txq); |
| goto out; |
| } |
| |
| /* The device has no queue. Common case for software devices: |
| loopback, all the sorts of tunnels... |
| |
| Really, it is unlikely that netif_tx_lock protection is necessary |
| here. (f.e. loopback and IP tunnels are clean ignoring statistics |
| counters.) |
| However, it is possible, that they rely on protection |
| made by us here. |
| |
| Check this and shot the lock. It is not prone from deadlocks. |
| Either shot noqueue qdisc, it is even simpler 8) |
| */ |
| if (dev->flags & IFF_UP) { |
| int cpu = smp_processor_id(); /* ok because BHs are off */ |
| |
| if (txq->xmit_lock_owner != cpu) { |
| if (unlikely(__this_cpu_read(xmit_recursion) > |
| XMIT_RECURSION_LIMIT)) |
| goto recursion_alert; |
| |
| skb = validate_xmit_skb(skb, dev); |
| if (!skb) |
| goto out; |
| |
| HARD_TX_LOCK(dev, txq, cpu); |
| |
| if (!netif_xmit_stopped(txq)) { |
| __this_cpu_inc(xmit_recursion); |
| skb = dev_hard_start_xmit(skb, dev, txq, &rc); |
| __this_cpu_dec(xmit_recursion); |
| if (dev_xmit_complete(rc)) { |
| HARD_TX_UNLOCK(dev, txq); |
| goto out; |
| } |
| } |
| HARD_TX_UNLOCK(dev, txq); |
| net_crit_ratelimited("Virtual device %s asks to queue packet!\n", |
| dev->name); |
| } else { |
| /* Recursion is detected! It is possible, |
| * unfortunately |
| */ |
| recursion_alert: |
| net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", |
| dev->name); |
| } |
| } |
| |
| rc = -ENETDOWN; |
| rcu_read_unlock_bh(); |
| |
| atomic_long_inc(&dev->tx_dropped); |
| kfree_skb_list(skb); |
| return rc; |
| out: |
| rcu_read_unlock_bh(); |
| return rc; |
| } |
| |
| int dev_queue_xmit(struct sk_buff *skb) |
| { |
| return __dev_queue_xmit(skb, NULL); |
| } |
| EXPORT_SYMBOL(dev_queue_xmit); |
| |
| int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv) |
| { |
| return __dev_queue_xmit(skb, accel_priv); |
| } |
| EXPORT_SYMBOL(dev_queue_xmit_accel); |
| |
| |
| /*======================================================================= |
| Receiver routines |
| =======================================================================*/ |
| |
| int netdev_max_backlog __read_mostly = 1000; |
| EXPORT_SYMBOL(netdev_max_backlog); |
| |
| int netdev_tstamp_prequeue __read_mostly = 1; |
| int netdev_budget __read_mostly = 300; |
| int weight_p __read_mostly = 64; /* old backlog weight */ |
| int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ |
| int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ |
| int dev_rx_weight __read_mostly = 64; |
| int dev_tx_weight __read_mostly = 64; |
| |
| /* Called with irq disabled */ |
| static inline void ____napi_schedule(struct softnet_data *sd, |
| struct napi_struct *napi) |
| { |
| list_add_tail(&napi->poll_list, &sd->poll_list); |
| __raise_softirq_irqoff(NET_RX_SOFTIRQ); |
| } |
| |
| #ifdef CONFIG_RPS |
| |
| /* One global table that all flow-based protocols share. */ |
| struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; |
| EXPORT_SYMBOL(rps_sock_flow_table); |
| u32 rps_cpu_mask __read_mostly; |
| EXPORT_SYMBOL(rps_cpu_mask); |
| |
| struct static_key rps_needed __read_mostly; |
| EXPORT_SYMBOL(rps_needed); |
| struct static_key rfs_needed __read_mostly; |
| EXPORT_SYMBOL(rfs_needed); |
| |
| static struct rps_dev_flow * |
| set_rps_cpu(struct net_device *dev, struct sk_buff *skb, |
| struct rps_dev_flow *rflow, u16 next_cpu) |
| { |
| if (next_cpu < nr_cpu_ids) { |
| #ifdef CONFIG_RFS_ACCEL |
| struct netdev_rx_queue *rxqueue; |
| struct rps_dev_flow_table *flow_table; |
| struct rps_dev_flow *old_rflow; |
| u32 flow_id; |
| u16 rxq_index; |
| int rc; |
| |
| /* Should we steer this flow to a different hardware queue? */ |
| if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || |
| !(dev->features & NETIF_F_NTUPLE)) |
| goto out; |
| rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); |
| if (rxq_index == skb_get_rx_queue(skb)) |
| goto out; |
| |
| rxqueue = dev->_rx + rxq_index; |
| flow_table = rcu_dereference(rxqueue->rps_flow_table); |
| if (!flow_table) |
| goto out; |
| flow_id = skb_get_hash(skb) & flow_table->mask; |
| rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, |
| rxq_index, flow_id); |
| if (rc < 0) |
| goto out; |
| old_rflow = rflow; |
| rflow = &flow_table->flows[flow_id]; |
| rflow->filter = rc; |
| if (old_rflow->filter == rflow->filter) |
| old_rflow->filter = RPS_NO_FILTER; |
| out: |
| #endif |
| rflow->last_qtail = |
| per_cpu(softnet_data, next_cpu).input_queue_head; |
| } |
| |
| rflow->cpu = next_cpu; |
| return rflow; |
| } |
| |
| /* |
| * get_rps_cpu is called from netif_receive_skb and returns the target |
| * CPU from the RPS map of the receiving queue for a given skb. |
| * rcu_read_lock must be held on entry. |
| */ |
| static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, |
| struct rps_dev_flow **rflowp) |
| { |
| const struct rps_sock_flow_table *sock_flow_table; |
| struct netdev_rx_queue *rxqueue = dev->_rx; |
| struct rps_dev_flow_table *flow_table; |
| struct rps_map *map; |
| int cpu = -1; |
| u32 tcpu; |
| u32 hash; |
| |
| if (skb_rx_queue_recorded(skb)) { |
| u16 index = skb_get_rx_queue(skb); |
| |
| if (unlikely(index >= dev->real_num_rx_queues)) { |
| WARN_ONCE(dev->real_num_rx_queues > 1, |
| "%s received packet on queue %u, but number " |
| "of RX queues is %u\n", |
| dev->name, index, dev->real_num_rx_queues); |
| goto done; |
| } |
| rxqueue += index; |
| } |
| |
| /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ |
| |
| flow_table = rcu_dereference(rxqueue->rps_flow_table); |
| map = rcu_dereference(rxqueue->rps_map); |
| if (!flow_table && !map) |
| goto done; |
| |
| skb_reset_network_header(skb); |
| hash = skb_get_hash(skb); |
| if (!hash) |
| goto done; |
| |
| sock_flow_table = rcu_dereference(rps_sock_flow_table); |
| if (flow_table && sock_flow_table) { |
| struct rps_dev_flow *rflow; |
| u32 next_cpu; |
| u32 ident; |
| |
| /* First check into global flow table if there is a match */ |
| ident = sock_flow_table->ents[hash & sock_flow_table->mask]; |
| if ((ident ^ hash) & ~rps_cpu_mask) |
| goto try_rps; |
| |
| next_cpu = ident & rps_cpu_mask; |
| |
| /* OK, now we know there is a match, |
| * we can look at the local (per receive queue) flow table |
| */ |
| rflow = &flow_table->flows[hash & flow_table->mask]; |
| tcpu = rflow->cpu; |
| |
| /* |
| * If the desired CPU (where last recvmsg was done) is |
| * different from current CPU (one in the rx-queue flow |
| * table entry), switch if one of the following holds: |
| * - Current CPU is unset (>= nr_cpu_ids). |
| * - Current CPU is offline. |
| * - The current CPU's queue tail has advanced beyond the |
| * last packet that was enqueued using this table entry. |
| * This guarantees that all previous packets for the flow |
| * have been dequeued, thus preserving in order delivery. |
| */ |
| if (unlikely(tcpu != next_cpu) && |
| (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || |
| ((int)(per_cpu(softnet_data, tcpu).input_queue_head - |
| rflow->last_qtail)) >= 0)) { |
| tcpu = next_cpu; |
| rflow = set_rps_cpu(dev, skb, rflow, next_cpu); |
| } |
| |
| if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { |
| *rflowp = rflow; |
| cpu = tcpu; |
| goto done; |
| } |
| } |
| |
| try_rps: |
| |
| if (map) { |
| tcpu = map->cpus[reciprocal_scale(hash, map->len)]; |
| if (cpu_online(tcpu)) { |
| cpu = tcpu; |
| goto done; |
| } |
| } |
| |
| done: |
| return cpu; |
| } |
| |
| #ifdef CONFIG_RFS_ACCEL |
| |
| /** |
| * rps_may_expire_flow - check whether an RFS hardware filter may be removed |
| * @dev: Device on which the filter was set |
| * @rxq_index: RX queue index |
| * @flow_id: Flow ID passed to ndo_rx_flow_steer() |
| * @filter_id: Filter ID returned by ndo_rx_flow_steer() |
| * |
| * Drivers that implement ndo_rx_flow_steer() should periodically call |
| * this function for each installed filter and remove the filters for |
| * which it returns %true. |
| */ |
| bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, |
| u32 flow_id, u16 filter_id) |
| { |
| struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; |
| struct rps_dev_flow_table *flow_table; |
| struct rps_dev_flow *rflow; |
| bool expire = true; |
| unsigned int cpu; |
| |
| rcu_read_lock(); |
| flow_table = rcu_dereference(rxqueue->rps_flow_table); |
| if (flow_table && flow_id <= flow_table->mask) { |
| rflow = &flow_table->flows[flow_id]; |
| cpu = ACCESS_ONCE(rflow->cpu); |
| if (rflow->filter == filter_id && cpu < nr_cpu_ids && |
| ((int)(per_cpu(softnet_data, cpu).input_queue_head - |
| rflow->last_qtail) < |
| (int)(10 * flow_table->mask))) |
| expire = false; |
| } |
| rcu_read_unlock(); |
| return expire; |
| } |
| EXPORT_SYMBOL(rps_may_expire_flow); |
| |
| #endif /* CONFIG_RFS_ACCEL */ |
| |
| /* Called from hardirq (IPI) context */ |
| static void rps_trigger_softirq(void *data) |
| { |
| struct softnet_data *sd = data; |
| |
| ____napi_schedule(sd, &sd->backlog); |
| sd->received_rps++; |
| } |
| |
| #endif /* CONFIG_RPS */ |
| |
| /* |
| * Check if this softnet_data structure is another cpu one |
| * If yes, queue it to our IPI list and return 1 |
| * If no, return 0 |
| */ |
| static int rps_ipi_queued(struct softnet_data *sd) |
| { |
| #ifdef CONFIG_RPS |
| struct softnet_data *mysd = this_cpu_ptr(&softnet_data); |
| |
| if (sd != mysd) { |
| sd->rps_ipi_next = mysd->rps_ipi_list; |
| mysd->rps_ipi_list = sd; |
| |
| __raise_softirq_irqoff(NET_RX_SOFTIRQ); |
| return 1; |
| } |
| #endif /* CONFIG_RPS */ |
| return 0; |
| } |
| |
| #ifdef CONFIG_NET_FLOW_LIMIT |
| int netdev_flow_limit_table_len __read_mostly = (1 << 12); |
| #endif |
| |
| static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) |
| { |
| #ifdef CONFIG_NET_FLOW_LIMIT |
| struct sd_flow_limit *fl; |
| struct softnet_data *sd; |
| unsigned int old_flow, new_flow; |
| |
| if (qlen < (netdev_max_backlog >> 1)) |
| return false; |
| |
| sd = this_cpu_ptr(&softnet_data); |
| |
| rcu_read_lock(); |
| fl = rcu_dereference(sd->flow_limit); |
| if (fl) { |
| new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); |
| old_flow = fl->history[fl->history_head]; |
| fl->history[fl->history_head] = new_flow; |
| |
| fl->history_head++; |
| fl->history_head &= FLOW_LIMIT_HISTORY - 1; |
| |
| if (likely(fl->buckets[old_flow])) |
| fl->buckets[old_flow]--; |
| |
| if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { |
| fl->count++; |
| rcu_read_unlock(); |
| return true; |
| } |
| } |
| rcu_read_unlock(); |
| #endif |
| return false; |
| } |
| |
| /* |
| * enqueue_to_backlog is called to queue an skb to a per CPU backlog |
| * queue (may be a remote CPU queue). |
| */ |
| static int enqueue_to_backlog(struct sk_buff *skb, int cpu, |
| unsigned int *qtail) |
| { |
| struct softnet_data *sd; |
| unsigned long flags; |
| unsigned int qlen; |
| |
| sd = &per_cpu(softnet_data, cpu); |
| |
| local_irq_save(flags); |
| |
| rps_lock(sd); |
| if (!netif_running(skb->dev)) |
| goto drop; |
| qlen = skb_queue_len(&sd->input_pkt_queue); |
| if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { |
| if (qlen) { |
| enqueue: |
| __skb_queue_tail(&sd->input_pkt_queue, skb); |
| input_queue_tail_incr_save(sd, qtail); |
| rps_unlock(sd); |
| local_irq_restore(flags); |
| return NET_RX_SUCCESS; |
| } |
| |
| /* Schedule NAPI for backlog device |
| * We can use non atomic operation since we own the queue lock |
| */ |
| if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { |
| if (!rps_ipi_queued(sd)) |
| ____napi_schedule(sd, &sd->backlog); |
| } |
| goto enqueue; |
| } |
| |
| drop: |
| sd->dropped++; |
| rps_unlock(sd); |
| |
| local_irq_restore(flags); |
| |
| atomic_long_inc(&skb->dev->rx_dropped); |
| kfree_skb(skb); |
| return NET_RX_DROP; |
| } |
| |
| static int netif_rx_internal(struct sk_buff *skb) |
| { |
| int ret; |
| |
| net_timestamp_check(netdev_tstamp_prequeue, skb); |
| |
| trace_netif_rx(skb); |
| #ifdef CONFIG_RPS |
| if (static_key_false(&rps_needed)) { |
| struct rps_dev_flow voidflow, *rflow = &voidflow; |
| int cpu; |
| |
| preempt_disable(); |
| rcu_read_lock(); |
| |
| cpu = get_rps_cpu(skb->dev, skb, &rflow); |
| if (cpu < 0) |
| cpu = smp_processor_id(); |
| |
| ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); |
| |
| rcu_read_unlock(); |
| preempt_enable(); |
| } else |
| #endif |
| { |
| unsigned int qtail; |
| ret = enqueue_to_backlog(skb, get_cpu(), &qtail); |
| put_cpu(); |
| } |
| return ret; |
| } |
| |
| /** |
| * netif_rx - post buffer to the network code |
| * @skb: buffer to post |
| * |
| * This function receives a packet from a device driver and queues it for |
| * the upper (protocol) levels to process. It always succeeds. The buffer |
| * may be dropped during processing for congestion control or by the |
| * protocol layers. |
| * |
| * return values: |
| * NET_RX_SUCCESS (no congestion) |
| * NET_RX_DROP (packet was dropped) |
| * |
| */ |
| |
| int netif_rx(struct sk_buff *skb) |
| { |
| trace_netif_rx_entry(skb); |
| |
| return netif_rx_internal(skb); |
| } |
| EXPORT_SYMBOL(netif_rx); |
| |
| int netif_rx_ni(struct sk_buff *skb) |
| { |
| int err; |
| |
| trace_netif_rx_ni_entry(skb); |
| |
| preempt_disable(); |
| err = netif_rx_internal(skb); |
| if (local_softirq_pending()) |
| do_softirq(); |
| preempt_enable(); |
| |
| return err; |
| } |
| EXPORT_SYMBOL(netif_rx_ni); |
| |
| static __latent_entropy void net_tx_action(struct softirq_action *h) |
| { |
| struct softnet_data *sd = this_cpu_ptr(&softnet_data); |
| |
| if (sd->completion_queue) { |
| struct sk_buff *clist; |
| |
| local_irq_disable(); |
| clist = sd->completion_queue; |
| sd->completion_queue = NULL; |
| local_irq_enable(); |
| |
| while (clist) { |
| struct sk_buff *skb = clist; |
| clist = clist->next; |
| |
| WARN_ON(atomic_read(&skb->users)); |
| if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) |
| trace_consume_skb(skb); |
| else |
| trace_kfree_skb(skb, net_tx_action); |
| |
| if (skb->fclone != SKB_FCLONE_UNAVAILABLE) |
| __kfree_skb(skb); |
| else |
| __kfree_skb_defer(skb); |
| } |
| |
| __kfree_skb_flush(); |
| } |
| |
| if (sd->output_queue) { |
| struct Qdisc *head; |
| |
| local_irq_disable(); |
| head = sd->output_queue; |
| sd->output_queue = NULL; |
| sd->output_queue_tailp = &sd->output_queue; |
| local_irq_enable(); |
| |
| while (head) { |
| struct Qdisc *q = head; |
| spinlock_t *root_lock; |
| |
| head = head->next_sched; |
| |
| root_lock = qdisc_lock(q); |
| spin_lock(root_lock); |
| /* We need to make sure head->next_sched is read |
| * before clearing __QDISC_STATE_SCHED |
| */ |
| smp_mb__before_atomic(); |
| clear_bit(__QDISC_STATE_SCHED, &q->state); |
| qdisc_run(q); |
| spin_unlock(root_lock); |
| } |
| } |
| } |
| |
| #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) |
| /* This hook is defined here for ATM LANE */ |
| int (*br_fdb_test_addr_hook)(struct net_device *dev, |
| unsigned char *addr) __read_mostly; |
| EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); |
| #endif |
| |
| static inline struct sk_buff * |
| sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, |
| struct net_device *orig_dev) |
| { |
| #ifdef CONFIG_NET_CLS_ACT |
| struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list); |
| struct tcf_result cl_res; |
| |
| /* If there's at least one ingress present somewhere (so |
| * we get here via enabled static key), remaining devices |
| * that are not configured with an ingress qdisc will bail |
| * out here. |
| */ |
| if (!cl) |
| return skb; |
| if (*pt_prev) { |
| *ret = deliver_skb(skb, *pt_prev, orig_dev); |
| *pt_prev = NULL; |
| } |
| |
| qdisc_skb_cb(skb)->pkt_len = skb->len; |
| skb->tc_at_ingress = 1; |
| qdisc_bstats_cpu_update(cl->q, skb); |
| |
| switch (tc_classify(skb, cl, &cl_res, false)) { |
| case TC_ACT_OK: |
| case TC_ACT_RECLASSIFY: |
| skb->tc_index = TC_H_MIN(cl_res.classid); |
| break; |
| case TC_ACT_SHOT: |
| qdisc_qstats_cpu_drop(cl->q); |
| kfree_skb(skb); |
| return NULL; |
| case TC_ACT_STOLEN: |
| case TC_ACT_QUEUED: |
| consume_skb(skb); |
| return NULL; |
| case TC_ACT_REDIRECT: |
| /* skb_mac_header check was done by cls/act_bpf, so |
| * we can safely push the L2 header back before |
| * redirecting to another netdev |
| */ |
| __skb_push(skb, skb->mac_len); |
| skb_do_redirect(skb); |
| return NULL; |
| default: |
| break; |
| } |
| #endif /* CONFIG_NET_CLS_ACT */ |
| return skb; |
| } |
| |
| /** |
| * netdev_is_rx_handler_busy - check if receive handler is registered |
| * @dev: device to check |
| * |
| * Check if a receive handler is already registered for a given device. |
| * Return true if there one. |
| * |
| * The caller must hold the rtnl_mutex. |
| */ |
| bool netdev_is_rx_handler_busy(struct net_device *dev) |
| { |
| ASSERT_RTNL(); |
| return dev && rtnl_dereference(dev->rx_handler); |
| } |
| EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); |
| |
| /** |
| * netdev_rx_handler_register - register receive handler |
| * @dev: device to register a handler for |
| * @rx_handler: receive handler to register |
| * @rx_handler_data: data pointer that is used by rx handler |
| * |
| * Register a receive handler for a device. This handler will then be |
| * called from __netif_receive_skb. A negative errno code is returned |
| * on a failure. |
| * |
| * The caller must hold the rtnl_mutex. |
| * |
| * For a general description of rx_handler, see enum rx_handler_result. |
