blob: de961b48a6a4a82935112d4b0a065eb566b50d48 [file] [log] [blame]
/*
* linux/mm/slab.c
* Written by Mark Hemment, 1996/97.
* (markhe@nextd.demon.co.uk)
*
* kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
*
* Major cleanup, different bufctl logic, per-cpu arrays
* (c) 2000 Manfred Spraul
*
* Cleanup, make the head arrays unconditional, preparation for NUMA
* (c) 2002 Manfred Spraul
*
* An implementation of the Slab Allocator as described in outline in;
* UNIX Internals: The New Frontiers by Uresh Vahalia
* Pub: Prentice Hall ISBN 0-13-101908-2
* or with a little more detail in;
* The Slab Allocator: An Object-Caching Kernel Memory Allocator
* Jeff Bonwick (Sun Microsystems).
* Presented at: USENIX Summer 1994 Technical Conference
*
* The memory is organized in caches, one cache for each object type.
* (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
* Each cache consists out of many slabs (they are small (usually one
* page long) and always contiguous), and each slab contains multiple
* initialized objects.
*
* This means, that your constructor is used only for newly allocated
* slabs and you must pass objects with the same initializations to
* kmem_cache_free.
*
* Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
* normal). If you need a special memory type, then must create a new
* cache for that memory type.
*
* In order to reduce fragmentation, the slabs are sorted in 3 groups:
* full slabs with 0 free objects
* partial slabs
* empty slabs with no allocated objects
*
* If partial slabs exist, then new allocations come from these slabs,
* otherwise from empty slabs or new slabs are allocated.
*
* kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
* during kmem_cache_destroy(). The caller must prevent concurrent allocs.
*
* Each cache has a short per-cpu head array, most allocs
* and frees go into that array, and if that array overflows, then 1/2
* of the entries in the array are given back into the global cache.
* The head array is strictly LIFO and should improve the cache hit rates.
* On SMP, it additionally reduces the spinlock operations.
*
* The c_cpuarray may not be read with enabled local interrupts -
* it's changed with a smp_call_function().
*
* SMP synchronization:
* constructors and destructors are called without any locking.
* Several members in struct kmem_cache and struct slab never change, they
* are accessed without any locking.
* The per-cpu arrays are never accessed from the wrong cpu, no locking,
* and local interrupts are disabled so slab code is preempt-safe.
* The non-constant members are protected with a per-cache irq spinlock.
*
* Many thanks to Mark Hemment, who wrote another per-cpu slab patch
* in 2000 - many ideas in the current implementation are derived from
* his patch.
*
* Further notes from the original documentation:
*
* 11 April '97. Started multi-threading - markhe
* The global cache-chain is protected by the mutex 'slab_mutex'.
* The sem is only needed when accessing/extending the cache-chain, which
* can never happen inside an interrupt (kmem_cache_create(),
* kmem_cache_shrink() and kmem_cache_reap()).
*
* At present, each engine can be growing a cache. This should be blocked.
*
* 15 March 2005. NUMA slab allocator.
* Shai Fultheim <shai@scalex86.org>.
* Shobhit Dayal <shobhit@calsoftinc.com>
* Alok N Kataria <alokk@calsoftinc.com>
* Christoph Lameter <christoph@lameter.com>
*
* Modified the slab allocator to be node aware on NUMA systems.
* Each node has its own list of partial, free and full slabs.
* All object allocations for a node occur from node specific slab lists.
*/
#include <linux/slab.h>
#include "slab.h"
#include <linux/mm.h>
#include <linux/poison.h>
#include <linux/swap.h>
#include <linux/cache.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/compiler.h>
#include <linux/cpuset.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/notifier.h>
#include <linux/kallsyms.h>
#include <linux/cpu.h>
#include <linux/sysctl.h>
#include <linux/module.h>
#include <linux/rcupdate.h>
#include <linux/string.h>
#include <linux/uaccess.h>
#include <linux/nodemask.h>
#include <linux/kmemleak.h>
#include <linux/mempolicy.h>
#include <linux/mutex.h>
#include <linux/fault-inject.h>
#include <linux/rtmutex.h>
#include <linux/reciprocal_div.h>
#include <linux/debugobjects.h>
#include <linux/kmemcheck.h>
#include <linux/memory.h>
#include <linux/prefetch.h>
#include <net/sock.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/page.h>
#include <trace/events/kmem.h>
#include "internal.h"
/*
* DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
* 0 for faster, smaller code (especially in the critical paths).
