| /* |
| * Intel e7xxx Memory Controller kernel module |
| * (C) 2003 Linux Networx (http://lnxi.com) |
| * This file may be distributed under the terms of the |
| * GNU General Public License. |
| * |
| * See "enum e7xxx_chips" below for supported chipsets |
| * |
| * Written by Thayne Harbaugh |
| * Based on work by Dan Hollis <goemon at anime dot net> and others. |
| * http://www.anime.net/~goemon/linux-ecc/ |
| * |
| * Datasheet: |
| * http://www.intel.com/content/www/us/en/chipsets/e7501-chipset-memory-controller-hub-datasheet.html |
| * |
| * Contributors: |
| * Eric Biederman (Linux Networx) |
| * Tom Zimmerman (Linux Networx) |
| * Jim Garlick (Lawrence Livermore National Labs) |
| * Dave Peterson (Lawrence Livermore National Labs) |
| * That One Guy (Some other place) |
| * Wang Zhenyu (intel.com) |
| * |
| * $Id: edac_e7xxx.c,v 1.5.2.9 2005/10/05 00:43:44 dsp_llnl Exp $ |
| * |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/pci.h> |
| #include <linux/pci_ids.h> |
| #include <linux/edac.h> |
| #include "edac_module.h" |
| |
| #define E7XXX_REVISION " Ver: 2.0.2" |
| #define EDAC_MOD_STR "e7xxx_edac" |
| |
| #define e7xxx_printk(level, fmt, arg...) \ |
| edac_printk(level, "e7xxx", fmt, ##arg) |
| |
| #define e7xxx_mc_printk(mci, level, fmt, arg...) \ |
| edac_mc_chipset_printk(mci, level, "e7xxx", fmt, ##arg) |
| |
| #ifndef PCI_DEVICE_ID_INTEL_7205_0 |
| #define PCI_DEVICE_ID_INTEL_7205_0 0x255d |
| #endif /* PCI_DEVICE_ID_INTEL_7205_0 */ |
| |
| #ifndef PCI_DEVICE_ID_INTEL_7205_1_ERR |
| #define PCI_DEVICE_ID_INTEL_7205_1_ERR 0x2551 |
| #endif /* PCI_DEVICE_ID_INTEL_7205_1_ERR */ |
| |
| #ifndef PCI_DEVICE_ID_INTEL_7500_0 |
| #define PCI_DEVICE_ID_INTEL_7500_0 0x2540 |
| #endif /* PCI_DEVICE_ID_INTEL_7500_0 */ |
| |
| #ifndef PCI_DEVICE_ID_INTEL_7500_1_ERR |
| #define PCI_DEVICE_ID_INTEL_7500_1_ERR 0x2541 |
| #endif /* PCI_DEVICE_ID_INTEL_7500_1_ERR */ |
| |
| #ifndef PCI_DEVICE_ID_INTEL_7501_0 |
| #define PCI_DEVICE_ID_INTEL_7501_0 0x254c |
| #endif /* PCI_DEVICE_ID_INTEL_7501_0 */ |
| |
| #ifndef PCI_DEVICE_ID_INTEL_7501_1_ERR |
| #define PCI_DEVICE_ID_INTEL_7501_1_ERR 0x2541 |
| #endif /* PCI_DEVICE_ID_INTEL_7501_1_ERR */ |
| |
| #ifndef PCI_DEVICE_ID_INTEL_7505_0 |
| #define PCI_DEVICE_ID_INTEL_7505_0 0x2550 |
| #endif /* PCI_DEVICE_ID_INTEL_7505_0 */ |
| |
| #ifndef PCI_DEVICE_ID_INTEL_7505_1_ERR |
| #define PCI_DEVICE_ID_INTEL_7505_1_ERR 0x2551 |
| #endif /* PCI_DEVICE_ID_INTEL_7505_1_ERR */ |
| |
| #define E7XXX_NR_CSROWS 8 /* number of csrows */ |
| #define E7XXX_NR_DIMMS 8 /* 2 channels, 4 dimms/channel */ |
| |
| /* E7XXX register addresses - device 0 function 0 */ |
| #define E7XXX_DRB 0x60 /* DRAM row boundary register (8b) */ |
| #define E7XXX_DRA 0x70 /* DRAM row attribute register (8b) */ |
| /* |
| * 31 Device width row 7 0=x8 1=x4 |
| * 27 Device width row 6 |
| * 23 Device width row 5 |
| * 19 Device width row 4 |
| * 15 Device width row 3 |
| * 11 Device width row 2 |
| * 7 Device width row 1 |
| * 3 Device width row 0 |
