| /* |
| * intel_pstate.c: Native P state management for Intel processors |
| * |
| * (C) Copyright 2012 Intel Corporation |
| * Author: Dirk Brandewie <dirk.j.brandewie@intel.com> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; version 2 |
| * of the License. |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/kernel.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/module.h> |
| #include <linux/ktime.h> |
| #include <linux/hrtimer.h> |
| #include <linux/tick.h> |
| #include <linux/slab.h> |
| #include <linux/sched.h> |
| #include <linux/list.h> |
| #include <linux/cpu.h> |
| #include <linux/cpufreq.h> |
| #include <linux/sysfs.h> |
| #include <linux/types.h> |
| #include <linux/fs.h> |
| #include <linux/debugfs.h> |
| #include <linux/acpi.h> |
| #include <linux/vmalloc.h> |
| #include <trace/events/power.h> |
| |
| #include <asm/div64.h> |
| #include <asm/msr.h> |
| #include <asm/cpu_device_id.h> |
| #include <asm/cpufeature.h> |
| |
| #define ATOM_RATIOS 0x66a |
| #define ATOM_VIDS 0x66b |
| #define ATOM_TURBO_RATIOS 0x66c |
| #define ATOM_TURBO_VIDS 0x66d |
| |
| #ifdef CONFIG_ACPI |
| #include <acpi/processor.h> |
| #endif |
| |
| #define FRAC_BITS 8 |
| #define int_tofp(X) ((int64_t)(X) << FRAC_BITS) |
| #define fp_toint(X) ((X) >> FRAC_BITS) |
| |
| static inline int32_t mul_fp(int32_t x, int32_t y) |
| { |
| return ((int64_t)x * (int64_t)y) >> FRAC_BITS; |
| } |
| |
| static inline int32_t div_fp(s64 x, s64 y) |
| { |
| return div64_s64((int64_t)x << FRAC_BITS, y); |
| } |
| |
| static inline int ceiling_fp(int32_t x) |
| { |
| int mask, ret; |
| |
| ret = fp_toint(x); |
| mask = (1 << FRAC_BITS) - 1; |
| if (x & mask) |
| ret += 1; |
| return ret; |
| } |
| |
| /** |
| * struct sample - Store performance sample |
| * @core_pct_busy: Ratio of APERF/MPERF in percent, which is actual |
| * performance during last sample period |
| * @busy_scaled: Scaled busy value which is used to calculate next |
| * P state. This can be different than core_pct_busy |
| * to account for cpu idle period |
| * @aperf: Difference of actual performance frequency clock count |
| * read from APERF MSR between last and current sample |
| * @mperf: Difference of maximum performance frequency clock count |
| * read from MPERF MSR between last and current sample |
| * @tsc: Difference of time stamp counter between last and |
| * current sample |
| * @freq: Effective frequency calculated from APERF/MPERF |
| * @time: Current time from scheduler |
| * |
| * This structure is used in the cpudata structure to store performance sample |
| * data for choosing next P State. |
| */ |
| struct sample { |
| int32_t core_pct_busy; |
| int32_t busy_scaled; |
| u64 aperf; |
| u64 mperf; |
| u64 tsc; |
| int freq; |
| u64 time; |
| }; |
| |
| /** |
| * struct pstate_data - Store P state data |
| * @current_pstate: Current requested P state |
| * @min_pstate: Min P state possible for this platform |
| * @max_pstate: Max P state possible for this platform |
| * @max_pstate_physical:This is physical Max P state for a processor |
| * This can be higher than the max_pstate which can |
| * be limited by platform thermal design power limits |
| * @scaling: Scaling factor to convert frequency to cpufreq |
| * frequency units |
| * @turbo_pstate: Max Turbo P state possible for this platform |
| * |
| * Stores the per cpu model P state limits and current P state. |
| */ |
| struct pstate_data { |
| int current_pstate; |
| int min_pstate; |
| int max_pstate; |
| int max_pstate_physical; |
| int scaling; |
| int turbo_pstate; |
| }; |
| |
| /** |
| * struct vid_data - Stores voltage information data |
| * @min: VID data for this platform corresponding to |
| * the lowest P state |
| * @max: VID data corresponding to the highest P State. |
| * @turbo: VID data for turbo P state |
| * @ratio: Ratio of (vid max - vid min) / |
| * (max P state - Min P State) |
| * |
| * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling) |
| * This data is used in Atom platforms, where in addition to target P state, |
| * the voltage data needs to be specified to select next P State. |
| */ |
| struct vid_data { |
| int min; |
| int max; |
| int turbo; |
| int32_t ratio; |
| }; |
| |
| /** |
| * struct _pid - Stores PID data |
| * @setpoint: Target set point for busyness or performance |
| * @integral: Storage for accumulated error values |
| * @p_gain: PID proportional gain |
| * @i_gain: PID integral gain |
| * @d_gain: PID derivative gain |
| * @deadband: PID deadband |
| * @last_err: Last error storage for integral part of PID calculation |
| * |
| * Stores PID coefficients and last error for PID controller. |
| */ |
| struct _pid { |
| int setpoint; |
| int32_t integral; |
| int32_t p_gain; |
| int32_t i_gain; |
| int32_t d_gain; |
| int deadband; |
| int32_t last_err; |
| }; |
| |
| /** |
| * struct cpudata - Per CPU instance data storage |
| * @cpu: CPU number for this instance data |
| * @update_util: CPUFreq utility callback information |
| * @pstate: Stores P state limits for this CPU |
| * @vid: Stores VID limits for this CPU |
| * @pid: Stores PID parameters for this CPU |
| * @last_sample_time: Last Sample time |
| * @prev_aperf: Last APERF value read from APERF MSR |
| * @prev_mperf: Last MPERF value read from MPERF MSR |
| * @prev_tsc: Last timestamp counter (TSC) value |
| * @prev_cummulative_iowait: IO Wait time difference from last and |
| * current sample |
| * @sample: Storage for storing last Sample data |
| * @acpi_perf_data: Stores ACPI perf information read from _PSS |
| * @valid_pss_table: Set to true for valid ACPI _PSS entries found |
| * |
| * This structure stores per CPU instance data for all CPUs. |
| */ |
| struct cpudata { |
| int cpu; |
| |
| struct update_util_data update_util; |
| |
| struct pstate_data pstate; |
| struct vid_data vid; |
| struct _pid pid; |
| |
| u64 last_sample_time; |
| u64 prev_aperf; |
| u64 prev_mperf; |
| u64 prev_tsc; |
| u64 prev_cummulative_iowait; |
| struct sample sample; |
| #ifdef CONFIG_ACPI |
| struct acpi_processor_performance acpi_perf_data; |
| bool valid_pss_table; |
| #endif |
| }; |
| |
| static struct cpudata **all_cpu_data; |
| |
| /** |
| * struct pid_adjust_policy - Stores static PID configuration data |
| * @sample_rate_ms: PID calculation sample rate in ms |
| * @sample_rate_ns: Sample rate calculation in ns |
| * @deadband: PID deadband |
| * @setpoint: PID Setpoint |
