blob: 4ca396e3168f848fd44d3dcc910909147ceaa1aa [file] [log] [blame]
/*
* Copyright (c) 2007 Mellanox Technologies. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#include <net/busy_poll.h>
#include <linux/mlx4/cq.h>
#include <linux/slab.h>
#include <linux/mlx4/qp.h>
#include <linux/skbuff.h>
#include <linux/rculist.h>
#include <linux/if_ether.h>
#include <linux/if_vlan.h>
#include <linux/vmalloc.h>
#include <linux/irq.h>
#if IS_ENABLED(CONFIG_IPV6)
#include <net/ip6_checksum.h>
#endif
#include "mlx4_en.h"
static int mlx4_alloc_pages(struct mlx4_en_priv *priv,
struct mlx4_en_rx_alloc *page_alloc,
const struct mlx4_en_frag_info *frag_info,
gfp_t _gfp)
{
int order;
struct page *page;
dma_addr_t dma;
for (order = MLX4_EN_ALLOC_PREFER_ORDER; ;) {
gfp_t gfp = _gfp;
if (order)
gfp |= __GFP_COMP | __GFP_NOWARN;
page = alloc_pages(gfp, order);
if (likely(page))
break;
if (--order < 0 ||
((PAGE_SIZE << order) < frag_info->frag_size))
return -ENOMEM;
}
dma = dma_map_page(priv->ddev, page, 0, PAGE_SIZE << order,
PCI_DMA_FROMDEVICE);
if (dma_mapping_error(priv->ddev, dma)) {
put_page(page);
return -ENOMEM;
}
page_alloc->page_size = PAGE_SIZE << order;
page_alloc->page = page;
page_alloc->dma = dma;
page_alloc->page_offset = 0;
/* Not doing get_page() for each frag is a big win
* on asymetric workloads. Note we can not use atomic_set().
*/
atomic_add(page_alloc->page_size / frag_info->frag_stride - 1,
&page->_count);
return 0;
}
static int mlx4_en_alloc_frags(struct mlx4_en_priv *priv,
struct mlx4_en_rx_desc *rx_desc,
struct mlx4_en_rx_alloc *frags,
struct mlx4_en_rx_alloc *ring_alloc,
gfp_t gfp)
{
struct mlx4_en_rx_alloc page_alloc[MLX4_EN_MAX_RX_FRAGS];
const struct mlx4_en_frag_info *frag_info;
struct page *page;
dma_addr_t dma;
int i;
for (i = 0; i < priv->num_frags; i++) {
frag_info = &priv->frag_info[i];
page_alloc[i] = ring_alloc[i];
page_alloc[i].page_offset += frag_info->frag_stride;
if (page_alloc[i].page_offset + frag_info->frag_stride <=
ring_alloc[i].page_size)
continue;
if (mlx4_alloc_pages(priv, &page_alloc[i], frag_info, gfp))
goto out;
}
for (i = 0; i < priv->num_frags; i++) {
frags[i] = ring_alloc[i];
dma = ring_alloc[i].dma + ring_alloc[i].page_offset;
ring_alloc[i] = page_alloc[i];
rx_desc->data[i].addr = cpu_to_be64(dma);
}
return 0;
out:
while (i--) {
if (page_alloc[i].page != ring_alloc[i].page) {
dma_unmap_page(priv->ddev, page_alloc[i].dma,
page_alloc[i].page_size, PCI_DMA_FROMDEVICE);
page = page_alloc[i].page;
atomic_set(&page->_count, 1);
put_page(page);
}
}
return -ENOMEM;
}
static void mlx4_en_free_frag(struct mlx4_en_priv *priv,
struct mlx4_en_rx_alloc *frags,
int i)
{
const struct mlx4_en_frag_info *frag_info = &priv->frag_info[i];
u32 next_frag_end = frags[i].page_offset + 2 * frag_info->frag_stride;
if (next_frag_end > frags[i].page_size)
dma_unmap_page(priv->ddev, frags[i].dma, frags[i].page_size,
PCI_DMA_FROMDEVICE);
if (frags[i].page)
put_page(frags[i].page);
}
static int mlx4_en_init_allocator(struct mlx4_en_priv *priv,
struct mlx4_en_rx_ring *ring)
{
int i;
struct mlx4_en_rx_alloc *page_alloc;
for (i = 0; i < priv->num_frags; i++) {
const struct mlx4_en_frag_info *frag_info = &priv->frag_info[i];
if (mlx4_alloc_pages(priv, &ring->page_alloc[i],
frag_info, GFP_KERNEL | __GFP_COLD))
goto out;
}
return 0;
out:
while (i--) {
struct page *page;
page_alloc = &ring->page_alloc[i];
dma_unmap_page(priv->ddev, page_alloc->dma,
page_alloc->page_size, PCI_DMA_FROMDEVICE);
page = page_alloc->page;
atomic_set(&page->_count, 1);
put_page(page);
page_alloc->page = NULL;
}
return -ENOMEM;
}
static void mlx4_en_destroy_allocator(struct mlx4_en_priv *priv,
struct mlx4_en_rx_ring *ring)
{
struct mlx4_en_rx_alloc *page_alloc;
int i;
for (i = 0; i < priv->num_frags; i++) {
const struct mlx4_en_frag_info *frag_info = &priv->frag_info[i];
page_alloc = &ring->page_alloc[i];
en_dbg(DRV, priv, "Freeing allocator:%d count:%d\n",
i, page_count(page_alloc->page));
dma_unmap_page(priv->ddev, page_alloc->dma,
page_alloc->page_size, PCI_DMA_FROMDEVICE);
