| /* |
| * Copyright © 2014 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| * |
| */ |
| #include <linux/circ_buf.h> |
| #include "i915_drv.h" |
| #include "intel_uc.h" |
| |
| #include <trace/events/dma_fence.h> |
| |
| /** |
| * DOC: GuC-based command submission |
| * |
| * i915_guc_client: |
| * We use the term client to avoid confusion with contexts. A i915_guc_client is |
| * equivalent to GuC object guc_context_desc. This context descriptor is |
| * allocated from a pool of 1024 entries. Kernel driver will allocate doorbell |
| * and workqueue for it. Also the process descriptor (guc_process_desc), which |
| * is mapped to client space. So the client can write Work Item then ring the |
| * doorbell. |
| * |
| * To simplify the implementation, we allocate one gem object that contains all |
| * pages for doorbell, process descriptor and workqueue. |
| * |
| * The Scratch registers: |
| * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes |
| * a value to the action register (SOFT_SCRATCH_0) along with any data. It then |
| * triggers an interrupt on the GuC via another register write (0xC4C8). |
| * Firmware writes a success/fail code back to the action register after |
| * processes the request. The kernel driver polls waiting for this update and |
| * then proceeds. |
| * See intel_guc_send() |
| * |
| * Doorbells: |
| * Doorbells are interrupts to uKernel. A doorbell is a single cache line (QW) |
| * mapped into process space. |
| * |
| * Work Items: |
| * There are several types of work items that the host may place into a |
| * workqueue, each with its own requirements and limitations. Currently only |
| * WQ_TYPE_INORDER is needed to support legacy submission via GuC, which |
| * represents in-order queue. The kernel driver packs ring tail pointer and an |
| * ELSP context descriptor dword into Work Item. |
| * See guc_wq_item_append() |
| * |
| */ |
| |
| /* |
| * Tell the GuC to allocate or deallocate a specific doorbell |
| */ |
| |
| static int guc_allocate_doorbell(struct intel_guc *guc, |
| struct i915_guc_client *client) |
| { |
| u32 action[] = { |
| INTEL_GUC_ACTION_ALLOCATE_DOORBELL, |
| client->ctx_index |
| }; |
| |
| return intel_guc_send(guc, action, ARRAY_SIZE(action)); |
| } |
| |
| static int guc_release_doorbell(struct intel_guc *guc, |
| struct i915_guc_client *client) |
| { |
| u32 action[] = { |
| INTEL_GUC_ACTION_DEALLOCATE_DOORBELL, |
| client->ctx_index |
| }; |
| |
| return intel_guc_send(guc, action, ARRAY_SIZE(action)); |
| } |
| |
| /* |
| * Initialise, update, or clear doorbell data shared with the GuC |
| * |
| * These functions modify shared data and so need access to the mapped |
| * client object which contains the page being used for the doorbell |
| */ |
| |
| static int guc_update_doorbell_id(struct intel_guc *guc, |
| struct i915_guc_client *client, |
| u16 new_id) |
| { |
| struct sg_table *sg = guc->ctx_pool_vma->pages; |
| void *doorbell_bitmap = guc->doorbell_bitmap; |
| struct guc_doorbell_info *doorbell; |
| struct guc_context_desc desc; |
| size_t len; |
| |
| doorbell = client->vaddr + client->doorbell_offset; |
| |
| if (client->doorbell_id != GUC_INVALID_DOORBELL_ID && |
| test_bit(client->doorbell_id, doorbell_bitmap)) { |
| /* Deactivate the old doorbell */ |
| doorbell->db_status = GUC_DOORBELL_DISABLED; |
| (void)guc_release_doorbell(guc, client); |
| __clear_bit(client->doorbell_id, doorbell_bitmap); |
| } |
| |
| /* Update the GuC's idea of the doorbell ID */ |
| len = sg_pcopy_to_buffer(sg->sgl, sg->nents, &desc, sizeof(desc), |
| sizeof(desc) * client->ctx_index); |
| if (len != sizeof(desc)) |
| return -EFAULT; |
| desc.db_id = new_id; |
| len = sg_pcopy_from_buffer(sg->sgl, sg->nents, &desc, sizeof(desc), |
| sizeof(desc) * client->ctx_index); |
| if (len != sizeof(desc)) |
| return -EFAULT; |
| |
| client->doorbell_id = new_id; |
| if (new_id == GUC_INVALID_DOORBELL_ID) |
| return 0; |
| |
| /* Activate the new doorbell */ |
| __set_bit(new_id, doorbell_bitmap); |
| doorbell->db_status = GUC_DOORBELL_ENABLED; |
| doorbell->cookie = client->doorbell_cookie; |
| return guc_allocate_doorbell(guc, client); |
| } |
| |
| static void guc_disable_doorbell(struct intel_guc *guc, |
| struct i915_guc_client *client) |
| { |
| (void)guc_update_doorbell_id(guc, client, GUC_INVALID_DOORBELL_ID); |
| |
| /* XXX: wait for any interrupts */ |
| /* XXX: wait for workqueue to drain */ |
| } |
| |
| static uint16_t |
| select_doorbell_register(struct intel_guc *guc, uint32_t priority) |
| { |
| /* |
| * The bitmap tracks which doorbell registers are currently in use. |
| * It is split into two halves; the first half is used for normal |
| * priority contexts, the second half for high-priority ones. |
| * Note that logically higher priorities are numerically less than |