| */ |
| #define E7XXX_DRC 0x7C /* DRAM controller mode reg (32b) */ |
| /* |
| * 22 Number channels 0=1,1=2 |
| * 19:18 DRB Granularity 32/64MB |
| */ |
| #define E7XXX_TOLM 0xC4 /* DRAM top of low memory reg (16b) */ |
| #define E7XXX_REMAPBASE 0xC6 /* DRAM remap base address reg (16b) */ |
| #define E7XXX_REMAPLIMIT 0xC8 /* DRAM remap limit address reg (16b) */ |
| |
| /* E7XXX register addresses - device 0 function 1 */ |
| #define E7XXX_DRAM_FERR 0x80 /* DRAM first error register (8b) */ |
| #define E7XXX_DRAM_NERR 0x82 /* DRAM next error register (8b) */ |
| #define E7XXX_DRAM_CELOG_ADD 0xA0 /* DRAM first correctable memory */ |
| /* error address register (32b) */ |
| /* |
| * 31:28 Reserved |
| * 27:6 CE address (4k block 33:12) |
| * 5:0 Reserved |
| */ |
| #define E7XXX_DRAM_UELOG_ADD 0xB0 /* DRAM first uncorrectable memory */ |
| /* error address register (32b) */ |
| /* |
| * 31:28 Reserved |
| * 27:6 CE address (4k block 33:12) |
| * 5:0 Reserved |
| */ |
| #define E7XXX_DRAM_CELOG_SYNDROME 0xD0 /* DRAM first correctable memory */ |
| /* error syndrome register (16b) */ |
| |
| enum e7xxx_chips { |
| E7500 = 0, |
| E7501, |
| E7505, |
| E7205, |
| }; |
| |
| struct e7xxx_pvt { |
| struct pci_dev *bridge_ck; |
| u32 tolm; |
| u32 remapbase; |
| u32 remaplimit; |
| const struct e7xxx_dev_info *dev_info; |
| }; |
| |
| struct e7xxx_dev_info { |
| u16 err_dev; |
| const char *ctl_name; |
| }; |
| |
| struct e7xxx_error_info { |
| u8 dram_ferr; |
| u8 dram_nerr; |
| u32 dram_celog_add; |
| u16 dram_celog_syndrome; |
| u32 dram_uelog_add; |
| }; |
| |
| static struct edac_pci_ctl_info *e7xxx_pci; |
| |
| static const struct e7xxx_dev_info e7xxx_devs[] = { |
| [E7500] = { |
| .err_dev = PCI_DEVICE_ID_INTEL_7500_1_ERR, |
| .ctl_name = "E7500"}, |
| [E7501] = { |
| .err_dev = PCI_DEVICE_ID_INTEL_7501_1_ERR, |
| .ctl_name = "E7501"}, |
| [E7505] = { |
| .err_dev = PCI_DEVICE_ID_INTEL_7505_1_ERR, |
| .ctl_name = "E7505"}, |
| [E7205] = { |
| .err_dev = PCI_DEVICE_ID_INTEL_7205_1_ERR, |
| .ctl_name = "E7205"}, |
| }; |
| |
| /* FIXME - is this valid for both SECDED and S4ECD4ED? */ |
| static inline int e7xxx_find_channel(u16 syndrome) |
| { |
| edac_dbg(3, "\n"); |
| |
| if ((syndrome & 0xff00) == 0) |
| return 0; |
| |
| if ((syndrome & 0x00ff) == 0) |
| return 1; |
| |
| if ((syndrome & 0xf000) == 0 || (syndrome & 0x0f00) == 0) |
| return 0; |
| |
| return 1; |
| } |
| |
| static unsigned long ctl_page_to_phys(struct mem_ctl_info *mci, |
| unsigned long page) |
| { |
| u32 remap; |
| struct e7xxx_pvt *pvt = (struct e7xxx_pvt *)mci->pvt_info; |
| |
| edac_dbg(3, "\n"); |
| |
| if ((page < pvt->tolm) || |
| ((page >= 0x100000) && (page < pvt->remapbase))) |
| return page; |
| |
| remap = (page - pvt->tolm) + pvt->remapbase; |
| |
| if (remap < pvt->remaplimit) |
| return remap; |
| |
| e7xxx_printk(KERN_ERR, "Invalid page %lx - out of range\n", page); |
| return pvt->tolm - 1; |
| } |
| |
| static void process_ce(struct mem_ctl_info *mci, struct e7xxx_error_info *info) |
