| /* |
| * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved. |
| * Copyright 2008 Sascha Hauer, kernel@pengutronix.de |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version 2 |
| * of the License, or (at your option) any later version. |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, |
| * MA 02110-1301, USA. |
| */ |
| |
| #include <linux/delay.h> |
| #include <linux/slab.h> |
| #include <linux/init.h> |
| #include <linux/module.h> |
| #include <linux/mtd/mtd.h> |
| #include <linux/mtd/nand.h> |
| #include <linux/mtd/partitions.h> |
| #include <linux/interrupt.h> |
| #include <linux/device.h> |
| #include <linux/platform_device.h> |
| #include <linux/clk.h> |
| #include <linux/err.h> |
| #include <linux/io.h> |
| |
| #include <asm/mach/flash.h> |
| #include <mach/mxc_nand.h> |
| |
| #define DRIVER_NAME "mxc_nand" |
| |
| /* Addresses for NFC registers */ |
| #define NFC_BUF_SIZE 0xE00 |
| #define NFC_BUF_ADDR 0xE04 |
| #define NFC_FLASH_ADDR 0xE06 |
| #define NFC_FLASH_CMD 0xE08 |
| #define NFC_CONFIG 0xE0A |
| #define NFC_ECC_STATUS_RESULT 0xE0C |
| #define NFC_RSLTMAIN_AREA 0xE0E |
| #define NFC_RSLTSPARE_AREA 0xE10 |
| #define NFC_WRPROT 0xE12 |
| #define NFC_UNLOCKSTART_BLKADDR 0xE14 |
| #define NFC_UNLOCKEND_BLKADDR 0xE16 |
| #define NFC_NF_WRPRST 0xE18 |
| #define NFC_CONFIG1 0xE1A |
| #define NFC_CONFIG2 0xE1C |
| |
| /* Addresses for NFC RAM BUFFER Main area 0 */ |
| #define MAIN_AREA0 0x000 |
| #define MAIN_AREA1 0x200 |
| #define MAIN_AREA2 0x400 |
| #define MAIN_AREA3 0x600 |
| |
| /* Addresses for NFC SPARE BUFFER Spare area 0 */ |
| #define SPARE_AREA0 0x800 |
| #define SPARE_AREA1 0x810 |
| #define SPARE_AREA2 0x820 |
| #define SPARE_AREA3 0x830 |
| |
| /* Set INT to 0, FCMD to 1, rest to 0 in NFC_CONFIG2 Register |
| * for Command operation */ |
| #define NFC_CMD 0x1 |
| |
| /* Set INT to 0, FADD to 1, rest to 0 in NFC_CONFIG2 Register |
| * for Address operation */ |
| #define NFC_ADDR 0x2 |
| |
| /* Set INT to 0, FDI to 1, rest to 0 in NFC_CONFIG2 Register |
| * for Input operation */ |
| #define NFC_INPUT 0x4 |
| |
| /* Set INT to 0, FDO to 001, rest to 0 in NFC_CONFIG2 Register |
| * for Data Output operation */ |
| #define NFC_OUTPUT 0x8 |
| |
| /* Set INT to 0, FD0 to 010, rest to 0 in NFC_CONFIG2 Register |
| * for Read ID operation */ |
| #define NFC_ID 0x10 |
| |
| /* Set INT to 0, FDO to 100, rest to 0 in NFC_CONFIG2 Register |
| * for Read Status operation */ |
| #define NFC_STATUS 0x20 |
| |
| /* Set INT to 1, rest to 0 in NFC_CONFIG2 Register for Read |
| * Status operation */ |
| #define NFC_INT 0x8000 |
| |
| #define NFC_SP_EN (1 << 2) |
| #define NFC_ECC_EN (1 << 3) |
| #define NFC_INT_MSK (1 << 4) |
| #define NFC_BIG (1 << 5) |
| #define NFC_RST (1 << 6) |
| #define NFC_CE (1 << 7) |
| #define NFC_ONE_CYCLE (1 << 8) |
| |
| struct mxc_nand_host { |
| struct mtd_info mtd; |
| struct nand_chip nand; |
| struct mtd_partition *parts; |
| struct device *dev; |
| |
| void __iomem *regs; |
| int spare_only; |
| int status_request; |
| int pagesize_2k; |
| uint16_t col_addr; |
| struct clk *clk; |
| int clk_act; |
| int irq; |
| |
| wait_queue_head_t irq_waitq; |
| }; |
| |
| /* Define delays in microsec for NAND device operations */ |
| #define TROP_US_DELAY 2000 |
| /* Macros to get byte and bit positions of ECC */ |
| #define COLPOS(x) ((x) >> 3) |
| #define BITPOS(x) ((x) & 0xf) |
| |
| /* Define single bit Error positions in Main & Spare area */ |
| #define MAIN_SINGLEBIT_ERROR 0x4 |
| #define SPARE_SINGLEBIT_ERROR 0x1 |
| |