| * @p_gain_pct: PID proportional gain |
| * @i_gain_pct: PID integral gain |
| * @d_gain_pct: PID derivative gain |
| * |
| * Stores per CPU model static PID configuration data. |
| */ |
| struct pstate_adjust_policy { |
| int sample_rate_ms; |
| s64 sample_rate_ns; |
| int deadband; |
| int setpoint; |
| int p_gain_pct; |
| int d_gain_pct; |
| int i_gain_pct; |
| }; |
| |
| /** |
| * struct pstate_funcs - Per CPU model specific callbacks |
| * @get_max: Callback to get maximum non turbo effective P state |
| * @get_max_physical: Callback to get maximum non turbo physical P state |
| * @get_min: Callback to get minimum P state |
| * @get_turbo: Callback to get turbo P state |
| * @get_scaling: Callback to get frequency scaling factor |
| * @get_val: Callback to convert P state to actual MSR write value |
| * @get_vid: Callback to get VID data for Atom platforms |
| * @get_target_pstate: Callback to a function to calculate next P state to use |
| * |
| * Core and Atom CPU models have different way to get P State limits. This |
| * structure is used to store those callbacks. |
| */ |
| struct pstate_funcs { |
| int (*get_max)(void); |
| int (*get_max_physical)(void); |
| int (*get_min)(void); |
| int (*get_turbo)(void); |
| int (*get_scaling)(void); |
| u64 (*get_val)(struct cpudata*, int pstate); |
| void (*get_vid)(struct cpudata *); |
| int32_t (*get_target_pstate)(struct cpudata *); |
| }; |
| |
| /** |
| * struct cpu_defaults- Per CPU model default config data |
| * @pid_policy: PID config data |
| * @funcs: Callback function data |
| */ |
| struct cpu_defaults { |
| struct pstate_adjust_policy pid_policy; |
| struct pstate_funcs funcs; |
| }; |
| |
| static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu); |
| static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu); |
| |
| static struct pstate_adjust_policy pid_params; |
| static struct pstate_funcs pstate_funcs; |
| static int hwp_active; |
| |
| #ifdef CONFIG_ACPI |
| static bool acpi_ppc; |
| #endif |
| |
| /** |
| * struct perf_limits - Store user and policy limits |
| * @no_turbo: User requested turbo state from intel_pstate sysfs |
| * @turbo_disabled: Platform turbo status either from msr |
| * MSR_IA32_MISC_ENABLE or when maximum available pstate |
| * matches the maximum turbo pstate |
| * @max_perf_pct: Effective maximum performance limit in percentage, this |
| * is minimum of either limits enforced by cpufreq policy |
| * or limits from user set limits via intel_pstate sysfs |
| * @min_perf_pct: Effective minimum performance limit in percentage, this |
| * is maximum of either limits enforced by cpufreq policy |
| * or limits from user set limits via intel_pstate sysfs |
| * @max_perf: This is a scaled value between 0 to 255 for max_perf_pct |
| * This value is used to limit max pstate |
| * @min_perf: This is a scaled value between 0 to 255 for min_perf_pct |
| * This value is used to limit min pstate |
| * @max_policy_pct: The maximum performance in percentage enforced by |
| * cpufreq setpolicy interface |
| * @max_sysfs_pct: The maximum performance in percentage enforced by |
| * intel pstate sysfs interface |
| * @min_policy_pct: The minimum performance in percentage enforced by |
| * cpufreq setpolicy interface |
| * @min_sysfs_pct: The minimum performance in percentage enforced by |
| * intel pstate sysfs interface |
| * |
| * Storage for user and policy defined limits. |
| */ |
| struct perf_limits { |
| int no_turbo; |
| int turbo_disabled; |
| int max_perf_pct; |
| int min_perf_pct; |
| int32_t max_perf; |
| int32_t min_perf; |
| int max_policy_pct; |
| int max_sysfs_pct; |
| int min_policy_pct; |
| int min_sysfs_pct; |
| }; |
| |
| static struct perf_limits performance_limits = { |
| .no_turbo = 0, |
| .turbo_disabled = 0, |
| .max_perf_pct = 100, |
| .max_perf = int_tofp(1), |
| .min_perf_pct = 100, |
| .min_perf = int_tofp(1), |
| .max_policy_pct = 100, |
| .max_sysfs_pct = 100, |
| .min_policy_pct = 0, |
| .min_sysfs_pct = 0, |
| }; |
| |
| static struct perf_limits powersave_limits = { |
| .no_turbo = 0, |
| .turbo_disabled = 0, |
| .max_perf_pct = 100, |
| .max_perf = int_tofp(1), |
| .min_perf_pct = 0, |
| .min_perf = 0, |
| .max_policy_pct = 100, |
| .max_sysfs_pct = 100, |
| .min_policy_pct = 0, |
| .min_sysfs_pct = 0, |
| }; |
| |
| #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE |
| static struct perf_limits *limits = &performance_limits; |
| #else |
| static struct perf_limits *limits = &powersave_limits; |
| #endif |
| |
| #ifdef CONFIG_ACPI |
| /* |
| * The max target pstate ratio is a 8 bit value in both PLATFORM_INFO MSR and |
| * in TURBO_RATIO_LIMIT MSR, which pstate driver stores in max_pstate and |
| * max_turbo_pstate fields. The PERF_CTL MSR contains 16 bit value for P state |
| * ratio, out of it only high 8 bits are used. For example 0x1700 is setting |
| * target ratio 0x17. The _PSS control value stores in a format which can be |
| * directly written to PERF_CTL MSR. But in intel_pstate driver this shift |
| * occurs during write to PERF_CTL (E.g. for cores core_set_pstate()). |
| * This function converts the _PSS control value to intel pstate driver format |
| * for comparison and assignment. |
| */ |
| static int convert_to_native_pstate_format(struct cpudata *cpu, int index) |
| { |
| return cpu->acpi_perf_data.states[index].control >> 8; |
| } |
| |
| static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy) |
| { |
| struct cpudata *cpu; |
| int turbo_pss_ctl; |
| int ret; |
| int i; |
| |
| if (!acpi_ppc) |
| return; |
| |
| cpu = all_cpu_data[policy->cpu]; |
| |
| ret = acpi_processor_register_performance(&cpu->acpi_perf_data, |
| policy->cpu); |
| if (ret) |
| return; |
| |
| /* |
| * Check if the control value in _PSS is for PERF_CTL MSR, which should |
| * guarantee that the states returned by it map to the states in our |
| * list directly. |
| */ |
| if (cpu->acpi_perf_data.control_register.space_id != |
| ACPI_ADR_SPACE_FIXED_HARDWARE) |
| goto err; |
| |
| /* |
| * If there is only one entry _PSS, simply ignore _PSS and continue as |
| * usual without taking _PSS into account |
| */ |
| if (cpu->acpi_perf_data.state_count < 2) |
| goto err; |
| |
| pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu); |
| for (i = 0; i < cpu->acpi_perf_data.state_count; i++) { |
| pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n", |
| (i == cpu->acpi_perf_data.state ? '*' : ' '), i, |