| { |
| u32 error_1b, page; |
| u16 syndrome; |
| int row; |
| int channel; |
| |
| edac_dbg(3, "\n"); |
| /* read the error address */ |
| error_1b = info->dram_celog_add; |
| /* FIXME - should use PAGE_SHIFT */ |
| page = error_1b >> 6; /* convert the address to 4k page */ |
| /* read the syndrome */ |
| syndrome = info->dram_celog_syndrome; |
| /* FIXME - check for -1 */ |
| row = edac_mc_find_csrow_by_page(mci, page); |
| /* convert syndrome to channel */ |
| channel = e7xxx_find_channel(syndrome); |
| edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, page, 0, syndrome, |
| row, channel, -1, "e7xxx CE", ""); |
| } |
| |
| static void process_ce_no_info(struct mem_ctl_info *mci) |
| { |
| edac_dbg(3, "\n"); |
| edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, 0, -1, -1, -1, |
| "e7xxx CE log register overflow", ""); |
| } |
| |
| static void process_ue(struct mem_ctl_info *mci, struct e7xxx_error_info *info) |
| { |
| u32 error_2b, block_page; |
| int row; |
| |
| edac_dbg(3, "\n"); |
| /* read the error address */ |
| error_2b = info->dram_uelog_add; |
| /* FIXME - should use PAGE_SHIFT */ |
| block_page = error_2b >> 6; /* convert to 4k address */ |
| row = edac_mc_find_csrow_by_page(mci, block_page); |
| |
| edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, block_page, 0, 0, |
| row, -1, -1, "e7xxx UE", ""); |
| } |
| |
| static void process_ue_no_info(struct mem_ctl_info *mci) |
| { |
| edac_dbg(3, "\n"); |
| |
| edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, 0, 0, 0, -1, -1, -1, |
| "e7xxx UE log register overflow", ""); |
| } |
| |
| static void e7xxx_get_error_info(struct mem_ctl_info *mci, |
| struct e7xxx_error_info *info) |
| { |
| struct e7xxx_pvt *pvt; |
| |
| pvt = (struct e7xxx_pvt *)mci->pvt_info; |
| pci_read_config_byte(pvt->bridge_ck, E7XXX_DRAM_FERR, &info->dram_ferr); |
| pci_read_config_byte(pvt->bridge_ck, E7XXX_DRAM_NERR, &info->dram_nerr); |
| |
| if ((info->dram_ferr & 1) || (info->dram_nerr & 1)) { |
| pci_read_config_dword(pvt->bridge_ck, E7XXX_DRAM_CELOG_ADD, |
| &info->dram_celog_add); |
| pci_read_config_word(pvt->bridge_ck, |
| E7XXX_DRAM_CELOG_SYNDROME, |
| &info->dram_celog_syndrome); |
| } |
| |
| if ((info->dram_ferr & 2) || (info->dram_nerr & 2)) |
| pci_read_config_dword(pvt->bridge_ck, E7XXX_DRAM_UELOG_ADD, |
| &info->dram_uelog_add); |
| |
| if (info->dram_ferr & 3) |
| pci_write_bits8(pvt->bridge_ck, E7XXX_DRAM_FERR, 0x03, 0x03); |
| |
| if (info->dram_nerr & 3) |
| pci_write_bits8(pvt->bridge_ck, E7XXX_DRAM_NERR, 0x03, 0x03); |
| } |
| |
| static int e7xxx_process_error_info(struct mem_ctl_info *mci, |
| struct e7xxx_error_info *info, |
| int handle_errors) |
| { |
| int error_found; |
| |
| error_found = 0; |
| |
| /* decode and report errors */ |
| if (info->dram_ferr & 1) { /* check first error correctable */ |
| error_found = 1; |
| |
| if (handle_errors) |
| process_ce(mci, info); |
| } |
| |
| if (info->dram_ferr & 2) { /* check first error uncorrectable */ |