| * normal ones, so the test below means "is it high-priority?" |
| */ |
| const bool hi_pri = (priority <= GUC_CTX_PRIORITY_HIGH); |
| const uint16_t half = GUC_MAX_DOORBELLS / 2; |
| const uint16_t start = hi_pri ? half : 0; |
| const uint16_t end = start + half; |
| uint16_t id; |
| |
| id = find_next_zero_bit(guc->doorbell_bitmap, end, start); |
| if (id == end) |
| id = GUC_INVALID_DOORBELL_ID; |
| |
| DRM_DEBUG_DRIVER("assigned %s priority doorbell id 0x%x\n", |
| hi_pri ? "high" : "normal", id); |
| |
| return id; |
| } |
| |
| /* |
| * Select, assign and relase doorbell cachelines |
| * |
| * These functions track which doorbell cachelines are in use. |
| * The data they manipulate is protected by the intel_guc_send lock. |
| */ |
| |
| static uint32_t select_doorbell_cacheline(struct intel_guc *guc) |
| { |
| const uint32_t cacheline_size = cache_line_size(); |
| uint32_t offset; |
| |
| /* Doorbell uses a single cache line within a page */ |
| offset = offset_in_page(guc->db_cacheline); |
| |
| /* Moving to next cache line to reduce contention */ |
| guc->db_cacheline += cacheline_size; |
| |
| DRM_DEBUG_DRIVER("selected doorbell cacheline 0x%x, next 0x%x, linesize %u\n", |
| offset, guc->db_cacheline, cacheline_size); |
| |
| return offset; |
| } |
| |
| /* |
| * Initialise the process descriptor shared with the GuC firmware. |
| */ |
| static void guc_proc_desc_init(struct intel_guc *guc, |
| struct i915_guc_client *client) |
| { |
| struct guc_process_desc *desc; |
| |
| desc = client->vaddr + client->proc_desc_offset; |
| |
| memset(desc, 0, sizeof(*desc)); |
| |
| /* |
| * XXX: pDoorbell and WQVBaseAddress are pointers in process address |
| * space for ring3 clients (set them as in mmap_ioctl) or kernel |
| * space for kernel clients (map on demand instead? May make debug |
| * easier to have it mapped). |
| */ |
| desc->wq_base_addr = 0; |
| desc->db_base_addr = 0; |
| |
| desc->context_id = client->ctx_index; |
| desc->wq_size_bytes = client->wq_size; |
| desc->wq_status = WQ_STATUS_ACTIVE; |
| desc->priority = client->priority; |
| } |
| |
| /* |
| * Initialise/clear the context descriptor shared with the GuC firmware. |
| * |
| * This descriptor tells the GuC where (in GGTT space) to find the important |
| * data structures relating to this client (doorbell, process descriptor, |
| * write queue, etc). |
| */ |
| |
| static void guc_ctx_desc_init(struct intel_guc *guc, |
| struct i915_guc_client *client) |
| { |
| struct drm_i915_private *dev_priv = guc_to_i915(guc); |
| struct intel_engine_cs *engine; |
| struct i915_gem_context *ctx = client->owner; |
| struct guc_context_desc desc; |
| struct sg_table *sg; |
| unsigned int tmp; |
| u32 gfx_addr; |
| |
| memset(&desc, 0, sizeof(desc)); |
| |
| desc.attribute = GUC_CTX_DESC_ATTR_ACTIVE | GUC_CTX_DESC_ATTR_KERNEL; |
| desc.context_id = client->ctx_index; |
| desc.priority = client->priority; |
| desc.db_id = client->doorbell_id; |
| |
| for_each_engine_masked(engine, dev_priv, client->engines, tmp) { |
| struct intel_context *ce = &ctx->engine[engine->id]; |
| uint32_t guc_engine_id = engine->guc_id; |
| struct guc_execlist_context *lrc = &desc.lrc[guc_engine_id]; |
| |
| /* TODO: We have a design issue to be solved here. Only when we |
| * receive the first batch, we know which engine is used by the |
| * user. But here GuC expects the lrc and ring to be pinned. It |
| * is not an issue for default context, which is the only one |
| * for now who owns a GuC client. But for future owner of GuC |
| * client, need to make sure lrc is pinned prior to enter here. |
| */ |
| if (!ce->state) |
| break; /* XXX: continue? */ |
| |
| lrc->context_desc = lower_32_bits(ce->lrc_desc); |
| |
| /* The state page is after PPHWSP */ |
| lrc->ring_lcra = |
| guc_ggtt_offset(ce->state) + LRC_STATE_PN * PAGE_SIZE; |
| lrc->context_id = (client->ctx_index << GUC_ELC_CTXID_OFFSET) | |
| (guc_engine_id << GUC_ELC_ENGINE_OFFSET); |
| |
| lrc->ring_begin = guc_ggtt_offset(ce->ring->vma); |
| lrc->ring_end = lrc->ring_begin + ce->ring->size - 1; |
| lrc->ring_next_free_location = lrc->ring_begin; |
| lrc->ring_current_tail_pointer_value = 0; |
| |
| desc.engines_used |= (1 << guc_engine_id); |
| } |
| |
| DRM_DEBUG_DRIVER("Host engines 0x%x => GuC engines used 0x%x\n", |
| client->engines, desc.engines_used); |
| WARN_ON(desc.engines_used == 0); |
| |
| /* |
| * The doorbell, process descriptor, and workqueue are all parts |
| * of the client object, which the GuC will reference via the GGTT |
| */ |
| gfx_addr = guc_ggtt_offset(client->vma); |
| desc.db_trigger_phy = sg_dma_address(client->vma->pages->sgl) + |
| client->doorbell_offset; |
| desc.db_trigger_cpu = |
| (uintptr_t)client->vaddr + client->doorbell_offset; |
| desc.db_trigger_uk = gfx_addr + client->doorbell_offset; |
| desc.process_desc = gfx_addr + client->proc_desc_offset; |
