| /* |
| * New driver for Marvell Yukon 2 chipset. |
| * Based on earlier sk98lin, and skge driver. |
| * |
| * This driver intentionally does not support all the features |
| * of the original driver such as link fail-over and link management because |
| * those should be done at higher levels. |
| * |
| * Copyright (C) 2005 Stephen Hemminger <shemminger@osdl.org> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| */ |
| |
| #include <linux/crc32.h> |
| #include <linux/kernel.h> |
| #include <linux/version.h> |
| #include <linux/module.h> |
| #include <linux/netdevice.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/etherdevice.h> |
| #include <linux/ethtool.h> |
| #include <linux/pci.h> |
| #include <linux/ip.h> |
| #include <linux/tcp.h> |
| #include <linux/in.h> |
| #include <linux/delay.h> |
| #include <linux/workqueue.h> |
| #include <linux/if_vlan.h> |
| #include <linux/prefetch.h> |
| #include <linux/mii.h> |
| |
| #include <asm/irq.h> |
| |
| #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE) |
| #define SKY2_VLAN_TAG_USED 1 |
| #endif |
| |
| #include "sky2.h" |
| |
| #define DRV_NAME "sky2" |
| #define DRV_VERSION "1.7" |
| #define PFX DRV_NAME " " |
| |
| /* |
| * The Yukon II chipset takes 64 bit command blocks (called list elements) |
| * that are organized into three (receive, transmit, status) different rings |
| * similar to Tigon3. A transmit can require several elements; |
| * a receive requires one (or two if using 64 bit dma). |
| */ |
| |
| #define RX_LE_SIZE 512 |
| #define RX_LE_BYTES (RX_LE_SIZE*sizeof(struct sky2_rx_le)) |
| #define RX_MAX_PENDING (RX_LE_SIZE/2 - 2) |
| #define RX_DEF_PENDING RX_MAX_PENDING |
| #define RX_SKB_ALIGN 8 |
| #define RX_BUF_WRITE 16 |
| |
| #define TX_RING_SIZE 512 |
| #define TX_DEF_PENDING (TX_RING_SIZE - 1) |
| #define TX_MIN_PENDING 64 |
| #define MAX_SKB_TX_LE (4 + (sizeof(dma_addr_t)/sizeof(u32))*MAX_SKB_FRAGS) |
| |
| #define STATUS_RING_SIZE 2048 /* 2 ports * (TX + 2*RX) */ |
| #define STATUS_LE_BYTES (STATUS_RING_SIZE*sizeof(struct sky2_status_le)) |
| #define ETH_JUMBO_MTU 9000 |
| #define TX_WATCHDOG (5 * HZ) |
| #define NAPI_WEIGHT 64 |
| #define PHY_RETRIES 1000 |
| |
| #define RING_NEXT(x,s) (((x)+1) & ((s)-1)) |
| |
| static const u32 default_msg = |
| NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
| | NETIF_MSG_TIMER | NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR |
| | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN; |
| |
| static int debug = -1; /* defaults above */ |
| module_param(debug, int, 0); |
| MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); |
| |
| static int copybreak __read_mostly = 256; |
| module_param(copybreak, int, 0); |
| MODULE_PARM_DESC(copybreak, "Receive copy threshold"); |
| |
| static int disable_msi = 0; |
| module_param(disable_msi, int, 0); |
| MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)"); |
| |
| static int idle_timeout = 100; |
| module_param(idle_timeout, int, 0); |
| MODULE_PARM_DESC(idle_timeout, "Idle timeout workaround for lost interrupts (ms)"); |
| |
| static const struct pci_device_id sky2_id_table[] = { |
| { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x9000) }, |
| { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x9E00) }, |
| { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b00) }, /* DGE-560T */ |
| { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4001) }, /* DGE-550SX */ |
| { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4340) }, |
| { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4341) }, |
| { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4342) }, |
| { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4343) }, |
| { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4344) }, |
| { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4345) }, |
| { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4346) }, |
| { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4347) }, |
| { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4350) }, |
| { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4351) }, |
| { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4352) }, |
| { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4353) }, |
| { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4360) }, |
| { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4361) }, |
| { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4362) }, |
| { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4363) }, |
| { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4364) }, |
| { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4365) }, |
| { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4366) }, |
| { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4367) }, |
| { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4368) }, |
| { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4369) }, |
| { 0 } |
| }; |
| |
| MODULE_DEVICE_TABLE(pci, sky2_id_table); |
| |
| /* Avoid conditionals by using array */ |
| static const unsigned txqaddr[] = { Q_XA1, Q_XA2 }; |
| static const unsigned rxqaddr[] = { Q_R1, Q_R2 }; |
| static const u32 portirq_msk[] = { Y2_IS_PORT_1, Y2_IS_PORT_2 }; |
| |
| /* This driver supports yukon2 chipset only */ |
| static const char *yukon2_name[] = { |
| "XL", /* 0xb3 */ |
| "EC Ultra", /* 0xb4 */ |
| "UNKNOWN", /* 0xb5 */ |
| "EC", /* 0xb6 */ |
| "FE", /* 0xb7 */ |
| }; |
| |
| /* Access to external PHY */ |
| static int gm_phy_write(struct sky2_hw *hw, unsigned port, u16 reg, u16 val) |
| { |
| int i; |
| |
| gma_write16(hw, port, GM_SMI_DATA, val); |
| gma_write16(hw, port, GM_SMI_CTRL, |
| GM_SMI_CT_PHY_AD(PHY_ADDR_MARV) | GM_SMI_CT_REG_AD(reg)); |
| |
| for (i = 0; i < PHY_RETRIES; i++) { |
| if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY)) |
| return 0; |
| udelay(1); |
| } |
| |
| printk(KERN_WARNING PFX "%s: phy write timeout\n", hw->dev[port]->name); |
| return -ETIMEDOUT; |
| } |
| |
| static int __gm_phy_read(struct sky2_hw *hw, unsigned port, u16 reg, u16 *val) |
| { |
| int i; |
| |
| gma_write16(hw, port, GM_SMI_CTRL, GM_SMI_CT_PHY_AD(PHY_ADDR_MARV) |
| | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD); |
| |
| for (i = 0; i < PHY_RETRIES; i++) { |
| if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL) { |
| *val = gma_read16(hw, port, GM_SMI_DATA); |
| return 0; |
| } |
| |
| udelay(1); |
| } |
| |
| return -ETIMEDOUT; |
| } |
| |
| static u16 gm_phy_read(struct sky2_hw *hw, unsigned port, u16 reg) |
| { |
| u16 v; |
| |
| if (__gm_phy_read(hw, port, reg, &v) != 0) |
| printk(KERN_WARNING PFX "%s: phy read timeout\n", hw->dev[port]->name); |
| return v; |
| } |
| |
| static void sky2_set_power_state(struct sky2_hw *hw, pci_power_t state) |
| { |
| u16 power_control; |
| int vaux; |
| |
| pr_debug("sky2_set_power_state %d\n", state); |
| sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON); |
| |
| power_control = sky2_pci_read16(hw, hw->pm_cap + PCI_PM_PMC); |
| vaux = (sky2_read16(hw, B0_CTST) & Y2_VAUX_AVAIL) && |
| (power_control & PCI_PM_CAP_PME_D3cold); |
| |
| power_control = sky2_pci_read16(hw, hw->pm_cap + PCI_PM_CTRL); |
| |
| power_control |= PCI_PM_CTRL_PME_STATUS; |
| power_control &= ~(PCI_PM_CTRL_STATE_MASK); |
| |
| switch (state) { |
| case PCI_D0: |
| /* switch power to VCC (WA for VAUX problem) */ |
| sky2_write8(hw, B0_POWER_CTRL, |
| PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON); |
| |
| /* disable Core Clock Division, */ |
| sky2_write32(hw, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS); |
| |
| if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev > 1) |
| /* enable bits are inverted */ |
| sky2_write8(hw, B2_Y2_CLK_GATE, |
| Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS | |
| Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS | |
| Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS); |
| else |
| sky2_write8(hw, B2_Y2_CLK_GATE, 0); |
| |
| if (hw->chip_id == CHIP_ID_YUKON_EC_U) { |
| u32 reg1; |
| |
| sky2_pci_write32(hw, PCI_DEV_REG3, 0); |
| reg1 = sky2_pci_read32(hw, PCI_DEV_REG4); |
| reg1 &= P_ASPM_CONTROL_MSK; |
| sky2_pci_write32(hw, PCI_DEV_REG4, reg1); |
| sky2_pci_write32(hw, PCI_DEV_REG5, 0); |
| } |
| |
| break; |
| |
| case PCI_D3hot: |
| case PCI_D3cold: |
| if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev > 1) |
| sky2_write8(hw, B2_Y2_CLK_GATE, 0); |
| else |
| /* enable bits are inverted */ |
| sky2_write8(hw, B2_Y2_CLK_GATE, |
| Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS | |
| Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS | |
| Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS); |
| |
| /* switch power to VAUX */ |
| if (vaux && state != PCI_D3cold) |
| sky2_write8(hw, B0_POWER_CTRL, |
| (PC_VAUX_ENA | PC_VCC_ENA | |
| PC_VAUX_ON | PC_VCC_OFF)); |
| break; |
| default: |
| printk(KERN_ERR PFX "Unknown power state %d\n", state); |
| } |
| |
| sky2_pci_write16(hw, hw->pm_cap + PCI_PM_CTRL, power_control); |
| sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF); |
| } |
| |
| static void sky2_gmac_reset(struct sky2_hw *hw, unsigned port) |
| { |
| u16 reg; |
| |
| /* disable all GMAC IRQ's */ |
| sky2_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0); |
| /* disable PHY IRQs */ |
| gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0); |
| |
| gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */ |
| gma_write16(hw, port, GM_MC_ADDR_H2, 0); |
| gma_write16(hw, port, GM_MC_ADDR_H3, 0); |
| gma_write16(hw, port, GM_MC_ADDR_H4, 0); |
| |
| reg = gma_read16(hw, port, GM_RX_CTRL); |
| reg |= GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA; |
| gma_write16(hw, port, GM_RX_CTRL, reg); |
| } |
| |
| static void sky2_phy_init(struct sky2_hw *hw, unsigned port) |
| { |
| struct sky2_port *sky2 = netdev_priv(hw->dev[port]); |
| u16 ctrl, ct1000, adv, pg, ledctrl, ledover, reg; |
| |
| if (sky2->autoneg == AUTONEG_ENABLE && |
| !(hw->chip_id == CHIP_ID_YUKON_XL || hw->chip_id == CHIP_ID_YUKON_EC_U)) { |
| u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL); |
| |
| ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK | |
| PHY_M_EC_MAC_S_MSK); |
| ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ); |
| |
| if (hw->chip_id == CHIP_ID_YUKON_EC) |
| ectrl |= PHY_M_EC_DSC_2(2) | PHY_M_EC_DOWN_S_ENA; |
| else |
| ectrl |= PHY_M_EC_M_DSC(2) | PHY_M_EC_S_DSC(3); |
| |
| gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl); |
| } |
| |
| ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL); |
| if (sky2_is_copper(hw)) { |
| if (hw->chip_id == CHIP_ID_YUKON_FE) { |
| /* enable automatic crossover */ |
| ctrl |= PHY_M_PC_MDI_XMODE(PHY_M_PC_ENA_AUTO) >> 1; |
| } else { |
| /* disable energy detect */ |
| ctrl &= ~PHY_M_PC_EN_DET_MSK; |
| |
| /* enable automatic crossover */ |
| ctrl |= PHY_M_PC_MDI_XMODE(PHY_M_PC_ENA_AUTO); |
| |
| if (sky2->autoneg == AUTONEG_ENABLE && |
| (hw->chip_id == CHIP_ID_YUKON_XL || hw->chip_id == CHIP_ID_YUKON_EC_U)) { |
| ctrl &= ~PHY_M_PC_DSC_MSK; |
| ctrl |= PHY_M_PC_DSC(2) | PHY_M_PC_DOWN_S_ENA; |
| } |
| } |
| } else { |
| /* workaround for deviation #4.88 (CRC errors) */ |
| /* disable Automatic Crossover */ |
| |
| ctrl &= ~PHY_M_PC_MDIX_MSK; |
| } |
| |
| gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl); |
| |
| /* special setup for PHY 88E1112 Fiber */ |
| if (hw->chip_id == CHIP_ID_YUKON_XL && !sky2_is_copper(hw)) { |
| pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR); |
| |
| /* Fiber: select 1000BASE-X only mode MAC Specific Ctrl Reg. */ |
| gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 2); |
| ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL); |
| ctrl &= ~PHY_M_MAC_MD_MSK; |
| ctrl |= PHY_M_MAC_MODE_SEL(PHY_M_MAC_MD_1000BX); |
| gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl); |
| |
| if (hw->pmd_type == 'P') { |
| /* select page 1 to access Fiber registers */ |
| gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 1); |
| |
| /* for SFP-module set SIGDET polarity to low */ |
| ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL); |
| ctrl |= PHY_M_FIB_SIGD_POL; |
| gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); |
| } |
| |
| gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg); |
| } |
| |
| ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL); |
| if (sky2->autoneg == AUTONEG_DISABLE) |
| ctrl &= ~PHY_CT_ANE; |
| else |
| ctrl |= PHY_CT_ANE; |
| |
| ctrl |= PHY_CT_RESET; |
| gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); |
| |
| ctrl = 0; |
| ct1000 = 0; |
| adv = PHY_AN_CSMA; |
| reg = 0; |
| |
| if (sky2->autoneg == AUTONEG_ENABLE) { |
| if (sky2_is_copper(hw)) { |
| if (sky2->advertising & ADVERTISED_1000baseT_Full) |
| ct1000 |= PHY_M_1000C_AFD; |
| if (sky2->advertising & ADVERTISED_1000baseT_Half) |
| ct1000 |= PHY_M_1000C_AHD; |
| if (sky2->advertising & ADVERTISED_100baseT_Full) |
| adv |= PHY_M_AN_100_FD; |
| if (sky2->advertising & ADVERTISED_100baseT_Half) |
| adv |= PHY_M_AN_100_HD; |
| if (sky2->advertising & ADVERTISED_10baseT_Full) |
| adv |= PHY_M_AN_10_FD; |
| if (sky2->advertising & ADVERTISED_10baseT_Half) |
| adv |= PHY_M_AN_10_HD; |