| error_found = 1; |
| |
| if (handle_errors) |
| process_ue(mci, info); |
| } |
| |
| if (info->dram_nerr & 1) { /* check next error correctable */ |
| error_found = 1; |
| |
| if (handle_errors) { |
| if (info->dram_ferr & 1) |
| process_ce_no_info(mci); |
| else |
| process_ce(mci, info); |
| } |
| } |
| |
| if (info->dram_nerr & 2) { /* check next error uncorrectable */ |
| error_found = 1; |
| |
| if (handle_errors) { |
| if (info->dram_ferr & 2) |
| process_ue_no_info(mci); |
| else |
| process_ue(mci, info); |
| } |
| } |
| |
| return error_found; |
| } |
| |
| static void e7xxx_check(struct mem_ctl_info *mci) |
| { |
| struct e7xxx_error_info info; |
| |
| edac_dbg(3, "\n"); |
| e7xxx_get_error_info(mci, &info); |
| e7xxx_process_error_info(mci, &info, 1); |
| } |
| |
| /* Return 1 if dual channel mode is active. Else return 0. */ |
| static inline int dual_channel_active(u32 drc, int dev_idx) |
| { |
| return (dev_idx == E7501) ? ((drc >> 22) & 0x1) : 1; |
| } |
| |
| /* Return DRB granularity (0=32mb, 1=64mb). */ |
| static inline int drb_granularity(u32 drc, int dev_idx) |
| { |
| /* only e7501 can be single channel */ |
| return (dev_idx == E7501) ? ((drc >> 18) & 0x3) : 1; |
| } |
| |
| static void e7xxx_init_csrows(struct mem_ctl_info *mci, struct pci_dev *pdev, |
| int dev_idx, u32 drc) |
| { |
| unsigned long last_cumul_size; |
| int index, j; |
| u8 value; |
| u32 dra, cumul_size, nr_pages; |
| int drc_chan, drc_drbg, drc_ddim, mem_dev; |
| struct csrow_info *csrow; |
| struct dimm_info *dimm; |
| enum edac_type edac_mode; |
| |
| pci_read_config_dword(pdev, E7XXX_DRA, &dra); |
| drc_chan = dual_channel_active(drc, dev_idx); |
| drc_drbg = drb_granularity(drc, dev_idx); |
| drc_ddim = (drc >> 20) & 0x3; |
| last_cumul_size = 0; |
| |
| /* The dram row boundary (DRB) reg values are boundary address |
| * for each DRAM row with a granularity of 32 or 64MB (single/dual |
| * channel operation). DRB regs are cumulative; therefore DRB7 will |
| * contain the total memory contained in all eight rows. |
| */ |
| for (index = 0; index < mci->nr_csrows; index++) { |
| /* mem_dev 0=x8, 1=x4 */ |
| mem_dev = (dra >> (index * 4 + 3)) & 0x1; |
| csrow = mci->csrows[index]; |
| |
| pci_read_config_byte(pdev, E7XXX_DRB + index, &value); |
| /* convert a 64 or 32 MiB DRB to a page size. */ |
| cumul_size = value << (25 + drc_drbg - PAGE_SHIFT); |
| edac_dbg(3, "(%d) cumul_size 0x%x\n", index, cumul_size); |
| if (cumul_size == last_cumul_size) |
| continue; /* not populated */ |
| |
| csrow->first_page = last_cumul_size; |
| csrow->last_page = cumul_size - 1; |
| nr_pages = cumul_size - last_cumul_size; |
| last_cumul_size = cumul_size; |
| |
| /* |
| * if single channel or x8 devices then SECDED |
| * if dual channel and x4 then S4ECD4ED |
| */ |
| if (drc_ddim) { |
| if (drc_chan && mem_dev) { |
| edac_mode = EDAC_S4ECD4ED; |
| mci->edac_cap |= EDAC_FLAG_S4ECD4ED; |
| } else { |
| edac_mode = EDAC_SECDED; |
| mci->edac_cap |= EDAC_FLAG_SECDED; |
| } |