| */ |
| int netdev_rx_handler_register(struct net_device *dev, |
| rx_handler_func_t *rx_handler, |
| void *rx_handler_data) |
| { |
| ASSERT_RTNL(); |
| |
| if (dev->rx_handler) |
| return -EBUSY; |
| |
| /* Note: rx_handler_data must be set before rx_handler */ |
| rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); |
| rcu_assign_pointer(dev->rx_handler, rx_handler); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(netdev_rx_handler_register); |
| |
| /** |
| * netdev_rx_handler_unregister - unregister receive handler |
| * @dev: device to unregister a handler from |
| * |
| * Unregister a receive handler from a device. |
| * |
| * The caller must hold the rtnl_mutex. |
| */ |
| void netdev_rx_handler_unregister(struct net_device *dev) |
| { |
| |
| ASSERT_RTNL(); |
| RCU_INIT_POINTER(dev->rx_handler, NULL); |
| /* a reader seeing a non NULL rx_handler in a rcu_read_lock() |
| * section has a guarantee to see a non NULL rx_handler_data |
| * as well. |
| */ |
| synchronize_net(); |
| RCU_INIT_POINTER(dev->rx_handler_data, NULL); |
| } |
| EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); |
| |
| /* |
| * Limit the use of PFMEMALLOC reserves to those protocols that implement |
| * the special handling of PFMEMALLOC skbs. |
| */ |
| static bool skb_pfmemalloc_protocol(struct sk_buff *skb) |
| { |
| switch (skb->protocol) { |
| case htons(ETH_P_ARP): |
| case htons(ETH_P_IP): |
| case htons(ETH_P_IPV6): |
| case htons(ETH_P_8021Q): |
| case htons(ETH_P_8021AD): |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, |
| int *ret, struct net_device *orig_dev) |
| { |
| #ifdef CONFIG_NETFILTER_INGRESS |
| if (nf_hook_ingress_active(skb)) { |
| int ingress_retval; |
| |
| if (*pt_prev) { |
| *ret = deliver_skb(skb, *pt_prev, orig_dev); |
| *pt_prev = NULL; |
| } |
| |
| rcu_read_lock(); |
| ingress_retval = nf_hook_ingress(skb); |
| rcu_read_unlock(); |
| return ingress_retval; |
| } |
| #endif /* CONFIG_NETFILTER_INGRESS */ |
| return 0; |
| } |
| |
| static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) |
| { |
| struct packet_type *ptype, *pt_prev; |
| rx_handler_func_t *rx_handler; |
| struct net_device *orig_dev; |
| bool deliver_exact = false; |
| int ret = NET_RX_DROP; |
| __be16 type; |
| |
| net_timestamp_check(!netdev_tstamp_prequeue, skb); |
| |
| trace_netif_receive_skb(skb); |
| |
| orig_dev = skb->dev; |
| |
| skb_reset_network_header(skb); |
| if (!skb_transport_header_was_set(skb)) |
| skb_reset_transport_header(skb); |
| skb_reset_mac_len(skb); |
| |
| pt_prev = NULL; |
| |
| another_round: |
| skb->skb_iif = skb->dev->ifindex; |
| |
| __this_cpu_inc(softnet_data.processed); |
| |
| if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || |
| skb->protocol == cpu_to_be16(ETH_P_8021AD)) { |
| skb = skb_vlan_untag(skb); |
| if (unlikely(!skb)) |
| goto out; |
| } |
| |
| if (skb_skip_tc_classify(skb)) |
| goto skip_classify; |
| |
| if (pfmemalloc) |
| goto skip_taps; |
| |
| list_for_each_entry_rcu(ptype, &ptype_all, list) { |
| if (pt_prev) |
| ret = deliver_skb(skb, pt_prev, orig_dev); |
| pt_prev = ptype; |
| } |
| |
| list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { |
| if (pt_prev) |
| ret = deliver_skb(skb, pt_prev, orig_dev); |
| pt_prev = ptype; |
| } |
| |
| skip_taps: |
| #ifdef CONFIG_NET_INGRESS |
| if (static_key_false(&ingress_needed)) { |
| skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); |
| if (!skb) |
| goto out; |
| |
| if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) |
| goto out; |
| } |
| #endif |
| skb_reset_tc(skb); |
| skip_classify: |
| if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) |
| goto drop; |
| |
| if (skb_vlan_tag_present(skb)) { |
| if (pt_prev) { |
| ret = deliver_skb(skb, pt_prev, orig_dev); |
| pt_prev = NULL; |
| } |
| if (vlan_do_receive(&skb)) |
| goto another_round; |
| else if (unlikely(!skb)) |
| goto out; |
| } |
| |
| rx_handler = rcu_dereference(skb->dev->rx_handler); |
| if (rx_handler) { |
| if (pt_prev) { |
| ret = deliver_skb(skb, pt_prev, orig_dev); |
| pt_prev = NULL; |
| } |
| switch (rx_handler(&skb)) { |
| case RX_HANDLER_CONSUMED: |
| ret = NET_RX_SUCCESS; |
| goto out; |
| case RX_HANDLER_ANOTHER: |
| goto another_round; |
| case RX_HANDLER_EXACT: |
| deliver_exact = true; |
| case RX_HANDLER_PASS: |
| break; |
| default: |
| BUG(); |
| } |
| } |
| |
| if (unlikely(skb_vlan_tag_present(skb))) { |
| if (skb_vlan_tag_get_id(skb)) |
| skb->pkt_type = PACKET_OTHERHOST; |
| /* Note: we might in the future use prio bits |
| * and set skb->priority like in vlan_do_receive() |
| * For the time being, just ignore Priority Code Point |
| */ |
| skb->vlan_tci = 0; |
| } |
| |
| type = skb->protocol; |
| |
| /* deliver only exact match when indicated */ |
| if (likely(!deliver_exact)) { |
| deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, |
| &ptype_base[ntohs(type) & |
| PTYPE_HASH_MASK]); |
| } |
| |
| deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, |
| &orig_dev->ptype_specific); |
| |
| if (unlikely(skb->dev != orig_dev)) { |
| deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, |
| &skb->dev->ptype_specific); |
| } |
| |
| if (pt_prev) { |
| if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) |
| goto drop; |
| else |
| ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); |
| } else { |
| drop: |
| if (!deliver_exact) |
| atomic_long_inc(&skb->dev->rx_dropped); |
| else |
| atomic_long_inc(&skb->dev->rx_nohandler); |
| kfree_skb(skb); |
| /* Jamal, now you will not able to escape explaining |
| * me how you were going to use this. :-) |
| */ |
| ret = NET_RX_DROP; |
| } |
| |
| out: |
| return ret; |
| } |
| |
| static int __netif_receive_skb(struct sk_buff *skb) |
| { |
| int ret; |
| |
| if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { |
| unsigned long pflags = current->flags; |
| |
| /* |
| * PFMEMALLOC skbs are special, they should |
| * - be delivered to SOCK_MEMALLOC sockets only |
| * - stay away from userspace |
| * - have bounded memory usage |
| * |
| * Use PF_MEMALLOC as this saves us from propagating the allocation |
| * context down to all allocation sites. |
| */ |
| current->flags |= PF_MEMALLOC; |
| ret = __netif_receive_skb_core(skb, true); |
| tsk_restore_flags(current, pflags, PF_MEMALLOC); |
| } else |
| ret = __netif_receive_skb_core(skb, false); |
| |
| return ret; |
| } |
| |
| static int netif_receive_skb_internal(struct sk_buff *skb) |
| { |
| int ret; |
| |
| net_timestamp_check(netdev_tstamp_prequeue, skb); |
| |
| if (skb_defer_rx_timestamp(skb)) |
| return NET_RX_SUCCESS; |
| |
| rcu_read_lock(); |
| |
| #ifdef CONFIG_RPS |
| if (static_key_false(&rps_needed)) { |
| struct rps_dev_flow voidflow, *rflow = &voidflow; |
| int cpu = get_rps_cpu(skb->dev, skb, &rflow); |
| |
| if (cpu >= 0) { |
| ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); |
| rcu_read_unlock(); |
| return ret; |
| } |
| } |
| #endif |
| ret = __netif_receive_skb(skb); |
| rcu_read_unlock(); |
| return ret; |
| } |
| |
| /** |
| * netif_receive_skb - process receive buffer from network |
| * @skb: buffer to process |
| * |
| * netif_receive_skb() is the main receive data processing function. |
| * It always succeeds. The buffer may be dropped during processing |
| * for congestion control or by the protocol layers. |
| * |
| * This function may only be called from softirq context and interrupts |
| * should be enabled. |
| * |
| * Return values (usually ignored): |
| * NET_RX_SUCCESS: no congestion |
| * NET_RX_DROP: packet was dropped |
| */ |
| int netif_receive_skb(struct sk_buff *skb) |
| { |
| trace_netif_receive_skb_entry(skb); |
| |
| return netif_receive_skb_internal(skb); |
| } |
| EXPORT_SYMBOL(netif_receive_skb); |
| |
| DEFINE_PER_CPU(struct work_struct, flush_works); |
| |
| /* Network device is going away, flush any packets still pending */ |
| static void flush_backlog(struct work_struct *work) |
| { |
| struct sk_buff *skb, *tmp; |
| struct softnet_data *sd; |
| |
| local_bh_disable(); |
| sd = this_cpu_ptr(&softnet_data); |
| |
| local_irq_disable(); |
| rps_lock(sd); |
| skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { |
| if (skb->dev->reg_state == NETREG_UNREGISTERING) { |
| __skb_unlink(skb, &sd->input_pkt_queue); |
| kfree_skb(skb); |
| input_queue_head_incr(sd); |
| } |
| } |
| rps_unlock(sd); |
| local_irq_enable(); |
| |
| skb_queue_walk_safe(&sd->process_queue, skb, tmp) { |
| if (skb->dev->reg_state == NETREG_UNREGISTERING) { |
| __skb_unlink(skb, &sd->process_queue); |
| kfree_skb(skb); |
| input_queue_head_incr(sd); |
| } |
| } |
| local_bh_enable(); |
| } |
| |
| static void flush_all_backlogs(void) |
| { |
| unsigned int cpu; |
| |
| get_online_cpus(); |
| |
| for_each_online_cpu(cpu) |
| queue_work_on(cpu, system_highpri_wq, |
| per_cpu_ptr(&flush_works, cpu)); |
| |
| for_each_online_cpu(cpu) |
| flush_work(per_cpu_ptr(&flush_works, cpu)); |
| |
| put_online_cpus(); |
| } |
| |
| static int napi_gro_complete(struct sk_buff *skb) |
| { |
| struct packet_offload *ptype; |
| __be16 type = skb->protocol; |
| struct list_head *head = &offload_base; |
| int err = -ENOENT; |
| |
| BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); |
| |
| if (NAPI_GRO_CB(skb)->count == 1) { |
| skb_shinfo(skb)->gso_size = 0; |
| goto out; |
| } |
| |
| rcu_read_lock(); |
| list_for_each_entry_rcu(ptype, head, list) { |
| if (ptype->type != type || !ptype->callbacks.gro_complete) |
| continue; |
| |
| err = ptype->callbacks.gro_complete(skb, 0); |
| break; |
| } |
| rcu_read_unlock(); |
| |
| if (err) { |
| WARN_ON(&ptype->list == head); |
| kfree_skb(skb); |
| return NET_RX_SUCCESS; |
| } |
| |
| out: |
| return netif_receive_skb_internal(skb); |
| } |
| |
| /* napi->gro_list contains packets ordered by age. |
| * youngest packets at the head of it. |
| * Complete skbs in reverse order to reduce latencies. |
| */ |
| void napi_gro_flush(struct napi_struct *napi, bool flush_old) |
| { |
| struct sk_buff *skb, *prev = NULL; |
| |
| /* scan list and build reverse chain */ |
| for (skb = napi->gro_list; skb != NULL; skb = skb->next) { |
| skb->prev = prev; |
| prev = skb; |
| } |
| |
| for (skb = prev; skb; skb = prev) { |
| skb->next = NULL; |
| |
| if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) |
| return; |
| |
| prev = skb->prev; |
| napi_gro_complete(skb); |
| napi->gro_count--; |
| } |
| |
| napi->gro_list = NULL; |
| } |
| EXPORT_SYMBOL(napi_gro_flush); |
| |
| static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) |
| { |
| struct sk_buff *p; |
| unsigned int maclen = skb->dev->hard_header_len; |
| u32 hash = skb_get_hash_raw(skb); |
| |
| for (p = napi->gro_list; p; p = p->next) { |
| unsigned long diffs; |
| |
| NAPI_GRO_CB(p)->flush = 0; |
| |
| if (hash != skb_get_hash_raw(p)) { |
| NAPI_GRO_CB(p)->same_flow = 0; |
| continue; |
| } |
| |
| diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; |
| diffs |= p->vlan_tci ^ skb->vlan_tci; |
| diffs |= skb_metadata_dst_cmp(p, skb); |
| if (maclen == ETH_HLEN) |
| diffs |= compare_ether_header(skb_mac_header(p), |
| skb_mac_header(skb)); |
| else if (!diffs) |
| diffs = memcmp(skb_mac_header(p), |
| skb_mac_header(skb), |
| maclen); |
| NAPI_GRO_CB(p)->same_flow = !diffs; |
| } |
| } |
| |
| static void skb_gro_reset_offset(struct sk_buff *skb) |
| { |
| const struct skb_shared_info *pinfo = skb_shinfo(skb); |
| const skb_frag_t *frag0 = &pinfo->frags[0]; |
| |
| NAPI_GRO_CB(skb)->data_offset = 0; |
| NAPI_GRO_CB(skb)->frag0 = NULL; |
| NAPI_GRO_CB(skb)->frag0_len = 0; |
| |
| if (skb_mac_header(skb) == skb_tail_pointer(skb) && |
| pinfo->nr_frags && |
| !PageHighMem(skb_frag_page(frag0))) { |
| NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); |
| NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, |
| skb_frag_size(frag0), |
| skb->end - skb->tail); |
| } |
| } |
| |
| static void gro_pull_from_frag0(struct sk_buff *skb, int grow) |
| { |
| struct skb_shared_info *pinfo = skb_shinfo(skb); |
| |
| BUG_ON(skb->end - skb->tail < grow); |
| |
| memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); |
| |
| skb->data_len -= grow; |
| skb->tail += grow; |
| |
| pinfo->frags[0].page_offset += grow; |
| skb_frag_size_sub(&pinfo->frags[0], grow); |
| |
| if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { |
| skb_frag_unref(skb, 0); |
| memmove(pinfo->frags, pinfo->frags + 1, |
| --pinfo->nr_frags * sizeof(pinfo->frags[0])); |
| } |
| } |
| |
| static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) |
| { |
| struct sk_buff **pp = NULL; |
| struct packet_offload *ptype; |
| __be16 type = skb->protocol; |
| struct list_head *head = &offload_base; |
| int same_flow; |
| enum gro_result ret; |
| int grow; |
| |
| if (!(skb->dev->features & NETIF_F_GRO)) |
| goto normal; |
| |
| if (skb->csum_bad) |
| goto normal; |
| |
| gro_list_prepare(napi, skb); |
| |
| rcu_read_lock(); |
| list_for_each_entry_rcu(ptype, head, list) { |
| if (ptype->type != type || !ptype->callbacks.gro_receive) |
| continue; |
| |
| skb_set_network_header(skb, skb_gro_offset(skb)); |
| skb_reset_mac_len(skb); |
| NAPI_GRO_CB(skb)->same_flow = 0; |
| NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); |
| NAPI_GRO_CB(skb)->free = 0; |
| NAPI_GRO_CB(skb)->encap_mark = 0; |
| NAPI_GRO_CB(skb)->recursion_counter = 0; |
| NAPI_GRO_CB(skb)->is_fou = 0; |
| NAPI_GRO_CB(skb)->is_atomic = 1; |
| NAPI_GRO_CB(skb)->gro_remcsum_start = 0; |
| |
| /* Setup for GRO checksum validation */ |
| switch (skb->ip_summed) { |
| case CHECKSUM_COMPLETE: |
| NAPI_GRO_CB(skb)->csum = skb->csum; |
| NAPI_GRO_CB(skb)->csum_valid = 1; |
| NAPI_GRO_CB(skb)->csum_cnt = 0; |
| break; |
| case CHECKSUM_UNNECESSARY: |
| NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; |
| NAPI_GRO_CB(skb)->csum_valid = 0; |
| break; |
| default: |
| NAPI_GRO_CB(skb)->csum_cnt = 0; |
| NAPI_GRO_CB(skb)->csum_valid = 0; |
| } |
| |
| pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); |
| break; |
| } |
| rcu_read_unlock(); |
| |
| if (&ptype->list == head) |
| goto normal; |
| |
| same_flow = NAPI_GRO_CB(skb)->same_flow; |
| ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; |
| |
| if (pp) { |
| struct sk_buff *nskb = *pp; |
| |
| *pp = nskb->next; |
| nskb->next = NULL; |
| napi_gro_complete(nskb); |
| napi->gro_count--; |
| } |
| |
| if (same_flow) |
| goto ok; |
| |
| if (NAPI_GRO_CB(skb)->flush) |
| goto normal; |
| |
| if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) { |
| struct sk_buff *nskb = napi->gro_list; |
| |
| /* locate the end of the list to select the 'oldest' flow */ |
| while (nskb->next) { |
| pp = &nskb->next; |
| nskb = *pp; |
| } |
| *pp = NULL; |
| nskb->next = NULL; |
| napi_gro_complete(nskb); |
| } else { |
| napi->gro_count++; |
| } |
| NAPI_GRO_CB(skb)->count = 1; |
| NAPI_GRO_CB(skb)->age = jiffies; |
| NAPI_GRO_CB(skb)->last = skb; |
| skb_shinfo(skb)->gso_size = skb_gro_len(skb); |
| skb->next = napi->gro_list; |
| napi->gro_list = skb; |
| ret = GRO_HELD; |
| |
| pull: |
| grow = skb_gro_offset(skb) - skb_headlen(skb); |
| if (grow > 0) |
| gro_pull_from_frag0(skb, grow); |
| ok: |
| return ret; |
| |
| normal: |
| ret = GRO_NORMAL; |
| goto pull; |
| } |
| |
| struct packet_offload *gro_find_receive_by_type(__be16 type) |
| { |
| struct list_head *offload_head = &offload_base; |
| struct packet_offload *ptype; |
| |
| list_for_each_entry_rcu(ptype, offload_head, list) { |
| if (ptype->type != type || !ptype->callbacks.gro_receive) |
| continue; |
| return ptype; |
| } |
| return NULL; |
| } |
| EXPORT_SYMBOL(gro_find_receive_by_type); |
| |
| struct packet_offload *gro_find_complete_by_type(__be16 type) |
| { |
| struct list_head *offload_head = &offload_base; |
| struct packet_offload *ptype; |
| |
| list_for_each_entry_rcu(ptype, offload_head, list) { |
| if (ptype->type != type || !ptype->callbacks.gro_complete) |
| continue; |
| return ptype; |
| } |
| return NULL; |
| } |
| EXPORT_SYMBOL(gro_find_complete_by_type); |
| |
| static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) |
| { |
| switch (ret) { |
| case GRO_NORMAL: |
| if (netif_receive_skb_internal(skb)) |
| ret = GRO_DROP; |
| break; |
| |
| case GRO_DROP: |
| kfree_skb(skb); |
| break; |
| |
| case GRO_MERGED_FREE: |
| if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) { |
| skb_dst_drop(skb); |
| kmem_cache_free(skbuff_head_cache, skb); |
| } else { |
| __kfree_skb(skb); |
| } |
| break; |
| |
| case GRO_HELD: |
| case GRO_MERGED: |
| break; |
| } |
| |
| return ret; |
| } |
| |
| gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) |
| { |
| skb_mark_napi_id(skb, napi); |
| trace_napi_gro_receive_entry(skb); |
| |
| skb_gro_reset_offset(skb); |
| |
| return napi_skb_finish(dev_gro_receive(napi, skb), skb); |
| } |
| EXPORT_SYMBOL(napi_gro_receive); |
| |
| static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) |
| { |
| if (unlikely(skb->pfmemalloc)) { |
| consume_skb(skb); |
| return; |
| } |
| __skb_pull(skb, skb_headlen(skb)); |
| /* restore the reserve we had after netdev_alloc_skb_ip_align() */ |
| skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); |
| skb->vlan_tci = 0; |
| skb->dev = napi->dev; |
| skb->skb_iif = 0; |
| skb->encapsulation = 0; |
| skb_shinfo(skb)->gso_type = 0; |
| skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); |
| |
| napi->skb = skb; |
| } |
| |
| struct sk_buff *napi_get_frags(struct napi_struct *napi) |