| /* OOB placement block for use with hardware ecc generation */ |
| static struct nand_ecclayout nand_hw_eccoob_8 = { |
| .eccbytes = 5, |
| .eccpos = {6, 7, 8, 9, 10}, |
| .oobfree = {{0, 5}, {11, 5}, } |
| }; |
| |
| static struct nand_ecclayout nand_hw_eccoob_16 = { |
| .eccbytes = 5, |
| .eccpos = {6, 7, 8, 9, 10}, |
| .oobfree = {{0, 6}, {12, 4}, } |
| }; |
| |
| #ifdef CONFIG_MTD_PARTITIONS |
| static const char *part_probes[] = { "RedBoot", "cmdlinepart", NULL }; |
| #endif |
| |
| static irqreturn_t mxc_nfc_irq(int irq, void *dev_id) |
| { |
| struct mxc_nand_host *host = dev_id; |
| |
| uint16_t tmp; |
| |
| tmp = readw(host->regs + NFC_CONFIG1); |
| tmp |= NFC_INT_MSK; /* Disable interrupt */ |
| writew(tmp, host->regs + NFC_CONFIG1); |
| |
| wake_up(&host->irq_waitq); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* This function polls the NANDFC to wait for the basic operation to |
| * complete by checking the INT bit of config2 register. |
| */ |
| static void wait_op_done(struct mxc_nand_host *host, int max_retries, |
| uint16_t param, int useirq) |
| { |
| uint32_t tmp; |
| |
| if (useirq) { |
| if ((readw(host->regs + NFC_CONFIG2) & NFC_INT) == 0) { |
| |
| tmp = readw(host->regs + NFC_CONFIG1); |
| tmp &= ~NFC_INT_MSK; /* Enable interrupt */ |
| writew(tmp, host->regs + NFC_CONFIG1); |
| |
| wait_event(host->irq_waitq, |
| readw(host->regs + NFC_CONFIG2) & NFC_INT); |
| |
| tmp = readw(host->regs + NFC_CONFIG2); |
| tmp &= ~NFC_INT; |
| writew(tmp, host->regs + NFC_CONFIG2); |
| } |
| } else { |
| while (max_retries-- > 0) { |
| if (readw(host->regs + NFC_CONFIG2) & NFC_INT) { |
| tmp = readw(host->regs + NFC_CONFIG2); |
| tmp &= ~NFC_INT; |
| writew(tmp, host->regs + NFC_CONFIG2); |
| break; |
| } |
| udelay(1); |
| } |
| if (max_retries <= 0) |
| DEBUG(MTD_DEBUG_LEVEL0, "%s(%d): INT not set\n", |
| __func__, param); |
| } |
| } |
| |
| /* This function issues the specified command to the NAND device and |
| * waits for completion. */ |
| static void send_cmd(struct mxc_nand_host *host, uint16_t cmd, int useirq) |
| { |
| DEBUG(MTD_DEBUG_LEVEL3, "send_cmd(host, 0x%x, %d)\n", cmd, useirq); |
| |
| writew(cmd, host->regs + NFC_FLASH_CMD); |
| writew(NFC_CMD, host->regs + NFC_CONFIG2); |
| |
| /* Wait for operation to complete */ |
| wait_op_done(host, TROP_US_DELAY, cmd, useirq); |
| } |
| |
| /* This function sends an address (or partial address) to the |
| * NAND device. The address is used to select the source/destination for |
| * a NAND command. */ |
| static void send_addr(struct mxc_nand_host *host, uint16_t addr, int islast) |
| { |
| DEBUG(MTD_DEBUG_LEVEL3, "send_addr(host, 0x%x %d)\n", addr, islast); |
| |
| writew(addr, host->regs + NFC_FLASH_ADDR); |
| writew(NFC_ADDR, host->regs + NFC_CONFIG2); |
| |
| /* Wait for operation to complete */ |
| wait_op_done(host, TROP_US_DELAY, addr, islast); |
| } |
| |
| /* This function requests the NANDFC to initate the transfer |
| * of data currently in the NANDFC RAM buffer to the NAND device. */ |
| static void send_prog_page(struct mxc_nand_host *host, uint8_t buf_id, |
| int spare_only) |
| { |
| DEBUG(MTD_DEBUG_LEVEL3, "send_prog_page (%d)\n", spare_only); |
| |
| /* NANDFC buffer 0 is used for page read/write */ |
| writew(buf_id, host->regs + NFC_BUF_ADDR); |
| |
| /* Configure spare or page+spare access */ |
| if (!host->pagesize_2k) { |
| uint16_t config1 = readw(host->regs + NFC_CONFIG1); |
| if (spare_only) |
| config1 |= NFC_SP_EN; |
| else |
| config1 &= ~(NFC_SP_EN); |
| writew(config1, host->regs + NFC_CONFIG1); |