| } else { /* special defines for FIBER (88E1040S only) */ |
| if (sky2->advertising & ADVERTISED_1000baseT_Full) |
| adv |= PHY_M_AN_1000X_AFD; |
| if (sky2->advertising & ADVERTISED_1000baseT_Half) |
| adv |= PHY_M_AN_1000X_AHD; |
| } |
| |
| /* Set Flow-control capabilities */ |
| if (sky2->tx_pause && sky2->rx_pause) |
| adv |= PHY_AN_PAUSE_CAP; /* symmetric */ |
| else if (sky2->rx_pause && !sky2->tx_pause) |
| adv |= PHY_AN_PAUSE_ASYM | PHY_AN_PAUSE_CAP; |
| else if (!sky2->rx_pause && sky2->tx_pause) |
| adv |= PHY_AN_PAUSE_ASYM; /* local */ |
| |
| /* Restart Auto-negotiation */ |
| ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG; |
| } else { |
| /* forced speed/duplex settings */ |
| ct1000 = PHY_M_1000C_MSE; |
| |
| /* Disable auto update for duplex flow control and speed */ |
| reg |= GM_GPCR_AU_ALL_DIS; |
| |
| switch (sky2->speed) { |
| case SPEED_1000: |
| ctrl |= PHY_CT_SP1000; |
| reg |= GM_GPCR_SPEED_1000; |
| break; |
| case SPEED_100: |
| ctrl |= PHY_CT_SP100; |
| reg |= GM_GPCR_SPEED_100; |
| break; |
| } |
| |
| if (sky2->duplex == DUPLEX_FULL) { |
| reg |= GM_GPCR_DUP_FULL; |
| ctrl |= PHY_CT_DUP_MD; |
| } else if (sky2->speed != SPEED_1000 && hw->chip_id != CHIP_ID_YUKON_EC_U) { |
| /* Turn off flow control for 10/100mbps */ |
| sky2->rx_pause = 0; |
| sky2->tx_pause = 0; |
| } |
| |
| if (!sky2->rx_pause) |
| reg |= GM_GPCR_FC_RX_DIS; |
| |
| if (!sky2->tx_pause) |
| reg |= GM_GPCR_FC_TX_DIS; |
| |
| /* Forward pause packets to GMAC? */ |
| if (sky2->tx_pause || sky2->rx_pause) |
| sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON); |
| else |
| sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF); |
| |
| ctrl |= PHY_CT_RESET; |
| } |
| |
| gma_write16(hw, port, GM_GP_CTRL, reg); |
| |
| if (hw->chip_id != CHIP_ID_YUKON_FE) |
| gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000); |
| |
| gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv); |
| gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); |
| |
| /* Setup Phy LED's */ |
| ledctrl = PHY_M_LED_PULS_DUR(PULS_170MS); |
| ledover = 0; |
| |
| switch (hw->chip_id) { |
| case CHIP_ID_YUKON_FE: |
| /* on 88E3082 these bits are at 11..9 (shifted left) */ |
| ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) << 1; |
| |
| ctrl = gm_phy_read(hw, port, PHY_MARV_FE_LED_PAR); |
| |
| /* delete ACT LED control bits */ |
| ctrl &= ~PHY_M_FELP_LED1_MSK; |
| /* change ACT LED control to blink mode */ |
| ctrl |= PHY_M_FELP_LED1_CTRL(LED_PAR_CTRL_ACT_BL); |
| gm_phy_write(hw, port, PHY_MARV_FE_LED_PAR, ctrl); |
| break; |
| |
| case CHIP_ID_YUKON_XL: |
| pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR); |
| |
| /* select page 3 to access LED control register */ |
| gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3); |
| |
| /* set LED Function Control register */ |
| gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, |
| (PHY_M_LEDC_LOS_CTRL(1) | /* LINK/ACT */ |
| PHY_M_LEDC_INIT_CTRL(7) | /* 10 Mbps */ |
| PHY_M_LEDC_STA1_CTRL(7) | /* 100 Mbps */ |
| PHY_M_LEDC_STA0_CTRL(7))); /* 1000 Mbps */ |
| |
| /* set Polarity Control register */ |
| gm_phy_write(hw, port, PHY_MARV_PHY_STAT, |
| (PHY_M_POLC_LS1_P_MIX(4) | |
| PHY_M_POLC_IS0_P_MIX(4) | |
| PHY_M_POLC_LOS_CTRL(2) | |
| PHY_M_POLC_INIT_CTRL(2) | |
| PHY_M_POLC_STA1_CTRL(2) | |
| PHY_M_POLC_STA0_CTRL(2))); |
| |
| /* restore page register */ |
| gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg); |
| break; |
| case CHIP_ID_YUKON_EC_U: |
| pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR); |
| |
| /* select page 3 to access LED control register */ |
| gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3); |
| |
| /* set LED Function Control register */ |
| gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, |
| (PHY_M_LEDC_LOS_CTRL(1) | /* LINK/ACT */ |
| PHY_M_LEDC_INIT_CTRL(8) | /* 10 Mbps */ |
| PHY_M_LEDC_STA1_CTRL(7) | /* 100 Mbps */ |
| PHY_M_LEDC_STA0_CTRL(7)));/* 1000 Mbps */ |
| |
| /* set Blink Rate in LED Timer Control Register */ |
| gm_phy_write(hw, port, PHY_MARV_INT_MASK, |
| ledctrl | PHY_M_LED_BLINK_RT(BLINK_84MS)); |
| /* restore page register */ |
| gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg); |
| break; |
| |
| default: |
| /* set Tx LED (LED_TX) to blink mode on Rx OR Tx activity */ |
| ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) | PHY_M_LEDC_TX_CTRL; |
| /* turn off the Rx LED (LED_RX) */ |
| ledover |= PHY_M_LED_MO_RX(MO_LED_OFF); |
| } |
| |
| if (hw->chip_id == CHIP_ID_YUKON_EC_U && hw->chip_rev == CHIP_REV_YU_EC_A1) { |
| /* apply fixes in PHY AFE */ |
| pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR); |
| gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 255); |
| |
| /* increase differential signal amplitude in 10BASE-T */ |
| gm_phy_write(hw, port, 0x18, 0xaa99); |
| gm_phy_write(hw, port, 0x17, 0x2011); |
| |
| /* fix for IEEE A/B Symmetry failure in 1000BASE-T */ |
| gm_phy_write(hw, port, 0x18, 0xa204); |
| gm_phy_write(hw, port, 0x17, 0x2002); |
| |
| /* set page register to 0 */ |
| gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg); |
| } else { |
| gm_phy_write(hw, port, PHY_MARV_LED_CTRL, ledctrl); |
| |
| if (sky2->autoneg == AUTONEG_DISABLE || sky2->speed == SPEED_100) { |
| /* turn on 100 Mbps LED (LED_LINK100) */ |
| ledover |= PHY_M_LED_MO_100(MO_LED_ON); |
| } |
| |
| if (ledover) |
| gm_phy_write(hw, port, PHY_MARV_LED_OVER, ledover); |
| |
| } |
| |
| /* Enable phy interrupt on auto-negotiation complete (or link up) */ |
| if (sky2->autoneg == AUTONEG_ENABLE) |
| gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_COMPL); |
| else |
| gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK); |
| } |
| |
| static void sky2_phy_power(struct sky2_hw *hw, unsigned port, int onoff) |
| { |
| u32 reg1; |
| static const u32 phy_power[] |
| = { PCI_Y2_PHY1_POWD, PCI_Y2_PHY2_POWD }; |
| |
| /* looks like this XL is back asswards .. */ |
| if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev > 1) |
| onoff = !onoff; |
| |
| reg1 = sky2_pci_read32(hw, PCI_DEV_REG1); |
| |
| if (onoff) |
| /* Turn off phy power saving */ |
| reg1 &= ~phy_power[port]; |
| else |
| reg1 |= phy_power[port]; |
| |
| sky2_pci_write32(hw, PCI_DEV_REG1, reg1); |
| sky2_pci_read32(hw, PCI_DEV_REG1); |
| udelay(100); |
| } |
| |
| /* Force a renegotiation */ |
| static void sky2_phy_reinit(struct sky2_port *sky2) |
| { |
| spin_lock_bh(&sky2->phy_lock); |
| sky2_phy_init(sky2->hw, sky2->port); |
| spin_unlock_bh(&sky2->phy_lock); |
| } |
| |
| static void sky2_mac_init(struct sky2_hw *hw, unsigned port) |
| { |
| struct sky2_port *sky2 = netdev_priv(hw->dev[port]); |
| u16 reg; |
| int i; |
| const u8 *addr = hw->dev[port]->dev_addr; |
| |
| sky2_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET); |
| sky2_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_CLR|GPC_ENA_PAUSE); |
| |
| sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR); |
| |
| if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev == 0 && port == 1) { |
| /* WA DEV_472 -- looks like crossed wires on port 2 */ |
| /* clear GMAC 1 Control reset */ |
| sky2_write8(hw, SK_REG(0, GMAC_CTRL), GMC_RST_CLR); |
| do { |
| sky2_write8(hw, SK_REG(1, GMAC_CTRL), GMC_RST_SET); |
| sky2_write8(hw, SK_REG(1, GMAC_CTRL), GMC_RST_CLR); |
| } while (gm_phy_read(hw, 1, PHY_MARV_ID0) != PHY_MARV_ID0_VAL || |
| gm_phy_read(hw, 1, PHY_MARV_ID1) != PHY_MARV_ID1_Y2 || |
| gm_phy_read(hw, 1, PHY_MARV_INT_MASK) != 0); |
| } |
| |
| sky2_read16(hw, SK_REG(port, GMAC_IRQ_SRC)); |
| |
| /* Enable Transmit FIFO Underrun */ |
| sky2_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK); |
| |
| spin_lock_bh(&sky2->phy_lock); |
| sky2_phy_init(hw, port); |
| spin_unlock_bh(&sky2->phy_lock); |
| |
| /* MIB clear */ |
| reg = gma_read16(hw, port, GM_PHY_ADDR); |
| gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR); |
| |
| for (i = GM_MIB_CNT_BASE; i <= GM_MIB_CNT_END; i += 4) |
| gma_read16(hw, port, i); |
| gma_write16(hw, port, GM_PHY_ADDR, reg); |
| |
| /* transmit control */ |
| gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF)); |
| |
| /* receive control reg: unicast + multicast + no FCS */ |
| gma_write16(hw, port, GM_RX_CTRL, |
| GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA); |
| |
| /* transmit flow control */ |
| gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff); |
| |
| /* transmit parameter */ |
| gma_write16(hw, port, GM_TX_PARAM, |
| TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | |
| TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) | |
| TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) | |
| TX_BACK_OFF_LIM(TX_BOF_LIM_DEF)); |
| |
| /* serial mode register */ |
| reg = DATA_BLIND_VAL(DATA_BLIND_DEF) | |
| GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF); |
| |
| if (hw->dev[port]->mtu > ETH_DATA_LEN) |
| reg |= GM_SMOD_JUMBO_ENA; |
| |
| gma_write16(hw, port, GM_SERIAL_MODE, reg); |
| |
| /* virtual address for data */ |
| gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr); |
| |
| /* physical address: used for pause frames */ |
| gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr); |
| |
| /* ignore counter overflows */ |
| gma_write16(hw, port, GM_TX_IRQ_MSK, 0); |
| gma_write16(hw, port, GM_RX_IRQ_MSK, 0); |
| gma_write16(hw, port, GM_TR_IRQ_MSK, 0); |
| |
| /* Configure Rx MAC FIFO */ |
| sky2_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR); |
| sky2_write32(hw, SK_REG(port, RX_GMF_CTRL_T), |
| GMF_OPER_ON | GMF_RX_F_FL_ON); |
| |
| /* Flush Rx MAC FIFO on any flow control or error */ |
| sky2_write16(hw, SK_REG(port, RX_GMF_FL_MSK), GMR_FS_ANY_ERR); |
| |
| /* Set threshold to 0xa (64 bytes) |
| * ASF disabled so no need to do WA dev #4.30 |
| */ |
| sky2_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF); |
| |
| /* Configure Tx MAC FIFO */ |
| sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR); |
| sky2_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON); |
| |
| if (hw->chip_id == CHIP_ID_YUKON_EC_U) { |
| sky2_write8(hw, SK_REG(port, RX_GMF_LP_THR), 768/8); |
| sky2_write8(hw, SK_REG(port, RX_GMF_UP_THR), 1024/8); |
| if (hw->dev[port]->mtu > ETH_DATA_LEN) { |
| /* set Tx GMAC FIFO Almost Empty Threshold */ |
| sky2_write32(hw, SK_REG(port, TX_GMF_AE_THR), 0x180); |
| /* Disable Store & Forward mode for TX */ |
| sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T), TX_STFW_DIS); |
| } |
| } |
| |
| } |
| |
| /* Assign Ram Buffer allocation. |
| * start and end are in units of 4k bytes |
| * ram registers are in units of 64bit words |
| */ |
| static void sky2_ramset(struct sky2_hw *hw, u16 q, u8 startk, u8 endk) |
| { |
| u32 start, end; |
| |
| start = startk * 4096/8; |
| end = (endk * 4096/8) - 1; |
| |
| sky2_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR); |
| sky2_write32(hw, RB_ADDR(q, RB_START), start); |
| sky2_write32(hw, RB_ADDR(q, RB_END), end); |
| sky2_write32(hw, RB_ADDR(q, RB_WP), start); |
| sky2_write32(hw, RB_ADDR(q, RB_RP), start); |
| |
| if (q == Q_R1 || q == Q_R2) { |
| u32 space = (endk - startk) * 4096/8; |
| u32 tp = space - space/4; |
| |
| /* On receive queue's set the thresholds |
| * give receiver priority when > 3/4 full |
| * send pause when down to 2K |
| */ |
| sky2_write32(hw, RB_ADDR(q, RB_RX_UTHP), tp); |
| sky2_write32(hw, RB_ADDR(q, RB_RX_LTHP), space/2); |
| |
| tp = space - 2048/8; |
| sky2_write32(hw, RB_ADDR(q, RB_RX_UTPP), tp); |
| sky2_write32(hw, RB_ADDR(q, RB_RX_LTPP), space/4); |
| } else { |
| /* Enable store & forward on Tx queue's because |
| * Tx FIFO is only 1K on Yukon |
| */ |
| sky2_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD); |
| } |
| |
| sky2_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD); |
| sky2_read8(hw, RB_ADDR(q, RB_CTRL)); |
| } |
| |
| /* Setup Bus Memory Interface */ |
| static void sky2_qset(struct sky2_hw *hw, u16 q) |
| { |
| sky2_write32(hw, Q_ADDR(q, Q_CSR), BMU_CLR_RESET); |
| sky2_write32(hw, Q_ADDR(q, Q_CSR), BMU_OPER_INIT); |
| sky2_write32(hw, Q_ADDR(q, Q_CSR), BMU_FIFO_OP_ON); |
| sky2_write32(hw, Q_ADDR(q, Q_WM), BMU_WM_DEFAULT); |
| } |
| |
| /* Setup prefetch unit registers. This is the interface between |
| * hardware and driver list elements |
| */ |
| static void sky2_prefetch_init(struct sky2_hw *hw, u32 qaddr, |
| u64 addr, u32 last) |
| { |
| sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL), PREF_UNIT_RST_SET); |
| sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL), PREF_UNIT_RST_CLR); |
| sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_ADDR_HI), addr >> 32); |
| sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_ADDR_LO), (u32) addr); |
| sky2_write16(hw, Y2_QADDR(qaddr, PREF_UNIT_LAST_IDX), last); |
| sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL), PREF_UNIT_OP_ON); |
| |
| sky2_read32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL)); |
| } |
| |
| static inline struct sky2_tx_le *get_tx_le(struct sky2_port *sky2) |
| { |
| struct sky2_tx_le *le = sky2->tx_le + sky2->tx_prod; |
| |
| sky2->tx_prod = RING_NEXT(sky2->tx_prod, TX_RING_SIZE); |
| return le; |
| } |
| |