| desc.wq_addr = gfx_addr + client->wq_offset; |
| desc.wq_size = client->wq_size; |
| |
| /* |
| * XXX: Take LRCs from an existing context if this is not an |
| * IsKMDCreatedContext client |
| */ |
| desc.desc_private = (uintptr_t)client; |
| |
| /* Pool context is pinned already */ |
| sg = guc->ctx_pool_vma->pages; |
| sg_pcopy_from_buffer(sg->sgl, sg->nents, &desc, sizeof(desc), |
| sizeof(desc) * client->ctx_index); |
| } |
| |
| static void guc_ctx_desc_fini(struct intel_guc *guc, |
| struct i915_guc_client *client) |
| { |
| struct guc_context_desc desc; |
| struct sg_table *sg; |
| |
| memset(&desc, 0, sizeof(desc)); |
| |
| sg = guc->ctx_pool_vma->pages; |
| sg_pcopy_from_buffer(sg->sgl, sg->nents, &desc, sizeof(desc), |
| sizeof(desc) * client->ctx_index); |
| } |
| |
| /** |
| * i915_guc_wq_reserve() - reserve space in the GuC's workqueue |
| * @request: request associated with the commands |
| * |
| * Return: 0 if space is available |
| * -EAGAIN if space is not currently available |
| * |
| * This function must be called (and must return 0) before a request |
| * is submitted to the GuC via i915_guc_submit() below. Once a result |
| * of 0 has been returned, it must be balanced by a corresponding |
| * call to submit(). |
| * |
| * Reservation allows the caller to determine in advance that space |
| * will be available for the next submission before committing resources |
| * to it, and helps avoid late failures with complicated recovery paths. |
| */ |
| int i915_guc_wq_reserve(struct drm_i915_gem_request *request) |
| { |
| const size_t wqi_size = sizeof(struct guc_wq_item); |
| struct i915_guc_client *client = request->i915->guc.execbuf_client; |
| struct guc_process_desc *desc = client->vaddr + |
| client->proc_desc_offset; |
| u32 freespace; |
| int ret; |
| |
| spin_lock_irq(&client->wq_lock); |
| freespace = CIRC_SPACE(client->wq_tail, desc->head, client->wq_size); |
| freespace -= client->wq_rsvd; |
| if (likely(freespace >= wqi_size)) { |
| client->wq_rsvd += wqi_size; |
| ret = 0; |
| } else { |
| client->no_wq_space++; |
| ret = -EAGAIN; |
| } |
| spin_unlock_irq(&client->wq_lock); |
| |
| return ret; |
| } |
| |
| static void guc_client_update_wq_rsvd(struct i915_guc_client *client, int size) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&client->wq_lock, flags); |
| client->wq_rsvd += size; |
| spin_unlock_irqrestore(&client->wq_lock, flags); |
| } |
| |
| void i915_guc_wq_unreserve(struct drm_i915_gem_request *request) |
| { |
| const int wqi_size = sizeof(struct guc_wq_item); |
| struct i915_guc_client *client = request->i915->guc.execbuf_client; |
| |
| GEM_BUG_ON(READ_ONCE(client->wq_rsvd) < wqi_size); |
| guc_client_update_wq_rsvd(client, -wqi_size); |
| } |
| |
| /* Construct a Work Item and append it to the GuC's Work Queue */ |
| static void guc_wq_item_append(struct i915_guc_client *client, |
| struct drm_i915_gem_request *rq) |
| { |
| /* wqi_len is in DWords, and does not include the one-word header */ |
| const size_t wqi_size = sizeof(struct guc_wq_item); |
| const u32 wqi_len = wqi_size/sizeof(u32) - 1; |
| struct intel_engine_cs *engine = rq->engine; |
| struct guc_process_desc *desc; |
| struct guc_wq_item *wqi; |
| u32 freespace, tail, wq_off; |
| |
| desc = client->vaddr + client->proc_desc_offset; |
| |
| /* Free space is guaranteed, see i915_guc_wq_reserve() above */ |
| freespace = CIRC_SPACE(client->wq_tail, desc->head, client->wq_size); |
| GEM_BUG_ON(freespace < wqi_size); |
| |
| /* The GuC firmware wants the tail index in QWords, not bytes */ |
| tail = rq->tail; |
| GEM_BUG_ON(tail & 7); |
| tail >>= 3; |
| GEM_BUG_ON(tail > WQ_RING_TAIL_MAX); |
| |
| /* For now workqueue item is 4 DWs; workqueue buffer is 2 pages. So we |
| * should not have the case where structure wqi is across page, neither |
| * wrapped to the beginning. This simplifies the implementation below. |
| * |
| * XXX: if not the case, we need save data to a temp wqi and copy it to |
| * workqueue buffer dw by dw. |
| */ |
| BUILD_BUG_ON(wqi_size != 16); |
| GEM_BUG_ON(client->wq_rsvd < wqi_size); |
| |
| /* postincrement WQ tail for next time */ |
| wq_off = client->wq_tail; |
| GEM_BUG_ON(wq_off & (wqi_size - 1)); |
| client->wq_tail += wqi_size; |
| client->wq_tail &= client->wq_size - 1; |
| client->wq_rsvd -= wqi_size; |
| |
| /* WQ starts from the page after doorbell / process_desc */ |
| wqi = client->vaddr + wq_off + GUC_DB_SIZE; |
| |
| /* Now fill in the 4-word work queue item */ |
| wqi->header = WQ_TYPE_INORDER | |
| (wqi_len << WQ_LEN_SHIFT) | |
| (engine->guc_id << WQ_TARGET_SHIFT) | |
| WQ_NO_WCFLUSH_WAIT; |
| |
| /* The GuC wants only the low-order word of the context descriptor */ |
| wqi->context_desc = (u32)intel_lr_context_descriptor(rq->ctx, engine); |
| |
| wqi->ring_tail = tail << WQ_RING_TAIL_SHIFT; |