*
* STATS - 1 to collect stats for /proc/slabinfo.
* 0 for faster, smaller code (especially in the critical paths).
*
* FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
*/
#ifdef CONFIG_DEBUG_SLAB
#define DEBUG 1
#define STATS 1
#define FORCED_DEBUG 1
#else
#define DEBUG 0
#define STATS 0
#define FORCED_DEBUG 0
#endif
/* Shouldn't this be in a header file somewhere? */
#define BYTES_PER_WORD sizeof(void *)
#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif
/*
* true if a page was allocated from pfmemalloc reserves for network-based
* swap
*/
static bool pfmemalloc_active __read_mostly;
/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
# define CREATE_MASK (SLAB_RED_ZONE | \
SLAB_POISON | SLAB_HWCACHE_ALIGN | \
SLAB_CACHE_DMA | \
SLAB_STORE_USER | \
SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
#else
# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
SLAB_CACHE_DMA | \
SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
#endif
/*
* kmem_bufctl_t:
*
* Bufctl's are used for linking objs within a slab
* linked offsets.
*
* This implementation relies on "struct page" for locating the cache &
* slab an object belongs to.
* This allows the bufctl structure to be small (one int), but limits
* the number of objects a slab (not a cache) can contain when off-slab
* bufctls are used. The limit is the size of the largest general cache
* that does not use off-slab slabs.
* For 32bit archs with 4 kB pages, is this 56.
* This is not serious, as it is only for large objects, when it is unwise
* to have too many per slab.
* Note: This limit can be raised by introducing a general cache whose size
* is less than 512 (PAGE_SIZE<<3), but greater than 256.
*/
typedef unsigned int kmem_bufctl_t;
#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
/*
* struct slab_rcu
*
* slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
* arrange for kmem_freepages to be called via RCU. This is useful if
* we need to approach a kernel structure obliquely, from its address
* obtained without the usual locking. We can lock the structure to
* stabilize it and check it's still at the given address, only if we
* can be sure that the memory has not been meanwhile reused for some
* other kind of object (which our subsystem's lock might corrupt).
*
* rcu_read_lock before reading the address, then rcu_read_unlock after
* taking the spinlock within the structure expected at that address.
*/
struct slab_rcu {
struct rcu_head head;
struct kmem_cache *cachep;
void *addr;
};
/*
* struct slab
*
* Manages the objs in a slab. Placed either at the beginning of mem allocated
* for a slab, or allocated from an general cache.
* Slabs are chained into three list: fully used, partial, fully free slabs.
*/
struct slab {
union {
struct {
struct list_head list;
unsigned long colouroff;
void *s_mem; /* including colour offset */
unsigned int inuse; /* num of objs active in slab */
kmem_bufctl_t free;
unsigned short nodeid;
};
struct slab_rcu __slab_cover_slab_rcu;
};
};
/*
* struct array_cache
*
* Purpose:
* - LIFO ordering, to hand out cache-warm objects from _alloc
* - reduce the number of linked list operations
* - reduce spinlock operations
*
* The limit is stored in the per-cpu structure to reduce the data cache
* footprint.
*
*/
struct array_cache {
unsigned int avail;
unsigned int limit;
unsigned int batchcount;
unsigned int touched;
spinlock_t lock;
void *entry[]; /*
* Must have this definition in here for the proper
* alignment of array_cache. Also simplifies accessing
* the entries.
*
* Entries should not be directly dereferenced as
* entries belonging to slabs marked pfmemalloc will
* have the lower bits set SLAB_OBJ_PFMEMALLOC
*/
};
#define SLAB_OBJ_PFMEMALLOC 1
static inline bool is_obj_pfmemalloc(void *objp)
{
return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
}
static inline void set_obj_pfmemalloc(void **objp)
{
*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
return;
}
static inline void clear_obj_pfmemalloc(void **objp)
{
*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
}
/*
* bootstrap: The caches do not work without cpuarrays anymore, but the
* cpuarrays are allocated from the generic caches...
*/
#define BOOT_CPUCACHE_ENTRIES 1
struct arraycache_init {
struct array_cache cache;
void *entries[BOOT_CPUCACHE_ENTRIES];
};
/*
* The slab lists for all objects.