| /* Update chip's next pointer */ |
| static inline void sky2_put_idx(struct sky2_hw *hw, unsigned q, u16 idx) |
| { |
| q = Y2_QADDR(q, PREF_UNIT_PUT_IDX); |
| wmb(); |
| sky2_write16(hw, q, idx); |
| sky2_read16(hw, q); |
| } |
| |
| |
| static inline struct sky2_rx_le *sky2_next_rx(struct sky2_port *sky2) |
| { |
| struct sky2_rx_le *le = sky2->rx_le + sky2->rx_put; |
| sky2->rx_put = RING_NEXT(sky2->rx_put, RX_LE_SIZE); |
| return le; |
| } |
| |
| /* Return high part of DMA address (could be 32 or 64 bit) */ |
| static inline u32 high32(dma_addr_t a) |
| { |
| return sizeof(a) > sizeof(u32) ? (a >> 16) >> 16 : 0; |
| } |
| |
| /* Build description to hardware about buffer */ |
| static void sky2_rx_add(struct sky2_port *sky2, dma_addr_t map) |
| { |
| struct sky2_rx_le *le; |
| u32 hi = high32(map); |
| u16 len = sky2->rx_bufsize; |
| |
| if (sky2->rx_addr64 != hi) { |
| le = sky2_next_rx(sky2); |
| le->addr = cpu_to_le32(hi); |
| le->ctrl = 0; |
| le->opcode = OP_ADDR64 | HW_OWNER; |
| sky2->rx_addr64 = high32(map + len); |
| } |
| |
| le = sky2_next_rx(sky2); |
| le->addr = cpu_to_le32((u32) map); |
| le->length = cpu_to_le16(len); |
| le->ctrl = 0; |
| le->opcode = OP_PACKET | HW_OWNER; |
| } |
| |
| |
| /* Tell chip where to start receive checksum. |
| * Actually has two checksums, but set both same to avoid possible byte |
| * order problems. |
| */ |
| static void rx_set_checksum(struct sky2_port *sky2) |
| { |
| struct sky2_rx_le *le; |
| |
| le = sky2_next_rx(sky2); |
| le->addr = cpu_to_le32((ETH_HLEN << 16) | ETH_HLEN); |
| le->ctrl = 0; |
| le->opcode = OP_TCPSTART | HW_OWNER; |
| |
| sky2_write32(sky2->hw, |
| Q_ADDR(rxqaddr[sky2->port], Q_CSR), |
| sky2->rx_csum ? BMU_ENA_RX_CHKSUM : BMU_DIS_RX_CHKSUM); |
| |
| } |
| |
| /* |
| * The RX Stop command will not work for Yukon-2 if the BMU does not |
| * reach the end of packet and since we can't make sure that we have |
| * incoming data, we must reset the BMU while it is not doing a DMA |
| * transfer. Since it is possible that the RX path is still active, |
| * the RX RAM buffer will be stopped first, so any possible incoming |
| * data will not trigger a DMA. After the RAM buffer is stopped, the |
| * BMU is polled until any DMA in progress is ended and only then it |
| * will be reset. |
| */ |
| static void sky2_rx_stop(struct sky2_port *sky2) |
| { |
| struct sky2_hw *hw = sky2->hw; |
| unsigned rxq = rxqaddr[sky2->port]; |
| int i; |
| |
| /* disable the RAM Buffer receive queue */ |
| sky2_write8(hw, RB_ADDR(rxq, RB_CTRL), RB_DIS_OP_MD); |
| |
| for (i = 0; i < 0xffff; i++) |
| if (sky2_read8(hw, RB_ADDR(rxq, Q_RSL)) |
| == sky2_read8(hw, RB_ADDR(rxq, Q_RL))) |
| goto stopped; |
| |
| printk(KERN_WARNING PFX "%s: receiver stop failed\n", |
| sky2->netdev->name); |
| stopped: |
| sky2_write32(hw, Q_ADDR(rxq, Q_CSR), BMU_RST_SET | BMU_FIFO_RST); |
| |
| /* reset the Rx prefetch unit */ |
| sky2_write32(hw, Y2_QADDR(rxq, PREF_UNIT_CTRL), PREF_UNIT_RST_SET); |
| } |
| |
| /* Clean out receive buffer area, assumes receiver hardware stopped */ |
| static void sky2_rx_clean(struct sky2_port *sky2) |
| { |
| unsigned i; |
| |
| memset(sky2->rx_le, 0, RX_LE_BYTES); |
| for (i = 0; i < sky2->rx_pending; i++) { |
| struct ring_info *re = sky2->rx_ring + i; |
| |
| if (re->skb) { |
| pci_unmap_single(sky2->hw->pdev, |
| re->mapaddr, sky2->rx_bufsize, |
| PCI_DMA_FROMDEVICE); |
| kfree_skb(re->skb); |
| re->skb = NULL; |
| } |
| } |
| } |
| |
| /* Basic MII support */ |
| static int sky2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) |
| { |
| struct mii_ioctl_data *data = if_mii(ifr); |
| struct sky2_port *sky2 = netdev_priv(dev); |
| struct sky2_hw *hw = sky2->hw; |
| int err = -EOPNOTSUPP; |
| |
| if (!netif_running(dev)) |
| return -ENODEV; /* Phy still in reset */ |
| |
| switch (cmd) { |
| case SIOCGMIIPHY: |
| data->phy_id = PHY_ADDR_MARV; |
| |
| /* fallthru */ |
| case SIOCGMIIREG: { |
| u16 val = 0; |
| |
| spin_lock_bh(&sky2->phy_lock); |
| err = __gm_phy_read(hw, sky2->port, data->reg_num & 0x1f, &val); |
| spin_unlock_bh(&sky2->phy_lock); |
| |
| data->val_out = val; |
| break; |
| } |
| |
| case SIOCSMIIREG: |
| if (!capable(CAP_NET_ADMIN)) |
| return -EPERM; |
| |
| spin_lock_bh(&sky2->phy_lock); |
| err = gm_phy_write(hw, sky2->port, data->reg_num & 0x1f, |
| data->val_in); |
| spin_unlock_bh(&sky2->phy_lock); |
| break; |
| } |
| return err; |
| } |
| |
| #ifdef SKY2_VLAN_TAG_USED |
| static void sky2_vlan_rx_register(struct net_device *dev, struct vlan_group *grp) |
| { |
| struct sky2_port *sky2 = netdev_priv(dev); |
| struct sky2_hw *hw = sky2->hw; |
| u16 port = sky2->port; |
| |
| spin_lock_bh(&sky2->tx_lock); |
| |
| sky2_write32(hw, SK_REG(port, RX_GMF_CTRL_T), RX_VLAN_STRIP_ON); |
| sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T), TX_VLAN_TAG_ON); |
| sky2->vlgrp = grp; |
| |
| spin_unlock_bh(&sky2->tx_lock); |
| } |
| |
| static void sky2_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid) |
| { |
| struct sky2_port *sky2 = netdev_priv(dev); |
| struct sky2_hw *hw = sky2->hw; |
| u16 port = sky2->port; |
| |
| spin_lock_bh(&sky2->tx_lock); |
| |
| sky2_write32(hw, SK_REG(port, RX_GMF_CTRL_T), RX_VLAN_STRIP_OFF); |
| sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T), TX_VLAN_TAG_OFF); |
| if (sky2->vlgrp) |
| sky2->vlgrp->vlan_devices[vid] = NULL; |
| |
| spin_unlock_bh(&sky2->tx_lock); |
| } |
| #endif |
| |
| /* |
| * It appears the hardware has a bug in the FIFO logic that |
| * cause it to hang if the FIFO gets overrun and the receive buffer |
| * is not 64 byte aligned. The buffer returned from netdev_alloc_skb is |
| * aligned except if slab debugging is enabled. |
| */ |
| static inline struct sk_buff *sky2_alloc_skb(struct net_device *dev, |
| unsigned int length, |
| gfp_t gfp_mask) |
| { |
| struct sk_buff *skb; |
| |
| skb = __netdev_alloc_skb(dev, length + RX_SKB_ALIGN, gfp_mask); |
| if (likely(skb)) { |
| unsigned long p = (unsigned long) skb->data; |
| skb_reserve(skb, ALIGN(p, RX_SKB_ALIGN) - p); |
| } |
| |
| return skb; |
| } |
| |
| /* |
| * Allocate and setup receiver buffer pool. |
| * In case of 64 bit dma, there are 2X as many list elements |
| * available as ring entries |
| * and need to reserve one list element so we don't wrap around. |
| */ |
| static int sky2_rx_start(struct sky2_port *sky2) |
| { |
| struct sky2_hw *hw = sky2->hw; |
| unsigned rxq = rxqaddr[sky2->port]; |
| int i; |
| unsigned thresh; |
| |
| sky2->rx_put = sky2->rx_next = 0; |
| sky2_qset(hw, rxq); |
| |
| if (hw->chip_id == CHIP_ID_YUKON_EC_U && hw->chip_rev >= 2) { |
| /* MAC Rx RAM Read is controlled by hardware */ |
| sky2_write32(hw, Q_ADDR(rxq, Q_F), F_M_RX_RAM_DIS); |
| } |
| |
| sky2_prefetch_init(hw, rxq, sky2->rx_le_map, RX_LE_SIZE - 1); |
| |
| rx_set_checksum(sky2); |
| for (i = 0; i < sky2->rx_pending; i++) { |
| struct ring_info *re = sky2->rx_ring + i; |
| |
| re->skb = sky2_alloc_skb(sky2->netdev, sky2->rx_bufsize, |
| GFP_KERNEL); |
| if (!re->skb) |
| goto nomem; |
| |
| re->mapaddr = pci_map_single(hw->pdev, re->skb->data, |
| sky2->rx_bufsize, PCI_DMA_FROMDEVICE); |
| sky2_rx_add(sky2, re->mapaddr); |
| } |
| |
| |
| /* |
| * The receiver hangs if it receives frames larger than the |
| * packet buffer. As a workaround, truncate oversize frames, but |
| * the register is limited to 9 bits, so if you do frames > 2052 |
| * you better get the MTU right! |
| */ |
| thresh = (sky2->rx_bufsize - 8) / sizeof(u32); |
| if (thresh > 0x1ff) |
| sky2_write32(hw, SK_REG(sky2->port, RX_GMF_CTRL_T), RX_TRUNC_OFF); |
| else { |
| sky2_write16(hw, SK_REG(sky2->port, RX_GMF_TR_THR), thresh); |
| sky2_write32(hw, SK_REG(sky2->port, RX_GMF_CTRL_T), RX_TRUNC_ON); |
| } |
| |
| |
| /* Tell chip about available buffers */ |
| sky2_write16(hw, Y2_QADDR(rxq, PREF_UNIT_PUT_IDX), sky2->rx_put); |
| return 0; |
| nomem: |
| sky2_rx_clean(sky2); |
| return -ENOMEM; |
| } |
| |
| /* Bring up network interface. */ |
| static int sky2_up(struct net_device *dev) |
| { |
| struct sky2_port *sky2 = netdev_priv(dev); |
| struct sky2_hw *hw = sky2->hw; |
| unsigned port = sky2->port; |
| u32 ramsize, rxspace, imask; |
| int cap, err = -ENOMEM; |
| struct net_device *otherdev = hw->dev[sky2->port^1]; |
| |
| /* |
| * On dual port PCI-X card, there is an problem where status |
| * can be received out of order due to split transactions |
| */ |
| if (otherdev && netif_running(otherdev) && |
| (cap = pci_find_capability(hw->pdev, PCI_CAP_ID_PCIX))) { |
| struct sky2_port *osky2 = netdev_priv(otherdev); |
| u16 cmd; |
| |
| cmd = sky2_pci_read16(hw, cap + PCI_X_CMD); |
| cmd &= ~PCI_X_CMD_MAX_SPLIT; |
| sky2_pci_write16(hw, cap + PCI_X_CMD, cmd); |
| |
| sky2->rx_csum = 0; |
| osky2->rx_csum = 0; |
| } |
| |
| if (netif_msg_ifup(sky2)) |
| printk(KERN_INFO PFX "%s: enabling interface\n", dev->name); |
| |
| /* must be power of 2 */ |
| sky2->tx_le = pci_alloc_consistent(hw->pdev, |
| TX_RING_SIZE * |
| sizeof(struct sky2_tx_le), |
| &sky2->tx_le_map); |
| if (!sky2->tx_le) |
| goto err_out; |
| |
| sky2->tx_ring = kcalloc(TX_RING_SIZE, sizeof(struct tx_ring_info), |
| GFP_KERNEL); |
| if (!sky2->tx_ring) |
| goto err_out; |
| sky2->tx_prod = sky2->tx_cons = 0; |
| |
| sky2->rx_le = pci_alloc_consistent(hw->pdev, RX_LE_BYTES, |
| &sky2->rx_le_map); |
| if (!sky2->rx_le) |
| goto err_out; |
| memset(sky2->rx_le, 0, RX_LE_BYTES); |
| |
| sky2->rx_ring = kcalloc(sky2->rx_pending, sizeof(struct ring_info), |
| GFP_KERNEL); |
| if (!sky2->rx_ring) |
| goto err_out; |
| |
| sky2_phy_power(hw, port, 1); |
| |
| sky2_mac_init(hw, port); |
| |
| /* Determine available ram buffer space (in 4K blocks). |
| * Note: not sure about the FE setting below yet |
| */ |
| if (hw->chip_id == CHIP_ID_YUKON_FE) |
| ramsize = 4; |
| else |
| ramsize = sky2_read8(hw, B2_E_0); |
| |
| /* Give transmitter one third (rounded up) */ |
| rxspace = ramsize - (ramsize + 2) / 3; |
| |
| sky2_ramset(hw, rxqaddr[port], 0, rxspace); |
| sky2_ramset(hw, txqaddr[port], rxspace, ramsize); |
| |
| /* Make sure SyncQ is disabled */ |
| sky2_write8(hw, RB_ADDR(port == 0 ? Q_XS1 : Q_XS2, RB_CTRL), |
| RB_RST_SET); |
| |
| sky2_qset(hw, txqaddr[port]); |
| |
| /* Set almost empty threshold */ |
| if (hw->chip_id == CHIP_ID_YUKON_EC_U && hw->chip_rev == 1) |
| sky2_write16(hw, Q_ADDR(txqaddr[port], Q_AL), 0x1a0); |
| |
| sky2_prefetch_init(hw, txqaddr[port], sky2->tx_le_map, |
| TX_RING_SIZE - 1); |
| |
| err = sky2_rx_start(sky2); |
| if (err) |
| goto err_out; |
| |
| /* Enable interrupts from phy/mac for port */ |
| imask = sky2_read32(hw, B0_IMSK); |
| imask |= portirq_msk[port]; |
| sky2_write32(hw, B0_IMSK, imask); |
| |
| return 0; |
| |
| err_out: |
| if (sky2->rx_le) { |
| pci_free_consistent(hw->pdev, RX_LE_BYTES, |
| sky2->rx_le, sky2->rx_le_map); |
| sky2->rx_le = NULL; |
| } |
| if (sky2->tx_le) { |
| pci_free_consistent(hw->pdev, |
| TX_RING_SIZE * sizeof(struct sky2_tx_le), |
| sky2->tx_le, sky2->tx_le_map); |
| sky2->tx_le = NULL; |
| } |
| kfree(sky2->tx_ring); |
| kfree(sky2->rx_ring); |
| |
| sky2->tx_ring = NULL; |
| sky2->rx_ring = NULL; |
| return err; |
| } |
| |
| /* Modular subtraction in ring */ |
| static inline int tx_dist(unsigned tail, unsigned head) |
| { |
| return (head - tail) & (TX_RING_SIZE - 1); |
| } |
| |
| /* Number of list elements available for next tx */ |
| static inline int tx_avail(const struct sky2_port *sky2) |
| { |
| return sky2->tx_pending - tx_dist(sky2->tx_cons, sky2->tx_prod); |
| } |
| |
| /* Estimate of number of transmit list elements required */ |
| static unsigned tx_le_req(const struct sk_buff *skb) |
| { |
| unsigned count; |
| |
| count = sizeof(dma_addr_t) / sizeof(u32); |
| count += skb_shinfo(skb)->nr_frags * count; |
| |
| if (skb_is_gso(skb)) |
| ++count; |
| |
| if (skb->ip_summed == CHECKSUM_PARTIAL) |
| ++count; |
| |
| return count; |
| } |
| |
| /* |
| * Put one packet in ring for transmit. |
| * A single packet can generate multiple list elements, and |
| * the number of ring elements will probably be less than the number |
| * of list elements used. |
| * |
| * No BH disabling for tx_lock here (like tg3) |
| */ |
| static int sky2_xmit_frame(struct sk_buff *skb, struct net_device *dev) |
| { |
| struct sky2_port *sky2 = netdev_priv(dev); |
| struct sky2_hw *hw = sky2->hw; |
| struct sky2_tx_le *le = NULL; |
| struct tx_ring_info *re; |
| unsigned i, len; |
| dma_addr_t mapping; |
| u32 addr64; |
| u16 mss; |
| u8 ctrl; |
| |
| /* No BH disabling for tx_lock here. We are running in BH disabled |
| * context and TX reclaim runs via poll inside of a software |
| * interrupt, and no related locks in IRQ processing. |
| */ |
| if (!spin_trylock(&sky2->tx_lock)) |
| return NETDEV_TX_LOCKED; |
| |
| if (unlikely(tx_avail(sky2) < tx_le_req(skb))) { |
| /* There is a known but harmless race with lockless tx |
| * and netif_stop_queue. |
| */ |
| if (!netif_queue_stopped(dev)) { |
| netif_stop_queue(dev); |
| if (net_ratelimit()) |
| printk(KERN_WARNING PFX "%s: ring full when queue awake!\n", |
| dev->name); |
| } |
| spin_unlock(&sky2->tx_lock); |
| |