while (page_alloc->page_offset + frag_info->frag_stride <
page_alloc->page_size) {
put_page(page_alloc->page);
page_alloc->page_offset += frag_info->frag_stride;
}
page_alloc->page = NULL;
}
}
static void mlx4_en_init_rx_desc(struct mlx4_en_priv *priv,
struct mlx4_en_rx_ring *ring, int index)
{
struct mlx4_en_rx_desc *rx_desc = ring->buf + ring->stride * index;
int possible_frags;
int i;
/* Set size and memtype fields */
for (i = 0; i < priv->num_frags; i++) {
rx_desc->data[i].byte_count =
cpu_to_be32(priv->frag_info[i].frag_size);
rx_desc->data[i].lkey = cpu_to_be32(priv->mdev->mr.key);
}
/* If the number of used fragments does not fill up the ring stride,
* remaining (unused) fragments must be padded with null address/size
* and a special memory key */
possible_frags = (ring->stride - sizeof(struct mlx4_en_rx_desc)) / DS_SIZE;
for (i = priv->num_frags; i < possible_frags; i++) {
rx_desc->data[i].byte_count = 0;
rx_desc->data[i].lkey = cpu_to_be32(MLX4_EN_MEMTYPE_PAD);
rx_desc->data[i].addr = 0;
}
}
static int mlx4_en_prepare_rx_desc(struct mlx4_en_priv *priv,
struct mlx4_en_rx_ring *ring, int index,
gfp_t gfp)
{
struct mlx4_en_rx_desc *rx_desc = ring->buf + (index * ring->stride);
struct mlx4_en_rx_alloc *frags = ring->rx_info +
(index << priv->log_rx_info);
return mlx4_en_alloc_frags(priv, rx_desc, frags, ring->page_alloc, gfp);
}
static inline void mlx4_en_update_rx_prod_db(struct mlx4_en_rx_ring *ring)
{
*ring->wqres.db.db = cpu_to_be32(ring->prod & 0xffff);
}
static void mlx4_en_free_rx_desc(struct mlx4_en_priv *priv,
struct mlx4_en_rx_ring *ring,
int index)
{
struct mlx4_en_rx_alloc *frags;
int nr;
frags = ring->rx_info + (index << priv->log_rx_info);
for (nr = 0; nr < priv->num_frags; nr++) {
en_dbg(DRV, priv, "Freeing fragment:%d\n", nr);
mlx4_en_free_frag(priv, frags, nr);
}
}
static int mlx4_en_fill_rx_buffers(struct mlx4_en_priv *priv)
{
struct mlx4_en_rx_ring *ring;
int ring_ind;
int buf_ind;
int new_size;
for (buf_ind = 0; buf_ind < priv->prof->rx_ring_size; buf_ind++) {
for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) {
ring = priv->rx_ring[ring_ind];
if (mlx4_en_prepare_rx_desc(priv, ring,
ring->actual_size,
GFP_KERNEL | __GFP_COLD)) {
if (ring->actual_size < MLX4_EN_MIN_RX_SIZE) {
en_err(priv, "Failed to allocate enough rx buffers\n");
return -ENOMEM;
} else {
new_size = rounddown_pow_of_two(ring->actual_size);
en_warn(priv, "Only %d buffers allocated reducing ring size to %d\n",
ring->actual_size, new_size);
goto reduce_rings;
}
}
ring->actual_size++;
ring->prod++;
}
}
return 0;
reduce_rings:
for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) {
ring = priv->rx_ring[ring_ind];
while (ring->actual_size > new_size) {
ring->actual_size--;
ring->prod--;
mlx4_en_free_rx_desc(priv, ring, ring->actual_size);
}
}
return 0;
}
static void mlx4_en_free_rx_buf(struct mlx4_en_priv *priv,
struct mlx4_en_rx_ring *ring)
{
int index;
en_dbg(DRV, priv, "Freeing Rx buf - cons:%d prod:%d\n",
ring->cons, ring->prod);
/* Unmap and free Rx buffers */
BUG_ON((u32) (ring->prod - ring->cons) > ring->actual_size);
while (ring->cons != ring->prod) {
index = ring->cons & ring->size_mask;
en_dbg(DRV, priv, "Processing descriptor:%d\n", index);
mlx4_en_free_rx_desc(priv, ring, index);
++ring->cons;
}
}
void mlx4_en_set_num_rx_rings(struct mlx4_en_dev *mdev)
{
int i;
int num_of_eqs;
int num_rx_rings;
struct mlx4_dev *dev = mdev->dev;
mlx4_foreach_port(i, dev, MLX4_PORT_TYPE_ETH) {
if (!dev->caps.comp_pool)
num_of_eqs = max_t(int, MIN_RX_RINGS,
min_t(int,
dev->caps.num_comp_vectors,
DEF_RX_RINGS));
else
num_of_eqs = min_t(int, MAX_MSIX_P_PORT,
dev->caps.comp_pool/
dev->caps.num_ports) - 1;
num_rx_rings = mlx4_low_memory_profile() ? MIN_RX_RINGS :
min_t(int, num_of_eqs,
netif_get_num_default_rss_queues());
mdev->profile.prof[i].rx_ring_num =
rounddown_pow_of_two(num_rx_rings);
}
}
int mlx4_en_create_rx_ring(struct mlx4_en_priv *priv,
struct mlx4_en_rx_ring **pring,
u32 size, u16 stride, int node)
{
struct mlx4_en_dev *mdev = priv->mdev;