| { |
| struct sk_buff *skb = napi->skb; |
| |
| if (!skb) { |
| skb = napi_alloc_skb(napi, GRO_MAX_HEAD); |
| if (skb) { |
| napi->skb = skb; |
| skb_mark_napi_id(skb, napi); |
| } |
| } |
| return skb; |
| } |
| EXPORT_SYMBOL(napi_get_frags); |
| |
| static gro_result_t napi_frags_finish(struct napi_struct *napi, |
| struct sk_buff *skb, |
| gro_result_t ret) |
| { |
| switch (ret) { |
| case GRO_NORMAL: |
| case GRO_HELD: |
| __skb_push(skb, ETH_HLEN); |
| skb->protocol = eth_type_trans(skb, skb->dev); |
| if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) |
| ret = GRO_DROP; |
| break; |
| |
| case GRO_DROP: |
| case GRO_MERGED_FREE: |
| napi_reuse_skb(napi, skb); |
| break; |
| |
| case GRO_MERGED: |
| break; |
| } |
| |
| return ret; |
| } |
| |
| /* Upper GRO stack assumes network header starts at gro_offset=0 |
| * Drivers could call both napi_gro_frags() and napi_gro_receive() |
| * We copy ethernet header into skb->data to have a common layout. |
| */ |
| static struct sk_buff *napi_frags_skb(struct napi_struct *napi) |
| { |
| struct sk_buff *skb = napi->skb; |
| const struct ethhdr *eth; |
| unsigned int hlen = sizeof(*eth); |
| |
| napi->skb = NULL; |
| |
| skb_reset_mac_header(skb); |
| skb_gro_reset_offset(skb); |
| |
| eth = skb_gro_header_fast(skb, 0); |
| if (unlikely(skb_gro_header_hard(skb, hlen))) { |
| eth = skb_gro_header_slow(skb, hlen, 0); |
| if (unlikely(!eth)) { |
| net_warn_ratelimited("%s: dropping impossible skb from %s\n", |
| __func__, napi->dev->name); |
| napi_reuse_skb(napi, skb); |
| return NULL; |
| } |
| } else { |
| gro_pull_from_frag0(skb, hlen); |
| NAPI_GRO_CB(skb)->frag0 += hlen; |
| NAPI_GRO_CB(skb)->frag0_len -= hlen; |
| } |
| __skb_pull(skb, hlen); |
| |
| /* |
| * This works because the only protocols we care about don't require |
| * special handling. |
| * We'll fix it up properly in napi_frags_finish() |
| */ |
| skb->protocol = eth->h_proto; |
| |
| return skb; |
| } |
| |
| gro_result_t napi_gro_frags(struct napi_struct *napi) |
| { |
| struct sk_buff *skb = napi_frags_skb(napi); |
| |
| if (!skb) |
| return GRO_DROP; |
| |
| trace_napi_gro_frags_entry(skb); |
| |
| return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); |
| } |
| EXPORT_SYMBOL(napi_gro_frags); |
| |
| /* Compute the checksum from gro_offset and return the folded value |
| * after adding in any pseudo checksum. |
| */ |
| __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) |
| { |
| __wsum wsum; |
| __sum16 sum; |
| |
| wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); |
| |
| /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ |
| sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); |
| if (likely(!sum)) { |
| if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && |
| !skb->csum_complete_sw) |
| netdev_rx_csum_fault(skb->dev); |
| } |
| |
| NAPI_GRO_CB(skb)->csum = wsum; |
| NAPI_GRO_CB(skb)->csum_valid = 1; |
| |
| return sum; |
| } |
| EXPORT_SYMBOL(__skb_gro_checksum_complete); |
| |
| /* |
| * net_rps_action_and_irq_enable sends any pending IPI's for rps. |
| * Note: called with local irq disabled, but exits with local irq enabled. |
| */ |
| static void net_rps_action_and_irq_enable(struct softnet_data *sd) |
| { |
| #ifdef CONFIG_RPS |
| struct softnet_data *remsd = sd->rps_ipi_list; |
| |
| if (remsd) { |
| sd->rps_ipi_list = NULL; |
| |
| local_irq_enable(); |
| |
| /* Send pending IPI's to kick RPS processing on remote cpus. */ |
| while (remsd) { |
| struct softnet_data *next = remsd->rps_ipi_next; |
| |
| if (cpu_online(remsd->cpu)) |
| smp_call_function_single_async(remsd->cpu, |
| &remsd->csd); |
| remsd = next; |
| } |
| } else |
| #endif |
| local_irq_enable(); |
| } |
| |
| static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) |
| { |
| #ifdef CONFIG_RPS |
| return sd->rps_ipi_list != NULL; |
| #else |
| return false; |
| #endif |
| } |
| |
| static int process_backlog(struct napi_struct *napi, int quota) |
| { |
| struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); |
| bool again = true; |
| int work = 0; |
| |
| /* Check if we have pending ipi, its better to send them now, |
| * not waiting net_rx_action() end. |
| */ |
| if (sd_has_rps_ipi_waiting(sd)) { |
| local_irq_disable(); |
| net_rps_action_and_irq_enable(sd); |
| } |
| |
| napi->weight = dev_rx_weight; |
| while (again) { |
| struct sk_buff *skb; |
| |
| while ((skb = __skb_dequeue(&sd->process_queue))) { |
| rcu_read_lock(); |
| __netif_receive_skb(skb); |
| rcu_read_unlock(); |
| input_queue_head_incr(sd); |
| if (++work >= quota) |
| return work; |
| |
| } |
| |
| local_irq_disable(); |
| rps_lock(sd); |
| if (skb_queue_empty(&sd->input_pkt_queue)) { |
| /* |
| * Inline a custom version of __napi_complete(). |
| * only current cpu owns and manipulates this napi, |
| * and NAPI_STATE_SCHED is the only possible flag set |
| * on backlog. |
| * We can use a plain write instead of clear_bit(), |
| * and we dont need an smp_mb() memory barrier. |
| */ |
| napi->state = 0; |
| again = false; |
| } else { |
| skb_queue_splice_tail_init(&sd->input_pkt_queue, |
| &sd->process_queue); |
| } |
| rps_unlock(sd); |
| local_irq_enable(); |
| } |
| |
| return work; |
| } |
| |
| /** |
| * __napi_schedule - schedule for receive |
| * @n: entry to schedule |
| * |
| * The entry's receive function will be scheduled to run. |
| * Consider using __napi_schedule_irqoff() if hard irqs are masked. |
| */ |
| void __napi_schedule(struct napi_struct *n) |
| { |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| ____napi_schedule(this_cpu_ptr(&softnet_data), n); |
| local_irq_restore(flags); |
| } |
| EXPORT_SYMBOL(__napi_schedule); |
| |
| /** |
| * __napi_schedule_irqoff - schedule for receive |
| * @n: entry to schedule |
| * |
| * Variant of __napi_schedule() assuming hard irqs are masked |
| */ |
| void __napi_schedule_irqoff(struct napi_struct *n) |
| { |
| ____napi_schedule(this_cpu_ptr(&softnet_data), n); |
| } |
| EXPORT_SYMBOL(__napi_schedule_irqoff); |
| |
| bool __napi_complete(struct napi_struct *n) |
| { |
| BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); |
| |
| /* Some drivers call us directly, instead of calling |
| * napi_complete_done(). |
| */ |
| if (unlikely(test_bit(NAPI_STATE_IN_BUSY_POLL, &n->state))) |
| return false; |
| |
| list_del_init(&n->poll_list); |
| smp_mb__before_atomic(); |
| clear_bit(NAPI_STATE_SCHED, &n->state); |
| return true; |
| } |
| EXPORT_SYMBOL(__napi_complete); |
| |
| bool napi_complete_done(struct napi_struct *n, int work_done) |
| { |
| unsigned long flags; |
| |
| /* |
| * 1) Don't let napi dequeue from the cpu poll list |
| * just in case its running on a different cpu. |
| * 2) If we are busy polling, do nothing here, we have |
| * the guarantee we will be called later. |
| */ |
| if (unlikely(n->state & (NAPIF_STATE_NPSVC | |
| NAPIF_STATE_IN_BUSY_POLL))) |
| return false; |
| |
| if (n->gro_list) { |
| unsigned long timeout = 0; |
| |
| if (work_done) |
| timeout = n->dev->gro_flush_timeout; |
| |
| if (timeout) |
| hrtimer_start(&n->timer, ns_to_ktime(timeout), |
| HRTIMER_MODE_REL_PINNED); |
| else |
| napi_gro_flush(n, false); |
| } |
| if (likely(list_empty(&n->poll_list))) { |
| WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state)); |
| } else { |
| /* If n->poll_list is not empty, we need to mask irqs */ |
| local_irq_save(flags); |
| __napi_complete(n); |
| local_irq_restore(flags); |
| } |
| return true; |
| } |
| EXPORT_SYMBOL(napi_complete_done); |
| |
| /* must be called under rcu_read_lock(), as we dont take a reference */ |
| static struct napi_struct *napi_by_id(unsigned int napi_id) |
| { |
| unsigned int hash = napi_id % HASH_SIZE(napi_hash); |
| struct napi_struct *napi; |
| |
| hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) |
| if (napi->napi_id == napi_id) |
| return napi; |
| |
| return NULL; |
| } |
| |
| #if defined(CONFIG_NET_RX_BUSY_POLL) |
| |
| #define BUSY_POLL_BUDGET 8 |
| |
| static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock) |
| { |
| int rc; |
| |
| clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); |
| |
| local_bh_disable(); |
| |
| /* All we really want here is to re-enable device interrupts. |
| * Ideally, a new ndo_busy_poll_stop() could avoid another round. |
| */ |
| rc = napi->poll(napi, BUSY_POLL_BUDGET); |
| netpoll_poll_unlock(have_poll_lock); |
| if (rc == BUSY_POLL_BUDGET) |
| __napi_schedule(napi); |
| local_bh_enable(); |
| if (local_softirq_pending()) |
| do_softirq(); |
| } |
| |
| bool sk_busy_loop(struct sock *sk, int nonblock) |
| { |
| unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0; |
| int (*napi_poll)(struct napi_struct *napi, int budget); |
| int (*busy_poll)(struct napi_struct *dev); |
| void *have_poll_lock = NULL; |
| struct napi_struct *napi; |
| int rc; |
| |
| restart: |
| rc = false; |
| napi_poll = NULL; |
| |
| rcu_read_lock(); |
| |
| napi = napi_by_id(sk->sk_napi_id); |
| if (!napi) |
| goto out; |
| |
| /* Note: ndo_busy_poll method is optional in linux-4.5 */ |
| busy_poll = napi->dev->netdev_ops->ndo_busy_poll; |
| |
| preempt_disable(); |
| for (;;) { |
| rc = 0; |
| local_bh_disable(); |
| if (busy_poll) { |
| rc = busy_poll(napi); |
| goto count; |
| } |
| if (!napi_poll) { |
| unsigned long val = READ_ONCE(napi->state); |
| |
| /* If multiple threads are competing for this napi, |
| * we avoid dirtying napi->state as much as we can. |
| */ |
| if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | |
| NAPIF_STATE_IN_BUSY_POLL)) |
| goto count; |
| if (cmpxchg(&napi->state, val, |
| val | NAPIF_STATE_IN_BUSY_POLL | |
| NAPIF_STATE_SCHED) != val) |
| goto count; |
| have_poll_lock = netpoll_poll_lock(napi); |
| napi_poll = napi->poll; |
| } |
| rc = napi_poll(napi, BUSY_POLL_BUDGET); |
| trace_napi_poll(napi, rc, BUSY_POLL_BUDGET); |
| count: |
| if (rc > 0) |
| __NET_ADD_STATS(sock_net(sk), |
| LINUX_MIB_BUSYPOLLRXPACKETS, rc); |
| local_bh_enable(); |
| |
| if (rc == LL_FLUSH_FAILED) |
| break; /* permanent failure */ |
| |
| if (nonblock || !skb_queue_empty(&sk->sk_receive_queue) || |
| busy_loop_timeout(end_time)) |
| break; |
| |
| if (unlikely(need_resched())) { |
| if (napi_poll) |
| busy_poll_stop(napi, have_poll_lock); |
| preempt_enable(); |
| rcu_read_unlock(); |
| cond_resched(); |
| rc = !skb_queue_empty(&sk->sk_receive_queue); |
| if (rc || busy_loop_timeout(end_time)) |
| return rc; |
| goto restart; |
| } |
| cpu_relax(); |
| } |
| if (napi_poll) |
| busy_poll_stop(napi, have_poll_lock); |
| preempt_enable(); |
| rc = !skb_queue_empty(&sk->sk_receive_queue); |
| out: |
| rcu_read_unlock(); |
| return rc; |
| } |
| EXPORT_SYMBOL(sk_busy_loop); |
| |
| #endif /* CONFIG_NET_RX_BUSY_POLL */ |
| |
| static void napi_hash_add(struct napi_struct *napi) |
| { |
| if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || |
| test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) |
| return; |
| |
| spin_lock(&napi_hash_lock); |
| |
| /* 0..NR_CPUS+1 range is reserved for sender_cpu use */ |
| do { |
| if (unlikely(++napi_gen_id < NR_CPUS + 1)) |
| napi_gen_id = NR_CPUS + 1; |
| } while (napi_by_id(napi_gen_id)); |
| napi->napi_id = napi_gen_id; |
| |
| hlist_add_head_rcu(&napi->napi_hash_node, |
| &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); |
| |
| spin_unlock(&napi_hash_lock); |
| } |
| |
| /* Warning : caller is responsible to make sure rcu grace period |
| * is respected before freeing memory containing @napi |
| */ |
| bool napi_hash_del(struct napi_struct *napi) |
| { |
| bool rcu_sync_needed = false; |
| |
| spin_lock(&napi_hash_lock); |
| |
| if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { |
| rcu_sync_needed = true; |
| hlist_del_rcu(&napi->napi_hash_node); |
| } |
| spin_unlock(&napi_hash_lock); |
| return rcu_sync_needed; |
| } |
| EXPORT_SYMBOL_GPL(napi_hash_del); |
| |
| static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) |
| { |
| struct napi_struct *napi; |
| |
| napi = container_of(timer, struct napi_struct, timer); |
| if (napi->gro_list) |
| napi_schedule(napi); |
| |
| return HRTIMER_NORESTART; |
| } |
| |
| void netif_napi_add(struct net_device *dev, struct napi_struct *napi, |
| int (*poll)(struct napi_struct *, int), int weight) |
| { |
| INIT_LIST_HEAD(&napi->poll_list); |
| hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); |
| napi->timer.function = napi_watchdog; |
| napi->gro_count = 0; |
| napi->gro_list = NULL; |
| napi->skb = NULL; |
| napi->poll = poll; |
| if (weight > NAPI_POLL_WEIGHT) |
| pr_err_once("netif_napi_add() called with weight %d on device %s\n", |
| weight, dev->name); |
| napi->weight = weight; |
| list_add(&napi->dev_list, &dev->napi_list); |
| napi->dev = dev; |
| #ifdef CONFIG_NETPOLL |
| napi->poll_owner = -1; |
| #endif |
| set_bit(NAPI_STATE_SCHED, &napi->state); |
| napi_hash_add(napi); |
| } |
| EXPORT_SYMBOL(netif_napi_add); |
| |
| void napi_disable(struct napi_struct *n) |
| { |
| might_sleep(); |
| set_bit(NAPI_STATE_DISABLE, &n->state); |
| |
| while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) |
| msleep(1); |
| while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) |
| msleep(1); |
| |
| hrtimer_cancel(&n->timer); |
| |
| clear_bit(NAPI_STATE_DISABLE, &n->state); |
| } |
| EXPORT_SYMBOL(napi_disable); |
| |
| /* Must be called in process context */ |
| void netif_napi_del(struct napi_struct *napi) |
| { |
| might_sleep(); |
| if (napi_hash_del(napi)) |
| synchronize_net(); |
| list_del_init(&napi->dev_list); |
| napi_free_frags(napi); |
| |
| kfree_skb_list(napi->gro_list); |
| napi->gro_list = NULL; |
| napi->gro_count = 0; |
| } |
| EXPORT_SYMBOL(netif_napi_del); |
| |
| static int napi_poll(struct napi_struct *n, struct list_head *repoll) |
| { |
| void *have; |
| int work, weight; |
| |
| list_del_init(&n->poll_list); |
| |
| have = netpoll_poll_lock(n); |
| |
| weight = n->weight; |
| |
| /* This NAPI_STATE_SCHED test is for avoiding a race |
| * with netpoll's poll_napi(). Only the entity which |
| * obtains the lock and sees NAPI_STATE_SCHED set will |
| * actually make the ->poll() call. Therefore we avoid |
| * accidentally calling ->poll() when NAPI is not scheduled. |
| */ |
| work = 0; |
| if (test_bit(NAPI_STATE_SCHED, &n->state)) { |
| work = n->poll(n, weight); |
| trace_napi_poll(n, work, weight); |
| } |
| |
| WARN_ON_ONCE(work > weight); |
| |
| if (likely(work < weight)) |
| goto out_unlock; |
| |
| /* Drivers must not modify the NAPI state if they |
| * consume the entire weight. In such cases this code |
| * still "owns" the NAPI instance and therefore can |
| * move the instance around on the list at-will. |
| */ |
| if (unlikely(napi_disable_pending(n))) { |
| napi_complete(n); |
| goto out_unlock; |
| } |
| |
| if (n->gro_list) { |
| /* flush too old packets |
| * If HZ < 1000, flush all packets. |
| */ |
| napi_gro_flush(n, HZ >= 1000); |
| } |
| |
| /* Some drivers may have called napi_schedule |
| * prior to exhausting their budget. |
| */ |
| if (unlikely(!list_empty(&n->poll_list))) { |
| pr_warn_once("%s: Budget exhausted after napi rescheduled\n", |
| n->dev ? n->dev->name : "backlog"); |
| goto out_unlock; |
| } |
| |
| list_add_tail(&n->poll_list, repoll); |
| |
| out_unlock: |
| netpoll_poll_unlock(have); |
| |
| return work; |
| } |
| |
| static __latent_entropy void net_rx_action(struct softirq_action *h) |
| { |
| struct softnet_data *sd = this_cpu_ptr(&softnet_data); |
| unsigned long time_limit = jiffies + 2; |
| int budget = netdev_budget; |
| LIST_HEAD(list); |
| LIST_HEAD(repoll); |
| |
| local_irq_disable(); |
| list_splice_init(&sd->poll_list, &list); |
| local_irq_enable(); |
| |
| for (;;) { |
| struct napi_struct *n; |
| |
| if (list_empty(&list)) { |
| if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) |
| goto out; |
| break; |
| } |
| |
| n = list_first_entry(&list, struct napi_struct, poll_list); |
| budget -= napi_poll(n, &repoll); |
| |
| /* If softirq window is exhausted then punt. |
| * Allow this to run for 2 jiffies since which will allow |
| * an average latency of 1.5/HZ. |
| */ |
| if (unlikely(budget <= 0 || |
| time_after_eq(jiffies, time_limit))) { |
| sd->time_squeeze++; |
| break; |
| } |
| } |
| |
| local_irq_disable(); |
| |
| list_splice_tail_init(&sd->poll_list, &list); |
| list_splice_tail(&repoll, &list); |
| list_splice(&list, &sd->poll_list); |
| if (!list_empty(&sd->poll_list)) |
| __raise_softirq_irqoff(NET_RX_SOFTIRQ); |
| |
| net_rps_action_and_irq_enable(sd); |
| out: |
| __kfree_skb_flush(); |
| } |
| |
| struct netdev_adjacent { |
| struct net_device *dev; |
| |
| /* upper master flag, there can only be one master device per list */ |
| bool master; |
| |
| /* counter for the number of times this device was added to us */ |
| u16 ref_nr; |
| |
| /* private field for the users */ |
| void *private; |
| |
| struct list_head list; |
| struct rcu_head rcu; |
| }; |
| |
| static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, |
| struct list_head *adj_list) |
| { |
| struct netdev_adjacent *adj; |
| |
| list_for_each_entry(adj, adj_list, list) { |
| if (adj->dev == adj_dev) |
| return adj; |
| } |
| return NULL; |
| } |
| |
| static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data) |
| { |
| struct net_device *dev = data; |
| |
| return upper_dev == dev; |
| } |
| |
| /** |
| * netdev_has_upper_dev - Check if device is linked to an upper device |