| return NETDEV_TX_BUSY; |
| } |
| |
| if (unlikely(netif_msg_tx_queued(sky2))) |
| printk(KERN_DEBUG "%s: tx queued, slot %u, len %d\n", |
| dev->name, sky2->tx_prod, skb->len); |
| |
| len = skb_headlen(skb); |
| mapping = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE); |
| addr64 = high32(mapping); |
| |
| re = sky2->tx_ring + sky2->tx_prod; |
| |
| /* Send high bits if changed or crosses boundary */ |
| if (addr64 != sky2->tx_addr64 || high32(mapping + len) != sky2->tx_addr64) { |
| le = get_tx_le(sky2); |
| le->addr = cpu_to_le32(addr64); |
| le->ctrl = 0; |
| le->opcode = OP_ADDR64 | HW_OWNER; |
| sky2->tx_addr64 = high32(mapping + len); |
| } |
| |
| /* Check for TCP Segmentation Offload */ |
| mss = skb_shinfo(skb)->gso_size; |
| if (mss != 0) { |
| mss += ((skb->h.th->doff - 5) * 4); /* TCP options */ |
| mss += (skb->nh.iph->ihl * 4) + sizeof(struct tcphdr); |
| mss += ETH_HLEN; |
| |
| if (mss != sky2->tx_last_mss) { |
| le = get_tx_le(sky2); |
| le->addr = cpu_to_le32(mss); |
| le->opcode = OP_LRGLEN | HW_OWNER; |
| le->ctrl = 0; |
| sky2->tx_last_mss = mss; |
| } |
| } |
| |
| ctrl = 0; |
| #ifdef SKY2_VLAN_TAG_USED |
| /* Add VLAN tag, can piggyback on LRGLEN or ADDR64 */ |
| if (sky2->vlgrp && vlan_tx_tag_present(skb)) { |
| if (!le) { |
| le = get_tx_le(sky2); |
| le->addr = 0; |
| le->opcode = OP_VLAN|HW_OWNER; |
| le->ctrl = 0; |
| } else |
| le->opcode |= OP_VLAN; |
| le->length = cpu_to_be16(vlan_tx_tag_get(skb)); |
| ctrl |= INS_VLAN; |
| } |
| #endif |
| |
| /* Handle TCP checksum offload */ |
| if (skb->ip_summed == CHECKSUM_PARTIAL) { |
| unsigned offset = skb->h.raw - skb->data; |
| u32 tcpsum; |
| |
| tcpsum = offset << 16; /* sum start */ |
| tcpsum |= offset + skb->csum; /* sum write */ |
| |
| ctrl = CALSUM | WR_SUM | INIT_SUM | LOCK_SUM; |
| if (skb->nh.iph->protocol == IPPROTO_UDP) |
| ctrl |= UDPTCP; |
| |
| if (tcpsum != sky2->tx_tcpsum) { |
| sky2->tx_tcpsum = tcpsum; |
| |
| le = get_tx_le(sky2); |
| le->addr = cpu_to_le32(tcpsum); |
| le->length = 0; /* initial checksum value */ |
| le->ctrl = 1; /* one packet */ |
| le->opcode = OP_TCPLISW | HW_OWNER; |
| } |
| } |
| |
| le = get_tx_le(sky2); |
| le->addr = cpu_to_le32((u32) mapping); |
| le->length = cpu_to_le16(len); |
| le->ctrl = ctrl; |
| le->opcode = mss ? (OP_LARGESEND | HW_OWNER) : (OP_PACKET | HW_OWNER); |
| |
| /* Record the transmit mapping info */ |
| re->skb = skb; |
| pci_unmap_addr_set(re, mapaddr, mapping); |
| |
| for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { |
| skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; |
| struct tx_ring_info *fre; |
| |
| mapping = pci_map_page(hw->pdev, frag->page, frag->page_offset, |
| frag->size, PCI_DMA_TODEVICE); |
| addr64 = high32(mapping); |
| if (addr64 != sky2->tx_addr64) { |
| le = get_tx_le(sky2); |
| le->addr = cpu_to_le32(addr64); |
| le->ctrl = 0; |
| le->opcode = OP_ADDR64 | HW_OWNER; |
| sky2->tx_addr64 = addr64; |
| } |
| |
| le = get_tx_le(sky2); |
| le->addr = cpu_to_le32((u32) mapping); |
| le->length = cpu_to_le16(frag->size); |
| le->ctrl = ctrl; |
| le->opcode = OP_BUFFER | HW_OWNER; |
| |
| fre = sky2->tx_ring |
| + RING_NEXT((re - sky2->tx_ring) + i, TX_RING_SIZE); |
| pci_unmap_addr_set(fre, mapaddr, mapping); |
| } |
| |
| re->idx = sky2->tx_prod; |
| le->ctrl |= EOP; |
| |
| if (tx_avail(sky2) <= MAX_SKB_TX_LE) |
| netif_stop_queue(dev); |
| |
| sky2_put_idx(hw, txqaddr[sky2->port], sky2->tx_prod); |
| |
| spin_unlock(&sky2->tx_lock); |
| |
| dev->trans_start = jiffies; |
| return NETDEV_TX_OK; |
| } |
| |
| /* |
| * Free ring elements from starting at tx_cons until "done" |
| * |
| * NB: the hardware will tell us about partial completion of multi-part |
| * buffers; these are deferred until completion. |
| */ |
| static void sky2_tx_complete(struct sky2_port *sky2, u16 done) |
| { |
| struct net_device *dev = sky2->netdev; |
| struct pci_dev *pdev = sky2->hw->pdev; |
| u16 nxt, put; |
| unsigned i; |
| |
| BUG_ON(done >= TX_RING_SIZE); |
| |
| if (unlikely(netif_msg_tx_done(sky2))) |
| printk(KERN_DEBUG "%s: tx done, up to %u\n", |
| dev->name, done); |
| |
| for (put = sky2->tx_cons; put != done; put = nxt) { |
| struct tx_ring_info *re = sky2->tx_ring + put; |
| struct sk_buff *skb = re->skb; |
| |
| nxt = re->idx; |
| BUG_ON(nxt >= TX_RING_SIZE); |
| prefetch(sky2->tx_ring + nxt); |
| |
| /* Check for partial status */ |
| if (tx_dist(put, done) < tx_dist(put, nxt)) |
| break; |
| |
| skb = re->skb; |
| pci_unmap_single(pdev, pci_unmap_addr(re, mapaddr), |
| skb_headlen(skb), PCI_DMA_TODEVICE); |
| |
| for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { |
| struct tx_ring_info *fre; |
| fre = sky2->tx_ring + RING_NEXT(put + i, TX_RING_SIZE); |
| pci_unmap_page(pdev, pci_unmap_addr(fre, mapaddr), |
| skb_shinfo(skb)->frags[i].size, |
| PCI_DMA_TODEVICE); |
| } |
| |
| dev_kfree_skb(skb); |
| } |
| |
| sky2->tx_cons = put; |
| if (tx_avail(sky2) > MAX_SKB_TX_LE + 4) |
| netif_wake_queue(dev); |
| } |
| |
| /* Cleanup all untransmitted buffers, assume transmitter not running */ |
| static void sky2_tx_clean(struct sky2_port *sky2) |
| { |
| spin_lock_bh(&sky2->tx_lock); |
| sky2_tx_complete(sky2, sky2->tx_prod); |
| spin_unlock_bh(&sky2->tx_lock); |
| } |
| |
| /* Network shutdown */ |
| static int sky2_down(struct net_device *dev) |
| { |
| struct sky2_port *sky2 = netdev_priv(dev); |
| struct sky2_hw *hw = sky2->hw; |
| unsigned port = sky2->port; |
| u16 ctrl; |
| u32 imask; |
| |
| /* Never really got started! */ |
| if (!sky2->tx_le) |
| return 0; |
| |
| if (netif_msg_ifdown(sky2)) |
| printk(KERN_INFO PFX "%s: disabling interface\n", dev->name); |
| |
| /* Stop more packets from being queued */ |
| netif_stop_queue(dev); |
| |
| sky2_gmac_reset(hw, port); |
| |
| /* Stop transmitter */ |
| sky2_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), BMU_STOP); |
| sky2_read32(hw, Q_ADDR(txqaddr[port], Q_CSR)); |
| |
| sky2_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), |
| RB_RST_SET | RB_DIS_OP_MD); |
| |
| ctrl = gma_read16(hw, port, GM_GP_CTRL); |
| ctrl &= ~(GM_GPCR_TX_ENA | GM_GPCR_RX_ENA); |
| gma_write16(hw, port, GM_GP_CTRL, ctrl); |
| |
| sky2_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET); |
| |
| /* Workaround shared GMAC reset */ |
| if (!(hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev == 0 |
| && port == 0 && hw->dev[1] && netif_running(hw->dev[1]))) |
| sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET); |
| |
| /* Disable Force Sync bit and Enable Alloc bit */ |
| sky2_write8(hw, SK_REG(port, TXA_CTRL), |
| TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC); |
| |
| /* Stop Interval Timer and Limit Counter of Tx Arbiter */ |
| sky2_write32(hw, SK_REG(port, TXA_ITI_INI), 0L); |
| sky2_write32(hw, SK_REG(port, TXA_LIM_INI), 0L); |
| |
| /* Reset the PCI FIFO of the async Tx queue */ |
| sky2_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), |
| BMU_RST_SET | BMU_FIFO_RST); |
| |
| /* Reset the Tx prefetch units */ |
| sky2_write32(hw, Y2_QADDR(txqaddr[port], PREF_UNIT_CTRL), |
| PREF_UNIT_RST_SET); |
| |
| sky2_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET); |
| |
| sky2_rx_stop(sky2); |
| |
| sky2_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET); |
| sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET); |
| |
| /* Disable port IRQ */ |
| imask = sky2_read32(hw, B0_IMSK); |
| imask &= ~portirq_msk[port]; |
| sky2_write32(hw, B0_IMSK, imask); |
| |
| sky2_phy_power(hw, port, 0); |
| |
| /* turn off LED's */ |
| sky2_write16(hw, B0_Y2LED, LED_STAT_OFF); |
| |
| synchronize_irq(hw->pdev->irq); |
| |
| sky2_tx_clean(sky2); |
| sky2_rx_clean(sky2); |
| |
| pci_free_consistent(hw->pdev, RX_LE_BYTES, |
| sky2->rx_le, sky2->rx_le_map); |
| kfree(sky2->rx_ring); |
| |
| pci_free_consistent(hw->pdev, |
| TX_RING_SIZE * sizeof(struct sky2_tx_le), |
| sky2->tx_le, sky2->tx_le_map); |
| kfree(sky2->tx_ring); |
| |
| sky2->tx_le = NULL; |
| sky2->rx_le = NULL; |
| |
| sky2->rx_ring = NULL; |
| sky2->tx_ring = NULL; |
| |
| return 0; |
| } |
| |
| static u16 sky2_phy_speed(const struct sky2_hw *hw, u16 aux) |
| { |
| if (!sky2_is_copper(hw)) |
| return SPEED_1000; |
| |
| if (hw->chip_id == CHIP_ID_YUKON_FE) |
| return (aux & PHY_M_PS_SPEED_100) ? SPEED_100 : SPEED_10; |
| |
| switch (aux & PHY_M_PS_SPEED_MSK) { |
| case PHY_M_PS_SPEED_1000: |
| return SPEED_1000; |
| case PHY_M_PS_SPEED_100: |
| return SPEED_100; |
| default: |
| return SPEED_10; |
| } |
| } |
| |
| static void sky2_link_up(struct sky2_port *sky2) |
| { |
| struct sky2_hw *hw = sky2->hw; |
| unsigned port = sky2->port; |
| u16 reg; |
| |
| /* enable Rx/Tx */ |
| reg = gma_read16(hw, port, GM_GP_CTRL); |
| reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA; |
| gma_write16(hw, port, GM_GP_CTRL, reg); |
| |
| gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK); |
| |
| netif_carrier_on(sky2->netdev); |
| netif_wake_queue(sky2->netdev); |
| |
| /* Turn on link LED */ |
| sky2_write8(hw, SK_REG(port, LNK_LED_REG), |
| LINKLED_ON | LINKLED_BLINK_OFF | LINKLED_LINKSYNC_OFF); |
| |
| if (hw->chip_id == CHIP_ID_YUKON_XL || hw->chip_id == CHIP_ID_YUKON_EC_U) { |
| u16 pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR); |
| u16 led = PHY_M_LEDC_LOS_CTRL(1); /* link active */ |
| |
| switch(sky2->speed) { |
| case SPEED_10: |
| led |= PHY_M_LEDC_INIT_CTRL(7); |
| break; |
| |
| case SPEED_100: |
| led |= PHY_M_LEDC_STA1_CTRL(7); |
| break; |
| |
| case SPEED_1000: |
| led |= PHY_M_LEDC_STA0_CTRL(7); |
| break; |
| } |
| |
| gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3); |
| gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, led); |
| gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg); |
| } |
| |
| if (netif_msg_link(sky2)) |
| printk(KERN_INFO PFX |
| "%s: Link is up at %d Mbps, %s duplex, flow control %s\n", |
| sky2->netdev->name, sky2->speed, |
| sky2->duplex == DUPLEX_FULL ? "full" : "half", |
| (sky2->tx_pause && sky2->rx_pause) ? "both" : |
| sky2->tx_pause ? "tx" : sky2->rx_pause ? "rx" : "none"); |
| } |
| |
| static void sky2_link_down(struct sky2_port *sky2) |
| { |
| struct sky2_hw *hw = sky2->hw; |
| unsigned port = sky2->port; |
| u16 reg; |
| |
| gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0); |
| |
| reg = gma_read16(hw, port, GM_GP_CTRL); |
| reg &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA); |
| gma_write16(hw, port, GM_GP_CTRL, reg); |
| |
| if (sky2->rx_pause && !sky2->tx_pause) { |
| /* restore Asymmetric Pause bit */ |
| gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, |
| gm_phy_read(hw, port, PHY_MARV_AUNE_ADV) |
| | PHY_M_AN_ASP); |
| } |
| |
| netif_carrier_off(sky2->netdev); |
| netif_stop_queue(sky2->netdev); |
| |
| /* Turn on link LED */ |
| sky2_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF); |
| |
| if (netif_msg_link(sky2)) |
| printk(KERN_INFO PFX "%s: Link is down.\n", sky2->netdev->name); |
| |
| sky2_phy_init(hw, port); |
| } |
| |
| static int sky2_autoneg_done(struct sky2_port *sky2, u16 aux) |
| { |
| struct sky2_hw *hw = sky2->hw; |
| unsigned port = sky2->port; |
| u16 lpa; |
| |
| lpa = gm_phy_read(hw, port, PHY_MARV_AUNE_LP); |
| |
| if (lpa & PHY_M_AN_RF) { |
| printk(KERN_ERR PFX "%s: remote fault", sky2->netdev->name); |
| return -1; |
| } |
| |
| if (hw->chip_id != CHIP_ID_YUKON_FE && |
| gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) { |
| printk(KERN_ERR PFX "%s: master/slave fault", |
| sky2->netdev->name); |
| return -1; |
| } |
| |
| if (!(aux & PHY_M_PS_SPDUP_RES)) { |
| printk(KERN_ERR PFX "%s: speed/duplex mismatch", |
| sky2->netdev->name); |
| return -1; |
| } |
| |
| sky2->duplex = (aux & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF; |
| |
| sky2->speed = sky2_phy_speed(hw, aux); |
| |
| /* Pause bits are offset (9..8) */ |
| if (hw->chip_id == CHIP_ID_YUKON_XL || hw->chip_id == CHIP_ID_YUKON_EC_U) |
| aux >>= 6; |
| |
| sky2->rx_pause = (aux & PHY_M_PS_RX_P_EN) != 0; |
| sky2->tx_pause = (aux & PHY_M_PS_TX_P_EN) != 0; |
| |
| if (sky2->duplex == DUPLEX_HALF && sky2->speed != SPEED_1000 |
| && hw->chip_id != CHIP_ID_YUKON_EC_U) |
| sky2->rx_pause = sky2->tx_pause = 0; |
| |
| if (sky2->rx_pause || sky2->tx_pause) |
| sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON); |
| else |
| sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF); |
| |
| return 0; |
| } |
| |
| /* Interrupt from PHY */ |
| static void sky2_phy_intr(struct sky2_hw *hw, unsigned port) |
| { |
| struct net_device *dev = hw->dev[port]; |
| struct sky2_port *sky2 = netdev_priv(dev); |
| u16 istatus, phystat; |
| |
| spin_lock(&sky2->phy_lock); |
| istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT); |
| phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT); |
| |
| if (!netif_running(dev)) |
| goto out; |
| |
| if (netif_msg_intr(sky2)) |
| printk(KERN_INFO PFX "%s: phy interrupt status 0x%x 0x%x\n", |
| sky2->netdev->name, istatus, phystat); |
| |
| if (sky2->autoneg == AUTONEG_ENABLE && (istatus & PHY_M_IS_AN_COMPL)) { |
| if (sky2_autoneg_done(sky2, phystat) == 0) |
| sky2_link_up(sky2); |
| goto out; |