| (u32) cpu->acpi_perf_data.states[i].core_frequency, |
| (u32) cpu->acpi_perf_data.states[i].power, |
| (u32) cpu->acpi_perf_data.states[i].control); |
| } |
| |
| /* |
| * The _PSS table doesn't contain whole turbo frequency range. |
| * This just contains +1 MHZ above the max non turbo frequency, |
| * with control value corresponding to max turbo ratio. But |
| * when cpufreq set policy is called, it will call with this |
| * max frequency, which will cause a reduced performance as |
| * this driver uses real max turbo frequency as the max |
| * frequency. So correct this frequency in _PSS table to |
| * correct max turbo frequency based on the turbo ratio. |
| * Also need to convert to MHz as _PSS freq is in MHz. |
| */ |
| turbo_pss_ctl = convert_to_native_pstate_format(cpu, 0); |
| if (turbo_pss_ctl > cpu->pstate.max_pstate) |
| cpu->acpi_perf_data.states[0].core_frequency = |
| policy->cpuinfo.max_freq / 1000; |
| cpu->valid_pss_table = true; |
| pr_info("_PPC limits will be enforced\n"); |
| |
| return; |
| |
| err: |
| cpu->valid_pss_table = false; |
| acpi_processor_unregister_performance(policy->cpu); |
| } |
| |
| static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy) |
| { |
| struct cpudata *cpu; |
| |
| cpu = all_cpu_data[policy->cpu]; |
| if (!cpu->valid_pss_table) |
| return; |
| |
| acpi_processor_unregister_performance(policy->cpu); |
| } |
| |
| #else |
| static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy) |
| { |
| } |
| |
| static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy) |
| { |
| } |
| #endif |
| |
| static inline void pid_reset(struct _pid *pid, int setpoint, int busy, |
| int deadband, int integral) { |
| pid->setpoint = int_tofp(setpoint); |
| pid->deadband = int_tofp(deadband); |
| pid->integral = int_tofp(integral); |
| pid->last_err = int_tofp(setpoint) - int_tofp(busy); |
| } |
| |
| static inline void pid_p_gain_set(struct _pid *pid, int percent) |
| { |
| pid->p_gain = div_fp(percent, 100); |
| } |
| |
| static inline void pid_i_gain_set(struct _pid *pid, int percent) |
| { |
| pid->i_gain = div_fp(percent, 100); |
| } |
| |
| static inline void pid_d_gain_set(struct _pid *pid, int percent) |
| { |
| pid->d_gain = div_fp(percent, 100); |
| } |
| |
| static signed int pid_calc(struct _pid *pid, int32_t busy) |
| { |
| signed int result; |
| int32_t pterm, dterm, fp_error; |
| int32_t integral_limit; |
| |
| fp_error = pid->setpoint - busy; |
| |
| if (abs(fp_error) <= pid->deadband) |
| return 0; |
| |
| pterm = mul_fp(pid->p_gain, fp_error); |
| |
| pid->integral += fp_error; |
| |
| /* |
| * We limit the integral here so that it will never |
| * get higher than 30. This prevents it from becoming |
| * too large an input over long periods of time and allows |
| * it to get factored out sooner. |
| * |
| * The value of 30 was chosen through experimentation. |
| */ |
| integral_limit = int_tofp(30); |
| if (pid->integral > integral_limit) |
| pid->integral = integral_limit; |
| if (pid->integral < -integral_limit) |
| pid->integral = -integral_limit; |
| |
| dterm = mul_fp(pid->d_gain, fp_error - pid->last_err); |
| pid->last_err = fp_error; |
| |
| result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm; |
| result = result + (1 << (FRAC_BITS-1)); |
| return (signed int)fp_toint(result); |
| } |
| |
| static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu) |
| { |
| pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct); |
| pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct); |
| pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct); |
| |
| pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0); |
| } |
| |
| static inline void intel_pstate_reset_all_pid(void) |
| { |
| unsigned int cpu; |
| |
| for_each_online_cpu(cpu) { |
| if (all_cpu_data[cpu]) |
| intel_pstate_busy_pid_reset(all_cpu_data[cpu]); |
| } |
| } |
| |
| static inline void update_turbo_state(void) |
| { |
| u64 misc_en; |
| struct cpudata *cpu; |
| |
| cpu = all_cpu_data[0]; |
| rdmsrl(MSR_IA32_MISC_ENABLE, misc_en); |
| limits->turbo_disabled = |
| (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE || |
| cpu->pstate.max_pstate == cpu->pstate.turbo_pstate); |
| } |
| |
| static void intel_pstate_hwp_set(const struct cpumask *cpumask) |
| { |
| int min, hw_min, max, hw_max, cpu, range, adj_range; |
| u64 value, cap; |
| |
| rdmsrl(MSR_HWP_CAPABILITIES, cap); |
| hw_min = HWP_LOWEST_PERF(cap); |
| hw_max = HWP_HIGHEST_PERF(cap); |
| range = hw_max - hw_min; |
| |
| for_each_cpu(cpu, cpumask) { |
| rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value); |
| adj_range = limits->min_perf_pct * range / 100; |
| min = hw_min + adj_range; |
| value &= ~HWP_MIN_PERF(~0L); |
| value |= HWP_MIN_PERF(min); |
| |
| adj_range = limits->max_perf_pct * range / 100; |
| max = hw_min + adj_range; |
| if (limits->no_turbo) { |
| hw_max = HWP_GUARANTEED_PERF(cap); |
| if (hw_max < max) |
| max = hw_max; |
| } |
| |
| value &= ~HWP_MAX_PERF(~0L); |
| value |= HWP_MAX_PERF(max); |
| wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value); |
| } |
| } |
| |
| static void intel_pstate_hwp_set_online_cpus(void) |
| { |
| get_online_cpus(); |
| intel_pstate_hwp_set(cpu_online_mask); |
| put_online_cpus(); |
| } |
| |
| /************************** debugfs begin ************************/ |
| static int pid_param_set(void *data, u64 val) |
| { |
| *(u32 *)data = val; |
| intel_pstate_reset_all_pid(); |
| return 0; |
| } |
| |
| static int pid_param_get(void *data, u64 *val) |
| { |
| *val = *(u32 *)data; |
| return 0; |
| } |
| DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n"); |
| |
| struct pid_param { |
| char *name; |
| void *value; |
| }; |
| |
| static struct pid_param pid_files[] = { |
| {"sample_rate_ms", &pid_params.sample_rate_ms}, |
| {"d_gain_pct", &pid_params.d_gain_pct}, |
| {"i_gain_pct", &pid_params.i_gain_pct}, |
| {"deadband", &pid_params.deadband}, |
| {"setpoint", &pid_params.setpoint}, |
| {"p_gain_pct", &pid_params.p_gain_pct}, |
| {NULL, NULL} |
| }; |
| |
| static void __init intel_pstate_debug_expose_params(void) |
| { |
| struct dentry *debugfs_parent; |
| int i = 0; |
| |
| if (hwp_active) |
| return; |
| debugfs_parent = debugfs_create_dir("pstate_snb", NULL); |
| if (IS_ERR_OR_NULL(debugfs_parent)) |
| return; |
| while (pid_files[i].name) { |
| debugfs_create_file(pid_files[i].name, 0660, |