| * @dev: device |
| * @upper_dev: upper device to check |
| * |
| * Find out if a device is linked to specified upper device and return true |
| * in case it is. Note that this checks only immediate upper device, |
| * not through a complete stack of devices. The caller must hold the RTNL lock. |
| */ |
| bool netdev_has_upper_dev(struct net_device *dev, |
| struct net_device *upper_dev) |
| { |
| ASSERT_RTNL(); |
| |
| return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, |
| upper_dev); |
| } |
| EXPORT_SYMBOL(netdev_has_upper_dev); |
| |
| /** |
| * netdev_has_upper_dev_all - Check if device is linked to an upper device |
| * @dev: device |
| * @upper_dev: upper device to check |
| * |
| * Find out if a device is linked to specified upper device and return true |
| * in case it is. Note that this checks the entire upper device chain. |
| * The caller must hold rcu lock. |
| */ |
| |
| bool netdev_has_upper_dev_all_rcu(struct net_device *dev, |
| struct net_device *upper_dev) |
| { |
| return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, |
| upper_dev); |
| } |
| EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); |
| |
| /** |
| * netdev_has_any_upper_dev - Check if device is linked to some device |
| * @dev: device |
| * |
| * Find out if a device is linked to an upper device and return true in case |
| * it is. The caller must hold the RTNL lock. |
| */ |
| static bool netdev_has_any_upper_dev(struct net_device *dev) |
| { |
| ASSERT_RTNL(); |
| |
| return !list_empty(&dev->adj_list.upper); |
| } |
| |
| /** |
| * netdev_master_upper_dev_get - Get master upper device |
| * @dev: device |
| * |
| * Find a master upper device and return pointer to it or NULL in case |
| * it's not there. The caller must hold the RTNL lock. |
| */ |
| struct net_device *netdev_master_upper_dev_get(struct net_device *dev) |
| { |
| struct netdev_adjacent *upper; |
| |
| ASSERT_RTNL(); |
| |
| if (list_empty(&dev->adj_list.upper)) |
| return NULL; |
| |
| upper = list_first_entry(&dev->adj_list.upper, |
| struct netdev_adjacent, list); |
| if (likely(upper->master)) |
| return upper->dev; |
| return NULL; |
| } |
| EXPORT_SYMBOL(netdev_master_upper_dev_get); |
| |
| /** |
| * netdev_has_any_lower_dev - Check if device is linked to some device |
| * @dev: device |
| * |
| * Find out if a device is linked to a lower device and return true in case |
| * it is. The caller must hold the RTNL lock. |
| */ |
| static bool netdev_has_any_lower_dev(struct net_device *dev) |
| { |
| ASSERT_RTNL(); |
| |
| return !list_empty(&dev->adj_list.lower); |
| } |
| |
| void *netdev_adjacent_get_private(struct list_head *adj_list) |
| { |
| struct netdev_adjacent *adj; |
| |
| adj = list_entry(adj_list, struct netdev_adjacent, list); |
| |
| return adj->private; |
| } |
| EXPORT_SYMBOL(netdev_adjacent_get_private); |
| |
| /** |
| * netdev_upper_get_next_dev_rcu - Get the next dev from upper list |
| * @dev: device |
| * @iter: list_head ** of the current position |
| * |
| * Gets the next device from the dev's upper list, starting from iter |
| * position. The caller must hold RCU read lock. |
| */ |
| struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, |
| struct list_head **iter) |
| { |
| struct netdev_adjacent *upper; |
| |
| WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); |
| |
| upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); |
| |
| if (&upper->list == &dev->adj_list.upper) |
| return NULL; |
| |
| *iter = &upper->list; |
| |
| return upper->dev; |
| } |
| EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); |
| |
| static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, |
| struct list_head **iter) |
| { |
| struct netdev_adjacent *upper; |
| |
| WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); |
| |
| upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); |
| |
| if (&upper->list == &dev->adj_list.upper) |
| return NULL; |
| |
| *iter = &upper->list; |
| |
| return upper->dev; |
| } |
| |
| int netdev_walk_all_upper_dev_rcu(struct net_device *dev, |
| int (*fn)(struct net_device *dev, |
| void *data), |
| void *data) |
| { |
| struct net_device *udev; |
| struct list_head *iter; |
| int ret; |
| |
| for (iter = &dev->adj_list.upper, |
| udev = netdev_next_upper_dev_rcu(dev, &iter); |
| udev; |
| udev = netdev_next_upper_dev_rcu(dev, &iter)) { |
| /* first is the upper device itself */ |
| ret = fn(udev, data); |
| if (ret) |
| return ret; |
| |
| /* then look at all of its upper devices */ |
| ret = netdev_walk_all_upper_dev_rcu(udev, fn, data); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); |
| |
| /** |
| * netdev_lower_get_next_private - Get the next ->private from the |
| * lower neighbour list |
| * @dev: device |
| * @iter: list_head ** of the current position |
| * |
| * Gets the next netdev_adjacent->private from the dev's lower neighbour |
| * list, starting from iter position. The caller must hold either hold the |
| * RTNL lock or its own locking that guarantees that the neighbour lower |
| * list will remain unchanged. |
| */ |
| void *netdev_lower_get_next_private(struct net_device *dev, |
| struct list_head **iter) |
| { |
| struct netdev_adjacent *lower; |
| |
| lower = list_entry(*iter, struct netdev_adjacent, list); |
| |
| if (&lower->list == &dev->adj_list.lower) |
| return NULL; |
| |
| *iter = lower->list.next; |
| |
| return lower->private; |
| } |
| EXPORT_SYMBOL(netdev_lower_get_next_private); |
| |
| /** |
| * netdev_lower_get_next_private_rcu - Get the next ->private from the |
| * lower neighbour list, RCU |
| * variant |
| * @dev: device |
| * @iter: list_head ** of the current position |
| * |
| * Gets the next netdev_adjacent->private from the dev's lower neighbour |
| * list, starting from iter position. The caller must hold RCU read lock. |
| */ |
| void *netdev_lower_get_next_private_rcu(struct net_device *dev, |
| struct list_head **iter) |
| { |
| struct netdev_adjacent *lower; |
| |
| WARN_ON_ONCE(!rcu_read_lock_held()); |
| |
| lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); |
| |
| if (&lower->list == &dev->adj_list.lower) |
| return NULL; |
| |
| *iter = &lower->list; |
| |
| return lower->private; |
| } |
| EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); |
| |
| /** |
| * netdev_lower_get_next - Get the next device from the lower neighbour |
| * list |
| * @dev: device |
| * @iter: list_head ** of the current position |
| * |
| * Gets the next netdev_adjacent from the dev's lower neighbour |
| * list, starting from iter position. The caller must hold RTNL lock or |
| * its own locking that guarantees that the neighbour lower |
| * list will remain unchanged. |
| */ |
| void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) |
| { |
| struct netdev_adjacent *lower; |
| |
| lower = list_entry(*iter, struct netdev_adjacent, list); |
| |
| if (&lower->list == &dev->adj_list.lower) |
| return NULL; |
| |
| *iter = lower->list.next; |
| |
| return lower->dev; |
| } |
| EXPORT_SYMBOL(netdev_lower_get_next); |
| |
| static struct net_device *netdev_next_lower_dev(struct net_device *dev, |
| struct list_head **iter) |
| { |
| struct netdev_adjacent *lower; |
| |
| lower = list_entry((*iter)->next, struct netdev_adjacent, list); |
| |
| if (&lower->list == &dev->adj_list.lower) |
| return NULL; |
| |
| *iter = &lower->list; |
| |
| return lower->dev; |
| } |
| |
| int netdev_walk_all_lower_dev(struct net_device *dev, |
| int (*fn)(struct net_device *dev, |
| void *data), |
| void *data) |
| { |
| struct net_device *ldev; |
| struct list_head *iter; |
| int ret; |
| |
| for (iter = &dev->adj_list.lower, |
| ldev = netdev_next_lower_dev(dev, &iter); |
| ldev; |
| ldev = netdev_next_lower_dev(dev, &iter)) { |
| /* first is the lower device itself */ |
| ret = fn(ldev, data); |
| if (ret) |
| return ret; |
| |
| /* then look at all of its lower devices */ |
| ret = netdev_walk_all_lower_dev(ldev, fn, data); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); |
| |
| static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, |
| struct list_head **iter) |
| { |
| struct netdev_adjacent *lower; |
| |
| lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); |
| if (&lower->list == &dev->adj_list.lower) |
| return NULL; |
| |
| *iter = &lower->list; |
| |
| return lower->dev; |
| } |
| |
| int netdev_walk_all_lower_dev_rcu(struct net_device *dev, |
| int (*fn)(struct net_device *dev, |
| void *data), |
| void *data) |
| { |
| struct net_device *ldev; |
| struct list_head *iter; |
| int ret; |
| |
| for (iter = &dev->adj_list.lower, |
| ldev = netdev_next_lower_dev_rcu(dev, &iter); |
| ldev; |
| ldev = netdev_next_lower_dev_rcu(dev, &iter)) { |
| /* first is the lower device itself */ |
| ret = fn(ldev, data); |
| if (ret) |
| return ret; |
| |
| /* then look at all of its lower devices */ |
| ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); |
| |
| /** |
| * netdev_lower_get_first_private_rcu - Get the first ->private from the |
| * lower neighbour list, RCU |
| * variant |
| * @dev: device |
| * |
| * Gets the first netdev_adjacent->private from the dev's lower neighbour |
| * list. The caller must hold RCU read lock. |
| */ |
| void *netdev_lower_get_first_private_rcu(struct net_device *dev) |
| { |
| struct netdev_adjacent *lower; |
| |
| lower = list_first_or_null_rcu(&dev->adj_list.lower, |
| struct netdev_adjacent, list); |
| if (lower) |
| return lower->private; |
| return NULL; |
| } |
| EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); |
| |
| /** |
| * netdev_master_upper_dev_get_rcu - Get master upper device |
| * @dev: device |
| * |
| * Find a master upper device and return pointer to it or NULL in case |
| * it's not there. The caller must hold the RCU read lock. |
| */ |
| struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) |
| { |
| struct netdev_adjacent *upper; |
| |
| upper = list_first_or_null_rcu(&dev->adj_list.upper, |
| struct netdev_adjacent, list); |
| if (upper && likely(upper->master)) |
| return upper->dev; |
| return NULL; |
| } |
| EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); |
| |
| static int netdev_adjacent_sysfs_add(struct net_device *dev, |
| struct net_device *adj_dev, |
| struct list_head *dev_list) |
| { |
| char linkname[IFNAMSIZ+7]; |
| sprintf(linkname, dev_list == &dev->adj_list.upper ? |
| "upper_%s" : "lower_%s", adj_dev->name); |
| return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), |
| linkname); |
| } |
| static void netdev_adjacent_sysfs_del(struct net_device *dev, |
| char *name, |
| struct list_head *dev_list) |
| { |
| char linkname[IFNAMSIZ+7]; |
| sprintf(linkname, dev_list == &dev->adj_list.upper ? |
| "upper_%s" : "lower_%s", name); |
| sysfs_remove_link(&(dev->dev.kobj), linkname); |
| } |
| |
| static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, |
| struct net_device *adj_dev, |
| struct list_head *dev_list) |
| { |
| return (dev_list == &dev->adj_list.upper || |
| dev_list == &dev->adj_list.lower) && |
| net_eq(dev_net(dev), dev_net(adj_dev)); |
| } |
| |
| static int __netdev_adjacent_dev_insert(struct net_device *dev, |
| struct net_device *adj_dev, |
| struct list_head *dev_list, |
| void *private, bool master) |
| { |
| struct netdev_adjacent *adj; |
| int ret; |
| |
| adj = __netdev_find_adj(adj_dev, dev_list); |
| |
| if (adj) { |
| adj->ref_nr += 1; |
| pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", |
| dev->name, adj_dev->name, adj->ref_nr); |
| |
| return 0; |
| } |
| |
| adj = kmalloc(sizeof(*adj), GFP_KERNEL); |
| if (!adj) |
| return -ENOMEM; |
| |
| adj->dev = adj_dev; |
| adj->master = master; |
| adj->ref_nr = 1; |
| adj->private = private; |
| dev_hold(adj_dev); |
| |
| pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", |
| dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); |
| |
| if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { |
| ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); |
| if (ret) |
| goto free_adj; |
| } |
| |
| /* Ensure that master link is always the first item in list. */ |
| if (master) { |
| ret = sysfs_create_link(&(dev->dev.kobj), |
| &(adj_dev->dev.kobj), "master"); |
| if (ret) |
| goto remove_symlinks; |
| |
| list_add_rcu(&adj->list, dev_list); |
| } else { |
| list_add_tail_rcu(&adj->list, dev_list); |
| } |
| |
| return 0; |
| |
| remove_symlinks: |
| if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) |
| netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); |
| free_adj: |
| kfree(adj); |
| dev_put(adj_dev); |
| |
| return ret; |
| } |
| |
| static void __netdev_adjacent_dev_remove(struct net_device *dev, |
| struct net_device *adj_dev, |
| u16 ref_nr, |
| struct list_head *dev_list) |
| { |
| struct netdev_adjacent *adj; |
| |
| pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", |
| dev->name, adj_dev->name, ref_nr); |
| |
| adj = __netdev_find_adj(adj_dev, dev_list); |
| |
| if (!adj) { |
| pr_err("Adjacency does not exist for device %s from %s\n", |
| dev->name, adj_dev->name); |
| WARN_ON(1); |
| return; |
| } |
| |
| if (adj->ref_nr > ref_nr) { |
| pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", |
| dev->name, adj_dev->name, ref_nr, |
| adj->ref_nr - ref_nr); |
| adj->ref_nr -= ref_nr; |
| return; |
| } |
| |
| if (adj->master) |
| sysfs_remove_link(&(dev->dev.kobj), "master"); |
| |
| if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) |
| netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); |
| |
| list_del_rcu(&adj->list); |
| pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", |
| adj_dev->name, dev->name, adj_dev->name); |
| dev_put(adj_dev); |
| kfree_rcu(adj, rcu); |
| } |
| |
| static int __netdev_adjacent_dev_link_lists(struct net_device *dev, |
| struct net_device *upper_dev, |
| struct list_head *up_list, |
| struct list_head *down_list, |
| void *private, bool master) |
| { |
| int ret; |
| |
| ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, |
| private, master); |
| if (ret) |
| return ret; |
| |
| ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, |
| private, false); |
| if (ret) { |
| __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, |
| struct net_device *upper_dev, |
| u16 ref_nr, |
| struct list_head *up_list, |
| struct list_head *down_list) |
| { |
| __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); |
| __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); |
| } |
| |
| static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, |
| struct net_device *upper_dev, |
| void *private, bool master) |
| { |
| return __netdev_adjacent_dev_link_lists(dev, upper_dev, |
| &dev->adj_list.upper, |
| &upper_dev->adj_list.lower, |
| private, master); |
| } |
| |
| static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, |
| struct net_device *upper_dev) |
| { |
| __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, |
| &dev->adj_list.upper, |
| &upper_dev->adj_list.lower); |
| } |
| |
| static int __netdev_upper_dev_link(struct net_device *dev, |
| struct net_device *upper_dev, bool master, |
| void *upper_priv, void *upper_info) |
| { |
| struct netdev_notifier_changeupper_info changeupper_info; |
| int ret = 0; |
| |
| ASSERT_RTNL(); |
| |
| if (dev == upper_dev) |
| return -EBUSY; |
| |
| /* To prevent loops, check if dev is not upper device to upper_dev. */ |
| if (netdev_has_upper_dev(upper_dev, dev)) |
| return -EBUSY; |
| |
| if (netdev_has_upper_dev(dev, upper_dev)) |
| return -EEXIST; |
| |
| if (master && netdev_master_upper_dev_get(dev)) |
| return -EBUSY; |
| |
| changeupper_info.upper_dev = upper_dev; |
| changeupper_info.master = master; |
| changeupper_info.linking = true; |
| changeupper_info.upper_info = upper_info; |
| |
| ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev, |
| &changeupper_info.info); |
| ret = notifier_to_errno(ret); |
| if (ret) |
| return ret; |
| |
| ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, |
| master); |
| if (ret) |
| return ret; |
| |
| ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev, |
| &changeupper_info.info); |
| ret = notifier_to_errno(ret); |
| if (ret) |
| goto rollback; |
| |
| return 0; |
| |
| rollback: |
| __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); |
| |
| return ret; |
| } |
| |
| /** |
| * netdev_upper_dev_link - Add a link to the upper device |
| * @dev: device |
| * @upper_dev: new upper device |
| * |
| * Adds a link to device which is upper to this one. The caller must hold |
| * the RTNL lock. On a failure a negative errno code is returned. |
| * On success the reference counts are adjusted and the function |
| * returns zero. |
| */ |
| int netdev_upper_dev_link(struct net_device *dev, |
| struct net_device *upper_dev) |
| { |
| return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL); |
| } |
| EXPORT_SYMBOL(netdev_upper_dev_link); |
| |
| /** |
| * netdev_master_upper_dev_link - Add a master link to the upper device |
| * @dev: device |
| * @upper_dev: new upper device |
| * @upper_priv: upper device private |
| * @upper_info: upper info to be passed down via notifier |
| * |
| * Adds a link to device which is upper to this one. In this case, only |
| * one master upper device can be linked, although other non-master devices |
| * might be linked as well. The caller must hold the RTNL lock. |
| * On a failure a negative errno code is returned. On success the reference |