*/
struct kmem_list3 {
struct list_head slabs_partial; /* partial list first, better asm code */
struct list_head slabs_full;
struct list_head slabs_free;
unsigned long free_objects;
unsigned int free_limit;
unsigned int colour_next; /* Per-node cache coloring */
spinlock_t list_lock;
struct array_cache *shared; /* shared per node */
struct array_cache **alien; /* on other nodes */
unsigned long next_reap; /* updated without locking */
int free_touched; /* updated without locking */
};
/*
* Need this for bootstrapping a per node allocator.
*/
#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
#define CACHE_CACHE 0
#define SIZE_AC MAX_NUMNODES
#define SIZE_L3 (2 * MAX_NUMNODES)
static int drain_freelist(struct kmem_cache *cache,
struct kmem_list3 *l3, int tofree);
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
int node);
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
static void cache_reap(struct work_struct *unused);
/*
* This function must be completely optimized away if a constant is passed to
* it. Mostly the same as what is in linux/slab.h except it returns an index.
*/
static __always_inline int index_of(const size_t size)
{
extern void __bad_size(void);
if (__builtin_constant_p(size)) {
int i = 0;
#define CACHE(x) \
if (size <=x) \
return i; \
else \
i++;
#include <linux/kmalloc_sizes.h>
#undef CACHE
__bad_size();
} else
__bad_size();
return 0;
}
static int slab_early_init = 1;
#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
static void kmem_list3_init(struct kmem_list3 *parent)
{
INIT_LIST_HEAD(&parent->slabs_full);
INIT_LIST_HEAD(&parent->slabs_partial);
INIT_LIST_HEAD(&parent->slabs_free);
parent->shared = NULL;
parent->alien = NULL;
parent->colour_next = 0;
spin_lock_init(&parent->list_lock);
parent->free_objects = 0;
parent->free_touched = 0;
}
#define MAKE_LIST(cachep, listp, slab, nodeid) \
do { \
INIT_LIST_HEAD(listp); \
list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
} while (0)
#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
do { \
MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
} while (0)
#define CFLGS_OFF_SLAB (0x80000000UL)
#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
#define BATCHREFILL_LIMIT 16
/*
* Optimization question: fewer reaps means less probability for unnessary
* cpucache drain/refill cycles.
*
* OTOH the cpuarrays can contain lots of objects,
* which could lock up otherwise freeable slabs.
*/
#define REAPTIMEOUT_CPUC (2*HZ)
#define REAPTIMEOUT_LIST3 (4*HZ)
#if STATS
#define STATS_INC_ACTIVE(x) ((x)->num_active++)
#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
#define STATS_INC_GROWN(x) ((x)->grown++)
#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
#define STATS_SET_HIGH(x) \
do { \
if ((x)->num_active > (x)->high_mark) \
(x)->high_mark = (x)->num_active; \
} while (0)
#define STATS_INC_ERR(x) ((x)->errors++)
#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
#define STATS_SET_FREEABLE(x, i) \
do { \
if ((x)->max_freeable < i) \
(x)->max_freeable = i; \
} while (0)
#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
#else
#define STATS_INC_ACTIVE(x) do { } while (0)
#define STATS_DEC_ACTIVE(x) do { } while (0)
#define STATS_INC_ALLOCED(x) do { } while (0)
#define STATS_INC_GROWN(x) do { } while (0)
#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
#define STATS_SET_HIGH(x) do { } while (0)
#define STATS_INC_ERR(x) do { } while (0)
#define STATS_INC_NODEALLOCS(x) do { } while (0)
#define STATS_INC_NODEFREES(x) do { } while (0)
#define STATS_INC_ACOVERFLOW(x) do { } while (0)
#define STATS_SET_FREEABLE(x, i) do { } while (0)
#define STATS_INC_ALLOCHIT(x) do { } while (0)
#define STATS_INC_ALLOCMISS(x) do { } while (0)
#define STATS_INC_FREEHIT(x) do { } while (0)
#define STATS_INC_FREEMISS(x) do { } while (0)
#endif
#if DEBUG
/*
* memory layout of objects:
* 0 : objp
* 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
* the end of an object is aligned with the end of the real
* allocation. Catches writes behind the end of the allocation.
* cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
* redzone word.
* cachep->obj_offset: The real object.
* cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
* cachep->size - 1* BYTES_PER_WORD: last caller address
* [BYTES_PER_WORD long]
*/
static int obj_offset(struct kmem_cache *cachep)
{
return cachep->obj_offset;
}
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
{
BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
return (unsigned long long*) (objp + obj_offset(cachep) -
sizeof(unsigned long long));
}
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
{
BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
if (cachep->flags & SLAB_STORE_USER)
return (unsigned long long *)(objp + cachep->size -
sizeof(unsigned long long) -
REDZONE_ALIGN);
return (unsigned long long *) (objp + cachep->size -
sizeof(unsigned long long));
}
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
{
BUG_ON(!(cachep->flags & SLAB_STORE_USER));
return (void **)(objp + cachep->size - BYTES_PER_WORD);
}
#else
#define obj_offset(x) 0
#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
#endif
#ifdef CONFIG_TRACING
size_t slab_buffer_size(struct kmem_cache *cachep)
{
return cachep->size;
}
EXPORT_SYMBOL(slab_buffer_size);
#endif
/*
* Do not go above this order unless 0 objects fit into the slab or
* overridden on the command line.
*/
#define SLAB_MAX_ORDER_HI 1
#define SLAB_MAX_ORDER_LO 0
static int slab_max_order = SLAB_MAX_ORDER_LO;
static bool slab_max_order_set __initdata;
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
struct page *page = virt_to_head_page(obj);
return page->slab_cache;
}
static inline struct slab *virt_to_slab(const void *obj)
{
struct page *page = virt_to_head_page(obj);
VM_BUG_ON(!PageSlab(page));
return page->slab_page;
}
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
unsigned int idx)
{
return slab->s_mem + cache->size * idx;
}
/*
* We want to avoid an expensive divide : (offset / cache->size)
* Using the fact that size is a constant for a particular cache,
* we can replace (offset / cache->size) by
* reciprocal_divide(offset, cache->reciprocal_buffer_size)
*/
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
const struct slab *slab, void *obj)
{
u32 offset = (obj - slab->s_mem);
return reciprocal_divide(offset, cache->reciprocal_buffer_size);
}
/*
* These are the default caches for kmalloc. Custom caches can have other sizes.
*/
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);
/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
char *name;
char *name_dma;
};
static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
{NULL,}
#undef CACHE
};
static struct arraycache_init initarray_cache __initdata =
{ {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
static struct arraycache_init initarray_generic =
{ {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
/* internal cache of cache description objs */
static struct kmem_list3 *kmem_cache_nodelists[MAX_NUMNODES];
static struct kmem_cache kmem_cache_boot = {
.nodelists = kmem_cache_nodelists,
.batchcount = 1,
.limit = BOOT_CPUCACHE_ENTRIES,
.shared = 1,
.size = sizeof(struct kmem_cache),
.name = "kmem_cache",
};
#define BAD_ALIEN_MAGIC 0x01020304ul
#ifdef CONFIG_LOCKDEP
/*
* Slab sometimes uses the kmalloc slabs to store the slab headers
* for other slabs "off slab".
* The locking for this is tricky in that it nests within the locks
* of all other slabs in a few places; to deal with this special
* locking we put on-slab caches into a separate lock-class.
*
* We set lock class for alien array caches which are up during init.
* The lock annotation will be lost if all cpus of a node goes down and
* then comes back up during hotplug
*/
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;
static struct lock_class_key debugobj_l3_key;
static struct lock_class_key debugobj_alc_key;
static void slab_set_lock_classes(struct kmem_cache *cachep,
struct lock_class_key *l3_key, struct lock_class_key *alc_key,
int q)
{
struct array_cache **alc;
struct kmem_list3 *l3;
int r;
l3 = cachep->nodelists[q];
if (!l3)
return;
lockdep_set_class(&l3->list_lock, l3_key);
alc = l3->alien;
/*
* FIXME: This check for BAD_ALIEN_MAGIC
* should go away when common slab code is taught to
* work even without alien caches.