| debugfs_parent, pid_files[i].value, |
| &fops_pid_param); |
| i++; |
| } |
| } |
| |
| /************************** debugfs end ************************/ |
| |
| /************************** sysfs begin ************************/ |
| #define show_one(file_name, object) \ |
| static ssize_t show_##file_name \ |
| (struct kobject *kobj, struct attribute *attr, char *buf) \ |
| { \ |
| return sprintf(buf, "%u\n", limits->object); \ |
| } |
| |
| static ssize_t show_turbo_pct(struct kobject *kobj, |
| struct attribute *attr, char *buf) |
| { |
| struct cpudata *cpu; |
| int total, no_turbo, turbo_pct; |
| uint32_t turbo_fp; |
| |
| cpu = all_cpu_data[0]; |
| |
| total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1; |
| no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1; |
| turbo_fp = div_fp(no_turbo, total); |
| turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100))); |
| return sprintf(buf, "%u\n", turbo_pct); |
| } |
| |
| static ssize_t show_num_pstates(struct kobject *kobj, |
| struct attribute *attr, char *buf) |
| { |
| struct cpudata *cpu; |
| int total; |
| |
| cpu = all_cpu_data[0]; |
| total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1; |
| return sprintf(buf, "%u\n", total); |
| } |
| |
| static ssize_t show_no_turbo(struct kobject *kobj, |
| struct attribute *attr, char *buf) |
| { |
| ssize_t ret; |
| |
| update_turbo_state(); |
| if (limits->turbo_disabled) |
| ret = sprintf(buf, "%u\n", limits->turbo_disabled); |
| else |
| ret = sprintf(buf, "%u\n", limits->no_turbo); |
| |
| return ret; |
| } |
| |
| static ssize_t store_no_turbo(struct kobject *a, struct attribute *b, |
| const char *buf, size_t count) |
| { |
| unsigned int input; |
| int ret; |
| |
| ret = sscanf(buf, "%u", &input); |
| if (ret != 1) |
| return -EINVAL; |
| |
| update_turbo_state(); |
| if (limits->turbo_disabled) { |
| pr_warn("Turbo disabled by BIOS or unavailable on processor\n"); |
| return -EPERM; |
| } |
| |
| limits->no_turbo = clamp_t(int, input, 0, 1); |
| |
| if (hwp_active) |
| intel_pstate_hwp_set_online_cpus(); |
| |
| return count; |
| } |
| |
| static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b, |
| const char *buf, size_t count) |
| { |
| unsigned int input; |
| int ret; |
| |
| ret = sscanf(buf, "%u", &input); |
| if (ret != 1) |
| return -EINVAL; |
| |
| limits->max_sysfs_pct = clamp_t(int, input, 0 , 100); |
| limits->max_perf_pct = min(limits->max_policy_pct, |
| limits->max_sysfs_pct); |
| limits->max_perf_pct = max(limits->min_policy_pct, |
| limits->max_perf_pct); |
| limits->max_perf_pct = max(limits->min_perf_pct, |
| limits->max_perf_pct); |
| limits->max_perf = div_fp(limits->max_perf_pct, 100); |
| |
| if (hwp_active) |
| intel_pstate_hwp_set_online_cpus(); |
| return count; |
| } |
| |
| static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b, |
| const char *buf, size_t count) |
| { |
| unsigned int input; |
| int ret; |
| |
| ret = sscanf(buf, "%u", &input); |
| if (ret != 1) |
| return -EINVAL; |
| |
| limits->min_sysfs_pct = clamp_t(int, input, 0 , 100); |
| limits->min_perf_pct = max(limits->min_policy_pct, |
| limits->min_sysfs_pct); |
| limits->min_perf_pct = min(limits->max_policy_pct, |
| limits->min_perf_pct); |
| limits->min_perf_pct = min(limits->max_perf_pct, |
| limits->min_perf_pct); |
| limits->min_perf = div_fp(limits->min_perf_pct, 100); |
| |
| if (hwp_active) |
| intel_pstate_hwp_set_online_cpus(); |
| return count; |
| } |
| |
| show_one(max_perf_pct, max_perf_pct); |
| show_one(min_perf_pct, min_perf_pct); |
| |
| define_one_global_rw(no_turbo); |
| define_one_global_rw(max_perf_pct); |
| define_one_global_rw(min_perf_pct); |
| define_one_global_ro(turbo_pct); |
| define_one_global_ro(num_pstates); |
| |
| static struct attribute *intel_pstate_attributes[] = { |
| &no_turbo.attr, |
| &max_perf_pct.attr, |
| &min_perf_pct.attr, |
| &turbo_pct.attr, |
| &num_pstates.attr, |
| NULL |
| }; |
| |
| static struct attribute_group intel_pstate_attr_group = { |
| .attrs = intel_pstate_attributes, |
| }; |
| |
| static void __init intel_pstate_sysfs_expose_params(void) |
| { |
| struct kobject *intel_pstate_kobject; |
| int rc; |
| |
| intel_pstate_kobject = kobject_create_and_add("intel_pstate", |
| &cpu_subsys.dev_root->kobj); |
| BUG_ON(!intel_pstate_kobject); |
| rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group); |
| BUG_ON(rc); |
| } |
| /************************** sysfs end ************************/ |
| |
| static void intel_pstate_hwp_enable(struct cpudata *cpudata) |
| { |
| /* First disable HWP notification interrupt as we don't process them */ |
| wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00); |
| |
| wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1); |
| } |
| |
| static int atom_get_min_pstate(void) |
| { |
| u64 value; |
| |
| rdmsrl(ATOM_RATIOS, value); |
| return (value >> 8) & 0x7F; |
| } |
| |
| static int atom_get_max_pstate(void) |
| { |
| u64 value; |
| |
| rdmsrl(ATOM_RATIOS, value); |
| return (value >> 16) & 0x7F; |
| } |
| |
| static int atom_get_turbo_pstate(void) |
| { |
| u64 value; |
| |
| rdmsrl(ATOM_TURBO_RATIOS, value); |
| return value & 0x7F; |
| } |
| |
| static u64 atom_get_val(struct cpudata *cpudata, int pstate) |
| { |
| u64 val; |
| int32_t vid_fp; |
| u32 vid; |
| |
| val = (u64)pstate << 8; |
| if (limits->no_turbo && !limits->turbo_disabled) |
| val |= (u64)1 << 32; |
| |
| vid_fp = cpudata->vid.min + mul_fp( |
| int_tofp(pstate - cpudata->pstate.min_pstate), |
| cpudata->vid.ratio); |
| |
| vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max); |
| vid = ceiling_fp(vid_fp); |
| |
| if (pstate > cpudata->pstate.max_pstate) |
| vid = cpudata->vid.turbo; |
| |
| return val | vid; |
| } |
| |
| static int silvermont_get_scaling(void) |
| { |
| u64 value; |
| int i; |
| /* Defined in Table 35-6 from SDM (Sept 2015) */ |
| static int silvermont_freq_table[] = { |
| 83300, 100000, 133300, 116700, 80000}; |
| |
| rdmsrl(MSR_FSB_FREQ, value); |
| i = value & 0x7; |
| WARN_ON(i > 4); |
| |
| return silvermont_freq_table[i]; |
| } |
| |
| static int airmont_get_scaling(void) |
| { |
| u64 value; |
| int i; |
| /* Defined in Table 35-10 from SDM (Sept 2015) */ |
| static int airmont_freq_table[] = { |
| 83300, 100000, 133300, 116700, 80000, |
| 93300, 90000, 88900, 87500}; |
| |
| rdmsrl(MSR_FSB_FREQ, value); |
| i = value & 0xF; |
| WARN_ON(i > 8); |
| |
| return airmont_freq_table[i]; |