| * counts are adjusted and the function returns zero. |
| */ |
| int netdev_master_upper_dev_link(struct net_device *dev, |
| struct net_device *upper_dev, |
| void *upper_priv, void *upper_info) |
| { |
| return __netdev_upper_dev_link(dev, upper_dev, true, |
| upper_priv, upper_info); |
| } |
| EXPORT_SYMBOL(netdev_master_upper_dev_link); |
| |
| /** |
| * netdev_upper_dev_unlink - Removes a link to upper device |
| * @dev: device |
| * @upper_dev: new upper device |
| * |
| * Removes a link to device which is upper to this one. The caller must hold |
| * the RTNL lock. |
| */ |
| void netdev_upper_dev_unlink(struct net_device *dev, |
| struct net_device *upper_dev) |
| { |
| struct netdev_notifier_changeupper_info changeupper_info; |
| ASSERT_RTNL(); |
| |
| changeupper_info.upper_dev = upper_dev; |
| changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; |
| changeupper_info.linking = false; |
| |
| call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev, |
| &changeupper_info.info); |
| |
| __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); |
| |
| call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev, |
| &changeupper_info.info); |
| } |
| EXPORT_SYMBOL(netdev_upper_dev_unlink); |
| |
| /** |
| * netdev_bonding_info_change - Dispatch event about slave change |
| * @dev: device |
| * @bonding_info: info to dispatch |
| * |
| * Send NETDEV_BONDING_INFO to netdev notifiers with info. |
| * The caller must hold the RTNL lock. |
| */ |
| void netdev_bonding_info_change(struct net_device *dev, |
| struct netdev_bonding_info *bonding_info) |
| { |
| struct netdev_notifier_bonding_info info; |
| |
| memcpy(&info.bonding_info, bonding_info, |
| sizeof(struct netdev_bonding_info)); |
| call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev, |
| &info.info); |
| } |
| EXPORT_SYMBOL(netdev_bonding_info_change); |
| |
| static void netdev_adjacent_add_links(struct net_device *dev) |
| { |
| struct netdev_adjacent *iter; |
| |
| struct net *net = dev_net(dev); |
| |
| list_for_each_entry(iter, &dev->adj_list.upper, list) { |
| if (!net_eq(net, dev_net(iter->dev))) |
| continue; |
| netdev_adjacent_sysfs_add(iter->dev, dev, |
| &iter->dev->adj_list.lower); |
| netdev_adjacent_sysfs_add(dev, iter->dev, |
| &dev->adj_list.upper); |
| } |
| |
| list_for_each_entry(iter, &dev->adj_list.lower, list) { |
| if (!net_eq(net, dev_net(iter->dev))) |
| continue; |
| netdev_adjacent_sysfs_add(iter->dev, dev, |
| &iter->dev->adj_list.upper); |
| netdev_adjacent_sysfs_add(dev, iter->dev, |
| &dev->adj_list.lower); |
| } |
| } |
| |
| static void netdev_adjacent_del_links(struct net_device *dev) |
| { |
| struct netdev_adjacent *iter; |
| |
| struct net *net = dev_net(dev); |
| |
| list_for_each_entry(iter, &dev->adj_list.upper, list) { |
| if (!net_eq(net, dev_net(iter->dev))) |
| continue; |
| netdev_adjacent_sysfs_del(iter->dev, dev->name, |
| &iter->dev->adj_list.lower); |
| netdev_adjacent_sysfs_del(dev, iter->dev->name, |
| &dev->adj_list.upper); |
| } |
| |
| list_for_each_entry(iter, &dev->adj_list.lower, list) { |
| if (!net_eq(net, dev_net(iter->dev))) |
| continue; |
| netdev_adjacent_sysfs_del(iter->dev, dev->name, |
| &iter->dev->adj_list.upper); |
| netdev_adjacent_sysfs_del(dev, iter->dev->name, |
| &dev->adj_list.lower); |
| } |
| } |
| |
| void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) |
| { |
| struct netdev_adjacent *iter; |
| |
| struct net *net = dev_net(dev); |
| |
| list_for_each_entry(iter, &dev->adj_list.upper, list) { |
| if (!net_eq(net, dev_net(iter->dev))) |
| continue; |
| netdev_adjacent_sysfs_del(iter->dev, oldname, |
| &iter->dev->adj_list.lower); |
| netdev_adjacent_sysfs_add(iter->dev, dev, |
| &iter->dev->adj_list.lower); |
| } |
| |
| list_for_each_entry(iter, &dev->adj_list.lower, list) { |
| if (!net_eq(net, dev_net(iter->dev))) |
| continue; |
| netdev_adjacent_sysfs_del(iter->dev, oldname, |
| &iter->dev->adj_list.upper); |
| netdev_adjacent_sysfs_add(iter->dev, dev, |
| &iter->dev->adj_list.upper); |
| } |
| } |
| |
| void *netdev_lower_dev_get_private(struct net_device *dev, |
| struct net_device *lower_dev) |
| { |
| struct netdev_adjacent *lower; |
| |
| if (!lower_dev) |
| return NULL; |
| lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); |
| if (!lower) |
| return NULL; |
| |
| return lower->private; |
| } |
| EXPORT_SYMBOL(netdev_lower_dev_get_private); |
| |
| |
| int dev_get_nest_level(struct net_device *dev) |
| { |
| struct net_device *lower = NULL; |
| struct list_head *iter; |
| int max_nest = -1; |
| int nest; |
| |
| ASSERT_RTNL(); |
| |
| netdev_for_each_lower_dev(dev, lower, iter) { |
| nest = dev_get_nest_level(lower); |
| if (max_nest < nest) |
| max_nest = nest; |
| } |
| |
| return max_nest + 1; |
| } |
| EXPORT_SYMBOL(dev_get_nest_level); |
| |
| /** |
| * netdev_lower_change - Dispatch event about lower device state change |
| * @lower_dev: device |
| * @lower_state_info: state to dispatch |
| * |
| * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. |
| * The caller must hold the RTNL lock. |
| */ |
| void netdev_lower_state_changed(struct net_device *lower_dev, |
| void *lower_state_info) |
| { |
| struct netdev_notifier_changelowerstate_info changelowerstate_info; |
| |
| ASSERT_RTNL(); |
| changelowerstate_info.lower_state_info = lower_state_info; |
| call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev, |
| &changelowerstate_info.info); |
| } |
| EXPORT_SYMBOL(netdev_lower_state_changed); |
| |
| int netdev_default_l2upper_neigh_construct(struct net_device *dev, |
| struct neighbour *n) |
| { |
| struct net_device *lower_dev, *stop_dev; |
| struct list_head *iter; |
| int err; |
| |
| netdev_for_each_lower_dev(dev, lower_dev, iter) { |
| if (!lower_dev->netdev_ops->ndo_neigh_construct) |
| continue; |
| err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n); |
| if (err) { |
| stop_dev = lower_dev; |
| goto rollback; |
| } |
| } |
| return 0; |
| |
| rollback: |
| netdev_for_each_lower_dev(dev, lower_dev, iter) { |
| if (lower_dev == stop_dev) |
| break; |
| if (!lower_dev->netdev_ops->ndo_neigh_destroy) |
| continue; |
| lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n); |
| } |
| return err; |
| } |
| EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct); |
| |
| void netdev_default_l2upper_neigh_destroy(struct net_device *dev, |
| struct neighbour *n) |
| { |
| struct net_device *lower_dev; |
| struct list_head *iter; |
| |
| netdev_for_each_lower_dev(dev, lower_dev, iter) { |
| if (!lower_dev->netdev_ops->ndo_neigh_destroy) |
| continue; |
| lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n); |
| } |
| } |
| EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy); |
| |
| static void dev_change_rx_flags(struct net_device *dev, int flags) |
| { |
| const struct net_device_ops *ops = dev->netdev_ops; |
| |
| if (ops->ndo_change_rx_flags) |
| ops->ndo_change_rx_flags(dev, flags); |
| } |
| |
| static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) |
| { |
| unsigned int old_flags = dev->flags; |
| kuid_t uid; |
| kgid_t gid; |
| |
| ASSERT_RTNL(); |
| |
| dev->flags |= IFF_PROMISC; |
| dev->promiscuity += inc; |
| if (dev->promiscuity == 0) { |
| /* |
| * Avoid overflow. |
| * If inc causes overflow, untouch promisc and return error. |
| */ |
| if (inc < 0) |
| dev->flags &= ~IFF_PROMISC; |
| else { |
| dev->promiscuity -= inc; |
| pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", |
| dev->name); |
| return -EOVERFLOW; |
| } |
| } |
| if (dev->flags != old_flags) { |
| pr_info("device %s %s promiscuous mode\n", |
| dev->name, |
| dev->flags & IFF_PROMISC ? "entered" : "left"); |
| if (audit_enabled) { |
| current_uid_gid(&uid, &gid); |
| audit_log(current->audit_context, GFP_ATOMIC, |
| AUDIT_ANOM_PROMISCUOUS, |
| "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", |
| dev->name, (dev->flags & IFF_PROMISC), |
| (old_flags & IFF_PROMISC), |
| from_kuid(&init_user_ns, audit_get_loginuid(current)), |
| from_kuid(&init_user_ns, uid), |
| from_kgid(&init_user_ns, gid), |
| audit_get_sessionid(current)); |
| } |
| |
| dev_change_rx_flags(dev, IFF_PROMISC); |
| } |
| if (notify) |
| __dev_notify_flags(dev, old_flags, IFF_PROMISC); |
| return 0; |
| } |
| |
| /** |
| * dev_set_promiscuity - update promiscuity count on a device |
| * @dev: device |
| * @inc: modifier |
| * |
| * Add or remove promiscuity from a device. While the count in the device |
| * remains above zero the interface remains promiscuous. Once it hits zero |
| * the device reverts back to normal filtering operation. A negative inc |
| * value is used to drop promiscuity on the device. |
| * Return 0 if successful or a negative errno code on error. |
| */ |
| int dev_set_promiscuity(struct net_device *dev, int inc) |
| { |
| unsigned int old_flags = dev->flags; |
| int err; |
| |
| err = __dev_set_promiscuity(dev, inc, true); |
| if (err < 0) |
| return err; |
| if (dev->flags != old_flags) |
| dev_set_rx_mode(dev); |
| return err; |
| } |
| EXPORT_SYMBOL(dev_set_promiscuity); |
| |
| static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) |
| { |
| unsigned int old_flags = dev->flags, old_gflags = dev->gflags; |
| |
| ASSERT_RTNL(); |
| |
| dev->flags |= IFF_ALLMULTI; |
| dev->allmulti += inc; |
| if (dev->allmulti == 0) { |
| /* |
| * Avoid overflow. |
| * If inc causes overflow, untouch allmulti and return error. |
| */ |
| if (inc < 0) |
| dev->flags &= ~IFF_ALLMULTI; |
| else { |
| dev->allmulti -= inc; |
| pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", |
| dev->name); |
| return -EOVERFLOW; |
| } |
| } |
| if (dev->flags ^ old_flags) { |
| dev_change_rx_flags(dev, IFF_ALLMULTI); |
| dev_set_rx_mode(dev); |
| if (notify) |
| __dev_notify_flags(dev, old_flags, |
| dev->gflags ^ old_gflags); |
| } |
| return 0; |
| } |
| |
| /** |
| * dev_set_allmulti - update allmulti count on a device |
| * @dev: device |
| * @inc: modifier |
| * |
| * Add or remove reception of all multicast frames to a device. While the |
| * count in the device remains above zero the interface remains listening |
| * to all interfaces. Once it hits zero the device reverts back to normal |
| * filtering operation. A negative @inc value is used to drop the counter |
| * when releasing a resource needing all multicasts. |
| * Return 0 if successful or a negative errno code on error. |
| */ |
| |
| int dev_set_allmulti(struct net_device *dev, int inc) |
| { |
| return __dev_set_allmulti(dev, inc, true); |
| } |
| EXPORT_SYMBOL(dev_set_allmulti); |
| |
| /* |
| * Upload unicast and multicast address lists to device and |
| * configure RX filtering. When the device doesn't support unicast |
| * filtering it is put in promiscuous mode while unicast addresses |
| * are present. |
| */ |
| void __dev_set_rx_mode(struct net_device *dev) |
| { |
| const struct net_device_ops *ops = dev->netdev_ops; |
| |
| /* dev_open will call this function so the list will stay sane. */ |
| if (!(dev->flags&IFF_UP)) |
| return; |
| |
| if (!netif_device_present(dev)) |
| return; |
| |
| if (!(dev->priv_flags & IFF_UNICAST_FLT)) { |
| /* Unicast addresses changes may only happen under the rtnl, |
| * therefore calling __dev_set_promiscuity here is safe. |
| */ |
| if (!netdev_uc_empty(dev) && !dev->uc_promisc) { |
| __dev_set_promiscuity(dev, 1, false); |
| dev->uc_promisc = true; |
| } else if (netdev_uc_empty(dev) && dev->uc_promisc) { |
| __dev_set_promiscuity(dev, -1, false); |
| dev->uc_promisc = false; |
| } |
| } |
| |
| if (ops->ndo_set_rx_mode) |
| ops->ndo_set_rx_mode(dev); |
| } |
| |
| void dev_set_rx_mode(struct net_device *dev) |
| { |
| netif_addr_lock_bh(dev); |
| __dev_set_rx_mode(dev); |
| netif_addr_unlock_bh(dev); |
| } |
| |
| /** |
| * dev_get_flags - get flags reported to userspace |
| * @dev: device |
| * |
| * Get the combination of flag bits exported through APIs to userspace. |
| */ |
| unsigned int dev_get_flags(const struct net_device *dev) |
| { |
| unsigned int flags; |
| |
| flags = (dev->flags & ~(IFF_PROMISC | |
| IFF_ALLMULTI | |
| IFF_RUNNING | |
| IFF_LOWER_UP | |
| IFF_DORMANT)) | |
| (dev->gflags & (IFF_PROMISC | |
| IFF_ALLMULTI)); |
| |
| if (netif_running(dev)) { |
| if (netif_oper_up(dev)) |
| flags |= IFF_RUNNING; |
| if (netif_carrier_ok(dev)) |
| flags |= IFF_LOWER_UP; |
| if (netif_dormant(dev)) |
| flags |= IFF_DORMANT; |
| } |
| |
| return flags; |
| } |
| EXPORT_SYMBOL(dev_get_flags); |
| |
| int __dev_change_flags(struct net_device *dev, unsigned int flags) |
| { |
| unsigned int old_flags = dev->flags; |
| int ret; |
| |
| ASSERT_RTNL(); |
| |
| /* |
| * Set the flags on our device. |
| */ |
| |
| dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | |
| IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | |
| IFF_AUTOMEDIA)) | |
| (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | |
| IFF_ALLMULTI)); |
| |
| /* |
| * Load in the correct multicast list now the flags have changed. |
| */ |
| |
| if ((old_flags ^ flags) & IFF_MULTICAST) |
| dev_change_rx_flags(dev, IFF_MULTICAST); |
| |
| dev_set_rx_mode(dev); |
| |
| /* |
| * Have we downed the interface. We handle IFF_UP ourselves |
| * according to user attempts to set it, rather than blindly |
| * setting it. |
| */ |
| |
| ret = 0; |
| if ((old_flags ^ flags) & IFF_UP) |
| ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); |
| |
| if ((flags ^ dev->gflags) & IFF_PROMISC) { |
| int inc = (flags & IFF_PROMISC) ? 1 : -1; |
| unsigned int old_flags = dev->flags; |
| |
| dev->gflags ^= IFF_PROMISC; |
| |
| if (__dev_set_promiscuity(dev, inc, false) >= 0) |
| if (dev->flags != old_flags) |
| dev_set_rx_mode(dev); |
| } |
| |
| /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI |
| is important. Some (broken) drivers set IFF_PROMISC, when |
| IFF_ALLMULTI is requested not asking us and not reporting. |
| */ |
| if ((flags ^ dev->gflags) & IFF_ALLMULTI) { |
| int inc = (flags & IFF_ALLMULTI) ? 1 : -1; |
| |
| dev->gflags ^= IFF_ALLMULTI; |
| __dev_set_allmulti(dev, inc, false); |
| } |
| |
| return ret; |
| } |
| |
| void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, |
| unsigned int gchanges) |
| { |
| unsigned int changes = dev->flags ^ old_flags; |
| |
| if (gchanges) |
| rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); |
| |
| if (changes & IFF_UP) { |
| if (dev->flags & IFF_UP) |
| call_netdevice_notifiers(NETDEV_UP, dev); |
| else |
| call_netdevice_notifiers(NETDEV_DOWN, dev); |
| } |
| |
| if (dev->flags & IFF_UP && |
| (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { |
| struct netdev_notifier_change_info change_info; |
| |
| change_info.flags_changed = changes; |
| call_netdevice_notifiers_info(NETDEV_CHANGE, dev, |
| &change_info.info); |
| } |
| } |
| |
| /** |
| * dev_change_flags - change device settings |
| * @dev: device |
| * @flags: device state flags |
| * |
| * Change settings on device based state flags. The flags are |
| * in the userspace exported format. |
| */ |
| int dev_change_flags(struct net_device *dev, unsigned int flags) |
| { |
| int ret; |
| unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; |
| |
| ret = __dev_change_flags(dev, flags); |
| if (ret < 0) |
| return ret; |
| |
| changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); |
| __dev_notify_flags(dev, old_flags, changes); |
| return ret; |
| } |
| EXPORT_SYMBOL(dev_change_flags); |
| |
| static int __dev_set_mtu(struct net_device *dev, int new_mtu) |
| { |
| const struct net_device_ops *ops = dev->netdev_ops; |
| |
| if (ops->ndo_change_mtu) |
| return ops->ndo_change_mtu(dev, new_mtu); |
| |
| dev->mtu = new_mtu; |
| return 0; |
| } |
| |
| /** |
| * dev_set_mtu - Change maximum transfer unit |
| * @dev: device |
| * @new_mtu: new transfer unit |
| * |
| * Change the maximum transfer size of the network device. |
| */ |
| int dev_set_mtu(struct net_device *dev, int new_mtu) |
| { |
| int err, orig_mtu; |
| |
| if (new_mtu == dev->mtu) |
| return 0; |
| |
| /* MTU must be positive, and in range */ |
| if (new_mtu < 0 || new_mtu < dev->min_mtu) { |
| net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n", |
| dev->name, new_mtu, dev->min_mtu); |
| return -EINVAL; |
| } |
| |
| if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { |
| net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n", |
| dev->name, new_mtu, dev->max_mtu); |
| return -EINVAL; |
| } |
| |
| if (!netif_device_present(dev)) |
| return -ENODEV; |
| |
| err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); |
| err = notifier_to_errno(err); |
| if (err) |
| return err; |
| |
| orig_mtu = dev->mtu; |
| err = __dev_set_mtu(dev, new_mtu); |
| |
| if (!err) { |
| err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); |
| err = notifier_to_errno(err); |
| if (err) { |
| /* setting mtu back and notifying everyone again, |
| * so that they have a chance to revert changes. |
| */ |
| __dev_set_mtu(dev, orig_mtu); |
| call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); |
| } |
| } |
| return err; |
| } |
| EXPORT_SYMBOL(dev_set_mtu); |
| |
| /** |
| * dev_set_group - Change group this device belongs to |
| * @dev: device |
| * @new_group: group this device should belong to |
| */ |
| void dev_set_group(struct net_device *dev, int new_group) |
| { |
| dev->group = new_group; |
| } |
| EXPORT_SYMBOL(dev_set_group); |
| |
| /** |
| * dev_set_mac_address - Change Media Access Control Address |
| * @dev: device |