| wqi->fence_id = rq->global_seqno; |
| } |
| |
| static int guc_ring_doorbell(struct i915_guc_client *client) |
| { |
| struct guc_process_desc *desc; |
| union guc_doorbell_qw db_cmp, db_exc, db_ret; |
| union guc_doorbell_qw *db; |
| int attempt = 2, ret = -EAGAIN; |
| |
| desc = client->vaddr + client->proc_desc_offset; |
| |
| /* Update the tail so it is visible to GuC */ |
| desc->tail = client->wq_tail; |
| |
| /* current cookie */ |
| db_cmp.db_status = GUC_DOORBELL_ENABLED; |
| db_cmp.cookie = client->doorbell_cookie; |
| |
| /* cookie to be updated */ |
| db_exc.db_status = GUC_DOORBELL_ENABLED; |
| db_exc.cookie = client->doorbell_cookie + 1; |
| if (db_exc.cookie == 0) |
| db_exc.cookie = 1; |
| |
| /* pointer of current doorbell cacheline */ |
| db = client->vaddr + client->doorbell_offset; |
| |
| while (attempt--) { |
| /* lets ring the doorbell */ |
| db_ret.value_qw = atomic64_cmpxchg((atomic64_t *)db, |
| db_cmp.value_qw, db_exc.value_qw); |
| |
| /* if the exchange was successfully executed */ |
| if (db_ret.value_qw == db_cmp.value_qw) { |
| /* db was successfully rung */ |
| client->doorbell_cookie = db_exc.cookie; |
| ret = 0; |
| break; |
| } |
| |
| /* XXX: doorbell was lost and need to acquire it again */ |
| if (db_ret.db_status == GUC_DOORBELL_DISABLED) |
| break; |
| |
| DRM_WARN("Cookie mismatch. Expected %d, found %d\n", |
| db_cmp.cookie, db_ret.cookie); |
| |
| /* update the cookie to newly read cookie from GuC */ |
| db_cmp.cookie = db_ret.cookie; |
| db_exc.cookie = db_ret.cookie + 1; |
| if (db_exc.cookie == 0) |
| db_exc.cookie = 1; |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * __i915_guc_submit() - Submit commands through GuC |
| * @rq: request associated with the commands |
| * |
| * The caller must have already called i915_guc_wq_reserve() above with |
| * a result of 0 (success), guaranteeing that there is space in the work |
| * queue for the new request, so enqueuing the item cannot fail. |
| * |
| * Bad Things Will Happen if the caller violates this protocol e.g. calls |
| * submit() when _reserve() says there's no space, or calls _submit() |
| * a different number of times from (successful) calls to _reserve(). |
| * |
| * The only error here arises if the doorbell hardware isn't functioning |
| * as expected, which really shouln't happen. |
| */ |
| static void __i915_guc_submit(struct drm_i915_gem_request *rq) |
| { |
| struct drm_i915_private *dev_priv = rq->i915; |
| struct intel_engine_cs *engine = rq->engine; |
| unsigned int engine_id = engine->id; |
| struct intel_guc *guc = &rq->i915->guc; |
| struct i915_guc_client *client = guc->execbuf_client; |
| unsigned long flags; |
| int b_ret; |
| |
| /* WA to flush out the pending GMADR writes to ring buffer. */ |
| if (i915_vma_is_map_and_fenceable(rq->ring->vma)) |
| POSTING_READ_FW(GUC_STATUS); |
| |
| spin_lock_irqsave(&client->wq_lock, flags); |
| |
| guc_wq_item_append(client, rq); |
| b_ret = guc_ring_doorbell(client); |
| |
| client->submissions[engine_id] += 1; |
| client->retcode = b_ret; |
| if (b_ret) |
| client->b_fail += 1; |
| |
| guc->submissions[engine_id] += 1; |
| guc->last_seqno[engine_id] = rq->global_seqno; |
| |
| spin_unlock_irqrestore(&client->wq_lock, flags); |
| } |
| |
| static void i915_guc_submit(struct drm_i915_gem_request *rq) |
| { |
| __i915_gem_request_submit(rq); |
| __i915_guc_submit(rq); |
| } |
| |
| static void nested_enable_signaling(struct drm_i915_gem_request *rq) |
| { |
| /* If we use dma_fence_enable_sw_signaling() directly, lockdep |
| * detects an ordering issue between the fence lockclass and the |
| * global_timeline. This circular dependency can only occur via 2 |
| * different fences (but same fence lockclass), so we use the nesting |
| * annotation here to prevent the warn, equivalent to the nesting |
| * inside i915_gem_request_submit() for when we also enable the |
| * signaler. |
| */ |
| |
| if (test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, |
| &rq->fence.flags)) |
| return; |
| |
| GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags)); |
| trace_dma_fence_enable_signal(&rq->fence); |
| |
| spin_lock_nested(&rq->lock, SINGLE_DEPTH_NESTING); |
| intel_engine_enable_signaling(rq); |
| spin_unlock(&rq->lock); |
| } |
| |
| static bool i915_guc_dequeue(struct intel_engine_cs *engine) |
| { |
| struct execlist_port *port = engine->execlist_port; |
| struct drm_i915_gem_request *last = port[0].request; |
| unsigned long flags; |
| struct rb_node *rb; |
| bool submit = false; |
| |
| /* After execlist_first is updated, the tasklet will be rescheduled. |
| * |
| * If we are currently running (inside the tasklet) and a third |
| * party queues a request and so updates engine->execlist_first under |
| * the spinlock (which we have elided), it will atomically set the |