| } |
| |
| static void atom_get_vid(struct cpudata *cpudata) |
| { |
| u64 value; |
| |
| rdmsrl(ATOM_VIDS, value); |
| cpudata->vid.min = int_tofp((value >> 8) & 0x7f); |
| cpudata->vid.max = int_tofp((value >> 16) & 0x7f); |
| cpudata->vid.ratio = div_fp( |
| cpudata->vid.max - cpudata->vid.min, |
| int_tofp(cpudata->pstate.max_pstate - |
| cpudata->pstate.min_pstate)); |
| |
| rdmsrl(ATOM_TURBO_VIDS, value); |
| cpudata->vid.turbo = value & 0x7f; |
| } |
| |
| static int core_get_min_pstate(void) |
| { |
| u64 value; |
| |
| rdmsrl(MSR_PLATFORM_INFO, value); |
| return (value >> 40) & 0xFF; |
| } |
| |
| static int core_get_max_pstate_physical(void) |
| { |
| u64 value; |
| |
| rdmsrl(MSR_PLATFORM_INFO, value); |
| return (value >> 8) & 0xFF; |
| } |
| |
| static int core_get_max_pstate(void) |
| { |
| u64 tar; |
| u64 plat_info; |
| int max_pstate; |
| int err; |
| |
| rdmsrl(MSR_PLATFORM_INFO, plat_info); |
| max_pstate = (plat_info >> 8) & 0xFF; |
| |
| err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar); |
| if (!err) { |
| /* Do some sanity checking for safety */ |
| if (plat_info & 0x600000000) { |
| u64 tdp_ctrl; |
| u64 tdp_ratio; |
| int tdp_msr; |
| |
| err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl); |
| if (err) |
| goto skip_tar; |
| |
| tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl; |
| err = rdmsrl_safe(tdp_msr, &tdp_ratio); |
| if (err) |
| goto skip_tar; |
| |
| if (tdp_ratio - 1 == tar) { |
| max_pstate = tar; |
| pr_debug("max_pstate=TAC %x\n", max_pstate); |
| } else { |
| goto skip_tar; |
| } |
| } |
| } |
| |
| skip_tar: |
| return max_pstate; |
| } |
| |
| static int core_get_turbo_pstate(void) |
| { |
| u64 value; |
| int nont, ret; |
| |
| rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value); |
| nont = core_get_max_pstate(); |
| ret = (value) & 255; |
| if (ret <= nont) |
| ret = nont; |
| return ret; |
| } |
| |
| static inline int core_get_scaling(void) |
| { |
| return 100000; |
| } |
| |
| static u64 core_get_val(struct cpudata *cpudata, int pstate) |
| { |
| u64 val; |
| |
| val = (u64)pstate << 8; |
| if (limits->no_turbo && !limits->turbo_disabled) |
| val |= (u64)1 << 32; |
| |
| return val; |
| } |
| |
| static int knl_get_turbo_pstate(void) |
| { |
| u64 value; |
| int nont, ret; |
| |
| rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value); |
| nont = core_get_max_pstate(); |
| ret = (((value) >> 8) & 0xFF); |
| if (ret <= nont) |
| ret = nont; |
| return ret; |
| } |
| |
| static struct cpu_defaults core_params = { |
| .pid_policy = { |
| .sample_rate_ms = 10, |
| .deadband = 0, |
| .setpoint = 97, |
| .p_gain_pct = 20, |
| .d_gain_pct = 0, |
| .i_gain_pct = 0, |
| }, |
| .funcs = { |
| .get_max = core_get_max_pstate, |
| .get_max_physical = core_get_max_pstate_physical, |
| .get_min = core_get_min_pstate, |
| .get_turbo = core_get_turbo_pstate, |
| .get_scaling = core_get_scaling, |
| .get_val = core_get_val, |
| .get_target_pstate = get_target_pstate_use_performance, |
| }, |
| }; |
| |
| static struct cpu_defaults silvermont_params = { |
| .pid_policy = { |
| .sample_rate_ms = 10, |
| .deadband = 0, |
| .setpoint = 60, |
| .p_gain_pct = 14, |
| .d_gain_pct = 0, |
| .i_gain_pct = 4, |
| }, |
| .funcs = { |
| .get_max = atom_get_max_pstate, |
| .get_max_physical = atom_get_max_pstate, |
| .get_min = atom_get_min_pstate, |
| .get_turbo = atom_get_turbo_pstate, |
| .get_val = atom_get_val, |
| .get_scaling = silvermont_get_scaling, |
| .get_vid = atom_get_vid, |
| .get_target_pstate = get_target_pstate_use_cpu_load, |
| }, |
| }; |
| |
| static struct cpu_defaults airmont_params = { |
| .pid_policy = { |
| .sample_rate_ms = 10, |
| .deadband = 0, |
| .setpoint = 60, |
| .p_gain_pct = 14, |
| .d_gain_pct = 0, |
| .i_gain_pct = 4, |
| }, |
| .funcs = { |
| .get_max = atom_get_max_pstate, |
| .get_max_physical = atom_get_max_pstate, |
| .get_min = atom_get_min_pstate, |
| .get_turbo = atom_get_turbo_pstate, |
| .get_val = atom_get_val, |
| .get_scaling = airmont_get_scaling, |
| .get_vid = atom_get_vid, |
| .get_target_pstate = get_target_pstate_use_cpu_load, |
| }, |
| }; |
| |
| static struct cpu_defaults knl_params = { |
| .pid_policy = { |
| .sample_rate_ms = 10, |
| .deadband = 0, |
| .setpoint = 97, |
| .p_gain_pct = 20, |
| .d_gain_pct = 0, |
| .i_gain_pct = 0, |
| }, |
| .funcs = { |
| .get_max = core_get_max_pstate, |
| .get_max_physical = core_get_max_pstate_physical, |
| .get_min = core_get_min_pstate, |
| .get_turbo = knl_get_turbo_pstate, |
| .get_scaling = core_get_scaling, |
| .get_val = core_get_val, |
| .get_target_pstate = get_target_pstate_use_performance, |
| }, |
| }; |
| |
| static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max) |
| { |
| int max_perf = cpu->pstate.turbo_pstate; |
| int max_perf_adj; |
| int min_perf; |
| |
| if (limits->no_turbo || limits->turbo_disabled) |
| max_perf = cpu->pstate.max_pstate; |
| |
| /* |
| * performance can be limited by user through sysfs, by cpufreq |
| * policy, or by cpu specific default values determined through |
| * experimentation. |
| */ |
| max_perf_adj = fp_toint(max_perf * limits->max_perf); |
| *max = clamp_t(int, max_perf_adj, |
| cpu->pstate.min_pstate, cpu->pstate.turbo_pstate); |
| |
| min_perf = fp_toint(max_perf * limits->min_perf); |
| *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf); |
| } |
| |
| static inline void intel_pstate_record_pstate(struct cpudata *cpu, int pstate) |
| { |
| trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu); |
| cpu->pstate.current_pstate = pstate; |
| } |
| |
| static void intel_pstate_set_min_pstate(struct cpudata *cpu) |
| { |
| int pstate = cpu->pstate.min_pstate; |
| |
| intel_pstate_record_pstate(cpu, pstate); |
| /* |
| * Generally, there is no guarantee that this code will always run on |
| * the CPU being updated, so force the register update to run on the |
| * right CPU. |
| */ |
| wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL, |
| pstate_funcs.get_val(cpu, pstate)); |
| } |
| |
| static void intel_pstate_get_cpu_pstates(struct cpudata *cpu) |
| { |
| cpu->pstate.min_pstate = pstate_funcs.get_min(); |
| cpu->pstate.max_pstate = pstate_funcs.get_max(); |
| cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical(); |
| cpu->pstate.turbo_pstate = pstate_funcs.get_turbo(); |
| cpu->pstate.scaling = pstate_funcs.get_scaling(); |
| |
| if (pstate_funcs.get_vid) |