* Currently, non NUMA code returns BAD_ALIEN_MAGIC
* for alloc_alien_cache,
*/
if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
return;
for_each_node(r) {
if (alc[r])
lockdep_set_class(&alc[r]->lock, alc_key);
}
}
static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
}
static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
int node;
for_each_online_node(node)
slab_set_debugobj_lock_classes_node(cachep, node);
}
static void init_node_lock_keys(int q)
{
struct cache_sizes *s = malloc_sizes;
if (slab_state < UP)
return;
for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
struct kmem_list3 *l3;
l3 = s->cs_cachep->nodelists[q];
if (!l3 || OFF_SLAB(s->cs_cachep))
continue;
slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
&on_slab_alc_key, q);
}
}
static inline void init_lock_keys(void)
{
int node;
for_each_node(node)
init_node_lock_keys(node);
}
#else
static void init_node_lock_keys(int q)
{
}
static inline void init_lock_keys(void)
{
}
static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
}
static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
}
#endif
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
{
return cachep->array[smp_processor_id()];
}
static inline struct kmem_cache *__find_general_cachep(size_t size,
gfp_t gfpflags)
{
struct cache_sizes *csizep = malloc_sizes;
#if DEBUG
/* This happens if someone tries to call
* kmem_cache_create(), or __kmalloc(), before
* the generic caches are initialized.
*/
BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
#endif
if (!size)
return ZERO_SIZE_PTR;
while (size > csizep->cs_size)
csizep++;
/*
* Really subtle: The last entry with cs->cs_size==ULONG_MAX
* has cs_{dma,}cachep==NULL. Thus no special case
* for large kmalloc calls required.
*/
#ifdef CONFIG_ZONE_DMA
if (unlikely(gfpflags & GFP_DMA))
return csizep->cs_dmacachep;
#endif
return csizep->cs_cachep;
}
static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
{
return __find_general_cachep(size, gfpflags);
}
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
{
return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
/*
* Calculate the number of objects and left-over bytes for a given buffer size.
*/
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
size_t align, int flags, size_t *left_over,
unsigned int *num)
{
int nr_objs;
size_t mgmt_size;
size_t slab_size = PAGE_SIZE << gfporder;
/*
* The slab management structure can be either off the slab or
* on it. For the latter case, the memory allocated for a
* slab is used for:
*
* - The struct slab
* - One kmem_bufctl_t for each object
* - Padding to respect alignment of @align
* - @buffer_size bytes for each object
*
* If the slab management structure is off the slab, then the
* alignment will already be calculated into the size. Because
* the slabs are all pages aligned, the objects will be at the
* correct alignment when allocated.
*/
if (flags & CFLGS_OFF_SLAB) {
mgmt_size = 0;
nr_objs = slab_size / buffer_size;
if (nr_objs > SLAB_LIMIT)
nr_objs = SLAB_LIMIT;
} else {
/*
* Ignore padding for the initial guess. The padding
* is at most @align-1 bytes, and @buffer_size is at
* least @align. In the worst case, this result will
* be one greater than the number of objects that fit
* into the memory allocation when taking the padding
* into account.
*/
nr_objs = (slab_size - sizeof(struct slab)) /
(buffer_size + sizeof(kmem_bufctl_t));
/*
* This calculated number will be either the right
* amount, or one greater than what we want.
*/
if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
> slab_size)
nr_objs--;
if (nr_objs > SLAB_LIMIT)
nr_objs = SLAB_LIMIT;
mgmt_size = slab_mgmt_size(nr_objs, align);
}
*num = nr_objs;
*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
}
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
static void __slab_error(const char *function, struct kmem_cache *cachep,
char *msg)
{
printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
function, cachep->name, msg);
dump_stack();
}
/*
* By default on NUMA we use alien caches to stage the freeing of
* objects allocated from other nodes. This causes massive memory
* inefficiencies when using fake NUMA setup to split memory into a
* large number of small nodes, so it can be disabled on the command
* line
*/
static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
use_alien_caches = 0;
return 1;
}
__setup("noaliencache", noaliencache_setup);
static int __init slab_max_order_setup(char *str)
{
get_option(&str, &slab_max_order);
slab_max_order = slab_max_order < 0 ? 0 :
min(slab_max_order, MAX_ORDER - 1);
slab_max_order_set = true;
return 1;
}
__setup("slab_max_order=", slab_max_order_setup);
#ifdef CONFIG_NUMA
/*
* Special reaping functions for NUMA systems called from cache_reap().