| } |
| |
| if (istatus & PHY_M_IS_LSP_CHANGE) |
| sky2->speed = sky2_phy_speed(hw, phystat); |
| |
| if (istatus & PHY_M_IS_DUP_CHANGE) |
| sky2->duplex = |
| (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF; |
| |
| if (istatus & PHY_M_IS_LST_CHANGE) { |
| if (phystat & PHY_M_PS_LINK_UP) |
| sky2_link_up(sky2); |
| else |
| sky2_link_down(sky2); |
| } |
| out: |
| spin_unlock(&sky2->phy_lock); |
| } |
| |
| |
| /* Transmit timeout is only called if we are running, carries is up |
| * and tx queue is full (stopped). |
| */ |
| static void sky2_tx_timeout(struct net_device *dev) |
| { |
| struct sky2_port *sky2 = netdev_priv(dev); |
| struct sky2_hw *hw = sky2->hw; |
| unsigned txq = txqaddr[sky2->port]; |
| u16 report, done; |
| |
| if (netif_msg_timer(sky2)) |
| printk(KERN_ERR PFX "%s: tx timeout\n", dev->name); |
| |
| report = sky2_read16(hw, sky2->port == 0 ? STAT_TXA1_RIDX : STAT_TXA2_RIDX); |
| done = sky2_read16(hw, Q_ADDR(txq, Q_DONE)); |
| |
| printk(KERN_DEBUG PFX "%s: transmit ring %u .. %u report=%u done=%u\n", |
| dev->name, |
| sky2->tx_cons, sky2->tx_prod, report, done); |
| |
| if (report != done) { |
| printk(KERN_INFO PFX "status burst pending (irq moderation?)\n"); |
| |
| sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_STOP); |
| sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_START); |
| } else if (report != sky2->tx_cons) { |
| printk(KERN_INFO PFX "status report lost?\n"); |
| |
| spin_lock_bh(&sky2->tx_lock); |
| sky2_tx_complete(sky2, report); |
| spin_unlock_bh(&sky2->tx_lock); |
| } else { |
| printk(KERN_INFO PFX "hardware hung? flushing\n"); |
| |
| sky2_write32(hw, Q_ADDR(txq, Q_CSR), BMU_STOP); |
| sky2_write32(hw, Y2_QADDR(txq, PREF_UNIT_CTRL), PREF_UNIT_RST_SET); |
| |
| sky2_tx_clean(sky2); |
| |
| sky2_qset(hw, txq); |
| sky2_prefetch_init(hw, txq, sky2->tx_le_map, TX_RING_SIZE - 1); |
| } |
| } |
| |
| |
| /* Want receive buffer size to be multiple of 64 bits |
| * and incl room for vlan and truncation |
| */ |
| static inline unsigned sky2_buf_size(int mtu) |
| { |
| return ALIGN(mtu + ETH_HLEN + VLAN_HLEN, 8) + 8; |
| } |
| |
| static int sky2_change_mtu(struct net_device *dev, int new_mtu) |
| { |
| struct sky2_port *sky2 = netdev_priv(dev); |
| struct sky2_hw *hw = sky2->hw; |
| int err; |
| u16 ctl, mode; |
| u32 imask; |
| |
| if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU) |
| return -EINVAL; |
| |
| if (hw->chip_id == CHIP_ID_YUKON_EC_U && new_mtu > ETH_DATA_LEN) |
| return -EINVAL; |
| |
| if (!netif_running(dev)) { |
| dev->mtu = new_mtu; |
| return 0; |
| } |
| |
| imask = sky2_read32(hw, B0_IMSK); |
| sky2_write32(hw, B0_IMSK, 0); |
| |
| dev->trans_start = jiffies; /* prevent tx timeout */ |
| netif_stop_queue(dev); |
| netif_poll_disable(hw->dev[0]); |
| |
| synchronize_irq(hw->pdev->irq); |
| |
| ctl = gma_read16(hw, sky2->port, GM_GP_CTRL); |
| gma_write16(hw, sky2->port, GM_GP_CTRL, ctl & ~GM_GPCR_RX_ENA); |
| sky2_rx_stop(sky2); |
| sky2_rx_clean(sky2); |
| |
| dev->mtu = new_mtu; |
| sky2->rx_bufsize = sky2_buf_size(new_mtu); |
| mode = DATA_BLIND_VAL(DATA_BLIND_DEF) | |
| GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF); |
| |
| if (dev->mtu > ETH_DATA_LEN) |
| mode |= GM_SMOD_JUMBO_ENA; |
| |
| gma_write16(hw, sky2->port, GM_SERIAL_MODE, mode); |
| |
| sky2_write8(hw, RB_ADDR(rxqaddr[sky2->port], RB_CTRL), RB_ENA_OP_MD); |
| |
| err = sky2_rx_start(sky2); |
| sky2_write32(hw, B0_IMSK, imask); |
| |
| if (err) |
| dev_close(dev); |
| else { |
| gma_write16(hw, sky2->port, GM_GP_CTRL, ctl); |
| |
| netif_poll_enable(hw->dev[0]); |
| netif_wake_queue(dev); |
| } |
| |
| return err; |
| } |
| |
| /* |
| * Receive one packet. |
| * For small packets or errors, just reuse existing skb. |
| * For larger packets, get new buffer. |
| */ |
| static struct sk_buff *sky2_receive(struct net_device *dev, |
| u16 length, u32 status) |
| { |
| struct sky2_port *sky2 = netdev_priv(dev); |
| struct ring_info *re = sky2->rx_ring + sky2->rx_next; |
| struct sk_buff *skb = NULL; |
| |
| if (unlikely(netif_msg_rx_status(sky2))) |
| printk(KERN_DEBUG PFX "%s: rx slot %u status 0x%x len %d\n", |
| dev->name, sky2->rx_next, status, length); |
| |
| sky2->rx_next = (sky2->rx_next + 1) % sky2->rx_pending; |
| prefetch(sky2->rx_ring + sky2->rx_next); |
| |
| if (status & GMR_FS_ANY_ERR) |
| goto error; |
| |
| if (!(status & GMR_FS_RX_OK)) |
| goto resubmit; |
| |
| if (length > dev->mtu + ETH_HLEN) |
| goto oversize; |
| |
| if (length < copybreak) { |
| skb = netdev_alloc_skb(dev, length + 2); |
| if (!skb) |
| goto resubmit; |
| |
| skb_reserve(skb, 2); |
| pci_dma_sync_single_for_cpu(sky2->hw->pdev, re->mapaddr, |
| length, PCI_DMA_FROMDEVICE); |
| memcpy(skb->data, re->skb->data, length); |
| skb->ip_summed = re->skb->ip_summed; |
| skb->csum = re->skb->csum; |
| pci_dma_sync_single_for_device(sky2->hw->pdev, re->mapaddr, |
| length, PCI_DMA_FROMDEVICE); |
| } else { |
| struct sk_buff *nskb; |
| |
| nskb = sky2_alloc_skb(dev, sky2->rx_bufsize, GFP_ATOMIC); |
| if (!nskb) |
| goto resubmit; |
| |
| skb = re->skb; |
| re->skb = nskb; |
| pci_unmap_single(sky2->hw->pdev, re->mapaddr, |
| sky2->rx_bufsize, PCI_DMA_FROMDEVICE); |
| prefetch(skb->data); |
| |
| re->mapaddr = pci_map_single(sky2->hw->pdev, nskb->data, |
| sky2->rx_bufsize, PCI_DMA_FROMDEVICE); |
| } |
| |
| skb_put(skb, length); |
| resubmit: |
| re->skb->ip_summed = CHECKSUM_NONE; |
| sky2_rx_add(sky2, re->mapaddr); |
| |
| return skb; |
| |
| oversize: |
| ++sky2->net_stats.rx_over_errors; |
| goto resubmit; |
| |
| error: |
| ++sky2->net_stats.rx_errors; |
| |
| if (netif_msg_rx_err(sky2) && net_ratelimit()) |
| printk(KERN_INFO PFX "%s: rx error, status 0x%x length %d\n", |
| dev->name, status, length); |
| |
| if (status & (GMR_FS_LONG_ERR | GMR_FS_UN_SIZE)) |
| sky2->net_stats.rx_length_errors++; |
| if (status & GMR_FS_FRAGMENT) |
| sky2->net_stats.rx_frame_errors++; |
| if (status & GMR_FS_CRC_ERR) |
| sky2->net_stats.rx_crc_errors++; |
| if (status & GMR_FS_RX_FF_OV) |
| sky2->net_stats.rx_fifo_errors++; |
| |
| goto resubmit; |
| } |
| |
| /* Transmit complete */ |
| static inline void sky2_tx_done(struct net_device *dev, u16 last) |
| { |
| struct sky2_port *sky2 = netdev_priv(dev); |
| |
| if (netif_running(dev)) { |
| spin_lock(&sky2->tx_lock); |
| sky2_tx_complete(sky2, last); |
| spin_unlock(&sky2->tx_lock); |
| } |
| } |
| |
| /* Process status response ring */ |
| static int sky2_status_intr(struct sky2_hw *hw, int to_do) |
| { |
| struct sky2_port *sky2; |
| int work_done = 0; |
| unsigned buf_write[2] = { 0, 0 }; |
| u16 hwidx = sky2_read16(hw, STAT_PUT_IDX); |
| |
| rmb(); |
| |
| while (hw->st_idx != hwidx) { |
| struct sky2_status_le *le = hw->st_le + hw->st_idx; |
| struct net_device *dev; |
| struct sk_buff *skb; |
| u32 status; |
| u16 length; |
| |
| hw->st_idx = RING_NEXT(hw->st_idx, STATUS_RING_SIZE); |
| |
| BUG_ON(le->link >= 2); |
| dev = hw->dev[le->link]; |
| |
| sky2 = netdev_priv(dev); |
| length = le16_to_cpu(le->length); |
| status = le32_to_cpu(le->status); |
| |
| switch (le->opcode & ~HW_OWNER) { |
| case OP_RXSTAT: |
| skb = sky2_receive(dev, length, status); |
| if (!skb) |
| break; |
| |
| skb->protocol = eth_type_trans(skb, dev); |
| dev->last_rx = jiffies; |
| |
| #ifdef SKY2_VLAN_TAG_USED |
| if (sky2->vlgrp && (status & GMR_FS_VLAN)) { |
| vlan_hwaccel_receive_skb(skb, |
| sky2->vlgrp, |
| be16_to_cpu(sky2->rx_tag)); |
| } else |
| #endif |
| netif_receive_skb(skb); |
| |
| /* Update receiver after 16 frames */ |
| if (++buf_write[le->link] == RX_BUF_WRITE) { |
| sky2_put_idx(hw, rxqaddr[le->link], |
| sky2->rx_put); |
| buf_write[le->link] = 0; |
| } |
| |
| /* Stop after net poll weight */ |
| if (++work_done >= to_do) |
| goto exit_loop; |
| break; |
| |
| #ifdef SKY2_VLAN_TAG_USED |
| case OP_RXVLAN: |
| sky2->rx_tag = length; |
| break; |
| |
| case OP_RXCHKSVLAN: |
| sky2->rx_tag = length; |
| /* fall through */ |
| #endif |
| case OP_RXCHKS: |
| skb = sky2->rx_ring[sky2->rx_next].skb; |
| skb->ip_summed = CHECKSUM_COMPLETE; |
| skb->csum = status & 0xffff; |
| break; |
| |
| case OP_TXINDEXLE: |
| /* TX index reports status for both ports */ |
| BUILD_BUG_ON(TX_RING_SIZE > 0x1000); |
| sky2_tx_done(hw->dev[0], status & 0xfff); |
| if (hw->dev[1]) |
| sky2_tx_done(hw->dev[1], |
| ((status >> 24) & 0xff) |
| | (u16)(length & 0xf) << 8); |
| break; |
| |
| default: |
| if (net_ratelimit()) |
| printk(KERN_WARNING PFX |
| "unknown status opcode 0x%x\n", le->opcode); |
| goto exit_loop; |
| } |
| } |
| |
| /* Fully processed status ring so clear irq */ |
| sky2_write32(hw, STAT_CTRL, SC_STAT_CLR_IRQ); |
| |
| exit_loop: |
| if (buf_write[0]) { |
| sky2 = netdev_priv(hw->dev[0]); |
| sky2_put_idx(hw, Q_R1, sky2->rx_put); |
| } |
| |
| if (buf_write[1]) { |
| sky2 = netdev_priv(hw->dev[1]); |
| sky2_put_idx(hw, Q_R2, sky2->rx_put); |
| } |
| |
| return work_done; |
| } |
| |
| static void sky2_hw_error(struct sky2_hw *hw, unsigned port, u32 status) |
| { |
| struct net_device *dev = hw->dev[port]; |
| |
| if (net_ratelimit()) |
| printk(KERN_INFO PFX "%s: hw error interrupt status 0x%x\n", |
| dev->name, status); |
| |
| if (status & Y2_IS_PAR_RD1) { |
| if (net_ratelimit()) |
| printk(KERN_ERR PFX "%s: ram data read parity error\n", |
| dev->name); |
| /* Clear IRQ */ |
| sky2_write16(hw, RAM_BUFFER(port, B3_RI_CTRL), RI_CLR_RD_PERR); |
| } |
| |
| if (status & Y2_IS_PAR_WR1) { |
| if (net_ratelimit()) |
| printk(KERN_ERR PFX "%s: ram data write parity error\n", |
| dev->name); |
| |
| sky2_write16(hw, RAM_BUFFER(port, B3_RI_CTRL), RI_CLR_WR_PERR); |
| } |
| |
| if (status & Y2_IS_PAR_MAC1) { |
| if (net_ratelimit()) |
| printk(KERN_ERR PFX "%s: MAC parity error\n", dev->name); |
| sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_PE); |
| } |
| |
| if (status & Y2_IS_PAR_RX1) { |
| if (net_ratelimit()) |
| printk(KERN_ERR PFX "%s: RX parity error\n", dev->name); |
| sky2_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), BMU_CLR_IRQ_PAR); |
| } |
| |
| if (status & Y2_IS_TCP_TXA1) { |
| if (net_ratelimit()) |
| printk(KERN_ERR PFX "%s: TCP segmentation error\n", |
| dev->name); |
| sky2_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), BMU_CLR_IRQ_TCP); |
| } |
| } |
| |
| static void sky2_hw_intr(struct sky2_hw *hw) |
| { |
| u32 status = sky2_read32(hw, B0_HWE_ISRC); |
| |
| if (status & Y2_IS_TIST_OV) |
| sky2_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ); |
| |
| if (status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) { |
| u16 pci_err; |
| |
| pci_err = sky2_pci_read16(hw, PCI_STATUS); |
| if (net_ratelimit()) |
| printk(KERN_ERR PFX "%s: pci hw error (0x%x)\n", |
| pci_name(hw->pdev), pci_err); |
| |
| sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON); |
| sky2_pci_write16(hw, PCI_STATUS, |
| pci_err | PCI_STATUS_ERROR_BITS); |
| sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF); |
| } |
| |
| if (status & Y2_IS_PCI_EXP) { |
| /* PCI-Express uncorrectable Error occurred */ |
| u32 pex_err; |
| |
| pex_err = sky2_pci_read32(hw, PEX_UNC_ERR_STAT); |
| |
| if (net_ratelimit()) |
| printk(KERN_ERR PFX "%s: pci express error (0x%x)\n", |
| pci_name(hw->pdev), pex_err); |
| |
| /* clear the interrupt */ |
| sky2_write32(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON); |
| sky2_pci_write32(hw, PEX_UNC_ERR_STAT, |
| 0xffffffffUL); |
| sky2_write32(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF); |
| |
| if (pex_err & PEX_FATAL_ERRORS) { |
| u32 hwmsk = sky2_read32(hw, B0_HWE_IMSK); |
| hwmsk &= ~Y2_IS_PCI_EXP; |
| sky2_write32(hw, B0_HWE_IMSK, hwmsk); |
| } |
| } |
| |
| if (status & Y2_HWE_L1_MASK) |
| sky2_hw_error(hw, 0, status); |
| status >>= 8; |
| if (status & Y2_HWE_L1_MASK) |
| sky2_hw_error(hw, 1, status); |
| } |
| |
| static void sky2_mac_intr(struct sky2_hw *hw, unsigned port) |
| { |
| struct net_device *dev = hw->dev[port]; |
| struct sky2_port *sky2 = netdev_priv(dev); |
| u8 status = sky2_read8(hw, SK_REG(port, GMAC_IRQ_SRC)); |
| |
| if (netif_msg_intr(sky2)) |
| printk(KERN_INFO PFX "%s: mac interrupt status 0x%x\n", |
| dev->name, status); |
| |
| if (status & GM_IS_RX_FF_OR) { |
| ++sky2->net_stats.rx_fifo_errors; |
| sky2_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO); |
| } |
| |
| if (status & GM_IS_TX_FF_UR) { |
| ++sky2->net_stats.tx_fifo_errors; |
| sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU); |
| } |
| } |
| |
| /* This should never happen it is a fatal situation */ |
| static void sky2_descriptor_error(struct sky2_hw *hw, unsigned port, |
| const char *rxtx, u32 mask) |
| { |
| struct net_device *dev = hw->dev[port]; |
| struct sky2_port *sky2 = netdev_priv(dev); |
| u32 imask; |
| |
| printk(KERN_ERR PFX "%s: %s descriptor error (hardware problem)\n", |
| dev ? dev->name : "<not registered>", rxtx); |
| |
| imask = sky2_read32(hw, B0_IMSK); |
| imask &= ~mask; |
| sky2_write32(hw, B0_IMSK, imask); |
| |
| if (dev) { |
| spin_lock(&sky2->phy_lock); |
| sky2_link_down(sky2); |
| spin_unlock(&sky2->phy_lock); |
| } |
| } |
| |
| /* If idle then force a fake soft NAPI poll once a second |