| } |
| |
| writew(NFC_INPUT, host->regs + NFC_CONFIG2); |
| |
| /* Wait for operation to complete */ |
| wait_op_done(host, TROP_US_DELAY, spare_only, true); |
| } |
| |
| /* Requests NANDFC to initated the transfer of data from the |
| * NAND device into in the NANDFC ram buffer. */ |
| static void send_read_page(struct mxc_nand_host *host, uint8_t buf_id, |
| int spare_only) |
| { |
| DEBUG(MTD_DEBUG_LEVEL3, "send_read_page (%d)\n", spare_only); |
| |
| /* NANDFC buffer 0 is used for page read/write */ |
| writew(buf_id, host->regs + NFC_BUF_ADDR); |
| |
| /* Configure spare or page+spare access */ |
| if (!host->pagesize_2k) { |
| uint32_t config1 = readw(host->regs + NFC_CONFIG1); |
| if (spare_only) |
| config1 |= NFC_SP_EN; |
| else |
| config1 &= ~NFC_SP_EN; |
| writew(config1, host->regs + NFC_CONFIG1); |
| } |
| |
| writew(NFC_OUTPUT, host->regs + NFC_CONFIG2); |
| |
| /* Wait for operation to complete */ |
| wait_op_done(host, TROP_US_DELAY, spare_only, true); |
| } |
| |
| /* Request the NANDFC to perform a read of the NAND device ID. */ |
| static void send_read_id(struct mxc_nand_host *host) |
| { |
| struct nand_chip *this = &host->nand; |
| uint16_t tmp; |
| |
| /* NANDFC buffer 0 is used for device ID output */ |
| writew(0x0, host->regs + NFC_BUF_ADDR); |
| |
| /* Read ID into main buffer */ |
| tmp = readw(host->regs + NFC_CONFIG1); |
| tmp &= ~NFC_SP_EN; |
| writew(tmp, host->regs + NFC_CONFIG1); |
| |
| writew(NFC_ID, host->regs + NFC_CONFIG2); |
| |
| /* Wait for operation to complete */ |
| wait_op_done(host, TROP_US_DELAY, 0, true); |
| |
| if (this->options & NAND_BUSWIDTH_16) { |
| void __iomem *main_buf = host->regs + MAIN_AREA0; |
| /* compress the ID info */ |
| writeb(readb(main_buf + 2), main_buf + 1); |
| writeb(readb(main_buf + 4), main_buf + 2); |
| writeb(readb(main_buf + 6), main_buf + 3); |
| writeb(readb(main_buf + 8), main_buf + 4); |
| writeb(readb(main_buf + 10), main_buf + 5); |
| } |
| } |
| |
| /* This function requests the NANDFC to perform a read of the |
| * NAND device status and returns the current status. */ |
| static uint16_t get_dev_status(struct mxc_nand_host *host) |
| { |
| void __iomem *main_buf = host->regs + MAIN_AREA1; |
| uint32_t store; |
| uint16_t ret, tmp; |
| /* Issue status request to NAND device */ |
| |
| /* store the main area1 first word, later do recovery */ |
| store = readl(main_buf); |
| /* NANDFC buffer 1 is used for device status to prevent |
| * corruption of read/write buffer on status requests. */ |
| writew(1, host->regs + NFC_BUF_ADDR); |
| |
| /* Read status into main buffer */ |
| tmp = readw(host->regs + NFC_CONFIG1); |
| tmp &= ~NFC_SP_EN; |
| writew(tmp, host->regs + NFC_CONFIG1); |
| |
| writew(NFC_STATUS, host->regs + NFC_CONFIG2); |
| |
| /* Wait for operation to complete */ |
| wait_op_done(host, TROP_US_DELAY, 0, true); |
| |
| /* Status is placed in first word of main buffer */ |
| /* get status, then recovery area 1 data */ |
| ret = readw(main_buf); |
| writel(store, main_buf); |
| |
| return ret; |
| } |
| |
| /* This functions is used by upper layer to checks if device is ready */ |
| static int mxc_nand_dev_ready(struct mtd_info *mtd) |
| { |
| /* |
| * NFC handles R/B internally. Therefore, this function |
| * always returns status as ready. |
| */ |
| return 1; |
| } |
| |
| static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode) |
| { |
| /* |
| * If HW ECC is enabled, we turn it on during init. There is |
| * no need to enable again here. |
| */ |
| } |
| |