| * @sa: new address |
| * |
| * Change the hardware (MAC) address of the device |
| */ |
| int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) |
| { |
| const struct net_device_ops *ops = dev->netdev_ops; |
| int err; |
| |
| if (!ops->ndo_set_mac_address) |
| return -EOPNOTSUPP; |
| if (sa->sa_family != dev->type) |
| return -EINVAL; |
| if (!netif_device_present(dev)) |
| return -ENODEV; |
| err = ops->ndo_set_mac_address(dev, sa); |
| if (err) |
| return err; |
| dev->addr_assign_type = NET_ADDR_SET; |
| call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); |
| add_device_randomness(dev->dev_addr, dev->addr_len); |
| return 0; |
| } |
| EXPORT_SYMBOL(dev_set_mac_address); |
| |
| /** |
| * dev_change_carrier - Change device carrier |
| * @dev: device |
| * @new_carrier: new value |
| * |
| * Change device carrier |
| */ |
| int dev_change_carrier(struct net_device *dev, bool new_carrier) |
| { |
| const struct net_device_ops *ops = dev->netdev_ops; |
| |
| if (!ops->ndo_change_carrier) |
| return -EOPNOTSUPP; |
| if (!netif_device_present(dev)) |
| return -ENODEV; |
| return ops->ndo_change_carrier(dev, new_carrier); |
| } |
| EXPORT_SYMBOL(dev_change_carrier); |
| |
| /** |
| * dev_get_phys_port_id - Get device physical port ID |
| * @dev: device |
| * @ppid: port ID |
| * |
| * Get device physical port ID |
| */ |
| int dev_get_phys_port_id(struct net_device *dev, |
| struct netdev_phys_item_id *ppid) |
| { |
| const struct net_device_ops *ops = dev->netdev_ops; |
| |
| if (!ops->ndo_get_phys_port_id) |
| return -EOPNOTSUPP; |
| return ops->ndo_get_phys_port_id(dev, ppid); |
| } |
| EXPORT_SYMBOL(dev_get_phys_port_id); |
| |
| /** |
| * dev_get_phys_port_name - Get device physical port name |
| * @dev: device |
| * @name: port name |
| * @len: limit of bytes to copy to name |
| * |
| * Get device physical port name |
| */ |
| int dev_get_phys_port_name(struct net_device *dev, |
| char *name, size_t len) |
| { |
| const struct net_device_ops *ops = dev->netdev_ops; |
| |
| if (!ops->ndo_get_phys_port_name) |
| return -EOPNOTSUPP; |
| return ops->ndo_get_phys_port_name(dev, name, len); |
| } |
| EXPORT_SYMBOL(dev_get_phys_port_name); |
| |
| /** |
| * dev_change_proto_down - update protocol port state information |
| * @dev: device |
| * @proto_down: new value |
| * |
| * This info can be used by switch drivers to set the phys state of the |
| * port. |
| */ |
| int dev_change_proto_down(struct net_device *dev, bool proto_down) |
| { |
| const struct net_device_ops *ops = dev->netdev_ops; |
| |
| if (!ops->ndo_change_proto_down) |
| return -EOPNOTSUPP; |
| if (!netif_device_present(dev)) |
| return -ENODEV; |
| return ops->ndo_change_proto_down(dev, proto_down); |
| } |
| EXPORT_SYMBOL(dev_change_proto_down); |
| |
| /** |
| * dev_change_xdp_fd - set or clear a bpf program for a device rx path |
| * @dev: device |
| * @fd: new program fd or negative value to clear |
| * @flags: xdp-related flags |
| * |
| * Set or clear a bpf program for a device |
| */ |
| int dev_change_xdp_fd(struct net_device *dev, int fd, u32 flags) |
| { |
| const struct net_device_ops *ops = dev->netdev_ops; |
| struct bpf_prog *prog = NULL; |
| struct netdev_xdp xdp; |
| int err; |
| |
| ASSERT_RTNL(); |
| |
| if (!ops->ndo_xdp) |
| return -EOPNOTSUPP; |
| if (fd >= 0) { |
| if (flags & XDP_FLAGS_UPDATE_IF_NOEXIST) { |
| memset(&xdp, 0, sizeof(xdp)); |
| xdp.command = XDP_QUERY_PROG; |
| |
| err = ops->ndo_xdp(dev, &xdp); |
| if (err < 0) |
| return err; |
| if (xdp.prog_attached) |
| return -EBUSY; |
| } |
| |
| prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP); |
| if (IS_ERR(prog)) |
| return PTR_ERR(prog); |
| } |
| |
| memset(&xdp, 0, sizeof(xdp)); |
| xdp.command = XDP_SETUP_PROG; |
| xdp.prog = prog; |
| |
| err = ops->ndo_xdp(dev, &xdp); |
| if (err < 0 && prog) |
| bpf_prog_put(prog); |
| |
| return err; |
| } |
| EXPORT_SYMBOL(dev_change_xdp_fd); |
| |
| /** |
| * dev_new_index - allocate an ifindex |
| * @net: the applicable net namespace |
| * |
| * Returns a suitable unique value for a new device interface |
| * number. The caller must hold the rtnl semaphore or the |
| * dev_base_lock to be sure it remains unique. |
| */ |
| static int dev_new_index(struct net *net) |
| { |
| int ifindex = net->ifindex; |
| for (;;) { |
| if (++ifindex <= 0) |
| ifindex = 1; |
| if (!__dev_get_by_index(net, ifindex)) |
| return net->ifindex = ifindex; |
| } |
| } |
| |
| /* Delayed registration/unregisteration */ |
| static LIST_HEAD(net_todo_list); |
| DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); |
| |
| static void net_set_todo(struct net_device *dev) |
| { |
| list_add_tail(&dev->todo_list, &net_todo_list); |
| dev_net(dev)->dev_unreg_count++; |
| } |
| |
| static void rollback_registered_many(struct list_head *head) |
| { |
| struct net_device *dev, *tmp; |
| LIST_HEAD(close_head); |
| |
| BUG_ON(dev_boot_phase); |
| ASSERT_RTNL(); |
| |
| list_for_each_entry_safe(dev, tmp, head, unreg_list) { |
| /* Some devices call without registering |
| * for initialization unwind. Remove those |
| * devices and proceed with the remaining. |
| */ |
| if (dev->reg_state == NETREG_UNINITIALIZED) { |
| pr_debug("unregister_netdevice: device %s/%p never was registered\n", |
| dev->name, dev); |
| |
| WARN_ON(1); |
| list_del(&dev->unreg_list); |
| continue; |
| } |
| dev->dismantle = true; |
| BUG_ON(dev->reg_state != NETREG_REGISTERED); |
| } |
| |
| /* If device is running, close it first. */ |
| list_for_each_entry(dev, head, unreg_list) |
| list_add_tail(&dev->close_list, &close_head); |
| dev_close_many(&close_head, true); |
| |
| list_for_each_entry(dev, head, unreg_list) { |
| /* And unlink it from device chain. */ |
| unlist_netdevice(dev); |
| |
| dev->reg_state = NETREG_UNREGISTERING; |
| } |
| flush_all_backlogs(); |
| |
| synchronize_net(); |
| |
| list_for_each_entry(dev, head, unreg_list) { |
| struct sk_buff *skb = NULL; |
| |
| /* Shutdown queueing discipline. */ |
| dev_shutdown(dev); |
| |
| |
| /* Notify protocols, that we are about to destroy |
| this device. They should clean all the things. |
| */ |
| call_netdevice_notifiers(NETDEV_UNREGISTER, dev); |
| |
| if (!dev->rtnl_link_ops || |
| dev->rtnl_link_state == RTNL_LINK_INITIALIZED) |
| skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, |
| GFP_KERNEL); |
| |
| /* |
| * Flush the unicast and multicast chains |
| */ |
| dev_uc_flush(dev); |
| dev_mc_flush(dev); |
| |
| if (dev->netdev_ops->ndo_uninit) |
| dev->netdev_ops->ndo_uninit(dev); |
| |
| if (skb) |
| rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); |
| |
| /* Notifier chain MUST detach us all upper devices. */ |
| WARN_ON(netdev_has_any_upper_dev(dev)); |
| WARN_ON(netdev_has_any_lower_dev(dev)); |
| |
| /* Remove entries from kobject tree */ |
| netdev_unregister_kobject(dev); |
| #ifdef CONFIG_XPS |
| /* Remove XPS queueing entries */ |
| netif_reset_xps_queues_gt(dev, 0); |
| #endif |
| } |
| |
| synchronize_net(); |
| |
| list_for_each_entry(dev, head, unreg_list) |
| dev_put(dev); |
| } |
| |
| static void rollback_registered(struct net_device *dev) |
| { |
| LIST_HEAD(single); |
| |
| list_add(&dev->unreg_list, &single); |
| rollback_registered_many(&single); |
| list_del(&single); |
| } |
| |
| static netdev_features_t netdev_sync_upper_features(struct net_device *lower, |
| struct net_device *upper, netdev_features_t features) |
| { |
| netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; |
| netdev_features_t feature; |
| int feature_bit; |
| |
| for_each_netdev_feature(&upper_disables, feature_bit) { |
| feature = __NETIF_F_BIT(feature_bit); |
| if (!(upper->wanted_features & feature) |
| && (features & feature)) { |
| netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", |
| &feature, upper->name); |
| features &= ~feature; |
| } |
| } |
| |
| return features; |
| } |
| |
| static void netdev_sync_lower_features(struct net_device *upper, |
| struct net_device *lower, netdev_features_t features) |
| { |
| netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; |
| netdev_features_t feature; |
| int feature_bit; |
| |
| for_each_netdev_feature(&upper_disables, feature_bit) { |
| feature = __NETIF_F_BIT(feature_bit); |
| if (!(features & feature) && (lower->features & feature)) { |
| netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", |
| &feature, lower->name); |
| lower->wanted_features &= ~feature; |
| netdev_update_features(lower); |
| |
| if (unlikely(lower->features & feature)) |
| netdev_WARN(upper, "failed to disable %pNF on %s!\n", |
| &feature, lower->name); |
| } |
| } |
| } |
| |
| static netdev_features_t netdev_fix_features(struct net_device *dev, |
| netdev_features_t features) |
| { |
| /* Fix illegal checksum combinations */ |
| if ((features & NETIF_F_HW_CSUM) && |
| (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { |
| netdev_warn(dev, "mixed HW and IP checksum settings.\n"); |
| features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); |
| } |
| |
| /* TSO requires that SG is present as well. */ |
| if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { |
| netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); |
| features &= ~NETIF_F_ALL_TSO; |
| } |
| |
| if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && |
| !(features & NETIF_F_IP_CSUM)) { |
| netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); |
| features &= ~NETIF_F_TSO; |
| features &= ~NETIF_F_TSO_ECN; |
| } |
| |
| if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && |
| !(features & NETIF_F_IPV6_CSUM)) { |
| netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); |
| features &= ~NETIF_F_TSO6; |
| } |
| |
| /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ |
| if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) |
| features &= ~NETIF_F_TSO_MANGLEID; |
| |
| /* TSO ECN requires that TSO is present as well. */ |
| if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) |
| features &= ~NETIF_F_TSO_ECN; |
| |
| /* Software GSO depends on SG. */ |
| if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { |
| netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); |
| features &= ~NETIF_F_GSO; |
| } |
| |
| /* UFO needs SG and checksumming */ |
| if (features & NETIF_F_UFO) { |
| /* maybe split UFO into V4 and V6? */ |
| if (!(features & NETIF_F_HW_CSUM) && |
| ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) != |
| (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) { |
| netdev_dbg(dev, |
| "Dropping NETIF_F_UFO since no checksum offload features.\n"); |
| features &= ~NETIF_F_UFO; |
| } |
| |
| if (!(features & NETIF_F_SG)) { |
| netdev_dbg(dev, |
| "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); |
| features &= ~NETIF_F_UFO; |
| } |
| } |
| |
| /* GSO partial features require GSO partial be set */ |
| if ((features & dev->gso_partial_features) && |
| !(features & NETIF_F_GSO_PARTIAL)) { |
| netdev_dbg(dev, |
| "Dropping partially supported GSO features since no GSO partial.\n"); |
| features &= ~dev->gso_partial_features; |
| } |
| |
| #ifdef CONFIG_NET_RX_BUSY_POLL |
| if (dev->netdev_ops->ndo_busy_poll) |
| features |= NETIF_F_BUSY_POLL; |
| else |
| #endif |
| features &= ~NETIF_F_BUSY_POLL; |
| |
| return features; |
| } |
| |
| int __netdev_update_features(struct net_device *dev) |
| { |
| struct net_device *upper, *lower; |
| netdev_features_t features; |
| struct list_head *iter; |
| int err = -1; |
| |
| ASSERT_RTNL(); |
| |
| features = netdev_get_wanted_features(dev); |
| |
| if (dev->netdev_ops->ndo_fix_features) |
| features = dev->netdev_ops->ndo_fix_features(dev, features); |
| |
| /* driver might be less strict about feature dependencies */ |
| features = netdev_fix_features(dev, features); |
| |
| /* some features can't be enabled if they're off an an upper device */ |
| netdev_for_each_upper_dev_rcu(dev, upper, iter) |
| features = netdev_sync_upper_features(dev, upper, features); |
| |
| if (dev->features == features) |
| goto sync_lower; |
| |
| netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", |
| &dev->features, &features); |
| |
| if (dev->netdev_ops->ndo_set_features) |
| err = dev->netdev_ops->ndo_set_features(dev, features); |
| else |
| err = 0; |
| |
| if (unlikely(err < 0)) { |
| netdev_err(dev, |
| "set_features() failed (%d); wanted %pNF, left %pNF\n", |
| err, &features, &dev->features); |
| /* return non-0 since some features might have changed and |
| * it's better to fire a spurious notification than miss it |
| */ |
| return -1; |
| } |
| |
| sync_lower: |
| /* some features must be disabled on lower devices when disabled |
| * on an upper device (think: bonding master or bridge) |
| */ |
| netdev_for_each_lower_dev(dev, lower, iter) |
| netdev_sync_lower_features(dev, lower, features); |
| |
| if (!err) |
| dev->features = features; |
| |
| return err < 0 ? 0 : 1; |
| } |
| |
| /** |
| * netdev_update_features - recalculate device features |
| * @dev: the device to check |
| * |
| * Recalculate dev->features set and send notifications if it |
| * has changed. Should be called after driver or hardware dependent |
| * conditions might have changed that influence the features. |
| */ |
| void netdev_update_features(struct net_device *dev) |
| { |
| if (__netdev_update_features(dev)) |
| netdev_features_change(dev); |
| } |
| EXPORT_SYMBOL(netdev_update_features); |
| |
| /** |
| * netdev_change_features - recalculate device features |
| * @dev: the device to check |
| * |
| * Recalculate dev->features set and send notifications even |
| * if they have not changed. Should be called instead of |
| * netdev_update_features() if also dev->vlan_features might |
| * have changed to allow the changes to be propagated to stacked |
| * VLAN devices. |
| */ |
| void netdev_change_features(struct net_device *dev) |
| { |
| __netdev_update_features(dev); |
| netdev_features_change(dev); |
| } |
| EXPORT_SYMBOL(netdev_change_features); |
| |
| /** |
| * netif_stacked_transfer_operstate - transfer operstate |
| * @rootdev: the root or lower level device to transfer state from |
| * @dev: the device to transfer operstate to |
| * |
| * Transfer operational state from root to device. This is normally |
| * called when a stacking relationship exists between the root |
| * device and the device(a leaf device). |
| */ |
| void netif_stacked_transfer_operstate(const struct net_device *rootdev, |
| struct net_device *dev) |
| { |
| if (rootdev->operstate == IF_OPER_DORMANT) |
| netif_dormant_on(dev); |
| else |
| netif_dormant_off(dev); |
| |
| if (netif_carrier_ok(rootdev)) { |
| if (!netif_carrier_ok(dev)) |
| netif_carrier_on(dev); |
| } else { |
| if (netif_carrier_ok(dev)) |
| netif_carrier_off(dev); |
| } |
| } |
| EXPORT_SYMBOL(netif_stacked_transfer_operstate); |
| |
| #ifdef CONFIG_SYSFS |
| static int netif_alloc_rx_queues(struct net_device *dev) |
| { |
| unsigned int i, count = dev->num_rx_queues; |
| struct netdev_rx_queue *rx; |
| size_t sz = count * sizeof(*rx); |
| |
| BUG_ON(count < 1); |
| |
| rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); |
| if (!rx) { |
| rx = vzalloc(sz); |
| if (!rx) |
| return -ENOMEM; |
| } |
| dev->_rx = rx; |
| |
| for (i = 0; i < count; i++) |
| rx[i].dev = dev; |
| return 0; |
| } |
| #endif |
| |
| static void netdev_init_one_queue(struct net_device *dev, |
| struct netdev_queue *queue, void *_unused) |
| { |
| /* Initialize queue lock */ |
| spin_lock_init(&queue->_xmit_lock); |
| netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); |
| queue->xmit_lock_owner = -1; |
| netdev_queue_numa_node_write(queue, NUMA_NO_NODE); |
| queue->dev = dev; |
| #ifdef CONFIG_BQL |
| dql_init(&queue->dql, HZ); |
| #endif |
| } |
| |
| static void netif_free_tx_queues(struct net_device *dev) |
| { |
| kvfree(dev->_tx); |
| } |
| |
| static int netif_alloc_netdev_queues(struct net_device *dev) |
| { |
| unsigned int count = dev->num_tx_queues; |
| struct netdev_queue *tx; |
| size_t sz = count * sizeof(*tx); |
| |
| if (count < 1 || count > 0xffff) |
| return -EINVAL; |
| |
| tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); |
| if (!tx) { |
| tx = vzalloc(sz); |
| if (!tx) |
| return -ENOMEM; |
| } |
| dev->_tx = tx; |
| |
| netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); |
| spin_lock_init(&dev->tx_global_lock); |
| |
| return 0; |
| } |
| |
| void netif_tx_stop_all_queues(struct net_device *dev) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < dev->num_tx_queues; i++) { |
| struct netdev_queue *txq = netdev_get_tx_queue(dev, i); |
| netif_tx_stop_queue(txq); |
| } |
| } |
| EXPORT_SYMBOL(netif_tx_stop_all_queues); |
| |
| /** |
| * register_netdevice - register a network device |
| * @dev: device to register |
| * |
| * Take a completed network device structure and add it to the kernel |
| * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier |
| * chain. 0 is returned on success. A negative errno code is returned |
| * on a failure to set up the device, or if the name is a duplicate. |
| * |
| * Callers must hold the rtnl semaphore. You may want |
| * register_netdev() instead of this. |
| * |
| * BUGS: |
| * The locking appears insufficient to guarantee two parallel registers |
| * will not get the same name. |
| */ |
| |
| int register_netdevice(struct net_device *dev) |
| { |
| int ret; |
| struct net *net = dev_net(dev); |
| |
| BUG_ON(dev_boot_phase); |