| * TASKLET_SCHED flag causing the us to be re-executed and pick up |
| * the change in state (the update to TASKLET_SCHED incurs a memory |
| * barrier making this cross-cpu checking safe). |
| */ |
| if (!READ_ONCE(engine->execlist_first)) |
| return false; |
| |
| spin_lock_irqsave(&engine->timeline->lock, flags); |
| rb = engine->execlist_first; |
| while (rb) { |
| struct drm_i915_gem_request *rq = |
| rb_entry(rb, typeof(*rq), priotree.node); |
| |
| if (last && rq->ctx != last->ctx) { |
| if (port != engine->execlist_port) |
| break; |
| |
| i915_gem_request_assign(&port->request, last); |
| nested_enable_signaling(last); |
| port++; |
| } |
| |
| rb = rb_next(rb); |
| rb_erase(&rq->priotree.node, &engine->execlist_queue); |
| RB_CLEAR_NODE(&rq->priotree.node); |
| rq->priotree.priority = INT_MAX; |
| |
| trace_i915_gem_request_in(rq, port - engine->execlist_port); |
| i915_guc_submit(rq); |
| last = rq; |
| submit = true; |
| } |
| if (submit) { |
| i915_gem_request_assign(&port->request, last); |
| nested_enable_signaling(last); |
| engine->execlist_first = rb; |
| } |
| spin_unlock_irqrestore(&engine->timeline->lock, flags); |
| |
| return submit; |
| } |
| |
| static void i915_guc_irq_handler(unsigned long data) |
| { |
| struct intel_engine_cs *engine = (struct intel_engine_cs *)data; |
| struct execlist_port *port = engine->execlist_port; |
| struct drm_i915_gem_request *rq; |
| bool submit; |
| |
| do { |
| rq = port[0].request; |
| while (rq && i915_gem_request_completed(rq)) { |
| trace_i915_gem_request_out(rq); |
| i915_gem_request_put(rq); |
| port[0].request = port[1].request; |
| port[1].request = NULL; |
| rq = port[0].request; |
| } |
| |
| submit = false; |
| if (!port[1].request) |
| submit = i915_guc_dequeue(engine); |
| } while (submit); |
| } |
| |
| /* |
| * Everything below here is concerned with setup & teardown, and is |
| * therefore not part of the somewhat time-critical batch-submission |
| * path of i915_guc_submit() above. |
| */ |
| |
| /** |
| * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage |
| * @guc: the guc |
| * @size: size of area to allocate (both virtual space and memory) |
| * |
| * This is a wrapper to create an object for use with the GuC. In order to |
| * use it inside the GuC, an object needs to be pinned lifetime, so we allocate |
| * both some backing storage and a range inside the Global GTT. We must pin |
| * it in the GGTT somewhere other than than [0, GUC_WOPCM_TOP) because that |
| * range is reserved inside GuC. |
| * |
| * Return: A i915_vma if successful, otherwise an ERR_PTR. |
| */ |
| struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size) |
| { |
| struct drm_i915_private *dev_priv = guc_to_i915(guc); |
| struct drm_i915_gem_object *obj; |
| struct i915_vma *vma; |
| int ret; |
| |
| obj = i915_gem_object_create(dev_priv, size); |
| if (IS_ERR(obj)) |
| return ERR_CAST(obj); |
| |
| vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL); |
| if (IS_ERR(vma)) |
| goto err; |
| |
| ret = i915_vma_pin(vma, 0, PAGE_SIZE, |
| PIN_GLOBAL | PIN_OFFSET_BIAS | GUC_WOPCM_TOP); |
| if (ret) { |
| vma = ERR_PTR(ret); |
| goto err; |
| } |
| |
| return vma; |
| |
| err: |
| i915_gem_object_put(obj); |
| return vma; |
| } |
| |
| static void |
| guc_client_free(struct drm_i915_private *dev_priv, |
| struct i915_guc_client *client) |
| { |
| struct intel_guc *guc = &dev_priv->guc; |
| |
| if (!client) |
| return; |
| |
| /* |
| * XXX: wait for any outstanding submissions before freeing memory. |
| * Be sure to drop any locks |
| */ |
| |
| if (client->vaddr) { |
| /* |
| * If we got as far as setting up a doorbell, make sure we |
| * shut it down before unmapping & deallocating the memory. |
| */ |
| guc_disable_doorbell(guc, client); |
| |
| i915_gem_object_unpin_map(client->vma->obj); |
| } |
| |
| i915_vma_unpin_and_release(&client->vma); |
| |
| if (client->ctx_index != GUC_INVALID_CTX_ID) { |
| guc_ctx_desc_fini(guc, client); |
| ida_simple_remove(&guc->ctx_ids, client->ctx_index); |
| } |
| |
| kfree(client); |
| } |
| |
| /* Check that a doorbell register is in the expected state */ |
| static bool guc_doorbell_check(struct intel_guc *guc, uint16_t db_id) |
| { |
| struct drm_i915_private *dev_priv = guc_to_i915(guc); |
| i915_reg_t drbreg = GEN8_DRBREGL(db_id); |
| uint32_t value = I915_READ(drbreg); |
| bool enabled = (value & GUC_DOORBELL_ENABLED) != 0; |
| bool expected = test_bit(db_id, guc->doorbell_bitmap); |
| |
| if (enabled == expected) |
| return true; |
| |
| DRM_DEBUG_DRIVER("Doorbell %d (reg 0x%x) 0x%x, should be %s\n", |
| db_id, drbreg.reg, value, |
| expected ? "active" : "inactive"); |
| |
| return false; |
| } |
| |
| /* |
| * Borrow the first client to set up & tear down each unused doorbell |
| * in turn, to ensure that all doorbell h/w is (re)initialised. |