| static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat, |
| u_char *read_ecc, u_char *calc_ecc) |
| { |
| struct nand_chip *nand_chip = mtd->priv; |
| struct mxc_nand_host *host = nand_chip->priv; |
| |
| /* |
| * 1-Bit errors are automatically corrected in HW. No need for |
| * additional correction. 2-Bit errors cannot be corrected by |
| * HW ECC, so we need to return failure |
| */ |
| uint16_t ecc_status = readw(host->regs + NFC_ECC_STATUS_RESULT); |
| |
| if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) { |
| DEBUG(MTD_DEBUG_LEVEL0, |
| "MXC_NAND: HWECC uncorrectable 2-bit ECC error\n"); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, |
| u_char *ecc_code) |
| { |
| return 0; |
| } |
| |
| static u_char mxc_nand_read_byte(struct mtd_info *mtd) |
| { |
| struct nand_chip *nand_chip = mtd->priv; |
| struct mxc_nand_host *host = nand_chip->priv; |
| uint8_t ret = 0; |
| uint16_t col, rd_word; |
| uint16_t __iomem *main_buf = host->regs + MAIN_AREA0; |
| uint16_t __iomem *spare_buf = host->regs + SPARE_AREA0; |
| |
| /* Check for status request */ |
| if (host->status_request) |
| return get_dev_status(host) & 0xFF; |
| |
| /* Get column for 16-bit access */ |
| col = host->col_addr >> 1; |
| |
| /* If we are accessing the spare region */ |
| if (host->spare_only) |
| rd_word = readw(&spare_buf[col]); |
| else |
| rd_word = readw(&main_buf[col]); |
| |
| /* Pick upper/lower byte of word from RAM buffer */ |
| if (host->col_addr & 0x1) |
| ret = (rd_word >> 8) & 0xFF; |
| else |
| ret = rd_word & 0xFF; |
| |
| /* Update saved column address */ |
| host->col_addr++; |
| |
| return ret; |
| } |
| |
| static uint16_t mxc_nand_read_word(struct mtd_info *mtd) |
| { |
| struct nand_chip *nand_chip = mtd->priv; |
| struct mxc_nand_host *host = nand_chip->priv; |
| uint16_t col, rd_word, ret; |
| uint16_t __iomem *p; |
| |
| DEBUG(MTD_DEBUG_LEVEL3, |
| "mxc_nand_read_word(col = %d)\n", host->col_addr); |
| |
| col = host->col_addr; |
| /* Adjust saved column address */ |
| if (col < mtd->writesize && host->spare_only) |
| col += mtd->writesize; |
| |
| if (col < mtd->writesize) |
| p = (host->regs + MAIN_AREA0) + (col >> 1); |
| else |
| p = (host->regs + SPARE_AREA0) + ((col - mtd->writesize) >> 1); |
| |
| if (col & 1) { |
| rd_word = readw(p); |
| ret = (rd_word >> 8) & 0xff; |
| rd_word = readw(&p[1]); |
| ret |= (rd_word << 8) & 0xff00; |
| |
| } else |
| ret = readw(p); |
| |
| /* Update saved column address */ |
| host->col_addr = col + 2; |
| |
| return ret; |
| } |
| |
| /* Write data of length len to buffer buf. The data to be |
| * written on NAND Flash is first copied to RAMbuffer. After the Data Input |
| * Operation by the NFC, the data is written to NAND Flash */ |
| static void mxc_nand_write_buf(struct mtd_info *mtd, |
| const u_char *buf, int len) |
| { |
| struct nand_chip *nand_chip = mtd->priv; |
| struct mxc_nand_host *host = nand_chip->priv; |
| int n, col, i = 0; |
| |
| DEBUG(MTD_DEBUG_LEVEL3, |
| "mxc_nand_write_buf(col = %d, len = %d)\n", host->col_addr, |
| len); |
| |
| col = host->col_addr; |
| |
| /* Adjust saved column address */ |
| if (col < mtd->writesize && host->spare_only) |
| col += mtd->writesize; |
| |
| n = mtd->writesize + mtd->oobsize - col; |
| n = min(len, n); |
| |
| DEBUG(MTD_DEBUG_LEVEL3, |
| "%s:%d: col = %d, n = %d\n", __func__, __LINE__, col, n); |
| |
| while (n) { |
| void __iomem *p; |
| |
| if (col < mtd->writesize) |
| p = host->regs + MAIN_AREA0 + (col & ~3); |
| else |
| p = host->regs + SPARE_AREA0 - |
| mtd->writesize + (col & ~3); |
| |