| * to work around cases where sharing an edge triggered interrupt. |
| */ |
| static inline void sky2_idle_start(struct sky2_hw *hw) |
| { |
| if (idle_timeout > 0) |
| mod_timer(&hw->idle_timer, |
| jiffies + msecs_to_jiffies(idle_timeout)); |
| } |
| |
| static void sky2_idle(unsigned long arg) |
| { |
| struct sky2_hw *hw = (struct sky2_hw *) arg; |
| struct net_device *dev = hw->dev[0]; |
| |
| if (__netif_rx_schedule_prep(dev)) |
| __netif_rx_schedule(dev); |
| |
| mod_timer(&hw->idle_timer, jiffies + msecs_to_jiffies(idle_timeout)); |
| } |
| |
| |
| static int sky2_poll(struct net_device *dev0, int *budget) |
| { |
| struct sky2_hw *hw = ((struct sky2_port *) netdev_priv(dev0))->hw; |
| int work_limit = min(dev0->quota, *budget); |
| int work_done = 0; |
| u32 status = sky2_read32(hw, B0_Y2_SP_EISR); |
| |
| if (status & Y2_IS_HW_ERR) |
| sky2_hw_intr(hw); |
| |
| if (status & Y2_IS_IRQ_PHY1) |
| sky2_phy_intr(hw, 0); |
| |
| if (status & Y2_IS_IRQ_PHY2) |
| sky2_phy_intr(hw, 1); |
| |
| if (status & Y2_IS_IRQ_MAC1) |
| sky2_mac_intr(hw, 0); |
| |
| if (status & Y2_IS_IRQ_MAC2) |
| sky2_mac_intr(hw, 1); |
| |
| if (status & Y2_IS_CHK_RX1) |
| sky2_descriptor_error(hw, 0, "receive", Y2_IS_CHK_RX1); |
| |
| if (status & Y2_IS_CHK_RX2) |
| sky2_descriptor_error(hw, 1, "receive", Y2_IS_CHK_RX2); |
| |
| if (status & Y2_IS_CHK_TXA1) |
| sky2_descriptor_error(hw, 0, "transmit", Y2_IS_CHK_TXA1); |
| |
| if (status & Y2_IS_CHK_TXA2) |
| sky2_descriptor_error(hw, 1, "transmit", Y2_IS_CHK_TXA2); |
| |
| work_done = sky2_status_intr(hw, work_limit); |
| if (work_done < work_limit) { |
| netif_rx_complete(dev0); |
| |
| sky2_read32(hw, B0_Y2_SP_LISR); |
| return 0; |
| } else { |
| *budget -= work_done; |
| dev0->quota -= work_done; |
| return 1; |
| } |
| } |
| |
| static irqreturn_t sky2_intr(int irq, void *dev_id, struct pt_regs *regs) |
| { |
| struct sky2_hw *hw = dev_id; |
| struct net_device *dev0 = hw->dev[0]; |
| u32 status; |
| |
| /* Reading this mask interrupts as side effect */ |
| status = sky2_read32(hw, B0_Y2_SP_ISRC2); |
| if (status == 0 || status == ~0) |
| return IRQ_NONE; |
| |
| prefetch(&hw->st_le[hw->st_idx]); |
| if (likely(__netif_rx_schedule_prep(dev0))) |
| __netif_rx_schedule(dev0); |
| |
| return IRQ_HANDLED; |
| } |
| |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| static void sky2_netpoll(struct net_device *dev) |
| { |
| struct sky2_port *sky2 = netdev_priv(dev); |
| struct net_device *dev0 = sky2->hw->dev[0]; |
| |
| if (netif_running(dev) && __netif_rx_schedule_prep(dev0)) |
| __netif_rx_schedule(dev0); |
| } |
| #endif |
| |
| /* Chip internal frequency for clock calculations */ |
| static inline u32 sky2_mhz(const struct sky2_hw *hw) |
| { |
| switch (hw->chip_id) { |
| case CHIP_ID_YUKON_EC: |
| case CHIP_ID_YUKON_EC_U: |
| return 125; /* 125 Mhz */ |
| case CHIP_ID_YUKON_FE: |
| return 100; /* 100 Mhz */ |
| default: /* YUKON_XL */ |
| return 156; /* 156 Mhz */ |
| } |
| } |
| |
| static inline u32 sky2_us2clk(const struct sky2_hw *hw, u32 us) |
| { |
| return sky2_mhz(hw) * us; |
| } |
| |
| static inline u32 sky2_clk2us(const struct sky2_hw *hw, u32 clk) |
| { |
| return clk / sky2_mhz(hw); |
| } |
| |
| |
| static int sky2_reset(struct sky2_hw *hw) |
| { |
| u16 status; |
| u8 t8; |
| int i; |
| |
| sky2_write8(hw, B0_CTST, CS_RST_CLR); |
| |
| hw->chip_id = sky2_read8(hw, B2_CHIP_ID); |
| if (hw->chip_id < CHIP_ID_YUKON_XL || hw->chip_id > CHIP_ID_YUKON_FE) { |
| printk(KERN_ERR PFX "%s: unsupported chip type 0x%x\n", |
| pci_name(hw->pdev), hw->chip_id); |
| return -EOPNOTSUPP; |
| } |
| |
| hw->chip_rev = (sky2_read8(hw, B2_MAC_CFG) & CFG_CHIP_R_MSK) >> 4; |
| |
| /* This rev is really old, and requires untested workarounds */ |
| if (hw->chip_id == CHIP_ID_YUKON_EC && hw->chip_rev == CHIP_REV_YU_EC_A1) { |
| printk(KERN_ERR PFX "%s: unsupported revision Yukon-%s (0x%x) rev %d\n", |
| pci_name(hw->pdev), yukon2_name[hw->chip_id - CHIP_ID_YUKON_XL], |
| hw->chip_id, hw->chip_rev); |
| return -EOPNOTSUPP; |
| } |
| |
| /* disable ASF */ |
| if (hw->chip_id <= CHIP_ID_YUKON_EC) { |
| sky2_write8(hw, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET); |
| sky2_write16(hw, B0_CTST, Y2_ASF_DISABLE); |
| } |
| |
| /* do a SW reset */ |
| sky2_write8(hw, B0_CTST, CS_RST_SET); |
| sky2_write8(hw, B0_CTST, CS_RST_CLR); |
| |
| /* clear PCI errors, if any */ |
| status = sky2_pci_read16(hw, PCI_STATUS); |
| |
| sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON); |
| sky2_pci_write16(hw, PCI_STATUS, status | PCI_STATUS_ERROR_BITS); |
| |
| |
| sky2_write8(hw, B0_CTST, CS_MRST_CLR); |
| |
| /* clear any PEX errors */ |
| if (pci_find_capability(hw->pdev, PCI_CAP_ID_EXP)) |
| sky2_pci_write32(hw, PEX_UNC_ERR_STAT, 0xffffffffUL); |
| |
| |
| hw->pmd_type = sky2_read8(hw, B2_PMD_TYP); |
| hw->ports = 1; |
| t8 = sky2_read8(hw, B2_Y2_HW_RES); |
| if ((t8 & CFG_DUAL_MAC_MSK) == CFG_DUAL_MAC_MSK) { |
| if (!(sky2_read8(hw, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC)) |
| ++hw->ports; |
| } |
| |
| sky2_set_power_state(hw, PCI_D0); |
| |
| for (i = 0; i < hw->ports; i++) { |
| sky2_write8(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET); |
| sky2_write8(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR); |
| } |
| |
| sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF); |
| |
| /* Clear I2C IRQ noise */ |
| sky2_write32(hw, B2_I2C_IRQ, 1); |
| |
| /* turn off hardware timer (unused) */ |
| sky2_write8(hw, B2_TI_CTRL, TIM_STOP); |
| sky2_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ); |
| |
| sky2_write8(hw, B0_Y2LED, LED_STAT_ON); |
| |
| /* Turn off descriptor polling */ |
| sky2_write32(hw, B28_DPT_CTRL, DPT_STOP); |
| |
| /* Turn off receive timestamp */ |
| sky2_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_STOP); |
| sky2_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ); |
| |
| /* enable the Tx Arbiters */ |
| for (i = 0; i < hw->ports; i++) |
| sky2_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB); |
| |
| /* Initialize ram interface */ |
| for (i = 0; i < hw->ports; i++) { |
| sky2_write8(hw, RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR); |
| |
| sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_R1), SK_RI_TO_53); |
| sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XA1), SK_RI_TO_53); |
| sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XS1), SK_RI_TO_53); |
| sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_R1), SK_RI_TO_53); |
| sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XA1), SK_RI_TO_53); |
| sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XS1), SK_RI_TO_53); |
| sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_R2), SK_RI_TO_53); |
| sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XA2), SK_RI_TO_53); |
| sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XS2), SK_RI_TO_53); |
| sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_R2), SK_RI_TO_53); |
| sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XA2), SK_RI_TO_53); |
| sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XS2), SK_RI_TO_53); |
| } |
| |
| sky2_write32(hw, B0_HWE_IMSK, Y2_HWE_ALL_MASK); |
| |
| for (i = 0; i < hw->ports; i++) |
| sky2_gmac_reset(hw, i); |
| |
| memset(hw->st_le, 0, STATUS_LE_BYTES); |
| hw->st_idx = 0; |
| |
| sky2_write32(hw, STAT_CTRL, SC_STAT_RST_SET); |
| sky2_write32(hw, STAT_CTRL, SC_STAT_RST_CLR); |
| |
| sky2_write32(hw, STAT_LIST_ADDR_LO, hw->st_dma); |
| sky2_write32(hw, STAT_LIST_ADDR_HI, (u64) hw->st_dma >> 32); |
| |
| /* Set the list last index */ |
| sky2_write16(hw, STAT_LAST_IDX, STATUS_RING_SIZE - 1); |
| |
| sky2_write16(hw, STAT_TX_IDX_TH, 10); |
| sky2_write8(hw, STAT_FIFO_WM, 16); |
| |
| /* set Status-FIFO ISR watermark */ |
| if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev == 0) |
| sky2_write8(hw, STAT_FIFO_ISR_WM, 4); |
| else |
| sky2_write8(hw, STAT_FIFO_ISR_WM, 16); |
| |
| sky2_write32(hw, STAT_TX_TIMER_INI, sky2_us2clk(hw, 1000)); |
| sky2_write32(hw, STAT_ISR_TIMER_INI, sky2_us2clk(hw, 20)); |
| sky2_write32(hw, STAT_LEV_TIMER_INI, sky2_us2clk(hw, 100)); |
| |
| /* enable status unit */ |
| sky2_write32(hw, STAT_CTRL, SC_STAT_OP_ON); |
| |
| sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_START); |
| sky2_write8(hw, STAT_LEV_TIMER_CTRL, TIM_START); |
| sky2_write8(hw, STAT_ISR_TIMER_CTRL, TIM_START); |
| |
| return 0; |
| } |
| |
| static u32 sky2_supported_modes(const struct sky2_hw *hw) |
| { |
| if (sky2_is_copper(hw)) { |
| u32 modes = SUPPORTED_10baseT_Half |
| | SUPPORTED_10baseT_Full |
| | SUPPORTED_100baseT_Half |
| | SUPPORTED_100baseT_Full |
| | SUPPORTED_Autoneg | SUPPORTED_TP; |
| |
| if (hw->chip_id != CHIP_ID_YUKON_FE) |
| modes |= SUPPORTED_1000baseT_Half |
| | SUPPORTED_1000baseT_Full; |
| return modes; |
| } else |
| return SUPPORTED_1000baseT_Half |
| | SUPPORTED_1000baseT_Full |
| | SUPPORTED_Autoneg |
| | SUPPORTED_FIBRE; |
| } |
| |
| static int sky2_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd) |
| { |
| struct sky2_port *sky2 = netdev_priv(dev); |
| struct sky2_hw *hw = sky2->hw; |
| |
| ecmd->transceiver = XCVR_INTERNAL; |
| ecmd->supported = sky2_supported_modes(hw); |
| ecmd->phy_address = PHY_ADDR_MARV; |
| if (sky2_is_copper(hw)) { |
| ecmd->supported = SUPPORTED_10baseT_Half |
| | SUPPORTED_10baseT_Full |
| | SUPPORTED_100baseT_Half |
| | SUPPORTED_100baseT_Full |
| | SUPPORTED_1000baseT_Half |
| | SUPPORTED_1000baseT_Full |
| | SUPPORTED_Autoneg | SUPPORTED_TP; |
| ecmd->port = PORT_TP; |
| ecmd->speed = sky2->speed; |
| } else { |
| ecmd->speed = SPEED_1000; |
| ecmd->port = PORT_FIBRE; |
| } |
| |
| ecmd->advertising = sky2->advertising; |
| ecmd->autoneg = sky2->autoneg; |
| ecmd->duplex = sky2->duplex; |
| return 0; |
| } |
| |
| static int sky2_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd) |
| { |
| struct sky2_port *sky2 = netdev_priv(dev); |
| const struct sky2_hw *hw = sky2->hw; |
| u32 supported = sky2_supported_modes(hw); |
| |
| if (ecmd->autoneg == AUTONEG_ENABLE) { |
| ecmd->advertising = supported; |
| sky2->duplex = -1; |
| sky2->speed = -1; |
| } else { |
| u32 setting; |
| |
| switch (ecmd->speed) { |
| case SPEED_1000: |
| if (ecmd->duplex == DUPLEX_FULL) |
| setting = SUPPORTED_1000baseT_Full; |
| else if (ecmd->duplex == DUPLEX_HALF) |
| setting = SUPPORTED_1000baseT_Half; |
| else |
| return -EINVAL; |
| break; |
| case SPEED_100: |
| if (ecmd->duplex == DUPLEX_FULL) |
| setting = SUPPORTED_100baseT_Full; |
| else if (ecmd->duplex == DUPLEX_HALF) |
| setting = SUPPORTED_100baseT_Half; |
| else |
| return -EINVAL; |
| break; |
| |
| case SPEED_10: |
| if (ecmd->duplex == DUPLEX_FULL) |
| setting = SUPPORTED_10baseT_Full; |
| else if (ecmd->duplex == DUPLEX_HALF) |
| setting = SUPPORTED_10baseT_Half; |
| else |
| return -EINVAL; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| if ((setting & supported) == 0) |
| return -EINVAL; |
| |
| sky2->speed = ecmd->speed; |
| sky2->duplex = ecmd->duplex; |
| } |
| |
| sky2->autoneg = ecmd->autoneg; |
| sky2->advertising = ecmd->advertising; |
| |
| if (netif_running(dev)) |
| sky2_phy_reinit(sky2); |
| |
| return 0; |
| } |
| |
| static void sky2_get_drvinfo(struct net_device *dev, |
| struct ethtool_drvinfo *info) |
| { |
| struct sky2_port *sky2 = netdev_priv(dev); |
| |
| strcpy(info->driver, DRV_NAME); |
| strcpy(info->version, DRV_VERSION); |
| strcpy(info->fw_version, "N/A"); |
| strcpy(info->bus_info, pci_name(sky2->hw->pdev)); |
| } |
| |
| static const struct sky2_stat { |
| char name[ETH_GSTRING_LEN]; |
| u16 offset; |
| } sky2_stats[] = { |
| { "tx_bytes", GM_TXO_OK_HI }, |
| { "rx_bytes", GM_RXO_OK_HI }, |
| { "tx_broadcast", GM_TXF_BC_OK }, |
| { "rx_broadcast", GM_RXF_BC_OK }, |
| { "tx_multicast", GM_TXF_MC_OK }, |
| { "rx_multicast", GM_RXF_MC_OK }, |
| { "tx_unicast", GM_TXF_UC_OK }, |
| { "rx_unicast", GM_RXF_UC_OK }, |
| { "tx_mac_pause", GM_TXF_MPAUSE }, |
| { "rx_mac_pause", GM_RXF_MPAUSE }, |
| { "collisions", GM_TXF_COL }, |
| { "late_collision",GM_TXF_LAT_COL }, |
| { "aborted", GM_TXF_ABO_COL }, |
| { "single_collisions", GM_TXF_SNG_COL }, |
| { "multi_collisions", GM_TXF_MUL_COL }, |
| |
| { "rx_short", GM_RXF_SHT }, |
| { "rx_runt", GM_RXE_FRAG }, |
| { "rx_64_byte_packets", GM_RXF_64B }, |
| { "rx_65_to_127_byte_packets", GM_RXF_127B }, |
| { "rx_128_to_255_byte_packets", GM_RXF_255B }, |
| { "rx_256_to_511_byte_packets", GM_RXF_511B }, |
| { "rx_512_to_1023_byte_packets", GM_RXF_1023B }, |
| { "rx_1024_to_1518_byte_packets", GM_RXF_1518B }, |
| { "rx_1518_to_max_byte_packets", GM_RXF_MAX_SZ }, |
| { "rx_too_long", GM_RXF_LNG_ERR }, |
| { "rx_fifo_overflow", GM_RXE_FIFO_OV }, |
| { "rx_jabber", GM_RXF_JAB_PKT }, |
| { "rx_fcs_error", GM_RXF_FCS_ERR }, |
| |
| { "tx_64_byte_packets", GM_TXF_64B }, |
| { "tx_65_to_127_byte_packets", GM_TXF_127B }, |
| { "tx_128_to_255_byte_packets", GM_TXF_255B }, |
| { "tx_256_to_511_byte_packets", GM_TXF_511B }, |
| { "tx_512_to_1023_byte_packets", GM_TXF_1023B }, |
| { "tx_1024_to_1518_byte_packets", GM_TXF_1518B }, |
| { "tx_1519_to_max_byte_packets", GM_TXF_MAX_SZ }, |