struct mlx4_en_rx_ring *ring;
int err = -ENOMEM;
int tmp;
ring = kzalloc_node(sizeof(*ring), GFP_KERNEL, node);
if (!ring) {
ring = kzalloc(sizeof(*ring), GFP_KERNEL);
if (!ring) {
en_err(priv, "Failed to allocate RX ring structure\n");
return -ENOMEM;
}
}
ring->prod = 0;
ring->cons = 0;
ring->size = size;
ring->size_mask = size - 1;
ring->stride = stride;
ring->log_stride = ffs(ring->stride) - 1;
ring->buf_size = ring->size * ring->stride + TXBB_SIZE;
tmp = size * roundup_pow_of_two(MLX4_EN_MAX_RX_FRAGS *
sizeof(struct mlx4_en_rx_alloc));
ring->rx_info = vmalloc_node(tmp, node);
if (!ring->rx_info) {
ring->rx_info = vmalloc(tmp);
if (!ring->rx_info) {
err = -ENOMEM;
goto err_ring;
}
}
en_dbg(DRV, priv, "Allocated rx_info ring at addr:%p size:%d\n",
ring->rx_info, tmp);
/* Allocate HW buffers on provided NUMA node */
set_dev_node(&mdev->dev->pdev->dev, node);
err = mlx4_alloc_hwq_res(mdev->dev, &ring->wqres,
ring->buf_size, 2 * PAGE_SIZE);
set_dev_node(&mdev->dev->pdev->dev, mdev->dev->numa_node);
if (err)
goto err_info;
err = mlx4_en_map_buffer(&ring->wqres.buf);
if (err) {
en_err(priv, "Failed to map RX buffer\n");
goto err_hwq;
}
ring->buf = ring->wqres.buf.direct.buf;
ring->hwtstamp_rx_filter = priv->hwtstamp_config.rx_filter;
*pring = ring;
return 0;
err_hwq:
mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size);
err_info:
vfree(ring->rx_info);
ring->rx_info = NULL;
err_ring:
kfree(ring);
*pring = NULL;
return err;
}
int mlx4_en_activate_rx_rings(struct mlx4_en_priv *priv)
{
struct mlx4_en_rx_ring *ring;
int i;
int ring_ind;
int err;
int stride = roundup_pow_of_two(sizeof(struct mlx4_en_rx_desc) +
DS_SIZE * priv->num_frags);
for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) {
ring = priv->rx_ring[ring_ind];
ring->prod = 0;
ring->cons = 0;
ring->actual_size = 0;
ring->cqn = priv->rx_cq[ring_ind]->mcq.cqn;
ring->stride = stride;
if (ring->stride <= TXBB_SIZE)
ring->buf += TXBB_SIZE;
ring->log_stride = ffs(ring->stride) - 1;
ring->buf_size = ring->size * ring->stride;
memset(ring->buf, 0, ring->buf_size);
mlx4_en_update_rx_prod_db(ring);
/* Initialize all descriptors */
for (i = 0; i < ring->size; i++)
mlx4_en_init_rx_desc(priv, ring, i);
/* Initialize page allocators */
err = mlx4_en_init_allocator(priv, ring);
if (err) {
en_err(priv, "Failed initializing ring allocator\n");
if (ring->stride <= TXBB_SIZE)
ring->buf -= TXBB_SIZE;
ring_ind--;
goto err_allocator;
}
}
err = mlx4_en_fill_rx_buffers(priv);
if (err)
goto err_buffers;
for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) {
ring = priv->rx_ring[ring_ind];
ring->size_mask = ring->actual_size - 1;
mlx4_en_update_rx_prod_db(ring);
}
return 0;
err_buffers:
for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++)
mlx4_en_free_rx_buf(priv, priv->rx_ring[ring_ind]);
ring_ind = priv->rx_ring_num - 1;
err_allocator:
while (ring_ind >= 0) {
if (priv->rx_ring[ring_ind]->stride <= TXBB_SIZE)
priv->rx_ring[ring_ind]->buf -= TXBB_SIZE;
mlx4_en_destroy_allocator(priv, priv->rx_ring[ring_ind]);
ring_ind--;
}
return err;
}
void mlx4_en_destroy_rx_ring(struct mlx4_en_priv *priv,
struct mlx4_en_rx_ring **pring,
u32 size, u16 stride)
{
struct mlx4_en_dev *mdev = priv->mdev;
struct mlx4_en_rx_ring *ring = *pring;
mlx4_en_unmap_buffer(&ring->wqres.buf);
mlx4_free_hwq_res(mdev->dev, &ring->wqres, size * stride + TXBB_SIZE);
vfree(ring->rx_info);
ring->rx_info = NULL;
kfree(ring);
*pring = NULL;
#ifdef CONFIG_RFS_ACCEL
mlx4_en_cleanup_filters(priv);
#endif
}
void mlx4_en_deactivate_rx_ring(struct mlx4_en_priv *priv,
struct mlx4_en_rx_ring *ring)
{
mlx4_en_free_rx_buf(priv, ring);
if (ring->stride <= TXBB_SIZE)
ring->buf -= TXBB_SIZE;
mlx4_en_destroy_allocator(priv, ring);
}
static int mlx4_en_complete_rx_desc(struct mlx4_en_priv *priv,
struct mlx4_en_rx_desc *rx_desc,
struct mlx4_en_rx_alloc *frags,
struct sk_buff *skb,
int length)
{
struct skb_frag_struct *skb_frags_rx = skb_shinfo(skb)->frags;
struct mlx4_en_frag_info *frag_info;
int nr;
dma_addr_t dma;
/* Collect used fragments while replacing them in the HW descriptors */