| DEBUG(MTD_DEBUG_LEVEL3, "%s:%d: p = %p\n", __func__, |
| __LINE__, p); |
| |
| if (((col | (int)&buf[i]) & 3) || n < 16) { |
| uint32_t data = 0; |
| |
| if (col & 3 || n < 4) |
| data = readl(p); |
| |
| switch (col & 3) { |
| case 0: |
| if (n) { |
| data = (data & 0xffffff00) | |
| (buf[i++] << 0); |
| n--; |
| col++; |
| } |
| case 1: |
| if (n) { |
| data = (data & 0xffff00ff) | |
| (buf[i++] << 8); |
| n--; |
| col++; |
| } |
| case 2: |
| if (n) { |
| data = (data & 0xff00ffff) | |
| (buf[i++] << 16); |
| n--; |
| col++; |
| } |
| case 3: |
| if (n) { |
| data = (data & 0x00ffffff) | |
| (buf[i++] << 24); |
| n--; |
| col++; |
| } |
| } |
| |
| writel(data, p); |
| } else { |
| int m = mtd->writesize - col; |
| |
| if (col >= mtd->writesize) |
| m += mtd->oobsize; |
| |
| m = min(n, m) & ~3; |
| |
| DEBUG(MTD_DEBUG_LEVEL3, |
| "%s:%d: n = %d, m = %d, i = %d, col = %d\n", |
| __func__, __LINE__, n, m, i, col); |
| |
| memcpy(p, &buf[i], m); |
| col += m; |
| i += m; |
| n -= m; |
| } |
| } |
| /* Update saved column address */ |
| host->col_addr = col; |
| } |
| |
| /* Read the data buffer from the NAND Flash. To read the data from NAND |
| * Flash first the data output cycle is initiated by the NFC, which copies |
| * the data to RAMbuffer. This data of length len is then copied to buffer buf. |
| */ |
| static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) |
| { |
| struct nand_chip *nand_chip = mtd->priv; |
| struct mxc_nand_host *host = nand_chip->priv; |
| int n, col, i = 0; |
| |
| DEBUG(MTD_DEBUG_LEVEL3, |
| "mxc_nand_read_buf(col = %d, len = %d)\n", host->col_addr, len); |
| |
| col = host->col_addr; |
| |
| /* Adjust saved column address */ |
| if (col < mtd->writesize && host->spare_only) |
| col += mtd->writesize; |
| |
| n = mtd->writesize + mtd->oobsize - col; |
| n = min(len, n); |
| |
| while (n) { |
| void __iomem *p; |
| |
| if (col < mtd->writesize) |
| p = host->regs + MAIN_AREA0 + (col & ~3); |
| else |
| p = host->regs + SPARE_AREA0 - |
| mtd->writesize + (col & ~3); |
| |
| if (((col | (int)&buf[i]) & 3) || n < 16) { |
| uint32_t data; |
| |
| data = readl(p); |
| switch (col & 3) { |
| case 0: |
| if (n) { |
| buf[i++] = (uint8_t) (data); |
| n--; |
| col++; |
| } |
| case 1: |
| if (n) { |
| buf[i++] = (uint8_t) (data >> 8); |
| n--; |
| col++; |
| } |
| case 2: |
| if (n) { |
| buf[i++] = (uint8_t) (data >> 16); |
| n--; |
| col++; |
| } |
| case 3: |
| if (n) { |
| buf[i++] = (uint8_t) (data >> 24); |
| n--; |
| col++; |
| } |
| } |
| } else { |
| int m = mtd->writesize - col; |
| |
| if (col >= mtd->writesize) |
| m += mtd->oobsize; |
| |
| m = min(n, m) & ~3; |
| memcpy(&buf[i], p, m); |
| col += m; |
| i += m; |
| n -= m; |
| } |
| } |
| /* Update saved column address */ |
| host->col_addr = col; |
| |
| } |
| |
| /* Used by the upper layer to verify the data in NAND Flash |
| * with the data in the buf. */ |
| static int mxc_nand_verify_buf(struct mtd_info *mtd, |
| const u_char *buf, int len) |
| { |
| return -EFAULT; |
| } |
| |
| /* This function is used by upper layer for select and |
| * deselect of the NAND chip */ |
| static void mxc_nand_select_chip(struct mtd_info *mtd, int chip) |
| { |
| struct nand_chip *nand_chip = mtd->priv; |
| struct mxc_nand_host *host = nand_chip->priv; |
| |
| #ifdef CONFIG_MTD_NAND_MXC_FORCE_CE |
| if (chip > 0) { |
| DEBUG(MTD_DEBUG_LEVEL0, |
| "ERROR: Illegal chip select (chip = %d)\n", chip); |
| return; |
| } |
| |
| if (chip == -1) { |
| writew(readw(host->regs + NFC_CONFIG1) & ~NFC_CE, |