| */ |
| static void guc_init_doorbell_hw(struct intel_guc *guc) |
| { |
| struct i915_guc_client *client = guc->execbuf_client; |
| uint16_t db_id; |
| int i, err; |
| |
| guc_disable_doorbell(guc, client); |
| |
| for (i = 0; i < GUC_MAX_DOORBELLS; ++i) { |
| /* Skip if doorbell is OK */ |
| if (guc_doorbell_check(guc, i)) |
| continue; |
| |
| err = guc_update_doorbell_id(guc, client, i); |
| if (err) |
| DRM_DEBUG_DRIVER("Doorbell %d update failed, err %d\n", |
| i, err); |
| } |
| |
| db_id = select_doorbell_register(guc, client->priority); |
| WARN_ON(db_id == GUC_INVALID_DOORBELL_ID); |
| |
| err = guc_update_doorbell_id(guc, client, db_id); |
| if (err) |
| DRM_WARN("Failed to restore doorbell to %d, err %d\n", |
| db_id, err); |
| |
| /* Read back & verify all doorbell registers */ |
| for (i = 0; i < GUC_MAX_DOORBELLS; ++i) |
| (void)guc_doorbell_check(guc, i); |
| } |
| |
| /** |
| * guc_client_alloc() - Allocate an i915_guc_client |
| * @dev_priv: driver private data structure |
| * @engines: The set of engines to enable for this client |
| * @priority: four levels priority _CRITICAL, _HIGH, _NORMAL and _LOW |
| * The kernel client to replace ExecList submission is created with |
| * NORMAL priority. Priority of a client for scheduler can be HIGH, |
| * while a preemption context can use CRITICAL. |
| * @ctx: the context that owns the client (we use the default render |
| * context) |
| * |
| * Return: An i915_guc_client object if success, else NULL. |
| */ |
| static struct i915_guc_client * |
| guc_client_alloc(struct drm_i915_private *dev_priv, |
| uint32_t engines, |
| uint32_t priority, |
| struct i915_gem_context *ctx) |
| { |
| struct i915_guc_client *client; |
| struct intel_guc *guc = &dev_priv->guc; |
| struct i915_vma *vma; |
| void *vaddr; |
| uint16_t db_id; |
| |
| client = kzalloc(sizeof(*client), GFP_KERNEL); |
| if (!client) |
| return NULL; |
| |
| client->owner = ctx; |
| client->guc = guc; |
| client->engines = engines; |
| client->priority = priority; |
| client->doorbell_id = GUC_INVALID_DOORBELL_ID; |
| |
| client->ctx_index = (uint32_t)ida_simple_get(&guc->ctx_ids, 0, |
| GUC_MAX_GPU_CONTEXTS, GFP_KERNEL); |
| if (client->ctx_index >= GUC_MAX_GPU_CONTEXTS) { |
| client->ctx_index = GUC_INVALID_CTX_ID; |
| goto err; |
| } |
| |
| /* The first page is doorbell/proc_desc. Two followed pages are wq. */ |
| vma = intel_guc_allocate_vma(guc, GUC_DB_SIZE + GUC_WQ_SIZE); |
| if (IS_ERR(vma)) |
| goto err; |
| |
| /* We'll keep just the first (doorbell/proc) page permanently kmap'd. */ |
| client->vma = vma; |
| |
| vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB); |
| if (IS_ERR(vaddr)) |
| goto err; |
| |
| client->vaddr = vaddr; |
| |
| spin_lock_init(&client->wq_lock); |
| client->wq_offset = GUC_DB_SIZE; |
| client->wq_size = GUC_WQ_SIZE; |
| |
| db_id = select_doorbell_register(guc, client->priority); |
| if (db_id == GUC_INVALID_DOORBELL_ID) |
| /* XXX: evict a doorbell instead? */ |
| goto err; |
| |
| client->doorbell_offset = select_doorbell_cacheline(guc); |
| |
| /* |
| * Since the doorbell only requires a single cacheline, we can save |
| * space by putting the application process descriptor in the same |
| * page. Use the half of the page that doesn't include the doorbell. |
| */ |
| if (client->doorbell_offset >= (GUC_DB_SIZE / 2)) |
| client->proc_desc_offset = 0; |
| else |
| client->proc_desc_offset = (GUC_DB_SIZE / 2); |
| |
| guc_proc_desc_init(guc, client); |
| guc_ctx_desc_init(guc, client); |
| |
| /* For runtime client allocation we need to enable the doorbell. Not |
| * required yet for the static execbuf_client as this special kernel |
| * client is enabled from i915_guc_submission_enable(). |
| * |
| * guc_update_doorbell_id(guc, client, db_id); |
| */ |
| |
| DRM_DEBUG_DRIVER("new priority %u client %p for engine(s) 0x%x: ctx_index %u\n", |
| priority, client, client->engines, client->ctx_index); |
| DRM_DEBUG_DRIVER("doorbell id %u, cacheline offset 0x%x\n", |
| client->doorbell_id, client->doorbell_offset); |
| |
| return client; |
| |
| err: |
| guc_client_free(dev_priv, client); |
| return NULL; |
| } |
| |
| |
| |
| static void guc_policies_init(struct guc_policies *policies) |
| { |
| struct guc_policy *policy; |
| u32 p, i; |
| |
| policies->dpc_promote_time = 500000; |
| policies->max_num_work_items = POLICY_MAX_NUM_WI; |
| |
| for (p = 0; p < GUC_CTX_PRIORITY_NUM; p++) { |
| for (i = GUC_RENDER_ENGINE; i < GUC_MAX_ENGINES_NUM; i++) { |
| policy = &policies->policy[p][i]; |
| |
| policy->execution_quantum = 1000000; |
| policy->preemption_time = 500000; |
| policy->fault_time = 250000; |
| policy->policy_flags = 0; |
| } |
| } |
| |
| policies->is_valid = 1; |
| } |
| |
| static void guc_addon_create(struct intel_guc *guc) |
| { |