for (nr = 0; nr < priv->num_frags; nr++) {
frag_info = &priv->frag_info[nr];
if (length <= frag_info->frag_prefix_size)
break;
if (!frags[nr].page)
goto fail;
dma = be64_to_cpu(rx_desc->data[nr].addr);
dma_sync_single_for_cpu(priv->ddev, dma, frag_info->frag_size,
DMA_FROM_DEVICE);
/* Save page reference in skb */
__skb_frag_set_page(&skb_frags_rx[nr], frags[nr].page);
skb_frag_size_set(&skb_frags_rx[nr], frag_info->frag_size);
skb_frags_rx[nr].page_offset = frags[nr].page_offset;
skb->truesize += frag_info->frag_stride;
frags[nr].page = NULL;
}
/* Adjust size of last fragment to match actual length */
if (nr > 0)
skb_frag_size_set(&skb_frags_rx[nr - 1],
length - priv->frag_info[nr - 1].frag_prefix_size);
return nr;
fail:
while (nr > 0) {
nr--;
__skb_frag_unref(&skb_frags_rx[nr]);
}
return 0;
}
static struct sk_buff *mlx4_en_rx_skb(struct mlx4_en_priv *priv,
struct mlx4_en_rx_desc *rx_desc,
struct mlx4_en_rx_alloc *frags,
unsigned int length)
{
struct sk_buff *skb;
void *va;
int used_frags;
dma_addr_t dma;
skb = netdev_alloc_skb(priv->dev, SMALL_PACKET_SIZE + NET_IP_ALIGN);
if (!skb) {
en_dbg(RX_ERR, priv, "Failed allocating skb\n");
return NULL;
}
skb_reserve(skb, NET_IP_ALIGN);
skb->len = length;
/* Get pointer to first fragment so we could copy the headers into the
* (linear part of the) skb */
va = page_address(frags[0].page) + frags[0].page_offset;
if (length <= SMALL_PACKET_SIZE) {
/* We are copying all relevant data to the skb - temporarily
* sync buffers for the copy */
dma = be64_to_cpu(rx_desc->data[0].addr);
dma_sync_single_for_cpu(priv->ddev, dma, length,
DMA_FROM_DEVICE);
skb_copy_to_linear_data(skb, va, length);
skb->tail += length;
} else {
unsigned int pull_len;
/* Move relevant fragments to skb */
used_frags = mlx4_en_complete_rx_desc(priv, rx_desc, frags,
skb, length);
if (unlikely(!used_frags)) {
kfree_skb(skb);
return NULL;
}
skb_shinfo(skb)->nr_frags = used_frags;
pull_len = eth_get_headlen(va, SMALL_PACKET_SIZE);
/* Copy headers into the skb linear buffer */
memcpy(skb->data, va, pull_len);
skb->tail += pull_len;
/* Skip headers in first fragment */
skb_shinfo(skb)->frags[0].page_offset += pull_len;
/* Adjust size of first fragment */
skb_frag_size_sub(&skb_shinfo(skb)->frags[0], pull_len);
skb->data_len = length - pull_len;
}
return skb;
}
static void validate_loopback(struct mlx4_en_priv *priv, struct sk_buff *skb)
{
int i;
int offset = ETH_HLEN;
for (i = 0; i < MLX4_LOOPBACK_TEST_PAYLOAD; i++, offset++) {
if (*(skb->data + offset) != (unsigned char) (i & 0xff))
goto out_loopback;
}
/* Loopback found */
priv->loopback_ok = 1;
out_loopback:
dev_kfree_skb_any(skb);
}
static void mlx4_en_refill_rx_buffers(struct mlx4_en_priv *priv,
struct mlx4_en_rx_ring *ring)
{
int index = ring->prod & ring->size_mask;
while ((u32) (ring->prod - ring->cons) < ring->actual_size) {
if (mlx4_en_prepare_rx_desc(priv, ring, index,
GFP_ATOMIC | __GFP_COLD))
break;
ring->prod++;
index = ring->prod & ring->size_mask;
}
}
/* When hardware doesn't strip the vlan, we need to calculate the checksum
* over it and add it to the hardware's checksum calculation
*/
static inline __wsum get_fixed_vlan_csum(__wsum hw_checksum,
struct vlan_hdr *vlanh)
{
return csum_add(hw_checksum, *(__wsum *)vlanh);
}
/* Although the stack expects checksum which doesn't include the pseudo
* header, the HW adds it. To address that, we are subtracting the pseudo
* header checksum from the checksum value provided by the HW.
*/
static void get_fixed_ipv4_csum(__wsum hw_checksum, struct sk_buff *skb,
struct iphdr *iph)
{
__u16 length_for_csum = 0;
__wsum csum_pseudo_header = 0;
length_for_csum = (be16_to_cpu(iph->tot_len) - (iph->ihl << 2));
csum_pseudo_header = csum_tcpudp_nofold(iph->saddr, iph->daddr,
length_for_csum, iph->protocol, 0);
skb->csum = csum_sub(hw_checksum, csum_pseudo_header);
}
#if IS_ENABLED(CONFIG_IPV6)
/* In IPv6 packets, besides subtracting the pseudo header checksum,
* we also compute/add the IP header checksum which
* is not added by the HW.