| host->regs + NFC_CONFIG1); |
| return; |
| } |
| |
| writew(readw(host->regs + NFC_CONFIG1) | NFC_CE, |
| host->regs + NFC_CONFIG1); |
| #endif |
| |
| switch (chip) { |
| case -1: |
| /* Disable the NFC clock */ |
| if (host->clk_act) { |
| clk_disable(host->clk); |
| host->clk_act = 0; |
| } |
| break; |
| case 0: |
| /* Enable the NFC clock */ |
| if (!host->clk_act) { |
| clk_enable(host->clk); |
| host->clk_act = 1; |
| } |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| /* Used by the upper layer to write command to NAND Flash for |
| * different operations to be carried out on NAND Flash */ |
| static void mxc_nand_command(struct mtd_info *mtd, unsigned command, |
| int column, int page_addr) |
| { |
| struct nand_chip *nand_chip = mtd->priv; |
| struct mxc_nand_host *host = nand_chip->priv; |
| int useirq = true; |
| |
| DEBUG(MTD_DEBUG_LEVEL3, |
| "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n", |
| command, column, page_addr); |
| |
| /* Reset command state information */ |
| host->status_request = false; |
| |
| /* Command pre-processing step */ |
| switch (command) { |
| |
| case NAND_CMD_STATUS: |
| host->col_addr = 0; |
| host->status_request = true; |
| break; |
| |
| case NAND_CMD_READ0: |
| host->col_addr = column; |
| host->spare_only = false; |
| useirq = false; |
| break; |
| |
| case NAND_CMD_READOOB: |
| host->col_addr = column; |
| host->spare_only = true; |
| useirq = false; |
| if (host->pagesize_2k) |
| command = NAND_CMD_READ0; /* only READ0 is valid */ |
| break; |
| |
| case NAND_CMD_SEQIN: |
| if (column >= mtd->writesize) { |
| /* |
| * FIXME: before send SEQIN command for write OOB, |
| * We must read one page out. |
| * For K9F1GXX has no READ1 command to set current HW |
| * pointer to spare area, we must write the whole page |
| * including OOB together. |
| */ |
| if (host->pagesize_2k) |
| /* call ourself to read a page */ |
| mxc_nand_command(mtd, NAND_CMD_READ0, 0, |
| page_addr); |
| |
| host->col_addr = column - mtd->writesize; |
| host->spare_only = true; |
| |
| /* Set program pointer to spare region */ |
| if (!host->pagesize_2k) |
| send_cmd(host, NAND_CMD_READOOB, false); |
| } else { |
| host->spare_only = false; |
| host->col_addr = column; |
| |
| /* Set program pointer to page start */ |
| if (!host->pagesize_2k) |
| send_cmd(host, NAND_CMD_READ0, false); |
| } |
| useirq = false; |
| break; |
| |
| case NAND_CMD_PAGEPROG: |
| send_prog_page(host, 0, host->spare_only); |
| |
| if (host->pagesize_2k) { |
| /* data in 4 areas datas */ |
| send_prog_page(host, 1, host->spare_only); |
| send_prog_page(host, 2, host->spare_only); |
| send_prog_page(host, 3, host->spare_only); |
| } |
| |
| break; |
| |
| case NAND_CMD_ERASE1: |
| useirq = false; |
| break; |
| } |
| |
| /* Write out the command to the device. */ |
| send_cmd(host, command, useirq); |
| |
| /* Write out column address, if necessary */ |
| if (column != -1) { |
| /* |
| * MXC NANDFC can only perform full page+spare or |
| * spare-only read/write. When the upper layers |
| * layers perform a read/write buf operation, |
| * we will used the saved column adress to index into |
| * the full page. |
| */ |
| send_addr(host, 0, page_addr == -1); |
| if (host->pagesize_2k) |
| /* another col addr cycle for 2k page */ |
| send_addr(host, 0, false); |
| } |
| |
| /* Write out page address, if necessary */ |
| if (page_addr != -1) { |
| /* paddr_0 - p_addr_7 */ |
| send_addr(host, (page_addr & 0xff), false); |
| |
| if (host->pagesize_2k) { |
| send_addr(host, (page_addr >> 8) & 0xFF, false); |