| ASSERT_RTNL(); |
| |
| might_sleep(); |
| |
| /* When net_device's are persistent, this will be fatal. */ |
| BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); |
| BUG_ON(!net); |
| |
| spin_lock_init(&dev->addr_list_lock); |
| netdev_set_addr_lockdep_class(dev); |
| |
| ret = dev_get_valid_name(net, dev, dev->name); |
| if (ret < 0) |
| goto out; |
| |
| /* Init, if this function is available */ |
| if (dev->netdev_ops->ndo_init) { |
| ret = dev->netdev_ops->ndo_init(dev); |
| if (ret) { |
| if (ret > 0) |
| ret = -EIO; |
| goto out; |
| } |
| } |
| |
| if (((dev->hw_features | dev->features) & |
| NETIF_F_HW_VLAN_CTAG_FILTER) && |
| (!dev->netdev_ops->ndo_vlan_rx_add_vid || |
| !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { |
| netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); |
| ret = -EINVAL; |
| goto err_uninit; |
| } |
| |
| ret = -EBUSY; |
| if (!dev->ifindex) |
| dev->ifindex = dev_new_index(net); |
| else if (__dev_get_by_index(net, dev->ifindex)) |
| goto err_uninit; |
| |
| /* Transfer changeable features to wanted_features and enable |
| * software offloads (GSO and GRO). |
| */ |
| dev->hw_features |= NETIF_F_SOFT_FEATURES; |
| dev->features |= NETIF_F_SOFT_FEATURES; |
| dev->wanted_features = dev->features & dev->hw_features; |
| |
| if (!(dev->flags & IFF_LOOPBACK)) |
| dev->hw_features |= NETIF_F_NOCACHE_COPY; |
| |
| /* If IPv4 TCP segmentation offload is supported we should also |
| * allow the device to enable segmenting the frame with the option |
| * of ignoring a static IP ID value. This doesn't enable the |
| * feature itself but allows the user to enable it later. |
| */ |
| if (dev->hw_features & NETIF_F_TSO) |
| dev->hw_features |= NETIF_F_TSO_MANGLEID; |
| if (dev->vlan_features & NETIF_F_TSO) |
| dev->vlan_features |= NETIF_F_TSO_MANGLEID; |
| if (dev->mpls_features & NETIF_F_TSO) |
| dev->mpls_features |= NETIF_F_TSO_MANGLEID; |
| if (dev->hw_enc_features & NETIF_F_TSO) |
| dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; |
| |
| /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. |
| */ |
| dev->vlan_features |= NETIF_F_HIGHDMA; |
| |
| /* Make NETIF_F_SG inheritable to tunnel devices. |
| */ |
| dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; |
| |
| /* Make NETIF_F_SG inheritable to MPLS. |
| */ |
| dev->mpls_features |= NETIF_F_SG; |
| |
| ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); |
| ret = notifier_to_errno(ret); |
| if (ret) |
| goto err_uninit; |
| |
| ret = netdev_register_kobject(dev); |
| if (ret) |
| goto err_uninit; |
| dev->reg_state = NETREG_REGISTERED; |
| |
| __netdev_update_features(dev); |
| |
| /* |
| * Default initial state at registry is that the |
| * device is present. |
| */ |
| |
| set_bit(__LINK_STATE_PRESENT, &dev->state); |
| |
| linkwatch_init_dev(dev); |
| |
| dev_init_scheduler(dev); |
| dev_hold(dev); |
| list_netdevice(dev); |
| add_device_randomness(dev->dev_addr, dev->addr_len); |
| |
| /* If the device has permanent device address, driver should |
| * set dev_addr and also addr_assign_type should be set to |
| * NET_ADDR_PERM (default value). |
| */ |
| if (dev->addr_assign_type == NET_ADDR_PERM) |
| memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); |
| |
| /* Notify protocols, that a new device appeared. */ |
| ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); |
| ret = notifier_to_errno(ret); |
| if (ret) { |
| rollback_registered(dev); |
| dev->reg_state = NETREG_UNREGISTERED; |
| } |
| /* |
| * Prevent userspace races by waiting until the network |
| * device is fully setup before sending notifications. |
| */ |
| if (!dev->rtnl_link_ops || |
| dev->rtnl_link_state == RTNL_LINK_INITIALIZED) |
| rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); |
| |
| out: |
| return ret; |
| |
| err_uninit: |
| if (dev->netdev_ops->ndo_uninit) |
| dev->netdev_ops->ndo_uninit(dev); |
| goto out; |
| } |
| EXPORT_SYMBOL(register_netdevice); |
| |
| /** |
| * init_dummy_netdev - init a dummy network device for NAPI |
| * @dev: device to init |
| * |
| * This takes a network device structure and initialize the minimum |
| * amount of fields so it can be used to schedule NAPI polls without |
| * registering a full blown interface. This is to be used by drivers |
| * that need to tie several hardware interfaces to a single NAPI |
| * poll scheduler due to HW limitations. |
| */ |
| int init_dummy_netdev(struct net_device *dev) |
| { |
| /* Clear everything. Note we don't initialize spinlocks |
| * are they aren't supposed to be taken by any of the |
| * NAPI code and this dummy netdev is supposed to be |
| * only ever used for NAPI polls |
| */ |
| memset(dev, 0, sizeof(struct net_device)); |
| |
| /* make sure we BUG if trying to hit standard |
| * register/unregister code path |
| */ |
| dev->reg_state = NETREG_DUMMY; |
| |
| /* NAPI wants this */ |
| INIT_LIST_HEAD(&dev->napi_list); |
| |
| /* a dummy interface is started by default */ |
| set_bit(__LINK_STATE_PRESENT, &dev->state); |
| set_bit(__LINK_STATE_START, &dev->state); |
| |
| /* Note : We dont allocate pcpu_refcnt for dummy devices, |
| * because users of this 'device' dont need to change |
| * its refcount. |
| */ |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(init_dummy_netdev); |
| |
| |
| /** |
| * register_netdev - register a network device |
| * @dev: device to register |
| * |
| * Take a completed network device structure and add it to the kernel |
| * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier |
| * chain. 0 is returned on success. A negative errno code is returned |
| * on a failure to set up the device, or if the name is a duplicate. |
| * |
| * This is a wrapper around register_netdevice that takes the rtnl semaphore |
| * and expands the device name if you passed a format string to |
| * alloc_netdev. |
| */ |
| int register_netdev(struct net_device *dev) |
| { |
| int err; |
| |
| rtnl_lock(); |
| err = register_netdevice(dev); |
| rtnl_unlock(); |
| return err; |
| } |
| EXPORT_SYMBOL(register_netdev); |
| |
| int netdev_refcnt_read(const struct net_device *dev) |
| { |
| int i, refcnt = 0; |
| |
| for_each_possible_cpu(i) |
| refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); |
| return refcnt; |
| } |
| EXPORT_SYMBOL(netdev_refcnt_read); |
| |
| /** |
| * netdev_wait_allrefs - wait until all references are gone. |
| * @dev: target net_device |
| * |
| * This is called when unregistering network devices. |
| * |
| * Any protocol or device that holds a reference should register |
| * for netdevice notification, and cleanup and put back the |
| * reference if they receive an UNREGISTER event. |
| * We can get stuck here if buggy protocols don't correctly |
| * call dev_put. |
| */ |
| static void netdev_wait_allrefs(struct net_device *dev) |
| { |
| unsigned long rebroadcast_time, warning_time; |
| int refcnt; |
| |
| linkwatch_forget_dev(dev); |
| |
| rebroadcast_time = warning_time = jiffies; |
| refcnt = netdev_refcnt_read(dev); |
| |
| while (refcnt != 0) { |
| if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { |
| rtnl_lock(); |
| |
| /* Rebroadcast unregister notification */ |
| call_netdevice_notifiers(NETDEV_UNREGISTER, dev); |
| |
| __rtnl_unlock(); |
| rcu_barrier(); |
| rtnl_lock(); |
| |
| call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); |
| if (test_bit(__LINK_STATE_LINKWATCH_PENDING, |
| &dev->state)) { |
| /* We must not have linkwatch events |
| * pending on unregister. If this |
| * happens, we simply run the queue |
| * unscheduled, resulting in a noop |
| * for this device. |
| */ |
| linkwatch_run_queue(); |
| } |
| |
| __rtnl_unlock(); |
| |
| rebroadcast_time = jiffies; |
| } |
| |
| msleep(250); |
| |
| refcnt = netdev_refcnt_read(dev); |
| |
| if (time_after(jiffies, warning_time + 10 * HZ)) { |
| pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", |
| dev->name, refcnt); |
| warning_time = jiffies; |
| } |
| } |
| } |
| |
| /* The sequence is: |
| * |
| * rtnl_lock(); |
| * ... |
| * register_netdevice(x1); |
| * register_netdevice(x2); |
| * ... |
| * unregister_netdevice(y1); |
| * unregister_netdevice(y2); |
| * ... |
| * rtnl_unlock(); |
| * free_netdev(y1); |
| * free_netdev(y2); |
| * |
| * We are invoked by rtnl_unlock(). |
| * This allows us to deal with problems: |
| * 1) We can delete sysfs objects which invoke hotplug |
| * without deadlocking with linkwatch via keventd. |
| * 2) Since we run with the RTNL semaphore not held, we can sleep |
| * safely in order to wait for the netdev refcnt to drop to zero. |
| * |
| * We must not return until all unregister events added during |
| * the interval the lock was held have been completed. |
| */ |
| void netdev_run_todo(void) |
| { |
| struct list_head list; |
| |
| /* Snapshot list, allow later requests */ |
| list_replace_init(&net_todo_list, &list); |
| |
| __rtnl_unlock(); |
| |
| |
| /* Wait for rcu callbacks to finish before next phase */ |
| if (!list_empty(&list)) |
| rcu_barrier(); |
| |
| while (!list_empty(&list)) { |
| struct net_device *dev |
| = list_first_entry(&list, struct net_device, todo_list); |
| list_del(&dev->todo_list); |
| |
| rtnl_lock(); |
| call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); |
| __rtnl_unlock(); |
| |
| if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { |
| pr_err("network todo '%s' but state %d\n", |
| dev->name, dev->reg_state); |
| dump_stack(); |
| continue; |
| } |
| |
| dev->reg_state = NETREG_UNREGISTERED; |
| |
| netdev_wait_allrefs(dev); |
| |
| /* paranoia */ |
| BUG_ON(netdev_refcnt_read(dev)); |
| BUG_ON(!list_empty(&dev->ptype_all)); |
| BUG_ON(!list_empty(&dev->ptype_specific)); |
| WARN_ON(rcu_access_pointer(dev->ip_ptr)); |
| WARN_ON(rcu_access_pointer(dev->ip6_ptr)); |
| WARN_ON(dev->dn_ptr); |
| |
| if (dev->destructor) |
| dev->destructor(dev); |
| |
| /* Report a network device has been unregistered */ |
| rtnl_lock(); |
| dev_net(dev)->dev_unreg_count--; |
| __rtnl_unlock(); |
| wake_up(&netdev_unregistering_wq); |
| |
| /* Free network device */ |
| kobject_put(&dev->dev.kobj); |
| } |
| } |
| |
| /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has |
| * all the same fields in the same order as net_device_stats, with only |
| * the type differing, but rtnl_link_stats64 may have additional fields |
| * at the end for newer counters. |
| */ |
| void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, |
| const struct net_device_stats *netdev_stats) |
| { |
| #if BITS_PER_LONG == 64 |
| BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); |
| memcpy(stats64, netdev_stats, sizeof(*stats64)); |
| /* zero out counters that only exist in rtnl_link_stats64 */ |
| memset((char *)stats64 + sizeof(*netdev_stats), 0, |
| sizeof(*stats64) - sizeof(*netdev_stats)); |
| #else |
| size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); |
| const unsigned long *src = (const unsigned long *)netdev_stats; |
| u64 *dst = (u64 *)stats64; |
| |
| BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); |
| for (i = 0; i < n; i++) |
| dst[i] = src[i]; |
| /* zero out counters that only exist in rtnl_link_stats64 */ |
| memset((char *)stats64 + n * sizeof(u64), 0, |
| sizeof(*stats64) - n * sizeof(u64)); |
| #endif |
| } |
| EXPORT_SYMBOL(netdev_stats_to_stats64); |
| |
| /** |
| * dev_get_stats - get network device statistics |
| * @dev: device to get statistics from |
| * @storage: place to store stats |
| * |
| * Get network statistics from device. Return @storage. |
| * The device driver may provide its own method by setting |
| * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; |
| * otherwise the internal statistics structure is used. |
| */ |
| struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, |
| struct rtnl_link_stats64 *storage) |
| { |
| const struct net_device_ops *ops = dev->netdev_ops; |
| |
| if (ops->ndo_get_stats64) { |
| memset(storage, 0, sizeof(*storage)); |
| ops->ndo_get_stats64(dev, storage); |
| } else if (ops->ndo_get_stats) { |
| netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); |
| } else { |
| netdev_stats_to_stats64(storage, &dev->stats); |
| } |
| storage->rx_dropped += atomic_long_read(&dev->rx_dropped); |
| storage->tx_dropped += atomic_long_read(&dev->tx_dropped); |
| storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler); |
| return storage; |
| } |
| EXPORT_SYMBOL(dev_get_stats); |
| |
| struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) |
| { |
| struct netdev_queue *queue = dev_ingress_queue(dev); |
| |
| #ifdef CONFIG_NET_CLS_ACT |
| if (queue) |
| return queue; |
| queue = kzalloc(sizeof(*queue), GFP_KERNEL); |
| if (!queue) |
| return NULL; |
| netdev_init_one_queue(dev, queue, NULL); |
| RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); |
| queue->qdisc_sleeping = &noop_qdisc; |
| rcu_assign_pointer(dev->ingress_queue, queue); |
| #endif |
| return queue; |
| } |
| |
| static const struct ethtool_ops default_ethtool_ops; |
| |
| void netdev_set_default_ethtool_ops(struct net_device *dev, |
| const struct ethtool_ops *ops) |
| { |
| if (dev->ethtool_ops == &default_ethtool_ops) |
| dev->ethtool_ops = ops; |
| } |
| EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); |
| |
| void netdev_freemem(struct net_device *dev) |
| { |
| char *addr = (char *)dev - dev->padded; |
| |
| kvfree(addr); |
| } |
| |
| /** |
| * alloc_netdev_mqs - allocate network device |
| * @sizeof_priv: size of private data to allocate space for |
| * @name: device name format string |
| * @name_assign_type: origin of device name |
| * @setup: callback to initialize device |
| * @txqs: the number of TX subqueues to allocate |
| * @rxqs: the number of RX subqueues to allocate |
| * |
| * Allocates a struct net_device with private data area for driver use |
| * and performs basic initialization. Also allocates subqueue structs |
| * for each queue on the device. |
| */ |
| struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, |
| unsigned char name_assign_type, |
| void (*setup)(struct net_device *), |
| unsigned int txqs, unsigned int rxqs) |
| { |
| struct net_device *dev; |
| size_t alloc_size; |
| struct net_device *p; |
| |
| BUG_ON(strlen(name) >= sizeof(dev->name)); |
| |
| if (txqs < 1) { |
| pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); |
| return NULL; |
| } |
| |
| #ifdef CONFIG_SYSFS |
| if (rxqs < 1) { |
| pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); |
| return NULL; |
| } |
| #endif |
| |
| alloc_size = sizeof(struct net_device); |
| if (sizeof_priv) { |
| /* ensure 32-byte alignment of private area */ |
| alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); |
| alloc_size += sizeof_priv; |
| } |
| /* ensure 32-byte alignment of whole construct */ |
| alloc_size += NETDEV_ALIGN - 1; |
| |
| p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); |
| if (!p) |
| p = vzalloc(alloc_size); |
| if (!p) |
| return NULL; |
| |
| dev = PTR_ALIGN(p, NETDEV_ALIGN); |
| dev->padded = (char *)dev - (char *)p; |
| |
| dev->pcpu_refcnt = alloc_percpu(int); |
| if (!dev->pcpu_refcnt) |
| goto free_dev; |
| |
| if (dev_addr_init(dev)) |
| goto free_pcpu; |
| |
| dev_mc_init(dev); |
| dev_uc_init(dev); |
| |
| dev_net_set(dev, &init_net); |
| |
| dev->gso_max_size = GSO_MAX_SIZE; |
| dev->gso_max_segs = GSO_MAX_SEGS; |
| |
| INIT_LIST_HEAD(&dev->napi_list); |
| INIT_LIST_HEAD(&dev->unreg_list); |
| INIT_LIST_HEAD(&dev->close_list); |
| INIT_LIST_HEAD(&dev->link_watch_list); |
| INIT_LIST_HEAD(&dev->adj_list.upper); |
| INIT_LIST_HEAD(&dev->adj_list.lower); |
| INIT_LIST_HEAD(&dev->ptype_all); |
| INIT_LIST_HEAD(&dev->ptype_specific); |
| #ifdef CONFIG_NET_SCHED |
| hash_init(dev->qdisc_hash); |
| #endif |
| dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; |
| setup(dev); |
| |
| if (!dev->tx_queue_len) { |
| dev->priv_flags |= IFF_NO_QUEUE; |
| dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; |
| } |
| |
| dev->num_tx_queues = txqs; |
| dev->real_num_tx_queues = txqs; |
| if (netif_alloc_netdev_queues(dev)) |
| goto free_all; |
| |
| #ifdef CONFIG_SYSFS |
| dev->num_rx_queues = rxqs; |
| dev->real_num_rx_queues = rxqs; |
| if (netif_alloc_rx_queues(dev)) |
| goto free_all; |
| #endif |
| |
| strcpy(dev->name, name); |
| dev->name_assign_type = name_assign_type; |
| dev->group = INIT_NETDEV_GROUP; |
| if (!dev->ethtool_ops) |
| dev->ethtool_ops = &default_ethtool_ops; |
| |
| nf_hook_ingress_init(dev); |
| |
| return dev; |
| |
| free_all: |
| free_netdev(dev); |
| return NULL; |
| |
| free_pcpu: |
| free_percpu(dev->pcpu_refcnt); |
| free_dev: |
| netdev_freemem(dev); |
| return NULL; |
| } |
| EXPORT_SYMBOL(alloc_netdev_mqs); |
| |
| /** |
| * free_netdev - free network device |
| * @dev: device |
| * |
| * This function does the last stage of destroying an allocated device |
| * interface. The reference to the device object is released. |
| * If this is the last reference then it will be freed. |
| * Must be called in process context. |
| */ |
| void free_netdev(struct net_device *dev) |
| { |
| struct napi_struct *p, *n; |
| |
| might_sleep(); |
| netif_free_tx_queues(dev); |
| #ifdef CONFIG_SYSFS |
| kvfree(dev->_rx); |
| #endif |
| |
| kfree(rcu_dereference_protected(dev->ingress_queue, 1)); |
| |
| /* Flush device addresses */ |
| dev_addr_flush(dev); |
| |
| list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) |
| netif_napi_del(p); |
| |
| free_percpu(dev->pcpu_refcnt); |