| pstate_funcs.get_vid(cpu); |
| |
| intel_pstate_set_min_pstate(cpu); |
| } |
| |
| static inline void intel_pstate_calc_busy(struct cpudata *cpu) |
| { |
| struct sample *sample = &cpu->sample; |
| int64_t core_pct; |
| |
| core_pct = sample->aperf * int_tofp(100); |
| core_pct = div64_u64(core_pct, sample->mperf); |
| |
| sample->core_pct_busy = (int32_t)core_pct; |
| } |
| |
| static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time) |
| { |
| u64 aperf, mperf; |
| unsigned long flags; |
| u64 tsc; |
| |
| local_irq_save(flags); |
| rdmsrl(MSR_IA32_APERF, aperf); |
| rdmsrl(MSR_IA32_MPERF, mperf); |
| tsc = rdtsc(); |
| if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) { |
| local_irq_restore(flags); |
| return false; |
| } |
| local_irq_restore(flags); |
| |
| cpu->last_sample_time = cpu->sample.time; |
| cpu->sample.time = time; |
| cpu->sample.aperf = aperf; |
| cpu->sample.mperf = mperf; |
| cpu->sample.tsc = tsc; |
| cpu->sample.aperf -= cpu->prev_aperf; |
| cpu->sample.mperf -= cpu->prev_mperf; |
| cpu->sample.tsc -= cpu->prev_tsc; |
| |
| cpu->prev_aperf = aperf; |
| cpu->prev_mperf = mperf; |
| cpu->prev_tsc = tsc; |
| /* |
| * First time this function is invoked in a given cycle, all of the |
| * previous sample data fields are equal to zero or stale and they must |
| * be populated with meaningful numbers for things to work, so assume |
| * that sample.time will always be reset before setting the utilization |
| * update hook and make the caller skip the sample then. |
| */ |
| return !!cpu->last_sample_time; |
| } |
| |
| static inline int32_t get_avg_frequency(struct cpudata *cpu) |
| { |
| return div64_u64(cpu->pstate.max_pstate_physical * cpu->sample.aperf * |
| cpu->pstate.scaling, cpu->sample.mperf); |
| } |
| |
| static inline int32_t get_avg_pstate(struct cpudata *cpu) |
| { |
| return div64_u64(cpu->pstate.max_pstate_physical * cpu->sample.aperf, |
| cpu->sample.mperf); |
| } |
| |
| static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu) |
| { |
| struct sample *sample = &cpu->sample; |
| u64 cummulative_iowait, delta_iowait_us; |
| u64 delta_iowait_mperf; |
| u64 mperf, now; |
| int32_t cpu_load; |
| |
| cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now); |
| |
| /* |
| * Convert iowait time into number of IO cycles spent at max_freq. |
| * IO is considered as busy only for the cpu_load algorithm. For |
| * performance this is not needed since we always try to reach the |
| * maximum P-State, so we are already boosting the IOs. |
| */ |
| delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait; |
| delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling * |
| cpu->pstate.max_pstate, MSEC_PER_SEC); |
| |
| mperf = cpu->sample.mperf + delta_iowait_mperf; |
| cpu->prev_cummulative_iowait = cummulative_iowait; |
| |
| /* |
| * The load can be estimated as the ratio of the mperf counter |
| * running at a constant frequency during active periods |
| * (C0) and the time stamp counter running at the same frequency |
| * also during C-states. |
| */ |
| cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc); |
| cpu->sample.busy_scaled = cpu_load; |
| |
| return get_avg_pstate(cpu) - pid_calc(&cpu->pid, cpu_load); |
| } |
| |
| static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu) |
| { |
| int32_t core_busy, max_pstate, current_pstate, sample_ratio; |
| u64 duration_ns; |
| |
| intel_pstate_calc_busy(cpu); |
| |
| /* |
| * core_busy is the ratio of actual performance to max |
| * max_pstate is the max non turbo pstate available |
| * current_pstate was the pstate that was requested during |
| * the last sample period. |
| * |
| * We normalize core_busy, which was our actual percent |
| * performance to what we requested during the last sample |
| * period. The result will be a percentage of busy at a |
| * specified pstate. |
| */ |
| core_busy = cpu->sample.core_pct_busy; |
| max_pstate = cpu->pstate.max_pstate_physical; |
| current_pstate = cpu->pstate.current_pstate; |
| core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate)); |
| |
| /* |
| * Since our utilization update callback will not run unless we are |
| * in C0, check if the actual elapsed time is significantly greater (3x) |
| * than our sample interval. If it is, then we were idle for a long |
| * enough period of time to adjust our busyness. |
| */ |
| duration_ns = cpu->sample.time - cpu->last_sample_time; |
| if ((s64)duration_ns > pid_params.sample_rate_ns * 3) { |
| sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns); |
| core_busy = mul_fp(core_busy, sample_ratio); |
| } else { |
| sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc); |
| if (sample_ratio < int_tofp(1)) |
| core_busy = 0; |
| } |
| |
| cpu->sample.busy_scaled = core_busy; |
| return cpu->pstate.current_pstate - pid_calc(&cpu->pid, core_busy); |
| } |
| |
| static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate) |
| { |
| int max_perf, min_perf; |
| |
| update_turbo_state(); |
| |
| intel_pstate_get_min_max(cpu, &min_perf, &max_perf); |
| pstate = clamp_t(int, pstate, min_perf, max_perf); |
| if (pstate == cpu->pstate.current_pstate) |
| return; |
| |
| intel_pstate_record_pstate(cpu, pstate); |
| wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate)); |
| } |
| |
| static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu) |
| { |
| int from, target_pstate; |
| struct sample *sample; |
| |
| from = cpu->pstate.current_pstate; |
| |
| target_pstate = pstate_funcs.get_target_pstate(cpu); |
| |
| intel_pstate_update_pstate(cpu, target_pstate); |
| |
| sample = &cpu->sample; |
| trace_pstate_sample(fp_toint(sample->core_pct_busy), |
| fp_toint(sample->busy_scaled), |
| from, |
| cpu->pstate.current_pstate, |
| sample->mperf, |
| sample->aperf, |
| sample->tsc, |
| get_avg_frequency(cpu)); |
| } |
| |
| static void intel_pstate_update_util(struct update_util_data *data, u64 time, |
| unsigned long util, unsigned long max) |
| { |
| struct cpudata *cpu = container_of(data, struct cpudata, update_util); |
| u64 delta_ns = time - cpu->sample.time; |
| |
| if ((s64)delta_ns >= pid_params.sample_rate_ns) { |
| bool sample_taken = intel_pstate_sample(cpu, time); |
| |
| if (sample_taken && !hwp_active) |
| intel_pstate_adjust_busy_pstate(cpu); |
| } |
| } |
| |
| #define ICPU(model, policy) \ |
| { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\ |
| (unsigned long)&policy } |
| |