| { "tx_fifo_underrun", GM_TXE_FIFO_UR }, |
| }; |
| |
| static u32 sky2_get_rx_csum(struct net_device *dev) |
| { |
| struct sky2_port *sky2 = netdev_priv(dev); |
| |
| return sky2->rx_csum; |
| } |
| |
| static int sky2_set_rx_csum(struct net_device *dev, u32 data) |
| { |
| struct sky2_port *sky2 = netdev_priv(dev); |
| |
| sky2->rx_csum = data; |
| |
| sky2_write32(sky2->hw, Q_ADDR(rxqaddr[sky2->port], Q_CSR), |
| data ? BMU_ENA_RX_CHKSUM : BMU_DIS_RX_CHKSUM); |
| |
| return 0; |
| } |
| |
| static u32 sky2_get_msglevel(struct net_device *netdev) |
| { |
| struct sky2_port *sky2 = netdev_priv(netdev); |
| return sky2->msg_enable; |
| } |
| |
| static int sky2_nway_reset(struct net_device *dev) |
| { |
| struct sky2_port *sky2 = netdev_priv(dev); |
| |
| if (sky2->autoneg != AUTONEG_ENABLE) |
| return -EINVAL; |
| |
| sky2_phy_reinit(sky2); |
| |
| return 0; |
| } |
| |
| static void sky2_phy_stats(struct sky2_port *sky2, u64 * data, unsigned count) |
| { |
| struct sky2_hw *hw = sky2->hw; |
| unsigned port = sky2->port; |
| int i; |
| |
| data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32 |
| | (u64) gma_read32(hw, port, GM_TXO_OK_LO); |
| data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32 |
| | (u64) gma_read32(hw, port, GM_RXO_OK_LO); |
| |
| for (i = 2; i < count; i++) |
| data[i] = (u64) gma_read32(hw, port, sky2_stats[i].offset); |
| } |
| |
| static void sky2_set_msglevel(struct net_device *netdev, u32 value) |
| { |
| struct sky2_port *sky2 = netdev_priv(netdev); |
| sky2->msg_enable = value; |
| } |
| |
| static int sky2_get_stats_count(struct net_device *dev) |
| { |
| return ARRAY_SIZE(sky2_stats); |
| } |
| |
| static void sky2_get_ethtool_stats(struct net_device *dev, |
| struct ethtool_stats *stats, u64 * data) |
| { |
| struct sky2_port *sky2 = netdev_priv(dev); |
| |
| sky2_phy_stats(sky2, data, ARRAY_SIZE(sky2_stats)); |
| } |
| |
| static void sky2_get_strings(struct net_device *dev, u32 stringset, u8 * data) |
| { |
| int i; |
| |
| switch (stringset) { |
| case ETH_SS_STATS: |
| for (i = 0; i < ARRAY_SIZE(sky2_stats); i++) |
| memcpy(data + i * ETH_GSTRING_LEN, |
| sky2_stats[i].name, ETH_GSTRING_LEN); |
| break; |
| } |
| } |
| |
| /* Use hardware MIB variables for critical path statistics and |
| * transmit feedback not reported at interrupt. |
| * Other errors are accounted for in interrupt handler. |
| */ |
| static struct net_device_stats *sky2_get_stats(struct net_device *dev) |
| { |
| struct sky2_port *sky2 = netdev_priv(dev); |
| u64 data[13]; |
| |
| sky2_phy_stats(sky2, data, ARRAY_SIZE(data)); |
| |
| sky2->net_stats.tx_bytes = data[0]; |
| sky2->net_stats.rx_bytes = data[1]; |
| sky2->net_stats.tx_packets = data[2] + data[4] + data[6]; |
| sky2->net_stats.rx_packets = data[3] + data[5] + data[7]; |
| sky2->net_stats.multicast = data[3] + data[5]; |
| sky2->net_stats.collisions = data[10]; |
| sky2->net_stats.tx_aborted_errors = data[12]; |
| |
| return &sky2->net_stats; |
| } |
| |
| static int sky2_set_mac_address(struct net_device *dev, void *p) |
| { |
| struct sky2_port *sky2 = netdev_priv(dev); |
| struct sky2_hw *hw = sky2->hw; |
| unsigned port = sky2->port; |
| const struct sockaddr *addr = p; |
| |
| if (!is_valid_ether_addr(addr->sa_data)) |
| return -EADDRNOTAVAIL; |
| |
| memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN); |
| memcpy_toio(hw->regs + B2_MAC_1 + port * 8, |
| dev->dev_addr, ETH_ALEN); |
| memcpy_toio(hw->regs + B2_MAC_2 + port * 8, |
| dev->dev_addr, ETH_ALEN); |
| |
| /* virtual address for data */ |
| gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr); |
| |
| /* physical address: used for pause frames */ |
| gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr); |
| |
| return 0; |
| } |
| |
| static void sky2_set_multicast(struct net_device *dev) |
| { |
| struct sky2_port *sky2 = netdev_priv(dev); |
| struct sky2_hw *hw = sky2->hw; |
| unsigned port = sky2->port; |
| struct dev_mc_list *list = dev->mc_list; |
| u16 reg; |
| u8 filter[8]; |
| |
| memset(filter, 0, sizeof(filter)); |
| |
| reg = gma_read16(hw, port, GM_RX_CTRL); |
| reg |= GM_RXCR_UCF_ENA; |
| |
| if (dev->flags & IFF_PROMISC) /* promiscuous */ |
| reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA); |
| else if ((dev->flags & IFF_ALLMULTI) || dev->mc_count > 16) /* all multicast */ |
| memset(filter, 0xff, sizeof(filter)); |
| else if (dev->mc_count == 0) /* no multicast */ |
| reg &= ~GM_RXCR_MCF_ENA; |
| else { |
| int i; |
| reg |= GM_RXCR_MCF_ENA; |
| |
| for (i = 0; list && i < dev->mc_count; i++, list = list->next) { |
| u32 bit = ether_crc(ETH_ALEN, list->dmi_addr) & 0x3f; |
| filter[bit / 8] |= 1 << (bit % 8); |
| } |
| } |
| |
| gma_write16(hw, port, GM_MC_ADDR_H1, |
| (u16) filter[0] | ((u16) filter[1] << 8)); |
| gma_write16(hw, port, GM_MC_ADDR_H2, |
| (u16) filter[2] | ((u16) filter[3] << 8)); |
| gma_write16(hw, port, GM_MC_ADDR_H3, |
| (u16) filter[4] | ((u16) filter[5] << 8)); |
| gma_write16(hw, port, GM_MC_ADDR_H4, |
| (u16) filter[6] | ((u16) filter[7] << 8)); |
| |
| gma_write16(hw, port, GM_RX_CTRL, reg); |
| } |
| |
| /* Can have one global because blinking is controlled by |
| * ethtool and that is always under RTNL mutex |
| */ |
| static void sky2_led(struct sky2_hw *hw, unsigned port, int on) |
| { |
| u16 pg; |
| |
| switch (hw->chip_id) { |
| case CHIP_ID_YUKON_XL: |
| pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR); |
| gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3); |
| gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, |
| on ? (PHY_M_LEDC_LOS_CTRL(1) | |
| PHY_M_LEDC_INIT_CTRL(7) | |
| PHY_M_LEDC_STA1_CTRL(7) | |
| PHY_M_LEDC_STA0_CTRL(7)) |
| : 0); |
| |
| gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg); |
| break; |
| |
| default: |
| gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0); |
| gm_phy_write(hw, port, PHY_MARV_LED_OVER, |
| on ? PHY_M_LED_MO_DUP(MO_LED_ON) | |
| PHY_M_LED_MO_10(MO_LED_ON) | |
| PHY_M_LED_MO_100(MO_LED_ON) | |
| PHY_M_LED_MO_1000(MO_LED_ON) | |
| PHY_M_LED_MO_RX(MO_LED_ON) |
| : PHY_M_LED_MO_DUP(MO_LED_OFF) | |
| PHY_M_LED_MO_10(MO_LED_OFF) | |
| PHY_M_LED_MO_100(MO_LED_OFF) | |
| PHY_M_LED_MO_1000(MO_LED_OFF) | |
| PHY_M_LED_MO_RX(MO_LED_OFF)); |
| |
| } |
| } |
| |
| /* blink LED's for finding board */ |
| static int sky2_phys_id(struct net_device *dev, u32 data) |
| { |
| struct sky2_port *sky2 = netdev_priv(dev); |
| struct sky2_hw *hw = sky2->hw; |
| unsigned port = sky2->port; |
| u16 ledctrl, ledover = 0; |
| long ms; |
| int interrupted; |
| int onoff = 1; |
| |
| if (!data || data > (u32) (MAX_SCHEDULE_TIMEOUT / HZ)) |
| ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT); |
| else |
| ms = data * 1000; |
| |
| /* save initial values */ |
| spin_lock_bh(&sky2->phy_lock); |
| if (hw->chip_id == CHIP_ID_YUKON_XL) { |
| u16 pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR); |
| gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3); |
| ledctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL); |
| gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg); |
| } else { |
| ledctrl = gm_phy_read(hw, port, PHY_MARV_LED_CTRL); |
| ledover = gm_phy_read(hw, port, PHY_MARV_LED_OVER); |
| } |
| |
| interrupted = 0; |
| while (!interrupted && ms > 0) { |
| sky2_led(hw, port, onoff); |
| onoff = !onoff; |
| |
| spin_unlock_bh(&sky2->phy_lock); |
| interrupted = msleep_interruptible(250); |
| spin_lock_bh(&sky2->phy_lock); |
| |
| ms -= 250; |
| } |
| |
| /* resume regularly scheduled programming */ |
| if (hw->chip_id == CHIP_ID_YUKON_XL) { |
| u16 pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR); |
| gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3); |
| gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ledctrl); |
| gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg); |
| } else { |
| gm_phy_write(hw, port, PHY_MARV_LED_CTRL, ledctrl); |
| gm_phy_write(hw, port, PHY_MARV_LED_OVER, ledover); |
| } |
| spin_unlock_bh(&sky2->phy_lock); |
| |
| return 0; |
| } |
| |
| static void sky2_get_pauseparam(struct net_device *dev, |
| struct ethtool_pauseparam *ecmd) |
| { |
| struct sky2_port *sky2 = netdev_priv(dev); |
| |
| ecmd->tx_pause = sky2->tx_pause; |
| ecmd->rx_pause = sky2->rx_pause; |
| ecmd->autoneg = sky2->autoneg; |
| } |
| |
| static int sky2_set_pauseparam(struct net_device *dev, |
| struct ethtool_pauseparam *ecmd) |
| { |
| struct sky2_port *sky2 = netdev_priv(dev); |
| |
| sky2->autoneg = ecmd->autoneg; |
| sky2->tx_pause = ecmd->tx_pause != 0; |
| sky2->rx_pause = ecmd->rx_pause != 0; |
| |
| sky2_phy_reinit(sky2); |
| |
| return 0; |
| } |
| |
| static int sky2_get_coalesce(struct net_device *dev, |
| struct ethtool_coalesce *ecmd) |
| { |
| struct sky2_port *sky2 = netdev_priv(dev); |
| struct sky2_hw *hw = sky2->hw; |
| |
| if (sky2_read8(hw, STAT_TX_TIMER_CTRL) == TIM_STOP) |
| ecmd->tx_coalesce_usecs = 0; |
| else { |
| u32 clks = sky2_read32(hw, STAT_TX_TIMER_INI); |
| ecmd->tx_coalesce_usecs = sky2_clk2us(hw, clks); |
| } |
| ecmd->tx_max_coalesced_frames = sky2_read16(hw, STAT_TX_IDX_TH); |
| |
| if (sky2_read8(hw, STAT_LEV_TIMER_CTRL) == TIM_STOP) |
| ecmd->rx_coalesce_usecs = 0; |
| else { |
| u32 clks = sky2_read32(hw, STAT_LEV_TIMER_INI); |
| ecmd->rx_coalesce_usecs = sky2_clk2us(hw, clks); |
| } |
| ecmd->rx_max_coalesced_frames = sky2_read8(hw, STAT_FIFO_WM); |
| |
| if (sky2_read8(hw, STAT_ISR_TIMER_CTRL) == TIM_STOP) |
| ecmd->rx_coalesce_usecs_irq = 0; |
| else { |
| u32 clks = sky2_read32(hw, STAT_ISR_TIMER_INI); |
| ecmd->rx_coalesce_usecs_irq = sky2_clk2us(hw, clks); |
| } |
| |
| ecmd->rx_max_coalesced_frames_irq = sky2_read8(hw, STAT_FIFO_ISR_WM); |
| |
| return 0; |
| } |
| |
| /* Note: this affect both ports */ |
| static int sky2_set_coalesce(struct net_device *dev, |
| struct ethtool_coalesce *ecmd) |
| { |
| struct sky2_port *sky2 = netdev_priv(dev); |
| struct sky2_hw *hw = sky2->hw; |
| const u32 tmax = sky2_clk2us(hw, 0x0ffffff); |
| |
| if (ecmd->tx_coalesce_usecs > tmax || |
| ecmd->rx_coalesce_usecs > tmax || |
| ecmd->rx_coalesce_usecs_irq > tmax) |
| return -EINVAL; |
| |
| if (ecmd->tx_max_coalesced_frames >= TX_RING_SIZE-1) |
| return -EINVAL; |
| if (ecmd->rx_max_coalesced_frames > RX_MAX_PENDING) |
| return -EINVAL; |
| if (ecmd->rx_max_coalesced_frames_irq >RX_MAX_PENDING) |
| return -EINVAL; |
| |
| if (ecmd->tx_coalesce_usecs == 0) |
| sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_STOP); |
| else { |
| sky2_write32(hw, STAT_TX_TIMER_INI, |
| sky2_us2clk(hw, ecmd->tx_coalesce_usecs)); |
| sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_START); |
| } |
| sky2_write16(hw, STAT_TX_IDX_TH, ecmd->tx_max_coalesced_frames); |
| |
| if (ecmd->rx_coalesce_usecs == 0) |
| sky2_write8(hw, STAT_LEV_TIMER_CTRL, TIM_STOP); |
| else { |
| sky2_write32(hw, STAT_LEV_TIMER_INI, |
| sky2_us2clk(hw, ecmd->rx_coalesce_usecs)); |
| sky2_write8(hw, STAT_LEV_TIMER_CTRL, TIM_START); |
| } |
| sky2_write8(hw, STAT_FIFO_WM, ecmd->rx_max_coalesced_frames); |
| |
| if (ecmd->rx_coalesce_usecs_irq == 0) |
| sky2_write8(hw, STAT_ISR_TIMER_CTRL, TIM_STOP); |
| else { |
| sky2_write32(hw, STAT_ISR_TIMER_INI, |
| sky2_us2clk(hw, ecmd->rx_coalesce_usecs_irq)); |
| sky2_write8(hw, STAT_ISR_TIMER_CTRL, TIM_START); |
| } |
| sky2_write8(hw, STAT_FIFO_ISR_WM, ecmd->rx_max_coalesced_frames_irq); |
| return 0; |
| } |
| |
| static void sky2_get_ringparam(struct net_device *dev, |
| struct ethtool_ringparam *ering) |
| { |
| struct sky2_port *sky2 = netdev_priv(dev); |
| |
| ering->rx_max_pending = RX_MAX_PENDING; |
| ering->rx_mini_max_pending = 0; |
| ering->rx_jumbo_max_pending = 0; |
| ering->tx_max_pending = TX_RING_SIZE - 1; |
| |
| ering->rx_pending = sky2->rx_pending; |
| ering->rx_mini_pending = 0; |
| ering->rx_jumbo_pending = 0; |
| ering->tx_pending = sky2->tx_pending; |
| } |
| |
| static int sky2_set_ringparam(struct net_device *dev, |
| struct ethtool_ringparam *ering) |
| { |
| struct sky2_port *sky2 = netdev_priv(dev); |
| int err = 0; |
| |
| if (ering->rx_pending > RX_MAX_PENDING || |
| ering->rx_pending < 8 || |
| ering->tx_pending < MAX_SKB_TX_LE || |
| ering->tx_pending > TX_RING_SIZE - 1) |
| return -EINVAL; |
| |
| if (netif_running(dev)) |
| sky2_down(dev); |
| |
| sky2->rx_pending = ering->rx_pending; |
| sky2->tx_pending = ering->tx_pending; |
| |
| if (netif_running(dev)) { |
| err = sky2_up(dev); |
| if (err) |
| dev_close(dev); |
| else |
| sky2_set_multicast(dev); |
| } |
| |
| return err; |
| } |
| |
| static int sky2_get_regs_len(struct net_device *dev) |
| { |
| return 0x4000; |
| } |
| |
| /* |
| * Returns copy of control register region |
| * Note: access to the RAM address register set will cause timeouts. |
| */ |
| static void sky2_get_regs(struct net_device *dev, struct ethtool_regs *regs, |
| void *p) |
| { |
| const struct sky2_port *sky2 = netdev_priv(dev); |
| const void __iomem *io = sky2->hw->regs; |
| |
| BUG_ON(regs->len < B3_RI_WTO_R1); |
| regs->version = 1; |
| memset(p, 0, regs->len); |
| |
| memcpy_fromio(p, io, B3_RAM_ADDR); |
| |
| memcpy_fromio(p + B3_RI_WTO_R1, |