| dev->pcpu_refcnt = NULL; |
| |
| /* Compatibility with error handling in drivers */ |
| if (dev->reg_state == NETREG_UNINITIALIZED) { |
| netdev_freemem(dev); |
| return; |
| } |
| |
| BUG_ON(dev->reg_state != NETREG_UNREGISTERED); |
| dev->reg_state = NETREG_RELEASED; |
| |
| /* will free via device release */ |
| put_device(&dev->dev); |
| } |
| EXPORT_SYMBOL(free_netdev); |
| |
| /** |
| * synchronize_net - Synchronize with packet receive processing |
| * |
| * Wait for packets currently being received to be done. |
| * Does not block later packets from starting. |
| */ |
| void synchronize_net(void) |
| { |
| might_sleep(); |
| if (rtnl_is_locked()) |
| synchronize_rcu_expedited(); |
| else |
| synchronize_rcu(); |
| } |
| EXPORT_SYMBOL(synchronize_net); |
| |
| /** |
| * unregister_netdevice_queue - remove device from the kernel |
| * @dev: device |
| * @head: list |
| * |
| * This function shuts down a device interface and removes it |
| * from the kernel tables. |
| * If head not NULL, device is queued to be unregistered later. |
| * |
| * Callers must hold the rtnl semaphore. You may want |
| * unregister_netdev() instead of this. |
| */ |
| |
| void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) |
| { |
| ASSERT_RTNL(); |
| |
| if (head) { |
| list_move_tail(&dev->unreg_list, head); |
| } else { |
| rollback_registered(dev); |
| /* Finish processing unregister after unlock */ |
| net_set_todo(dev); |
| } |
| } |
| EXPORT_SYMBOL(unregister_netdevice_queue); |
| |
| /** |
| * unregister_netdevice_many - unregister many devices |
| * @head: list of devices |
| * |
| * Note: As most callers use a stack allocated list_head, |
| * we force a list_del() to make sure stack wont be corrupted later. |
| */ |
| void unregister_netdevice_many(struct list_head *head) |
| { |
| struct net_device *dev; |
| |
| if (!list_empty(head)) { |
| rollback_registered_many(head); |
| list_for_each_entry(dev, head, unreg_list) |
| net_set_todo(dev); |
| list_del(head); |
| } |
| } |
| EXPORT_SYMBOL(unregister_netdevice_many); |
| |
| /** |
| * unregister_netdev - remove device from the kernel |
| * @dev: device |
| * |
| * This function shuts down a device interface and removes it |
| * from the kernel tables. |
| * |
| * This is just a wrapper for unregister_netdevice that takes |
| * the rtnl semaphore. In general you want to use this and not |
| * unregister_netdevice. |
| */ |
| void unregister_netdev(struct net_device *dev) |
| { |
| rtnl_lock(); |
| unregister_netdevice(dev); |
| rtnl_unlock(); |
| } |
| EXPORT_SYMBOL(unregister_netdev); |
| |
| /** |
| * dev_change_net_namespace - move device to different nethost namespace |
| * @dev: device |
| * @net: network namespace |
| * @pat: If not NULL name pattern to try if the current device name |
| * is already taken in the destination network namespace. |
| * |
| * This function shuts down a device interface and moves it |
| * to a new network namespace. On success 0 is returned, on |
| * a failure a netagive errno code is returned. |
| * |
| * Callers must hold the rtnl semaphore. |
| */ |
| |
| int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) |
| { |
| int err; |
| |
| ASSERT_RTNL(); |
| |
| /* Don't allow namespace local devices to be moved. */ |
| err = -EINVAL; |
| if (dev->features & NETIF_F_NETNS_LOCAL) |
| goto out; |
| |
| /* Ensure the device has been registrered */ |
| if (dev->reg_state != NETREG_REGISTERED) |
| goto out; |
| |
| /* Get out if there is nothing todo */ |
| err = 0; |
| if (net_eq(dev_net(dev), net)) |
| goto out; |
| |
| /* Pick the destination device name, and ensure |
| * we can use it in the destination network namespace. |
| */ |
| err = -EEXIST; |
| if (__dev_get_by_name(net, dev->name)) { |
| /* We get here if we can't use the current device name */ |
| if (!pat) |
| goto out; |
| if (dev_get_valid_name(net, dev, pat) < 0) |
| goto out; |
| } |
| |
| /* |
| * And now a mini version of register_netdevice unregister_netdevice. |
| */ |
| |
| /* If device is running close it first. */ |
| dev_close(dev); |
| |
| /* And unlink it from device chain */ |
| err = -ENODEV; |
| unlist_netdevice(dev); |
| |
| synchronize_net(); |
| |
| /* Shutdown queueing discipline. */ |
| dev_shutdown(dev); |
| |
| /* Notify protocols, that we are about to destroy |
| this device. They should clean all the things. |
| |
| Note that dev->reg_state stays at NETREG_REGISTERED. |
| This is wanted because this way 8021q and macvlan know |
| the device is just moving and can keep their slaves up. |
| */ |
| call_netdevice_notifiers(NETDEV_UNREGISTER, dev); |
| rcu_barrier(); |
| call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); |
| rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); |
| |
| /* |
| * Flush the unicast and multicast chains |
| */ |
| dev_uc_flush(dev); |
| dev_mc_flush(dev); |
| |
| /* Send a netdev-removed uevent to the old namespace */ |
| kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); |
| netdev_adjacent_del_links(dev); |
| |
| /* Actually switch the network namespace */ |
| dev_net_set(dev, net); |
| |
| /* If there is an ifindex conflict assign a new one */ |
| if (__dev_get_by_index(net, dev->ifindex)) |
| dev->ifindex = dev_new_index(net); |
| |
| /* Send a netdev-add uevent to the new namespace */ |
| kobject_uevent(&dev->dev.kobj, KOBJ_ADD); |
| netdev_adjacent_add_links(dev); |
| |
| /* Fixup kobjects */ |
| err = device_rename(&dev->dev, dev->name); |
| WARN_ON(err); |
| |
| /* Add the device back in the hashes */ |
| list_netdevice(dev); |
| |
| /* Notify protocols, that a new device appeared. */ |
| call_netdevice_notifiers(NETDEV_REGISTER, dev); |
| |
| /* |
| * Prevent userspace races by waiting until the network |
| * device is fully setup before sending notifications. |
| */ |
| rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); |
| |
| synchronize_net(); |
| err = 0; |
| out: |
| return err; |
| } |
| EXPORT_SYMBOL_GPL(dev_change_net_namespace); |
| |
| static int dev_cpu_dead(unsigned int oldcpu) |
| { |
| struct sk_buff **list_skb; |
| struct sk_buff *skb; |
| unsigned int cpu; |
| struct softnet_data *sd, *oldsd; |
| |
| local_irq_disable(); |
| cpu = smp_processor_id(); |
| sd = &per_cpu(softnet_data, cpu); |
| oldsd = &per_cpu(softnet_data, oldcpu); |
| |
| /* Find end of our completion_queue. */ |
| list_skb = &sd->completion_queue; |
| while (*list_skb) |
| list_skb = &(*list_skb)->next; |
| /* Append completion queue from offline CPU. */ |
| *list_skb = oldsd->completion_queue; |
| oldsd->completion_queue = NULL; |
| |
| /* Append output queue from offline CPU. */ |
| if (oldsd->output_queue) { |
| *sd->output_queue_tailp = oldsd->output_queue; |
| sd->output_queue_tailp = oldsd->output_queue_tailp; |
| oldsd->output_queue = NULL; |
| oldsd->output_queue_tailp = &oldsd->output_queue; |
| } |
| /* Append NAPI poll list from offline CPU, with one exception : |
| * process_backlog() must be called by cpu owning percpu backlog. |
| * We properly handle process_queue & input_pkt_queue later. |
| */ |
| while (!list_empty(&oldsd->poll_list)) { |
| struct napi_struct *napi = list_first_entry(&oldsd->poll_list, |
| struct napi_struct, |
| poll_list); |
| |
| list_del_init(&napi->poll_list); |
| if (napi->poll == process_backlog) |
| napi->state = 0; |
| else |
| ____napi_schedule(sd, napi); |
| } |
| |
| raise_softirq_irqoff(NET_TX_SOFTIRQ); |
| local_irq_enable(); |
| |
| /* Process offline CPU's input_pkt_queue */ |
| while ((skb = __skb_dequeue(&oldsd->process_queue))) { |
| netif_rx_ni(skb); |
| input_queue_head_incr(oldsd); |
| } |
| while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { |
| netif_rx_ni(skb); |
| input_queue_head_incr(oldsd); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * netdev_increment_features - increment feature set by one |
| * @all: current feature set |
| * @one: new feature set |
| * @mask: mask feature set |
| * |
| * Computes a new feature set after adding a device with feature set |
| * @one to the master device with current feature set @all. Will not |
| * enable anything that is off in @mask. Returns the new feature set. |
| */ |
| netdev_features_t netdev_increment_features(netdev_features_t all, |
| netdev_features_t one, netdev_features_t mask) |
| { |
| if (mask & NETIF_F_HW_CSUM) |
| mask |= NETIF_F_CSUM_MASK; |
| mask |= NETIF_F_VLAN_CHALLENGED; |
| |
| all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; |
| all &= one | ~NETIF_F_ALL_FOR_ALL; |
| |
| /* If one device supports hw checksumming, set for all. */ |
| if (all & NETIF_F_HW_CSUM) |
| all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); |
| |
| return all; |
| } |
| EXPORT_SYMBOL(netdev_increment_features); |
| |
| static struct hlist_head * __net_init netdev_create_hash(void) |
| { |
| int i; |
| struct hlist_head *hash; |
| |
| hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); |
| if (hash != NULL) |
| for (i = 0; i < NETDEV_HASHENTRIES; i++) |
| INIT_HLIST_HEAD(&hash[i]); |
| |
| return hash; |
| } |
| |
| /* Initialize per network namespace state */ |
| static int __net_init netdev_init(struct net *net) |
| { |
| if (net != &init_net) |
| INIT_LIST_HEAD(&net->dev_base_head); |
| |
| net->dev_name_head = netdev_create_hash(); |
| if (net->dev_name_head == NULL) |
| goto err_name; |
| |
| net->dev_index_head = netdev_create_hash(); |
| if (net->dev_index_head == NULL) |
| goto err_idx; |
| |
| return 0; |
| |
| err_idx: |
| kfree(net->dev_name_head); |
| err_name: |
| return -ENOMEM; |
| } |
| |
| /** |
| * netdev_drivername - network driver for the device |
| * @dev: network device |
| * |
| * Determine network driver for device. |
| */ |
| const char *netdev_drivername(const struct net_device *dev) |
| { |
| const struct device_driver *driver; |
| const struct device *parent; |
| const char *empty = ""; |
| |
| parent = dev->dev.parent; |
| if (!parent) |
| return empty; |
| |
| driver = parent->driver; |
| if (driver && driver->name) |
| return driver->name; |
| return empty; |
| } |
| |
| static void __netdev_printk(const char *level, const struct net_device *dev, |
| struct va_format *vaf) |
| { |
| if (dev && dev->dev.parent) { |
| dev_printk_emit(level[1] - '0', |
| dev->dev.parent, |
| "%s %s %s%s: %pV", |
| dev_driver_string(dev->dev.parent), |
| dev_name(dev->dev.parent), |
| netdev_name(dev), netdev_reg_state(dev), |
| vaf); |
| } else if (dev) { |
| printk("%s%s%s: %pV", |
| level, netdev_name(dev), netdev_reg_state(dev), vaf); |
| } else { |
| printk("%s(NULL net_device): %pV", level, vaf); |
| } |
| } |
| |
| void netdev_printk(const char *level, const struct net_device *dev, |
| const char *format, ...) |
| { |
| struct va_format vaf; |
| va_list args; |
| |
| va_start(args, format); |
| |
| vaf.fmt = format; |
| vaf.va = &args; |
| |
| __netdev_printk(level, dev, &vaf); |
| |
| va_end(args); |
| } |
| EXPORT_SYMBOL(netdev_printk); |
| |
| #define define_netdev_printk_level(func, level) \ |
| void func(const struct net_device *dev, const char *fmt, ...) \ |
| { \ |
| struct va_format vaf; \ |
| va_list args; \ |
| \ |
| va_start(args, fmt); \ |
| \ |
| vaf.fmt = fmt; \ |
| vaf.va = &args; \ |
| \ |
| __netdev_printk(level, dev, &vaf); \ |
| \ |
| va_end(args); \ |
| } \ |
| EXPORT_SYMBOL(func); |
| |
| define_netdev_printk_level(netdev_emerg, KERN_EMERG); |
| define_netdev_printk_level(netdev_alert, KERN_ALERT); |
| define_netdev_printk_level(netdev_crit, KERN_CRIT); |
| define_netdev_printk_level(netdev_err, KERN_ERR); |
| define_netdev_printk_level(netdev_warn, KERN_WARNING); |
| define_netdev_printk_level(netdev_notice, KERN_NOTICE); |
| define_netdev_printk_level(netdev_info, KERN_INFO); |
| |
| static void __net_exit netdev_exit(struct net *net) |
| { |
| kfree(net->dev_name_head); |
| kfree(net->dev_index_head); |
| } |
| |
| static struct pernet_operations __net_initdata netdev_net_ops = { |
| .init = netdev_init, |
| .exit = netdev_exit, |
| }; |
| |
| static void __net_exit default_device_exit(struct net *net) |
| { |
| struct net_device *dev, *aux; |
| /* |
| * Push all migratable network devices back to the |
| * initial network namespace |
| */ |
| rtnl_lock(); |
| for_each_netdev_safe(net, dev, aux) { |
| int err; |
| char fb_name[IFNAMSIZ]; |
| |
| /* Ignore unmoveable devices (i.e. loopback) */ |
| if (dev->features & NETIF_F_NETNS_LOCAL) |
| continue; |
| |
| /* Leave virtual devices for the generic cleanup */ |
| if (dev->rtnl_link_ops) |
| continue; |
| |
| /* Push remaining network devices to init_net */ |
| snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); |
| err = dev_change_net_namespace(dev, &init_net, fb_name); |
| if (err) { |
| pr_emerg("%s: failed to move %s to init_net: %d\n", |
| __func__, dev->name, err); |
| BUG(); |
| } |
| } |
| rtnl_unlock(); |
| } |
| |
| static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) |
| { |
| /* Return with the rtnl_lock held when there are no network |
| * devices unregistering in any network namespace in net_list. |
| */ |
| struct net *net; |
| bool unregistering; |
| DEFINE_WAIT_FUNC(wait, woken_wake_function); |
| |
| add_wait_queue(&netdev_unregistering_wq, &wait); |
| for (;;) { |
| unregistering = false; |
| rtnl_lock(); |
| list_for_each_entry(net, net_list, exit_list) { |
| if (net->dev_unreg_count > 0) { |
| unregistering = true; |
| break; |
| } |
| } |
| if (!unregistering) |
| break; |
| __rtnl_unlock(); |
| |
| wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); |
| } |
| remove_wait_queue(&netdev_unregistering_wq, &wait); |
| } |
| |
| static void __net_exit default_device_exit_batch(struct list_head *net_list) |
| { |
| /* At exit all network devices most be removed from a network |
| * namespace. Do this in the reverse order of registration. |
| * Do this across as many network namespaces as possible to |
| * improve batching efficiency. |
| */ |
| struct net_device *dev; |
| struct net *net; |
| LIST_HEAD(dev_kill_list); |
| |
| /* To prevent network device cleanup code from dereferencing |
| * loopback devices or network devices that have been freed |
| * wait here for all pending unregistrations to complete, |
| * before unregistring the loopback device and allowing the |
| * network namespace be freed. |
| * |
| * The netdev todo list containing all network devices |
| * unregistrations that happen in default_device_exit_batch |
| * will run in the rtnl_unlock() at the end of |
| * default_device_exit_batch. |
| */ |
| rtnl_lock_unregistering(net_list); |
| list_for_each_entry(net, net_list, exit_list) { |
| for_each_netdev_reverse(net, dev) { |
| if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) |
| dev->rtnl_link_ops->dellink(dev, &dev_kill_list); |
| else |
| unregister_netdevice_queue(dev, &dev_kill_list); |
| } |
| } |
| unregister_netdevice_many(&dev_kill_list); |
| rtnl_unlock(); |
| } |
| |
| static struct pernet_operations __net_initdata default_device_ops = { |
| .exit = default_device_exit, |
| .exit_batch = default_device_exit_batch, |
| }; |
| |
| /* |
| * Initialize the DEV module. At boot time this walks the device list and |
| * unhooks any devices that fail to initialise (normally hardware not |
| * present) and leaves us with a valid list of present and active devices. |
| * |
| */ |
| |
| /* |
| * This is called single threaded during boot, so no need |
| * to take the rtnl semaphore. |
| */ |
| static int __init net_dev_init(void) |
| { |
| int i, rc = -ENOMEM; |
| |
| BUG_ON(!dev_boot_phase); |
| |
| if (dev_proc_init()) |
| goto out; |
| |
| if (netdev_kobject_init()) |
| goto out; |
| |
| INIT_LIST_HEAD(&ptype_all); |
| for (i = 0; i < PTYPE_HASH_SIZE; i++) |
| INIT_LIST_HEAD(&ptype_base[i]); |
| |
| INIT_LIST_HEAD(&offload_base); |
| |
| if (register_pernet_subsys(&netdev_net_ops)) |
| goto out; |
| |
| /* |
| * Initialise the packet receive queues. |
| */ |
| |
| for_each_possible_cpu(i) { |
| struct work_struct *flush = per_cpu_ptr(&flush_works, i); |
| struct softnet_data *sd = &per_cpu(softnet_data, i); |
| |
| INIT_WORK(flush, flush_backlog); |
| |
| skb_queue_head_init(&sd->input_pkt_queue); |
| skb_queue_head_init(&sd->process_queue); |
| INIT_LIST_HEAD(&sd->poll_list); |
| sd->output_queue_tailp = &sd->output_queue; |
| #ifdef CONFIG_RPS |
| sd->csd.func = rps_trigger_softirq; |
| sd->csd.info = sd; |
| sd->cpu = i; |
| #endif |
| |
| sd->backlog.poll = process_backlog; |
| sd->backlog.weight = weight_p; |
| } |
| |
| dev_boot_phase = 0; |
| |
| /* The loopback device is special if any other network devices |
| * is present in a network namespace the loopback device must |
| * be present. Since we now dynamically allocate and free the |
| * loopback device ensure this invariant is maintained by |
| * keeping the loopback device as the first device on the |
| * list of network devices. Ensuring the loopback devices |
| * is the first device that appears and the last network device |
| * that disappears. |
| */ |
| if (register_pernet_device(&loopback_net_ops)) |
| goto out; |
| |
| if (register_pernet_device(&default_device_ops)) |
| goto out; |
| |
| open_softirq(NET_TX_SOFTIRQ, net_tx_action); |
| open_softirq(NET_RX_SOFTIRQ, net_rx_action); |
| |
| rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", |
| NULL, dev_cpu_dead); |
| WARN_ON(rc < 0); |
| dst_subsys_init(); |
| rc = 0; |
| out: |
| return rc; |
| } |
| |
| subsys_initcall(net_dev_init); |