* These take care of doing round robin flushing of alien caches (containing
* objects freed on different nodes from which they were allocated) and the
* flushing of remote pcps by calling drain_node_pages.
*/
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
static void init_reap_node(int cpu)
{
int node;
node = next_node(cpu_to_mem(cpu), node_online_map);
if (node == MAX_NUMNODES)
node = first_node(node_online_map);
per_cpu(slab_reap_node, cpu) = node;
}
static void next_reap_node(void)
{
int node = __this_cpu_read(slab_reap_node);
node = next_node(node, node_online_map);
if (unlikely(node >= MAX_NUMNODES))
node = first_node(node_online_map);
__this_cpu_write(slab_reap_node, node);
}
#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif
/*
* Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
* via the workqueue/eventd.
* Add the CPU number into the expiration time to minimize the possibility of
* the CPUs getting into lockstep and contending for the global cache chain
* lock.
*/
static void __cpuinit start_cpu_timer(int cpu)
{
struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
/*
* When this gets called from do_initcalls via cpucache_init(),
* init_workqueues() has already run, so keventd will be setup
* at that time.
*/
if (keventd_up() && reap_work->work.func == NULL) {
init_reap_node(cpu);
INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
schedule_delayed_work_on(cpu, reap_work,
__round_jiffies_relative(HZ, cpu));
}
}
static struct array_cache *alloc_arraycache(int node, int entries,
int batchcount, gfp_t gfp)
{
int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
struct array_cache *nc = NULL;
nc = kmalloc_node(memsize, gfp, node);
/*
* The array_cache structures contain pointers to free object.
* However, when such objects are allocated or transferred to another
* cache the pointers are not cleared and they could be counted as
* valid references during a kmemleak scan. Therefore, kmemleak must
* not scan such objects.
*/
kmemleak_no_scan(nc);
if (nc) {
nc->avail = 0;
nc->limit = entries;
nc->batchcount = batchcount;
nc->touched = 0;
spin_lock_init(&nc->lock);
}
return nc;
}
static inline bool is_slab_pfmemalloc(struct slab *slabp)
{
struct page *page = virt_to_page(slabp->s_mem);
return PageSlabPfmemalloc(page);
}
/* Clears pfmemalloc_active if no slabs have pfmalloc set */
static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
struct array_cache *ac)
{
struct kmem_list3 *l3 = cachep->nodelists[numa_mem_id()];
struct slab *slabp;
unsigned long flags;
if (!pfmemalloc_active)
return;
spin_lock_irqsave(&l3->list_lock, flags);
list_for_each_entry(slabp, &l3->slabs_full, list)
if (is_slab_pfmemalloc(slabp))
goto out;
list_for_each_entry(slabp, &l3->slabs_partial, list)
if (is_slab_pfmemalloc(slabp))
goto out;
list_for_each_entry(slabp, &l3->slabs_free, list)
if (is_slab_pfmemalloc(slabp))
goto out;
pfmemalloc_active = false;
out:
spin_unlock_irqrestore(&l3->list_lock, flags);
}
static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
gfp_t flags, bool force_refill)
{
int i;
void *objp = ac->entry[--ac->avail];
/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
if (unlikely(is_obj_pfmemalloc(objp))) {
struct kmem_list3 *l3;
if (gfp_pfmemalloc_allowed(flags)) {
clear_obj_pfmemalloc(&objp);
return objp;
}
/* The caller cannot use PFMEMALLOC objects, find another one */
for (i = 1; i < ac->avail; i++) {
/* If a !PFMEMALLOC object is found, swap them */
if (!is_obj_pfmemalloc(ac->entry[i])) {
objp = ac->entry[i];
ac->entry[i] = ac->entry[ac->avail];
ac->entry[ac->avail] = objp;
return objp;
}
}
/*
* If there are empty slabs on the slabs_free list and we are
* being forced to refill the cache, mark this one !pfmemalloc.