| struct drm_i915_private *dev_priv = guc_to_i915(guc); |
| struct i915_vma *vma; |
| struct page *page; |
| /* The ads obj includes the struct itself and buffers passed to GuC */ |
| struct { |
| struct guc_ads ads; |
| struct guc_policies policies; |
| struct guc_mmio_reg_state reg_state; |
| u8 reg_state_buffer[GUC_S3_SAVE_SPACE_PAGES * PAGE_SIZE]; |
| } __packed *blob; |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| u32 base; |
| |
| vma = guc->ads_vma; |
| if (!vma) { |
| vma = intel_guc_allocate_vma(guc, PAGE_ALIGN(sizeof(*blob))); |
| if (IS_ERR(vma)) |
| return; |
| |
| guc->ads_vma = vma; |
| } |
| |
| page = i915_vma_first_page(vma); |
| blob = kmap(page); |
| |
| /* GuC scheduling policies */ |
| guc_policies_init(&blob->policies); |
| |
| /* MMIO reg state */ |
| for_each_engine(engine, dev_priv, id) { |
| blob->reg_state.mmio_white_list[engine->guc_id].mmio_start = |
| engine->mmio_base + GUC_MMIO_WHITE_LIST_START; |
| |
| /* Nothing to be saved or restored for now. */ |
| blob->reg_state.mmio_white_list[engine->guc_id].count = 0; |
| } |
| |
| /* |
| * The GuC requires a "Golden Context" when it reinitialises |
| * engines after a reset. Here we use the Render ring default |
| * context, which must already exist and be pinned in the GGTT, |
| * so its address won't change after we've told the GuC where |
| * to find it. |
| */ |
| blob->ads.golden_context_lrca = |
| dev_priv->engine[RCS]->status_page.ggtt_offset; |
| |
| for_each_engine(engine, dev_priv, id) |
| blob->ads.eng_state_size[engine->guc_id] = |
| intel_lr_context_size(engine); |
| |
| base = guc_ggtt_offset(vma); |
| blob->ads.scheduler_policies = base + ptr_offset(blob, policies); |
| blob->ads.reg_state_buffer = base + ptr_offset(blob, reg_state_buffer); |
| blob->ads.reg_state_addr = base + ptr_offset(blob, reg_state); |
| |
| kunmap(page); |
| } |
| |
| /* |
| * Set up the memory resources to be shared with the GuC. At this point, |
| * we require just one object that can be mapped through the GGTT. |
| */ |
| int i915_guc_submission_init(struct drm_i915_private *dev_priv) |
| { |
| const size_t ctxsize = sizeof(struct guc_context_desc); |
| const size_t poolsize = GUC_MAX_GPU_CONTEXTS * ctxsize; |
| const size_t gemsize = round_up(poolsize, PAGE_SIZE); |
| struct intel_guc *guc = &dev_priv->guc; |
| struct i915_vma *vma; |
| |
| if (!HAS_GUC_SCHED(dev_priv)) |
| return 0; |
| |
| /* Wipe bitmap & delete client in case of reinitialisation */ |
| bitmap_clear(guc->doorbell_bitmap, 0, GUC_MAX_DOORBELLS); |
| i915_guc_submission_disable(dev_priv); |
| |
| if (!i915.enable_guc_submission) |
| return 0; /* not enabled */ |
| |
| if (guc->ctx_pool_vma) |
| return 0; /* already allocated */ |
| |
| vma = intel_guc_allocate_vma(guc, gemsize); |
| if (IS_ERR(vma)) |
| return PTR_ERR(vma); |
| |
| guc->ctx_pool_vma = vma; |
| ida_init(&guc->ctx_ids); |
| intel_guc_log_create(guc); |
| guc_addon_create(guc); |
| |
| guc->execbuf_client = guc_client_alloc(dev_priv, |
| INTEL_INFO(dev_priv)->ring_mask, |
| GUC_CTX_PRIORITY_KMD_NORMAL, |
| dev_priv->kernel_context); |
| if (!guc->execbuf_client) { |
| DRM_ERROR("Failed to create GuC client for execbuf!\n"); |
| goto err; |
| } |
| |
| return 0; |
| |
| err: |
| i915_guc_submission_fini(dev_priv); |
| return -ENOMEM; |
| } |
| |
| static void guc_reset_wq(struct i915_guc_client *client) |
| { |
| struct guc_process_desc *desc = client->vaddr + |
| client->proc_desc_offset; |
| |
| desc->head = 0; |
| desc->tail = 0; |
| |
| client->wq_tail = 0; |
| } |
| |
| static void guc_interrupts_capture(struct drm_i915_private *dev_priv) |
| { |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| int irqs; |
| |
| /* tell all command streamers to forward interrupts (but not vblank) to GuC */ |
| irqs = _MASKED_BIT_ENABLE(GFX_INTERRUPT_STEERING); |
| for_each_engine(engine, dev_priv, id) |
| I915_WRITE(RING_MODE_GEN7(engine), irqs); |
| |
| /* route USER_INTERRUPT to Host, all others are sent to GuC. */ |
| irqs = GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT | |
| GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT; |
| /* These three registers have the same bit definitions */ |
| I915_WRITE(GUC_BCS_RCS_IER, ~irqs); |
| I915_WRITE(GUC_VCS2_VCS1_IER, ~irqs); |
| I915_WRITE(GUC_WD_VECS_IER, ~irqs); |
| |
| /* |
| * The REDIRECT_TO_GUC bit of the PMINTRMSK register directs all |
| * (unmasked) PM interrupts to the GuC. All other bits of this |
| * register *disable* generation of a specific interrupt. |
| * |
| * 'pm_intrmsk_mbz' indicates bits that are NOT to be set when |
| * writing to the PM interrupt mask register, i.e. interrupts |
| * that must not be disabled. |
| * |
| * If the GuC is handling these interrupts, then we must not let |
| * the PM code disable ANY interrupt that the GuC is expecting. |
| * So for each ENABLED (0) bit in this register, we must SET the |