*/
static int get_fixed_ipv6_csum(__wsum hw_checksum, struct sk_buff *skb,
struct ipv6hdr *ipv6h)
{
__wsum csum_pseudo_hdr = 0;
if (ipv6h->nexthdr == IPPROTO_FRAGMENT || ipv6h->nexthdr == IPPROTO_HOPOPTS)
return -1;
hw_checksum = csum_add(hw_checksum, (__force __wsum)(ipv6h->nexthdr << 8));
csum_pseudo_hdr = csum_partial(&ipv6h->saddr,
sizeof(ipv6h->saddr) + sizeof(ipv6h->daddr), 0);
csum_pseudo_hdr = csum_add(csum_pseudo_hdr, (__force __wsum)ipv6h->payload_len);
csum_pseudo_hdr = csum_add(csum_pseudo_hdr, (__force __wsum)ntohs(ipv6h->nexthdr));
skb->csum = csum_sub(hw_checksum, csum_pseudo_hdr);
skb->csum = csum_add(skb->csum, csum_partial(ipv6h, sizeof(struct ipv6hdr), 0));
return 0;
}
#endif
static int check_csum(struct mlx4_cqe *cqe, struct sk_buff *skb, void *va,
int hwtstamp_rx_filter)
{
__wsum hw_checksum = 0;
void *hdr = (u8 *)va + sizeof(struct ethhdr);
hw_checksum = csum_unfold((__force __sum16)cqe->checksum);
if (((struct ethhdr *)va)->h_proto == htons(ETH_P_8021Q) &&
hwtstamp_rx_filter != HWTSTAMP_FILTER_NONE) {
/* next protocol non IPv4 or IPv6 */
if (((struct vlan_hdr *)hdr)->h_vlan_encapsulated_proto
!= htons(ETH_P_IP) &&
((struct vlan_hdr *)hdr)->h_vlan_encapsulated_proto
!= htons(ETH_P_IPV6))
return -1;
hw_checksum = get_fixed_vlan_csum(hw_checksum, hdr);
hdr += sizeof(struct vlan_hdr);
}
if (cqe->status & cpu_to_be16(MLX4_CQE_STATUS_IPV4))
get_fixed_ipv4_csum(hw_checksum, skb, hdr);
#if IS_ENABLED(CONFIG_IPV6)
else if (cqe->status & cpu_to_be16(MLX4_CQE_STATUS_IPV6))
if (get_fixed_ipv6_csum(hw_checksum, skb, hdr))
return -1;
#endif
return 0;
}
int mlx4_en_process_rx_cq(struct net_device *dev, struct mlx4_en_cq *cq, int budget)
{
struct mlx4_en_priv *priv = netdev_priv(dev);
struct mlx4_en_dev *mdev = priv->mdev;
struct mlx4_cqe *cqe;
struct mlx4_en_rx_ring *ring = priv->rx_ring[cq->ring];
struct mlx4_en_rx_alloc *frags;
struct mlx4_en_rx_desc *rx_desc;
struct sk_buff *skb;
int index;
int nr;
unsigned int length;
int polled = 0;
int ip_summed;
int factor = priv->cqe_factor;
u64 timestamp;
bool l2_tunnel;
if (!priv->port_up)
return 0;
if (budget <= 0)
return polled;
/* We assume a 1:1 mapping between CQEs and Rx descriptors, so Rx
* descriptor offset can be deduced from the CQE index instead of
* reading 'cqe->index' */
index = cq->mcq.cons_index & ring->size_mask;
cqe = mlx4_en_get_cqe(cq->buf, index, priv->cqe_size) + factor;
/* Process all completed CQEs */
while (XNOR(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK,
cq->mcq.cons_index & cq->size)) {
frags = ring->rx_info + (index << priv->log_rx_info);
rx_desc = ring->buf + (index << ring->log_stride);
/*
* make sure we read the CQE after we read the ownership bit
*/
rmb();
/* Drop packet on bad receive or bad checksum */
if (unlikely((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) ==
MLX4_CQE_OPCODE_ERROR)) {
en_err(priv, "CQE completed in error - vendor syndrom:%d syndrom:%d\n",
((struct mlx4_err_cqe *)cqe)->vendor_err_syndrome,
((struct mlx4_err_cqe *)cqe)->syndrome);
goto next;
}
if (unlikely(cqe->badfcs_enc & MLX4_CQE_BAD_FCS)) {
en_dbg(RX_ERR, priv, "Accepted frame with bad FCS\n");
goto next;
}
/* Check if we need to drop the packet if SRIOV is not enabled
* and not performing the selftest or flb disabled
*/
if (priv->flags & MLX4_EN_FLAG_RX_FILTER_NEEDED) {
struct ethhdr *ethh;
dma_addr_t dma;
/* Get pointer to first fragment since we haven't
* skb yet and cast it to ethhdr struct
*/
dma = be64_to_cpu(rx_desc->data[0].addr);
dma_sync_single_for_cpu(priv->ddev, dma, sizeof(*ethh),
DMA_FROM_DEVICE);
ethh = (struct ethhdr *)(page_address(frags[0].page) +
frags[0].page_offset);
if (is_multicast_ether_addr(ethh->h_dest)) {
struct mlx4_mac_entry *entry;
struct hlist_head *bucket;
unsigned int mac_hash;
/* Drop the packet, since HW loopback-ed it */
mac_hash = ethh->h_source[MLX4_EN_MAC_HASH_IDX];
bucket = &priv->mac_hash[mac_hash];
rcu_read_lock();
hlist_for_each_entry_rcu(entry, bucket, hlist) {
if (ether_addr_equal_64bits(entry->mac,
ethh->h_source)) {
rcu_read_unlock();
goto next;
}
}
rcu_read_unlock();
}
}
/*
* Packet is OK - process it.