| } else |
| edac_mode = EDAC_NONE; |
| |
| for (j = 0; j < drc_chan + 1; j++) { |
| dimm = csrow->channels[j]->dimm; |
| |
| dimm->nr_pages = nr_pages / (drc_chan + 1); |
| dimm->grain = 1 << 12; /* 4KiB - resolution of CELOG */ |
| dimm->mtype = MEM_RDDR; /* only one type supported */ |
| dimm->dtype = mem_dev ? DEV_X4 : DEV_X8; |
| dimm->edac_mode = edac_mode; |
| } |
| } |
| } |
| |
| static int e7xxx_probe1(struct pci_dev *pdev, int dev_idx) |
| { |
| u16 pci_data; |
| struct mem_ctl_info *mci = NULL; |
| struct edac_mc_layer layers[2]; |
| struct e7xxx_pvt *pvt = NULL; |
| u32 drc; |
| int drc_chan; |
| struct e7xxx_error_info discard; |
| |
| edac_dbg(0, "mci\n"); |
| |
| pci_read_config_dword(pdev, E7XXX_DRC, &drc); |
| |
| drc_chan = dual_channel_active(drc, dev_idx); |
| /* |
| * According with the datasheet, this device has a maximum of |
| * 4 DIMMS per channel, either single-rank or dual-rank. So, the |
| * total amount of dimms is 8 (E7XXX_NR_DIMMS). |
| * That means that the DIMM is mapped as CSROWs, and the channel |
| * will map the rank. So, an error to either channel should be |
| * attributed to the same dimm. |
| */ |
| layers[0].type = EDAC_MC_LAYER_CHIP_SELECT; |
| layers[0].size = E7XXX_NR_CSROWS; |
| layers[0].is_virt_csrow = true; |
| layers[1].type = EDAC_MC_LAYER_CHANNEL; |
| layers[1].size = drc_chan + 1; |
| layers[1].is_virt_csrow = false; |
| mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt)); |
| if (mci == NULL) |
| return -ENOMEM; |
| |
| edac_dbg(3, "init mci\n"); |
| mci->mtype_cap = MEM_FLAG_RDDR; |
| mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED | |
| EDAC_FLAG_S4ECD4ED; |
| /* FIXME - what if different memory types are in different csrows? */ |
| mci->mod_name = EDAC_MOD_STR; |
| mci->mod_ver = E7XXX_REVISION; |
| mci->pdev = &pdev->dev; |
| edac_dbg(3, "init pvt\n"); |
| pvt = (struct e7xxx_pvt *)mci->pvt_info; |
| pvt->dev_info = &e7xxx_devs[dev_idx]; |
| pvt->bridge_ck = pci_get_device(PCI_VENDOR_ID_INTEL, |
| pvt->dev_info->err_dev, pvt->bridge_ck); |
| |
| if (!pvt->bridge_ck) { |
| e7xxx_printk(KERN_ERR, "error reporting device not found:" |
| "vendor %x device 0x%x (broken BIOS?)\n", |
| PCI_VENDOR_ID_INTEL, e7xxx_devs[dev_idx].err_dev); |
| goto fail0; |
| } |
| |
| edac_dbg(3, "more mci init\n"); |
| mci->ctl_name = pvt->dev_info->ctl_name; |
| mci->dev_name = pci_name(pdev); |
| mci->edac_check = e7xxx_check; |
| mci->ctl_page_to_phys = ctl_page_to_phys; |
| e7xxx_init_csrows(mci, pdev, dev_idx, drc); |
| mci->edac_cap |= EDAC_FLAG_NONE; |
| edac_dbg(3, "tolm, remapbase, remaplimit\n"); |
| /* load the top of low memory, remap base, and remap limit vars */ |
| pci_read_config_word(pdev, E7XXX_TOLM, &pci_data); |
| pvt->tolm = ((u32) pci_data) << 4; |
| pci_read_config_word(pdev, E7XXX_REMAPBASE, &pci_data); |
| pvt->remapbase = ((u32) pci_data) << 14; |
| pci_read_config_word(pdev, E7XXX_REMAPLIMIT, &pci_data); |
| pvt->remaplimit = ((u32) pci_data) << 14; |
| e7xxx_printk(KERN_INFO, |