| io + B3_RI_WTO_R1, |
| regs->len - B3_RI_WTO_R1); |
| } |
| |
| static const struct ethtool_ops sky2_ethtool_ops = { |
| .get_settings = sky2_get_settings, |
| .set_settings = sky2_set_settings, |
| .get_drvinfo = sky2_get_drvinfo, |
| .get_msglevel = sky2_get_msglevel, |
| .set_msglevel = sky2_set_msglevel, |
| .nway_reset = sky2_nway_reset, |
| .get_regs_len = sky2_get_regs_len, |
| .get_regs = sky2_get_regs, |
| .get_link = ethtool_op_get_link, |
| .get_sg = ethtool_op_get_sg, |
| .set_sg = ethtool_op_set_sg, |
| .get_tx_csum = ethtool_op_get_tx_csum, |
| .set_tx_csum = ethtool_op_set_tx_csum, |
| .get_tso = ethtool_op_get_tso, |
| .set_tso = ethtool_op_set_tso, |
| .get_rx_csum = sky2_get_rx_csum, |
| .set_rx_csum = sky2_set_rx_csum, |
| .get_strings = sky2_get_strings, |
| .get_coalesce = sky2_get_coalesce, |
| .set_coalesce = sky2_set_coalesce, |
| .get_ringparam = sky2_get_ringparam, |
| .set_ringparam = sky2_set_ringparam, |
| .get_pauseparam = sky2_get_pauseparam, |
| .set_pauseparam = sky2_set_pauseparam, |
| .phys_id = sky2_phys_id, |
| .get_stats_count = sky2_get_stats_count, |
| .get_ethtool_stats = sky2_get_ethtool_stats, |
| .get_perm_addr = ethtool_op_get_perm_addr, |
| }; |
| |
| /* Initialize network device */ |
| static __devinit struct net_device *sky2_init_netdev(struct sky2_hw *hw, |
| unsigned port, int highmem) |
| { |
| struct sky2_port *sky2; |
| struct net_device *dev = alloc_etherdev(sizeof(*sky2)); |
| |
| if (!dev) { |
| printk(KERN_ERR "sky2 etherdev alloc failed"); |
| return NULL; |
| } |
| |
| SET_MODULE_OWNER(dev); |
| SET_NETDEV_DEV(dev, &hw->pdev->dev); |
| dev->irq = hw->pdev->irq; |
| dev->open = sky2_up; |
| dev->stop = sky2_down; |
| dev->do_ioctl = sky2_ioctl; |
| dev->hard_start_xmit = sky2_xmit_frame; |
| dev->get_stats = sky2_get_stats; |
| dev->set_multicast_list = sky2_set_multicast; |
| dev->set_mac_address = sky2_set_mac_address; |
| dev->change_mtu = sky2_change_mtu; |
| SET_ETHTOOL_OPS(dev, &sky2_ethtool_ops); |
| dev->tx_timeout = sky2_tx_timeout; |
| dev->watchdog_timeo = TX_WATCHDOG; |
| if (port == 0) |
| dev->poll = sky2_poll; |
| dev->weight = NAPI_WEIGHT; |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| dev->poll_controller = sky2_netpoll; |
| #endif |
| |
| sky2 = netdev_priv(dev); |
| sky2->netdev = dev; |
| sky2->hw = hw; |
| sky2->msg_enable = netif_msg_init(debug, default_msg); |
| |
| spin_lock_init(&sky2->tx_lock); |
| /* Auto speed and flow control */ |
| sky2->autoneg = AUTONEG_ENABLE; |
| sky2->tx_pause = 1; |
| sky2->rx_pause = 1; |
| sky2->duplex = -1; |
| sky2->speed = -1; |
| sky2->advertising = sky2_supported_modes(hw); |
| sky2->rx_csum = 1; |
| |
| spin_lock_init(&sky2->phy_lock); |
| sky2->tx_pending = TX_DEF_PENDING; |
| sky2->rx_pending = RX_DEF_PENDING; |
| sky2->rx_bufsize = sky2_buf_size(ETH_DATA_LEN); |
| |
| hw->dev[port] = dev; |
| |
| sky2->port = port; |
| |
| dev->features |= NETIF_F_LLTX; |
| if (hw->chip_id != CHIP_ID_YUKON_EC_U) |
| dev->features |= NETIF_F_TSO; |
| if (highmem) |
| dev->features |= NETIF_F_HIGHDMA; |
| dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG; |
| |
| #ifdef SKY2_VLAN_TAG_USED |
| dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX; |
| dev->vlan_rx_register = sky2_vlan_rx_register; |
| dev->vlan_rx_kill_vid = sky2_vlan_rx_kill_vid; |
| #endif |
| |
| /* read the mac address */ |
| memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port * 8, ETH_ALEN); |
| memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); |
| |
| /* device is off until link detection */ |
| netif_carrier_off(dev); |
| netif_stop_queue(dev); |
| |
| return dev; |
| } |
| |
| static void __devinit sky2_show_addr(struct net_device *dev) |
| { |
| const struct sky2_port *sky2 = netdev_priv(dev); |
| |
| if (netif_msg_probe(sky2)) |
| printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n", |
| dev->name, |
| dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2], |
| dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]); |
| } |
| |
| /* Handle software interrupt used during MSI test */ |
| static irqreturn_t __devinit sky2_test_intr(int irq, void *dev_id, |
| struct pt_regs *regs) |
| { |
| struct sky2_hw *hw = dev_id; |
| u32 status = sky2_read32(hw, B0_Y2_SP_ISRC2); |
| |
| if (status == 0) |
| return IRQ_NONE; |
| |
| if (status & Y2_IS_IRQ_SW) { |
| hw->msi_detected = 1; |
| wake_up(&hw->msi_wait); |
| sky2_write8(hw, B0_CTST, CS_CL_SW_IRQ); |
| } |
| sky2_write32(hw, B0_Y2_SP_ICR, 2); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* Test interrupt path by forcing a a software IRQ */ |
| static int __devinit sky2_test_msi(struct sky2_hw *hw) |
| { |
| struct pci_dev *pdev = hw->pdev; |
| int err; |
| |
| init_waitqueue_head (&hw->msi_wait); |
| |
| sky2_write32(hw, B0_IMSK, Y2_IS_IRQ_SW); |
| |
| err = request_irq(pdev->irq, sky2_test_intr, IRQF_SHARED, DRV_NAME, hw); |
| if (err) { |
| printk(KERN_ERR PFX "%s: cannot assign irq %d\n", |
| pci_name(pdev), pdev->irq); |
| return err; |
| } |
| |
| sky2_write8(hw, B0_CTST, CS_ST_SW_IRQ); |
| sky2_read8(hw, B0_CTST); |
| |
| wait_event_timeout(hw->msi_wait, hw->msi_detected, HZ/10); |
| |
| if (!hw->msi_detected) { |
| /* MSI test failed, go back to INTx mode */ |
| printk(KERN_WARNING PFX "%s: No interrupt was generated using MSI, " |
| "switching to INTx mode. Please report this failure to " |
| "the PCI maintainer and include system chipset information.\n", |
| pci_name(pdev)); |
| |
| err = -EOPNOTSUPP; |
| sky2_write8(hw, B0_CTST, CS_CL_SW_IRQ); |
| } |
| |
| sky2_write32(hw, B0_IMSK, 0); |
| |
| free_irq(pdev->irq, hw); |
| |
| return err; |
| } |
| |
| static int __devinit sky2_probe(struct pci_dev *pdev, |
| const struct pci_device_id *ent) |
| { |
| struct net_device *dev, *dev1 = NULL; |
| struct sky2_hw *hw; |
| int err, pm_cap, using_dac = 0; |
| |
| err = pci_enable_device(pdev); |
| if (err) { |
| printk(KERN_ERR PFX "%s cannot enable PCI device\n", |
| pci_name(pdev)); |
| goto err_out; |
| } |
| |
| err = pci_request_regions(pdev, DRV_NAME); |
| if (err) { |
| printk(KERN_ERR PFX "%s cannot obtain PCI resources\n", |
| pci_name(pdev)); |
| goto err_out; |
| } |
| |
| pci_set_master(pdev); |
| |
| /* Find power-management capability. */ |
| pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM); |
| if (pm_cap == 0) { |
| printk(KERN_ERR PFX "Cannot find PowerManagement capability, " |
| "aborting.\n"); |
| err = -EIO; |
| goto err_out_free_regions; |
| } |
| |
| if (sizeof(dma_addr_t) > sizeof(u32) && |
| !(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) { |
| using_dac = 1; |
| err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK); |
| if (err < 0) { |
| printk(KERN_ERR PFX "%s unable to obtain 64 bit DMA " |
| "for consistent allocations\n", pci_name(pdev)); |
| goto err_out_free_regions; |
| } |
| |
| } else { |
| err = pci_set_dma_mask(pdev, DMA_32BIT_MASK); |
| if (err) { |
| printk(KERN_ERR PFX "%s no usable DMA configuration\n", |
| pci_name(pdev)); |
| goto err_out_free_regions; |
| } |
| } |
| |
| err = -ENOMEM; |
| hw = kzalloc(sizeof(*hw), GFP_KERNEL); |
| if (!hw) { |
| printk(KERN_ERR PFX "%s: cannot allocate hardware struct\n", |
| pci_name(pdev)); |
| goto err_out_free_regions; |
| } |
| |
| hw->pdev = pdev; |
| |
| hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000); |
| if (!hw->regs) { |
| printk(KERN_ERR PFX "%s: cannot map device registers\n", |
| pci_name(pdev)); |
| goto err_out_free_hw; |
| } |
| hw->pm_cap = pm_cap; |
| |
| #ifdef __BIG_ENDIAN |
| /* The sk98lin vendor driver uses hardware byte swapping but |
| * this driver uses software swapping. |
| */ |
| { |
| u32 reg; |
| reg = sky2_pci_read32(hw, PCI_DEV_REG2); |
| reg &= ~PCI_REV_DESC; |
| sky2_pci_write32(hw, PCI_DEV_REG2, reg); |
| } |
| #endif |
| |
| /* ring for status responses */ |
| hw->st_le = pci_alloc_consistent(hw->pdev, STATUS_LE_BYTES, |
| &hw->st_dma); |
| if (!hw->st_le) |
| goto err_out_iounmap; |
| |
| err = sky2_reset(hw); |
| if (err) |
| goto err_out_iounmap; |
| |
| printk(KERN_INFO PFX "v%s addr 0x%llx irq %d Yukon-%s (0x%x) rev %d\n", |
| DRV_VERSION, (unsigned long long)pci_resource_start(pdev, 0), |
| pdev->irq, yukon2_name[hw->chip_id - CHIP_ID_YUKON_XL], |
| hw->chip_id, hw->chip_rev); |
| |
| dev = sky2_init_netdev(hw, 0, using_dac); |
| if (!dev) |
| goto err_out_free_pci; |
| |
| err = register_netdev(dev); |
| if (err) { |
| printk(KERN_ERR PFX "%s: cannot register net device\n", |
| pci_name(pdev)); |
| goto err_out_free_netdev; |
| } |
| |
| sky2_show_addr(dev); |
| |
| if (hw->ports > 1 && (dev1 = sky2_init_netdev(hw, 1, using_dac))) { |
| if (register_netdev(dev1) == 0) |
| sky2_show_addr(dev1); |
| else { |
| /* Failure to register second port need not be fatal */ |
| printk(KERN_WARNING PFX |
| "register of second port failed\n"); |
| hw->dev[1] = NULL; |
| free_netdev(dev1); |
| } |
| } |
| |
| if (!disable_msi && pci_enable_msi(pdev) == 0) { |
| err = sky2_test_msi(hw); |
| if (err == -EOPNOTSUPP) |
| pci_disable_msi(pdev); |
| else if (err) |
| goto err_out_unregister; |
| } |
| |
| err = request_irq(pdev->irq, sky2_intr, IRQF_SHARED, DRV_NAME, hw); |
| if (err) { |
| printk(KERN_ERR PFX "%s: cannot assign irq %d\n", |
| pci_name(pdev), pdev->irq); |
| goto err_out_unregister; |
| } |
| |
| sky2_write32(hw, B0_IMSK, Y2_IS_BASE); |
| |
| setup_timer(&hw->idle_timer, sky2_idle, (unsigned long) hw); |
| sky2_idle_start(hw); |
| |
| pci_set_drvdata(pdev, hw); |
| |
| return 0; |
| |
| err_out_unregister: |
| pci_disable_msi(pdev); |
| if (dev1) { |
| unregister_netdev(dev1); |
| free_netdev(dev1); |
| } |
| unregister_netdev(dev); |
| err_out_free_netdev: |
| free_netdev(dev); |
| err_out_free_pci: |
| sky2_write8(hw, B0_CTST, CS_RST_SET); |
| pci_free_consistent(hw->pdev, STATUS_LE_BYTES, hw->st_le, hw->st_dma); |
| err_out_iounmap: |
| iounmap(hw->regs); |
| err_out_free_hw: |
| kfree(hw); |
| err_out_free_regions: |
| pci_release_regions(pdev); |
| pci_disable_device(pdev); |
| err_out: |
| return err; |
| } |
| |
| static void __devexit sky2_remove(struct pci_dev *pdev) |
| { |
| struct sky2_hw *hw = pci_get_drvdata(pdev); |
| struct net_device *dev0, *dev1; |
| |
| if (!hw) |
| return; |
| |
| del_timer_sync(&hw->idle_timer); |
| |
| sky2_write32(hw, B0_IMSK, 0); |
| synchronize_irq(hw->pdev->irq); |
| |
| dev0 = hw->dev[0]; |
| dev1 = hw->dev[1]; |
| if (dev1) |
| unregister_netdev(dev1); |
| unregister_netdev(dev0); |
| |
| sky2_set_power_state(hw, PCI_D3hot); |
| sky2_write16(hw, B0_Y2LED, LED_STAT_OFF); |
| sky2_write8(hw, B0_CTST, CS_RST_SET); |
| sky2_read8(hw, B0_CTST); |
| |
| free_irq(pdev->irq, hw); |
| pci_disable_msi(pdev); |
| pci_free_consistent(pdev, STATUS_LE_BYTES, hw->st_le, hw->st_dma); |
| pci_release_regions(pdev); |
| pci_disable_device(pdev); |
| |
| if (dev1) |
| free_netdev(dev1); |
| free_netdev(dev0); |
| iounmap(hw->regs); |
| kfree(hw); |
| |
| pci_set_drvdata(pdev, NULL); |
| } |
| |
| #ifdef CONFIG_PM |
| static int sky2_suspend(struct pci_dev *pdev, pm_message_t state) |
| { |
| struct sky2_hw *hw = pci_get_drvdata(pdev); |
| int i; |
| pci_power_t pstate = pci_choose_state(pdev, state); |
| |
| if (!(pstate == PCI_D3hot || pstate == PCI_D3cold)) |
| return -EINVAL; |
| |
| del_timer_sync(&hw->idle_timer); |
| netif_poll_disable(hw->dev[0]); |
| |
| for (i = 0; i < hw->ports; i++) { |
| struct net_device *dev = hw->dev[i]; |
| |
| if (netif_running(dev)) { |
| sky2_down(dev); |
| netif_device_detach(dev); |
| } |
| } |
| |
| sky2_write32(hw, B0_IMSK, 0); |
| pci_save_state(pdev); |
| sky2_set_power_state(hw, pstate); |
| return 0; |
| } |
| |
| static int sky2_resume(struct pci_dev *pdev) |
| { |
| struct sky2_hw *hw = pci_get_drvdata(pdev); |
| int i, err; |
| |
| pci_restore_state(pdev); |
| pci_enable_wake(pdev, PCI_D0, 0); |
| sky2_set_power_state(hw, PCI_D0); |
| |
| err = sky2_reset(hw); |
| if (err) |
| goto out; |
| |
| sky2_write32(hw, B0_IMSK, Y2_IS_BASE); |
| |
| for (i = 0; i < hw->ports; i++) { |
| struct net_device *dev = hw->dev[i]; |
| if (netif_running(dev)) { |
| netif_device_attach(dev); |
| |
| err = sky2_up(dev); |
| if (err) { |
| printk(KERN_ERR PFX "%s: could not up: %d\n", |
| dev->name, err); |
| dev_close(dev); |
| goto out; |
| } |
| } |
| } |
| |
| netif_poll_enable(hw->dev[0]); |
| sky2_idle_start(hw); |
| out: |
| return err; |
| } |
| #endif |
| |
| static struct pci_driver sky2_driver = { |
| .name = DRV_NAME, |
| .id_table = sky2_id_table, |
| .probe = sky2_probe, |
| .remove = __devexit_p(sky2_remove), |
| #ifdef CONFIG_PM |
| .suspend = sky2_suspend, |
| .resume = sky2_resume, |
| #endif |
| }; |
| |
| static int __init sky2_init_module(void) |
| { |
| return pci_register_driver(&sky2_driver); |
| } |
| |
| static void __exit sky2_cleanup_module(void) |
| { |
| pci_unregister_driver(&sky2_driver); |
| } |
| |
| module_init(sky2_init_module); |
| module_exit(sky2_cleanup_module); |
| |
| MODULE_DESCRIPTION("Marvell Yukon 2 Gigabit Ethernet driver"); |
| MODULE_AUTHOR("Stephen Hemminger <shemminger@osdl.org>"); |
| MODULE_LICENSE("GPL"); |
| MODULE_VERSION(DRV_VERSION); |