| if (mtd->size >= 0x40000000) |
| send_addr(host, (page_addr >> 16) & 0xff, true); |
| } else { |
| /* One more address cycle for higher density devices */ |
| if (mtd->size >= 0x4000000) { |
| /* paddr_8 - paddr_15 */ |
| send_addr(host, (page_addr >> 8) & 0xff, false); |
| send_addr(host, (page_addr >> 16) & 0xff, true); |
| } else |
| /* paddr_8 - paddr_15 */ |
| send_addr(host, (page_addr >> 8) & 0xff, true); |
| } |
| } |
| |
| /* Command post-processing step */ |
| switch (command) { |
| |
| case NAND_CMD_RESET: |
| break; |
| |
| case NAND_CMD_READOOB: |
| case NAND_CMD_READ0: |
| if (host->pagesize_2k) { |
| /* send read confirm command */ |
| send_cmd(host, NAND_CMD_READSTART, true); |
| /* read for each AREA */ |
| send_read_page(host, 0, host->spare_only); |
| send_read_page(host, 1, host->spare_only); |
| send_read_page(host, 2, host->spare_only); |
| send_read_page(host, 3, host->spare_only); |
| } else |
| send_read_page(host, 0, host->spare_only); |
| break; |
| |
| case NAND_CMD_READID: |
| send_read_id(host); |
| break; |
| |
| case NAND_CMD_PAGEPROG: |
| break; |
| |
| case NAND_CMD_STATUS: |
| break; |
| |
| case NAND_CMD_ERASE2: |
| break; |
| } |
| } |
| |
| static int __init mxcnd_probe(struct platform_device *pdev) |
| { |
| struct nand_chip *this; |
| struct mtd_info *mtd; |
| struct mxc_nand_platform_data *pdata = pdev->dev.platform_data; |
| struct mxc_nand_host *host; |
| struct resource *res; |
| uint16_t tmp; |
| int err = 0, nr_parts = 0; |
| |
| /* Allocate memory for MTD device structure and private data */ |
| host = kzalloc(sizeof(struct mxc_nand_host), GFP_KERNEL); |
| if (!host) |
| return -ENOMEM; |
| |
| host->dev = &pdev->dev; |
| /* structures must be linked */ |
| this = &host->nand; |
| mtd = &host->mtd; |
| mtd->priv = this; |
| mtd->owner = THIS_MODULE; |
| |
| /* 50 us command delay time */ |
| this->chip_delay = 5; |
| |
| this->priv = host; |
| this->dev_ready = mxc_nand_dev_ready; |
| this->cmdfunc = mxc_nand_command; |
| this->select_chip = mxc_nand_select_chip; |
| this->read_byte = mxc_nand_read_byte; |
| this->read_word = mxc_nand_read_word; |
| this->write_buf = mxc_nand_write_buf; |
| this->read_buf = mxc_nand_read_buf; |
| this->verify_buf = mxc_nand_verify_buf; |
| |
| host->clk = clk_get(&pdev->dev, "nfc_clk"); |
| if (IS_ERR(host->clk)) |
| goto eclk; |
| |
| clk_enable(host->clk); |
| host->clk_act = 1; |
| |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| if (!res) { |
| err = -ENODEV; |
| goto eres; |
| } |
| |
| host->regs = ioremap(res->start, res->end - res->start + 1); |
| if (!host->regs) { |
| err = -EIO; |
| goto eres; |
| } |
| |
| tmp = readw(host->regs + NFC_CONFIG1); |
| tmp |= NFC_INT_MSK; |
| writew(tmp, host->regs + NFC_CONFIG1); |
| |
| init_waitqueue_head(&host->irq_waitq); |
| |
| host->irq = platform_get_irq(pdev, 0); |
| |
| err = request_irq(host->irq, mxc_nfc_irq, 0, "mxc_nd", host); |
| if (err) |
| goto eirq; |
| |
| if (pdata->hw_ecc) { |
| this->ecc.calculate = mxc_nand_calculate_ecc; |
| this->ecc.hwctl = mxc_nand_enable_hwecc; |
| this->ecc.correct = mxc_nand_correct_data; |
| this->ecc.mode = NAND_ECC_HW; |
| this->ecc.size = 512; |
| this->ecc.bytes = 3; |
| this->ecc.layout = &nand_hw_eccoob_8; |
| tmp = readw(host->regs + NFC_CONFIG1); |
| tmp |= NFC_ECC_EN; |
| writew(tmp, host->regs + NFC_CONFIG1); |
| } else { |
| this->ecc.size = 512; |
| this->ecc.bytes = 3; |
| this->ecc.layout = &nand_hw_eccoob_8; |
| this->ecc.mode = NAND_ECC_SOFT; |
| tmp = readw(host->regs + NFC_CONFIG1); |