*/
length = be32_to_cpu(cqe->byte_cnt);
length -= ring->fcs_del;
ring->bytes += length;
ring->packets++;
l2_tunnel = (dev->hw_enc_features & NETIF_F_RXCSUM) &&
(cqe->vlan_my_qpn & cpu_to_be32(MLX4_CQE_L2_TUNNEL));
if (likely(dev->features & NETIF_F_RXCSUM)) {
if (cqe->status & cpu_to_be16(MLX4_CQE_STATUS_TCP |
MLX4_CQE_STATUS_UDP)) {
if ((cqe->status & cpu_to_be16(MLX4_CQE_STATUS_IPOK)) &&
cqe->checksum == cpu_to_be16(0xffff)) {
ip_summed = CHECKSUM_UNNECESSARY;
ring->csum_ok++;
} else {
ip_summed = CHECKSUM_NONE;
ring->csum_none++;
}
} else {
if (priv->flags & MLX4_EN_FLAG_RX_CSUM_NON_TCP_UDP &&
(cqe->status & cpu_to_be16(MLX4_CQE_STATUS_IPV4 |
MLX4_CQE_STATUS_IPV6))) {
ip_summed = CHECKSUM_COMPLETE;
ring->csum_complete++;
} else {
ip_summed = CHECKSUM_NONE;
ring->csum_none++;
}
}
} else {
ip_summed = CHECKSUM_NONE;
ring->csum_none++;
}
/* This packet is eligible for GRO if it is:
* - DIX Ethernet (type interpretation)
* - TCP/IP (v4)
* - without IP options
* - not an IP fragment
* - no LLS polling in progress
*/
if (!mlx4_en_cq_busy_polling(cq) &&
(dev->features & NETIF_F_GRO)) {
struct sk_buff *gro_skb = napi_get_frags(&cq->napi);
if (!gro_skb)
goto next;
nr = mlx4_en_complete_rx_desc(priv,
rx_desc, frags, gro_skb,
length);
if (!nr)
goto next;
if (ip_summed == CHECKSUM_COMPLETE) {
void *va = skb_frag_address(skb_shinfo(gro_skb)->frags);
if (check_csum(cqe, gro_skb, va, ring->hwtstamp_rx_filter)) {
ip_summed = CHECKSUM_NONE;
ring->csum_none++;
ring->csum_complete--;
}
}
skb_shinfo(gro_skb)->nr_frags = nr;
gro_skb->len = length;
gro_skb->data_len = length;
gro_skb->ip_summed = ip_summed;
if (l2_tunnel && ip_summed == CHECKSUM_UNNECESSARY)
gro_skb->encapsulation = 1;
if ((cqe->vlan_my_qpn &
cpu_to_be32(MLX4_CQE_VLAN_PRESENT_MASK)) &&
(dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
u16 vid = be16_to_cpu(cqe->sl_vid);
__vlan_hwaccel_put_tag(gro_skb, htons(ETH_P_8021Q), vid);
}
if (dev->features & NETIF_F_RXHASH)
skb_set_hash(gro_skb,
be32_to_cpu(cqe->immed_rss_invalid),
PKT_HASH_TYPE_L3);
skb_record_rx_queue(gro_skb, cq->ring);
skb_mark_napi_id(gro_skb, &cq->napi);
if (ring->hwtstamp_rx_filter == HWTSTAMP_FILTER_ALL) {
timestamp = mlx4_en_get_cqe_ts(cqe);
mlx4_en_fill_hwtstamps(mdev,
skb_hwtstamps(gro_skb),
timestamp);
}
napi_gro_frags(&cq->napi);
goto next;
}
/* GRO not possible, complete processing here */
skb = mlx4_en_rx_skb(priv, rx_desc, frags, length);
if (!skb) {
priv->stats.rx_dropped++;
goto next;
}
if (unlikely(priv->validate_loopback)) {
validate_loopback(priv, skb);
goto next;
}
if (ip_summed == CHECKSUM_COMPLETE) {
if (check_csum(cqe, skb, skb->data, ring->hwtstamp_rx_filter)) {
ip_summed = CHECKSUM_NONE;
ring->csum_complete--;
ring->csum_none++;
}
}
skb->ip_summed = ip_summed;
skb->protocol = eth_type_trans(skb, dev);
skb_record_rx_queue(skb, cq->ring);
if (l2_tunnel && ip_summed == CHECKSUM_UNNECESSARY)
skb->csum_level = 1;
if (dev->features & NETIF_F_RXHASH)
skb_set_hash(skb,
be32_to_cpu(cqe->immed_rss_invalid),
PKT_HASH_TYPE_L3);
if ((be32_to_cpu(cqe->vlan_my_qpn) &
MLX4_CQE_VLAN_PRESENT_MASK) &&
(dev->features & NETIF_F_HW_VLAN_CTAG_RX))
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), be16_to_cpu(cqe->sl_vid));
if (ring->hwtstamp_rx_filter == HWTSTAMP_FILTER_ALL) {
timestamp = mlx4_en_get_cqe_ts(cqe);
mlx4_en_fill_hwtstamps(mdev, skb_hwtstamps(skb),
timestamp);
}
skb_mark_napi_id(skb, &cq->napi);
if (!mlx4_en_cq_busy_polling(cq))
napi_gro_receive(&cq->napi, skb);
else
netif_receive_skb(skb);
next:
for (nr = 0; nr < priv->num_frags; nr++)
mlx4_en_free_frag(priv, frags, nr);
++cq->mcq.cons_index;
index = (cq->mcq.cons_index) & ring->size_mask;
cqe = mlx4_en_get_cqe(cq->buf, index, priv->cqe_size) + factor;
if (++polled == budget)
goto out;
}
out:
AVG_PERF_COUNTER(priv->pstats.rx_coal_avg, polled);
mlx4_cq_set_ci(&cq->mcq);
wmb(); /* ensure HW sees CQ consumer before we post new buffers */
ring->cons = cq->mcq.cons_index;