| "tolm = %x, remapbase = %x, remaplimit = %x\n", pvt->tolm, |
| pvt->remapbase, pvt->remaplimit); |
| |
| /* clear any pending errors, or initial state bits */ |
| e7xxx_get_error_info(mci, &discard); |
| |
| /* Here we assume that we will never see multiple instances of this |
| * type of memory controller. The ID is therefore hardcoded to 0. |
| */ |
| if (edac_mc_add_mc(mci)) { |
| edac_dbg(3, "failed edac_mc_add_mc()\n"); |
| goto fail1; |
| } |
| |
| /* allocating generic PCI control info */ |
| e7xxx_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR); |
| if (!e7xxx_pci) { |
| printk(KERN_WARNING |
| "%s(): Unable to create PCI control\n", |
| __func__); |
| printk(KERN_WARNING |
| "%s(): PCI error report via EDAC not setup\n", |
| __func__); |
| } |
| |
| /* get this far and it's successful */ |
| edac_dbg(3, "success\n"); |
| return 0; |
| |
| fail1: |
| pci_dev_put(pvt->bridge_ck); |
| |
| fail0: |
| edac_mc_free(mci); |
| |
| return -ENODEV; |
| } |
| |
| /* returns count (>= 0), or negative on error */ |
| static int e7xxx_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) |
| { |
| edac_dbg(0, "\n"); |
| |
| /* wake up and enable device */ |
| return pci_enable_device(pdev) ? |
| -EIO : e7xxx_probe1(pdev, ent->driver_data); |
| } |
| |
| static void e7xxx_remove_one(struct pci_dev *pdev) |
| { |
| struct mem_ctl_info *mci; |
| struct e7xxx_pvt *pvt; |
| |
| edac_dbg(0, "\n"); |
| |
| if (e7xxx_pci) |
| edac_pci_release_generic_ctl(e7xxx_pci); |
| |
| if ((mci = edac_mc_del_mc(&pdev->dev)) == NULL) |
| return; |
| |
| pvt = (struct e7xxx_pvt *)mci->pvt_info; |
| pci_dev_put(pvt->bridge_ck); |
| edac_mc_free(mci); |
| } |
| |
| static const struct pci_device_id e7xxx_pci_tbl[] = { |
| { |
| PCI_VEND_DEV(INTEL, 7205_0), PCI_ANY_ID, PCI_ANY_ID, 0, 0, |
| E7205}, |
| { |
| PCI_VEND_DEV(INTEL, 7500_0), PCI_ANY_ID, PCI_ANY_ID, 0, 0, |
| E7500}, |
| { |
| PCI_VEND_DEV(INTEL, 7501_0), PCI_ANY_ID, PCI_ANY_ID, 0, 0, |
| E7501}, |
| { |
| PCI_VEND_DEV(INTEL, 7505_0), PCI_ANY_ID, PCI_ANY_ID, 0, 0, |
| E7505}, |
| { |
| 0, |
| } /* 0 terminated list. */ |
| }; |
| |
| MODULE_DEVICE_TABLE(pci, e7xxx_pci_tbl); |
| |
| static struct pci_driver e7xxx_driver = { |
| .name = EDAC_MOD_STR, |
| .probe = e7xxx_init_one, |
| .remove = e7xxx_remove_one, |
| .id_table = e7xxx_pci_tbl, |
| }; |
| |
| static int __init e7xxx_init(void) |
| { |
| /* Ensure that the OPSTATE is set correctly for POLL or NMI */ |
| opstate_init(); |
| |
| return pci_register_driver(&e7xxx_driver); |
| } |
| |
| static void __exit e7xxx_exit(void) |
| { |
| pci_unregister_driver(&e7xxx_driver); |
| } |
| |
| module_init(e7xxx_init); |
| module_exit(e7xxx_exit); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Linux Networx (http://lnxi.com) Thayne Harbaugh et al\n" |
| "Based on.work by Dan Hollis et al"); |
| MODULE_DESCRIPTION("MC support for Intel e7xxx memory controllers"); |
| module_param(edac_op_state, int, 0444); |
| MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); |