| tmp &= ~NFC_ECC_EN; |
| writew(tmp, host->regs + NFC_CONFIG1); |
| } |
| |
| /* Reset NAND */ |
| this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); |
| |
| /* preset operation */ |
| /* Unlock the internal RAM Buffer */ |
| writew(0x2, host->regs + NFC_CONFIG); |
| |
| /* Blocks to be unlocked */ |
| writew(0x0, host->regs + NFC_UNLOCKSTART_BLKADDR); |
| writew(0x4000, host->regs + NFC_UNLOCKEND_BLKADDR); |
| |
| /* Unlock Block Command for given address range */ |
| writew(0x4, host->regs + NFC_WRPROT); |
| |
| /* NAND bus width determines access funtions used by upper layer */ |
| if (pdata->width == 2) { |
| this->options |= NAND_BUSWIDTH_16; |
| this->ecc.layout = &nand_hw_eccoob_16; |
| } |
| |
| host->pagesize_2k = 0; |
| |
| /* Scan to find existence of the device */ |
| if (nand_scan(mtd, 1)) { |
| DEBUG(MTD_DEBUG_LEVEL0, |
| "MXC_ND: Unable to find any NAND device.\n"); |
| err = -ENXIO; |
| goto escan; |
| } |
| |
| /* Register the partitions */ |
| #ifdef CONFIG_MTD_PARTITIONS |
| nr_parts = |
| parse_mtd_partitions(mtd, part_probes, &host->parts, 0); |
| if (nr_parts > 0) |
| add_mtd_partitions(mtd, host->parts, nr_parts); |
| else |
| #endif |
| { |
| pr_info("Registering %s as whole device\n", mtd->name); |
| add_mtd_device(mtd); |
| } |
| |
| platform_set_drvdata(pdev, host); |
| |
| return 0; |
| |
| escan: |
| free_irq(host->irq, NULL); |
| eirq: |
| iounmap(host->regs); |
| eres: |
| clk_put(host->clk); |
| eclk: |
| kfree(host); |
| |
| return err; |
| } |
| |
| static int __devexit mxcnd_remove(struct platform_device *pdev) |
| { |
| struct mxc_nand_host *host = platform_get_drvdata(pdev); |
| |
| clk_put(host->clk); |
| |
| platform_set_drvdata(pdev, NULL); |
| |
| nand_release(&host->mtd); |
| free_irq(host->irq, NULL); |
| iounmap(host->regs); |
| kfree(host); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_PM |
| static int mxcnd_suspend(struct platform_device *pdev, pm_message_t state) |
| { |
| struct mtd_info *info = platform_get_drvdata(pdev); |
| int ret = 0; |
| |
| DEBUG(MTD_DEBUG_LEVEL0, "MXC_ND : NAND suspend\n"); |
| if (info) |
| ret = info->suspend(info); |
| |
| /* Disable the NFC clock */ |
| clk_disable(nfc_clk); /* FIXME */ |
| |
| return ret; |
| } |
| |
| static int mxcnd_resume(struct platform_device *pdev) |
| { |
| struct mtd_info *info = platform_get_drvdata(pdev); |
| int ret = 0; |
| |
| DEBUG(MTD_DEBUG_LEVEL0, "MXC_ND : NAND resume\n"); |
| /* Enable the NFC clock */ |
| clk_enable(nfc_clk); /* FIXME */ |
| |
| if (info) |
| info->resume(info); |
| |
| return ret; |
| } |
| |
| #else |
| # define mxcnd_suspend NULL |
| # define mxcnd_resume NULL |
| #endif /* CONFIG_PM */ |
| |
| static struct platform_driver mxcnd_driver = { |
| .driver = { |
| .name = DRIVER_NAME, |
| }, |
| .remove = __exit_p(mxcnd_remove), |
| .suspend = mxcnd_suspend, |
| .resume = mxcnd_resume, |
| }; |
| |
| static int __init mxc_nd_init(void) |
| { |
| /* Register the device driver structure. */ |
| pr_info("MXC MTD nand Driver\n"); |
| if (platform_driver_probe(&mxcnd_driver, mxcnd_probe) != 0) { |
| printk(KERN_ERR "Driver register failed for mxcnd_driver\n"); |
| return -ENODEV; |
| } |
| return 0; |
| } |
| |
| static void __exit mxc_nd_cleanup(void) |
| { |
| /* Unregister the device structure */ |
| platform_driver_unregister(&mxcnd_driver); |
| } |
| |
| module_init(mxc_nd_init); |
| module_exit(mxc_nd_cleanup); |
| |
| MODULE_AUTHOR("Freescale Semiconductor, Inc."); |
| MODULE_DESCRIPTION("MXC NAND MTD driver"); |
| MODULE_LICENSE("GPL"); |