mlx4_en_refill_rx_buffers(priv, ring);
mlx4_en_update_rx_prod_db(ring);
return polled;
}
void mlx4_en_rx_irq(struct mlx4_cq *mcq)
{
struct mlx4_en_cq *cq = container_of(mcq, struct mlx4_en_cq, mcq);
struct mlx4_en_priv *priv = netdev_priv(cq->dev);
if (likely(priv->port_up))
napi_schedule_irqoff(&cq->napi);
else
mlx4_en_arm_cq(priv, cq);
}
/* Rx CQ polling - called by NAPI */
int mlx4_en_poll_rx_cq(struct napi_struct *napi, int budget)
{
struct mlx4_en_cq *cq = container_of(napi, struct mlx4_en_cq, napi);
struct net_device *dev = cq->dev;
struct mlx4_en_priv *priv = netdev_priv(dev);
int done;
if (!mlx4_en_cq_lock_napi(cq))
return budget;
done = mlx4_en_process_rx_cq(dev, cq, budget);
mlx4_en_cq_unlock_napi(cq);
/* If we used up all the quota - we're probably not done yet... */
if (done == budget) {
int cpu_curr;
const struct cpumask *aff;
INC_PERF_COUNTER(priv->pstats.napi_quota);
cpu_curr = smp_processor_id();
aff = irq_desc_get_irq_data(cq->irq_desc)->affinity;
if (likely(cpumask_test_cpu(cpu_curr, aff)))
return budget;
/* Current cpu is not according to smp_irq_affinity -
* probably affinity changed. need to stop this NAPI
* poll, and restart it on the right CPU
*/
done = 0;
}
/* Done for now */
napi_complete_done(napi, done);
mlx4_en_arm_cq(priv, cq);
return done;
}
static const int frag_sizes[] = {
FRAG_SZ0,
FRAG_SZ1,
FRAG_SZ2,
FRAG_SZ3
};
void mlx4_en_calc_rx_buf(struct net_device *dev)
{
struct mlx4_en_priv *priv = netdev_priv(dev);
int eff_mtu = dev->mtu + ETH_HLEN + VLAN_HLEN;
int buf_size = 0;
int i = 0;
while (buf_size < eff_mtu) {
priv->frag_info[i].frag_size =
(eff_mtu > buf_size + frag_sizes[i]) ?
frag_sizes[i] : eff_mtu - buf_size;
priv->frag_info[i].frag_prefix_size = buf_size;
priv->frag_info[i].frag_stride = ALIGN(frag_sizes[i],
SMP_CACHE_BYTES);
buf_size += priv->frag_info[i].frag_size;
i++;
}
priv->num_frags = i;
priv->rx_skb_size = eff_mtu;
priv->log_rx_info = ROUNDUP_LOG2(i * sizeof(struct mlx4_en_rx_alloc));
en_dbg(DRV, priv, "Rx buffer scatter-list (effective-mtu:%d num_frags:%d):\n",
eff_mtu, priv->num_frags);
for (i = 0; i < priv->num_frags; i++) {
en_err(priv,
" frag:%d - size:%d prefix:%d stride:%d\n",
i,
priv->frag_info[i].frag_size,
priv->frag_info[i].frag_prefix_size,
priv->frag_info[i].frag_stride);
}
}
/* RSS related functions */
static int mlx4_en_config_rss_qp(struct mlx4_en_priv *priv, int qpn,
struct mlx4_en_rx_ring *ring,
enum mlx4_qp_state *state,
struct mlx4_qp *qp)
{
struct mlx4_en_dev *mdev = priv->mdev;
struct mlx4_qp_context *context;
int err = 0;
context = kmalloc(sizeof(*context), GFP_KERNEL);
if (!context)
return -ENOMEM;
err = mlx4_qp_alloc(mdev->dev, qpn, qp, GFP_KERNEL);
if (err) {
en_err(priv, "Failed to allocate qp #%x\n", qpn);
goto out;
}
qp->event = mlx4_en_sqp_event;
memset(context, 0, sizeof *context);
mlx4_en_fill_qp_context(priv, ring->actual_size, ring->stride, 0, 0,
qpn, ring->cqn, -1, context);
context->db_rec_addr = cpu_to_be64(ring->wqres.db.dma);
/* Cancel FCS removal if FW allows */
if (mdev->dev->caps.flags & MLX4_DEV_CAP_FLAG_FCS_KEEP) {
context->param3 |= cpu_to_be32(1 << 29);
ring->fcs_del = ETH_FCS_LEN;
} else
ring->fcs_del = 0;
err = mlx4_qp_to_ready(mdev->dev, &ring->wqres.mtt, context, qp, state);
if (err) {
mlx4_qp_remove(mdev->dev, qp);
mlx4_qp_free(mdev->dev, qp);
}
mlx4_en_update_rx_prod_db(ring);
out:
kfree(context);
return err;
}
int mlx4_en_create_drop_qp(struct mlx4_en_priv *priv)
{
int err;
u32 qpn;
err = mlx4_qp_reserve_range(priv->mdev->dev, 1, 1, &qpn);
if (err) {
en_err(priv, "Failed reserving drop qpn\n");
return err;
}
err = mlx4_qp_alloc(priv->mdev->dev, qpn, &priv->drop_qp, GFP_KERNEL);
if (err) {
en_err(priv, "Failed allocating drop qp\n");
mlx4_qp_release_range(priv->mdev->dev, qpn, 1);
return err;
}
return 0;
}
void mlx4_en_destroy_drop_qp(struct mlx4_en_priv *priv)
{
u32 qpn;
qpn = priv->drop_qp.qpn;
mlx4_qp_remove(priv->mdev->dev, &priv->drop_qp);