| * bit in pm_intrmsk_mbz so that it's left enabled for the GuC. |
| * GuC needs ARAT expired interrupt unmasked hence it is set in |
| * pm_intrmsk_mbz. |
| * |
| * Here we CLEAR REDIRECT_TO_GUC bit in pm_intrmsk_mbz, which will |
| * result in the register bit being left SET! |
| */ |
| dev_priv->rps.pm_intrmsk_mbz |= ARAT_EXPIRED_INTRMSK; |
| dev_priv->rps.pm_intrmsk_mbz &= ~GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC; |
| } |
| |
| int i915_guc_submission_enable(struct drm_i915_private *dev_priv) |
| { |
| struct intel_guc *guc = &dev_priv->guc; |
| struct i915_guc_client *client = guc->execbuf_client; |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| |
| if (!client) |
| return -ENODEV; |
| |
| intel_guc_sample_forcewake(guc); |
| |
| guc_reset_wq(client); |
| guc_init_doorbell_hw(guc); |
| |
| /* Take over from manual control of ELSP (execlists) */ |
| guc_interrupts_capture(dev_priv); |
| |
| for_each_engine(engine, dev_priv, id) { |
| const int wqi_size = sizeof(struct guc_wq_item); |
| struct drm_i915_gem_request *rq; |
| |
| /* The tasklet was initialised by execlists, and may be in |
| * a state of flux (across a reset) and so we just want to |
| * take over the callback without changing any other state |
| * in the tasklet. |
| */ |
| engine->irq_tasklet.func = i915_guc_irq_handler; |
| clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted); |
| |
| /* Replay the current set of previously submitted requests */ |
| spin_lock_irq(&engine->timeline->lock); |
| list_for_each_entry(rq, &engine->timeline->requests, link) { |
| guc_client_update_wq_rsvd(client, wqi_size); |
| __i915_guc_submit(rq); |
| } |
| spin_unlock_irq(&engine->timeline->lock); |
| } |
| |
| return 0; |
| } |
| |
| static void guc_interrupts_release(struct drm_i915_private *dev_priv) |
| { |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| int irqs; |
| |
| /* |
| * tell all command streamers NOT to forward interrupts or vblank |
| * to GuC. |
| */ |
| irqs = _MASKED_FIELD(GFX_FORWARD_VBLANK_MASK, GFX_FORWARD_VBLANK_NEVER); |
| irqs |= _MASKED_BIT_DISABLE(GFX_INTERRUPT_STEERING); |
| for_each_engine(engine, dev_priv, id) |
| I915_WRITE(RING_MODE_GEN7(engine), irqs); |
| |
| /* route all GT interrupts to the host */ |
| I915_WRITE(GUC_BCS_RCS_IER, 0); |
| I915_WRITE(GUC_VCS2_VCS1_IER, 0); |
| I915_WRITE(GUC_WD_VECS_IER, 0); |
| |
| dev_priv->rps.pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC; |
| dev_priv->rps.pm_intrmsk_mbz &= ~ARAT_EXPIRED_INTRMSK; |
| } |
| |
| void i915_guc_submission_disable(struct drm_i915_private *dev_priv) |
| { |
| struct intel_guc *guc = &dev_priv->guc; |
| |
| guc_interrupts_release(dev_priv); |
| |
| if (!guc->execbuf_client) |
| return; |
| |
| /* Revert back to manual ELSP submission */ |
| intel_engines_reset_default_submission(dev_priv); |
| } |
| |
| void i915_guc_submission_fini(struct drm_i915_private *dev_priv) |
| { |
| struct intel_guc *guc = &dev_priv->guc; |
| struct i915_guc_client *client; |
| |
| client = fetch_and_zero(&guc->execbuf_client); |
| if (!client) |
| return; |
| |
| guc_client_free(dev_priv, client); |
| |
| i915_vma_unpin_and_release(&guc->ads_vma); |
| i915_vma_unpin_and_release(&guc->log.vma); |
| |
| if (guc->ctx_pool_vma) |
| ida_destroy(&guc->ctx_ids); |
| i915_vma_unpin_and_release(&guc->ctx_pool_vma); |
| } |
| |
| /** |
| * intel_guc_suspend() - notify GuC entering suspend state |
| * @dev_priv: i915 device private |
| */ |
| int intel_guc_suspend(struct drm_i915_private *dev_priv) |
| { |
| struct intel_guc *guc = &dev_priv->guc; |
| struct i915_gem_context *ctx; |
| u32 data[3]; |
| |
| if (guc->fw.load_status != INTEL_UC_FIRMWARE_SUCCESS) |
| return 0; |
| |
| gen9_disable_guc_interrupts(dev_priv); |
| |
| ctx = dev_priv->kernel_context; |
| |
| data[0] = INTEL_GUC_ACTION_ENTER_S_STATE; |
| /* any value greater than GUC_POWER_D0 */ |
| data[1] = GUC_POWER_D1; |
| /* first page is shared data with GuC */ |
| data[2] = guc_ggtt_offset(ctx->engine[RCS].state); |
| |
| return intel_guc_send(guc, data, ARRAY_SIZE(data)); |
| } |
| |
| |
| /** |
| * intel_guc_resume() - notify GuC resuming from suspend state |
| * @dev_priv: i915 device private |
| */ |
| int intel_guc_resume(struct drm_i915_private *dev_priv) |
| { |
| struct intel_guc *guc = &dev_priv->guc; |
| struct i915_gem_context *ctx; |
| u32 data[3]; |
| |
| if (guc->fw.load_status != INTEL_UC_FIRMWARE_SUCCESS) |
| return 0; |
| |
| if (i915.guc_log_level >= 0) |
| gen9_enable_guc_interrupts(dev_priv); |
| |
| ctx = dev_priv->kernel_context; |
| |
| data[0] = INTEL_GUC_ACTION_EXIT_S_STATE; |
| data[1] = GUC_POWER_D0; |
| /* first page is shared data with GuC */ |
| data[2] = guc_ggtt_offset(ctx->engine[RCS].state); |
| |
| return intel_guc_send(guc, data, ARRAY_SIZE(data)); |
| } |
| |
| |