| static const struct x86_cpu_id intel_pstate_cpu_ids[] = { |
| ICPU(0x2a, core_params), |
| ICPU(0x2d, core_params), |
| ICPU(0x37, silvermont_params), |
| ICPU(0x3a, core_params), |
| ICPU(0x3c, core_params), |
| ICPU(0x3d, core_params), |
| ICPU(0x3e, core_params), |
| ICPU(0x3f, core_params), |
| ICPU(0x45, core_params), |
| ICPU(0x46, core_params), |
| ICPU(0x47, core_params), |
| ICPU(0x4c, airmont_params), |
| ICPU(0x4e, core_params), |
| ICPU(0x4f, core_params), |
| ICPU(0x5e, core_params), |
| ICPU(0x56, core_params), |
| ICPU(0x57, knl_params), |
| {} |
| }; |
| MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids); |
| |
| static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = { |
| ICPU(0x56, core_params), |
| {} |
| }; |
| |
| static int intel_pstate_init_cpu(unsigned int cpunum) |
| { |
| struct cpudata *cpu; |
| |
| if (!all_cpu_data[cpunum]) |
| all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata), |
| GFP_KERNEL); |
| if (!all_cpu_data[cpunum]) |
| return -ENOMEM; |
| |
| cpu = all_cpu_data[cpunum]; |
| |
| cpu->cpu = cpunum; |
| |
| if (hwp_active) { |
| intel_pstate_hwp_enable(cpu); |
| pid_params.sample_rate_ms = 50; |
| pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC; |
| } |
| |
| intel_pstate_get_cpu_pstates(cpu); |
| |
| intel_pstate_busy_pid_reset(cpu); |
| |
| pr_debug("controlling: cpu %d\n", cpunum); |
| |
| return 0; |
| } |
| |
| static unsigned int intel_pstate_get(unsigned int cpu_num) |
| { |
| struct sample *sample; |
| struct cpudata *cpu; |
| |
| cpu = all_cpu_data[cpu_num]; |
| if (!cpu) |
| return 0; |
| sample = &cpu->sample; |
| return get_avg_frequency(cpu); |
| } |
| |
| static void intel_pstate_set_update_util_hook(unsigned int cpu_num) |
| { |
| struct cpudata *cpu = all_cpu_data[cpu_num]; |
| |
| /* Prevent intel_pstate_update_util() from using stale data. */ |
| cpu->sample.time = 0; |
| cpufreq_add_update_util_hook(cpu_num, &cpu->update_util, |
| intel_pstate_update_util); |
| } |
| |
| static void intel_pstate_clear_update_util_hook(unsigned int cpu) |
| { |
| cpufreq_remove_update_util_hook(cpu); |
| synchronize_sched(); |
| } |
| |
| static void intel_pstate_set_performance_limits(struct perf_limits *limits) |
| { |
| limits->no_turbo = 0; |
| limits->turbo_disabled = 0; |
| limits->max_perf_pct = 100; |
| limits->max_perf = int_tofp(1); |
| limits->min_perf_pct = 100; |
| limits->min_perf = int_tofp(1); |
| limits->max_policy_pct = 100; |
| limits->max_sysfs_pct = 100; |
| limits->min_policy_pct = 0; |
| limits->min_sysfs_pct = 0; |
| } |
| |
| static int intel_pstate_set_policy(struct cpufreq_policy *policy) |
| { |
| if (!policy->cpuinfo.max_freq) |
| return -ENODEV; |
| |
| intel_pstate_clear_update_util_hook(policy->cpu); |
| |
| if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) { |
| limits = &performance_limits; |
| if (policy->max >= policy->cpuinfo.max_freq) { |
| pr_debug("set performance\n"); |
| intel_pstate_set_performance_limits(limits); |
| goto out; |
| } |
| } else { |
| pr_debug("set powersave\n"); |
| limits = &powersave_limits; |
| } |
| |
| limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq; |
| limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100); |
| limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100, |
| policy->cpuinfo.max_freq); |
| limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100); |
| |
| /* Normalize user input to [min_policy_pct, max_policy_pct] */ |
| limits->min_perf_pct = max(limits->min_policy_pct, |
| limits->min_sysfs_pct); |
| limits->min_perf_pct = min(limits->max_policy_pct, |
| limits->min_perf_pct); |
| limits->max_perf_pct = min(limits->max_policy_pct, |
| limits->max_sysfs_pct); |
| limits->max_perf_pct = max(limits->min_policy_pct, |
| limits->max_perf_pct); |
| limits->max_perf = round_up(limits->max_perf, FRAC_BITS); |
| |
| /* Make sure min_perf_pct <= max_perf_pct */ |
| limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct); |
| |
| limits->min_perf = div_fp(limits->min_perf_pct, 100); |
| limits->max_perf = div_fp(limits->max_perf_pct, 100); |
| |
| out: |
| intel_pstate_set_update_util_hook(policy->cpu); |
| |
| if (hwp_active) |
| intel_pstate_hwp_set(policy->cpus); |
| |
| return 0; |
| } |
| |
| static int intel_pstate_verify_policy(struct cpufreq_policy *policy) |
| { |
| cpufreq_verify_within_cpu_limits(policy); |
| |
| if (policy->policy != CPUFREQ_POLICY_POWERSAVE && |
| policy->policy != CPUFREQ_POLICY_PERFORMANCE) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static void intel_pstate_stop_cpu(struct cpufreq_policy *policy) |
| { |
| int cpu_num = policy->cpu; |
| struct cpudata *cpu = all_cpu_data[cpu_num]; |
| |
| pr_debug("CPU %d exiting\n", cpu_num); |
| |
| intel_pstate_clear_update_util_hook(cpu_num); |
| |
| if (hwp_active) |
| return; |
| |
| intel_pstate_set_min_pstate(cpu); |
| } |
| |
| static int intel_pstate_cpu_init(struct cpufreq_policy *policy) |
| { |
| struct cpudata *cpu; |
| int rc; |
| |
| rc = intel_pstate_init_cpu(policy->cpu); |
| if (rc) |
| return rc; |
| |
| cpu = all_cpu_data[policy->cpu]; |
| |
| if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100) |
| policy->policy = CPUFREQ_POLICY_PERFORMANCE; |
| else |
| policy->policy = CPUFREQ_POLICY_POWERSAVE; |
| |
| policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling; |
| policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling; |
| |
| /* cpuinfo and default policy values */ |
| policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling; |
| policy->cpuinfo.max_freq = |
| cpu->pstate.turbo_pstate * cpu->pstate.scaling; |
| intel_pstate_init_acpi_perf_limits(policy); |
| policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL; |
| cpumask_set_cpu(policy->cpu, policy->cpus); |
| |
| return 0; |
| } |
| |
| static int intel_pstate_cpu_exit(struct cpufreq_policy *policy) |
| { |
| intel_pstate_exit_perf_limits(policy); |
| |
| return 0; |
| } |
| |
| static struct cpufreq_driver intel_pstate_driver = { |
| .flags = CPUFREQ_CONST_LOOPS, |
| .verify = intel_pstate_verify_policy, |
| .setpolicy = intel_pstate_set_policy, |
| .get = intel_pstate_get, |
| .init = intel_pstate_cpu_init, |
| .exit = intel_pstate_cpu_exit, |
| .stop_cpu = intel_pstate_stop_cpu, |
| .name = "intel_pstate", |
| }; |
| |
| static int __initdata no_load; |
| static int __initdata no_hwp; |
| static int __initdata hwp_only; |
| static unsigned int force_load; |