mlx4_qp_free(priv->mdev->dev, &priv->drop_qp);
mlx4_qp_release_range(priv->mdev->dev, qpn, 1);
}
/* Allocate rx qp's and configure them according to rss map */
int mlx4_en_config_rss_steer(struct mlx4_en_priv *priv)
{
struct mlx4_en_dev *mdev = priv->mdev;
struct mlx4_en_rss_map *rss_map = &priv->rss_map;
struct mlx4_qp_context context;
struct mlx4_rss_context *rss_context;
int rss_rings;
void *ptr;
u8 rss_mask = (MLX4_RSS_IPV4 | MLX4_RSS_TCP_IPV4 | MLX4_RSS_IPV6 |
MLX4_RSS_TCP_IPV6);
int i, qpn;
int err = 0;
int good_qps = 0;
en_dbg(DRV, priv, "Configuring rss steering\n");
err = mlx4_qp_reserve_range(mdev->dev, priv->rx_ring_num,
priv->rx_ring_num,
&rss_map->base_qpn);
if (err) {
en_err(priv, "Failed reserving %d qps\n", priv->rx_ring_num);
return err;
}
for (i = 0; i < priv->rx_ring_num; i++) {
qpn = rss_map->base_qpn + i;
err = mlx4_en_config_rss_qp(priv, qpn, priv->rx_ring[i],
&rss_map->state[i],
&rss_map->qps[i]);
if (err)
goto rss_err;
++good_qps;
}
/* Configure RSS indirection qp */
err = mlx4_qp_alloc(mdev->dev, priv->base_qpn, &rss_map->indir_qp, GFP_KERNEL);
if (err) {
en_err(priv, "Failed to allocate RSS indirection QP\n");
goto rss_err;
}
rss_map->indir_qp.event = mlx4_en_sqp_event;
mlx4_en_fill_qp_context(priv, 0, 0, 0, 1, priv->base_qpn,
priv->rx_ring[0]->cqn, -1, &context);
if (!priv->prof->rss_rings || priv->prof->rss_rings > priv->rx_ring_num)
rss_rings = priv->rx_ring_num;
else
rss_rings = priv->prof->rss_rings;
ptr = ((void *) &context) + offsetof(struct mlx4_qp_context, pri_path)
+ MLX4_RSS_OFFSET_IN_QPC_PRI_PATH;
rss_context = ptr;
rss_context->base_qpn = cpu_to_be32(ilog2(rss_rings) << 24 |
(rss_map->base_qpn));
rss_context->default_qpn = cpu_to_be32(rss_map->base_qpn);
if (priv->mdev->profile.udp_rss) {
rss_mask |= MLX4_RSS_UDP_IPV4 | MLX4_RSS_UDP_IPV6;
rss_context->base_qpn_udp = rss_context->default_qpn;
}
if (mdev->dev->caps.tunnel_offload_mode == MLX4_TUNNEL_OFFLOAD_MODE_VXLAN) {
en_info(priv, "Setting RSS context tunnel type to RSS on inner headers\n");
rss_mask |= MLX4_RSS_BY_INNER_HEADERS;
}
rss_context->flags = rss_mask;
rss_context->hash_fn = MLX4_RSS_HASH_TOP;
if (priv->rss_hash_fn == ETH_RSS_HASH_XOR) {
rss_context->hash_fn = MLX4_RSS_HASH_XOR;
} else if (priv->rss_hash_fn == ETH_RSS_HASH_TOP) {
rss_context->hash_fn = MLX4_RSS_HASH_TOP;
memcpy(rss_context->rss_key, priv->rss_key,
MLX4_EN_RSS_KEY_SIZE);
netdev_rss_key_fill(rss_context->rss_key,
MLX4_EN_RSS_KEY_SIZE);
} else {
en_err(priv, "Unknown RSS hash function requested\n");
err = -EINVAL;
goto indir_err;
}
err = mlx4_qp_to_ready(mdev->dev, &priv->res.mtt, &context,
&rss_map->indir_qp, &rss_map->indir_state);
if (err)
goto indir_err;
return 0;
indir_err:
mlx4_qp_modify(mdev->dev, NULL, rss_map->indir_state,
MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->indir_qp);
mlx4_qp_remove(mdev->dev, &rss_map->indir_qp);
mlx4_qp_free(mdev->dev, &rss_map->indir_qp);
rss_err:
for (i = 0; i < good_qps; i++) {
mlx4_qp_modify(mdev->dev, NULL, rss_map->state[i],
MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->qps[i]);
mlx4_qp_remove(mdev->dev, &rss_map->qps[i]);
mlx4_qp_free(mdev->dev, &rss_map->qps[i]);
}
mlx4_qp_release_range(mdev->dev, rss_map->base_qpn, priv->rx_ring_num);
return err;
}
void mlx4_en_release_rss_steer(struct mlx4_en_priv *priv)
{
struct mlx4_en_dev *mdev = priv->mdev;
struct mlx4_en_rss_map *rss_map = &priv->rss_map;
int i;
mlx4_qp_modify(mdev->dev, NULL, rss_map->indir_state,
MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->indir_qp);
mlx4_qp_remove(mdev->dev, &rss_map->indir_qp);
mlx4_qp_free(mdev->dev, &rss_map->indir_qp);
for (i = 0; i < priv->rx_ring_num; i++) {
mlx4_qp_modify(mdev->dev, NULL, rss_map->state[i],
MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->qps[i]);
mlx4_qp_remove(mdev->dev, &rss_map->qps[i]);
mlx4_qp_free(mdev->dev, &rss_map->qps[i]);
}
mlx4_qp_release_range(mdev->dev, rss_map->base_qpn, priv->rx_ring_num);
}