| |
| static int intel_pstate_msrs_not_valid(void) |
| { |
| if (!pstate_funcs.get_max() || |
| !pstate_funcs.get_min() || |
| !pstate_funcs.get_turbo()) |
| return -ENODEV; |
| |
| return 0; |
| } |
| |
| static void copy_pid_params(struct pstate_adjust_policy *policy) |
| { |
| pid_params.sample_rate_ms = policy->sample_rate_ms; |
| pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC; |
| pid_params.p_gain_pct = policy->p_gain_pct; |
| pid_params.i_gain_pct = policy->i_gain_pct; |
| pid_params.d_gain_pct = policy->d_gain_pct; |
| pid_params.deadband = policy->deadband; |
| pid_params.setpoint = policy->setpoint; |
| } |
| |
| static void copy_cpu_funcs(struct pstate_funcs *funcs) |
| { |
| pstate_funcs.get_max = funcs->get_max; |
| pstate_funcs.get_max_physical = funcs->get_max_physical; |
| pstate_funcs.get_min = funcs->get_min; |
| pstate_funcs.get_turbo = funcs->get_turbo; |
| pstate_funcs.get_scaling = funcs->get_scaling; |
| pstate_funcs.get_val = funcs->get_val; |
| pstate_funcs.get_vid = funcs->get_vid; |
| pstate_funcs.get_target_pstate = funcs->get_target_pstate; |
| |
| } |
| |
| #ifdef CONFIG_ACPI |
| |
| static bool intel_pstate_no_acpi_pss(void) |
| { |
| int i; |
| |
| for_each_possible_cpu(i) { |
| acpi_status status; |
| union acpi_object *pss; |
| struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; |
| struct acpi_processor *pr = per_cpu(processors, i); |
| |
| if (!pr) |
| continue; |
| |
| status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer); |
| if (ACPI_FAILURE(status)) |
| continue; |
| |
| pss = buffer.pointer; |
| if (pss && pss->type == ACPI_TYPE_PACKAGE) { |
| kfree(pss); |
| return false; |
| } |
| |
| kfree(pss); |
| } |
| |
| return true; |
| } |
| |
| static bool intel_pstate_has_acpi_ppc(void) |
| { |
| int i; |
| |
| for_each_possible_cpu(i) { |
| struct acpi_processor *pr = per_cpu(processors, i); |
| |
| if (!pr) |
| continue; |
| if (acpi_has_method(pr->handle, "_PPC")) |
| return true; |
| } |
| return false; |
| } |
| |
| enum { |
| PSS, |
| PPC, |
| }; |
| |
| struct hw_vendor_info { |
| u16 valid; |
| char oem_id[ACPI_OEM_ID_SIZE]; |
| char oem_table_id[ACPI_OEM_TABLE_ID_SIZE]; |
| int oem_pwr_table; |
| }; |
| |
| /* Hardware vendor-specific info that has its own power management modes */ |
| static struct hw_vendor_info vendor_info[] = { |
| {1, "HP ", "ProLiant", PSS}, |
| {1, "ORACLE", "X4-2 ", PPC}, |
| {1, "ORACLE", "X4-2L ", PPC}, |
| {1, "ORACLE", "X4-2B ", PPC}, |
| {1, "ORACLE", "X3-2 ", PPC}, |
| {1, "ORACLE", "X3-2L ", PPC}, |
| {1, "ORACLE", "X3-2B ", PPC}, |
| {1, "ORACLE", "X4470M2 ", PPC}, |
| {1, "ORACLE", "X4270M3 ", PPC}, |
| {1, "ORACLE", "X4270M2 ", PPC}, |
| {1, "ORACLE", "X4170M2 ", PPC}, |
| {1, "ORACLE", "X4170 M3", PPC}, |
| {1, "ORACLE", "X4275 M3", PPC}, |
| {1, "ORACLE", "X6-2 ", PPC}, |
| {1, "ORACLE", "Sudbury ", PPC}, |
| {0, "", ""}, |
| }; |
| |
| static bool intel_pstate_platform_pwr_mgmt_exists(void) |
| { |
| struct acpi_table_header hdr; |
| struct hw_vendor_info *v_info; |
| const struct x86_cpu_id *id; |
| u64 misc_pwr; |
| |
| id = x86_match_cpu(intel_pstate_cpu_oob_ids); |
| if (id) { |
| rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr); |
| if ( misc_pwr & (1 << 8)) |
| return true; |
| } |
| |
| if (acpi_disabled || |
| ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr))) |
| return false; |
| |
| for (v_info = vendor_info; v_info->valid; v_info++) { |
| if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) && |
| !strncmp(hdr.oem_table_id, v_info->oem_table_id, |
| ACPI_OEM_TABLE_ID_SIZE)) |
| switch (v_info->oem_pwr_table) { |
| case PSS: |
| return intel_pstate_no_acpi_pss(); |
| case PPC: |
| return intel_pstate_has_acpi_ppc() && |
| (!force_load); |
| } |
| } |
| |
| return false; |
| } |
| #else /* CONFIG_ACPI not enabled */ |
| static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; } |
| static inline bool intel_pstate_has_acpi_ppc(void) { return false; } |
| #endif /* CONFIG_ACPI */ |
| |
| static const struct x86_cpu_id hwp_support_ids[] __initconst = { |
| { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP }, |
| {} |
| }; |
| |
| static int __init intel_pstate_init(void) |
| { |
| int cpu, rc = 0; |
| const struct x86_cpu_id *id; |
| struct cpu_defaults *cpu_def; |
| |
| if (no_load) |
| return -ENODEV; |
| |
| if (x86_match_cpu(hwp_support_ids) && !no_hwp) { |
| copy_cpu_funcs(&core_params.funcs); |
| hwp_active++; |
| goto hwp_cpu_matched; |
| } |
| |
| id = x86_match_cpu(intel_pstate_cpu_ids); |
| if (!id) |
| return -ENODEV; |
| |
| cpu_def = (struct cpu_defaults *)id->driver_data; |
| |
| copy_pid_params(&cpu_def->pid_policy); |
| copy_cpu_funcs(&cpu_def->funcs); |
| |
| if (intel_pstate_msrs_not_valid()) |
| return -ENODEV; |
| |
| hwp_cpu_matched: |
| /* |
| * The Intel pstate driver will be ignored if the platform |
| * firmware has its own power management modes. |
| */ |
| if (intel_pstate_platform_pwr_mgmt_exists()) |
| return -ENODEV; |
| |
| pr_info("Intel P-state driver initializing\n"); |
| |
| all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus()); |
| if (!all_cpu_data) |
| return -ENOMEM; |
| |
| if (!hwp_active && hwp_only) |
| goto out; |
| |
| rc = cpufreq_register_driver(&intel_pstate_driver); |
| if (rc) |
| goto out; |
| |
| intel_pstate_debug_expose_params(); |
| intel_pstate_sysfs_expose_params(); |
| |
| if (hwp_active) |
| pr_info("HWP enabled\n"); |
| |
| return rc; |
| out: |
| get_online_cpus(); |
| for_each_online_cpu(cpu) { |
| if (all_cpu_data[cpu]) { |
| intel_pstate_clear_update_util_hook(cpu); |
| kfree(all_cpu_data[cpu]); |
| } |
| } |
| |
| put_online_cpus(); |
| vfree(all_cpu_data); |
| return -ENODEV; |
| } |
| device_initcall(intel_pstate_init); |
| |
| static int __init intel_pstate_setup(char *str) |
| { |
| if (!str) |
| return -EINVAL; |
| |
| if (!strcmp(str, "disable")) |
| no_load = 1; |
| if (!strcmp(str, "no_hwp")) { |
| pr_info("HWP disabled\n"); |
| no_hwp = 1; |
| } |
| if (!strcmp(str, "force")) |
| force_load = 1; |
| if (!strcmp(str, "hwp_only")) |
| hwp_only = 1; |
| |
| #ifdef CONFIG_ACPI |
| if (!strcmp(str, "support_acpi_ppc")) |
| acpi_ppc = true; |
| #endif |
| |
| return 0; |
| } |
| early_param("intel_pstate", intel_pstate_setup); |
| |
| MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>"); |
| MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors"); |
| MODULE_LICENSE("GPL"); |