*/
l3 = cachep->nodelists[numa_mem_id()];
if (!list_empty(&l3->slabs_free) && force_refill) {
struct slab *slabp = virt_to_slab(objp);
ClearPageSlabPfmemalloc(virt_to_page(slabp->s_mem));
clear_obj_pfmemalloc(&objp);
recheck_pfmemalloc_active(cachep, ac);
return objp;
}
/* No !PFMEMALLOC objects available */
ac->avail++;
objp = NULL;
}
return objp;
}
static inline void *ac_get_obj(struct kmem_cache *cachep,
struct array_cache *ac, gfp_t flags, bool force_refill)
{
void *objp;
if (unlikely(sk_memalloc_socks()))
objp = __ac_get_obj(cachep, ac, flags, force_refill);
else
objp = ac->entry[--ac->avail];
return objp;
}
static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
void *objp)
{
if (unlikely(pfmemalloc_active)) {
/* Some pfmemalloc slabs exist, check if this is one */
struct page *page = virt_to_page(objp);
if (PageSlabPfmemalloc(page))
set_obj_pfmemalloc(&objp);
}
return objp;
}
static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
void *objp)
{
if (unlikely(sk_memalloc_socks()))
objp = __ac_put_obj(cachep, ac, objp);
ac->entry[ac->avail++] = objp;
}
/*
* Transfer objects in one arraycache to another.
* Locking must be handled by the caller.
*
* Return the number of entries transferred.
*/
static int transfer_objects(struct array_cache *to,
struct array_cache *from, unsigned int max)
{
/* Figure out how many entries to transfer */
int nr = min3(from->avail, max, to->limit - to->avail);
if (!nr)
return 0;
memcpy(to->entry + to->avail, from->entry + from->avail -nr,
sizeof(void *) *nr);
from->avail -= nr;
to->avail += nr;
return nr;
}
#ifndef CONFIG_NUMA
#define drain_alien_cache(cachep, alien) do { } while (0)
#define reap_alien(cachep, l3) do { } while (0)
static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
{
return (struct array_cache **)BAD_ALIEN_MAGIC;
}
static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
return 0;
}
static inline void *alternate_node_alloc(struct kmem_cache *cachep,
gfp_t flags)
{
return NULL;
}
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
gfp_t flags, int nodeid)
{
return NULL;
}
#else /* CONFIG_NUMA */
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
{
struct array_cache **ac_ptr;
int memsize = sizeof(void *) * nr_node_ids;
int i;
if (limit > 1)
limit = 12;
ac_ptr = kzalloc_node(memsize, gfp, node);
if (ac_ptr) {
for_each_node(i) {
if (i == node || !node_online(i))
continue;
ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
if (!ac_ptr[i]) {
for (i--; i >= 0; i--)
kfree(ac_ptr[i]);
kfree(ac_ptr);
return NULL;
}
}
}
return ac_ptr;
}
static void free_alien_cache(struct array_cache **ac_ptr)
{
int i;
if (!ac_ptr)
return;
for_each_node(i)
kfree(ac_ptr[i]);
kfree(ac_ptr);
}
static void __drain_alien_cache(struct kmem_cache *cachep,
struct array_cache *ac, int node)
{
struct kmem_list3 *rl3 = cachep->nodelists[node];
if (ac->avail) {
spin_lock(&rl3->list_lock);
/*
* Stuff objects into the remote nodes shared array first.
* That way we could avoid the overhead of putting the objects
* into the free lists and getting them back later.
*/
if (rl3->shared)
transfer_objects(rl3->shared, ac, ac->limit);
free_block(cachep, ac->entry, ac->avail, node);
ac->avail = 0;
spin_unlock(&rl3->list_lock);
}
}
/*
* Called from cache_reap() to regularly drain alien caches round robin.
*/
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
int node = __this_cpu_read(slab_reap_node);
if (l3->alien) {
struct array_cache *ac = l3->alien[node];
if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
__drain_alien_cache(cachep, ac, node);
spin_unlock_irq(&ac->lock);
}
}
}
static void drain_alien_cache(struct kmem_cache *cachep,
struct array_cache **alien)
{
int i = 0;
struct array_cache *ac;
unsigned long flags;
for_each_online_node(i) {
ac = alien[i];
if (ac) {
spin_lock_irqsave(&ac->lock, flags);
__drain_alien_cache(cachep, ac, i);
spin_unlock_irqrestore(&ac->lock, flags);
}
}
}
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
struct slab *slabp = virt_to_slab(objp);
int nodeid = slabp->nodeid;
struct kmem_list3 *l3;
struct array_cache *alien = NULL;
int node;
node = numa_mem_id();
/*
* Make sure we are not freeing a object from another node to the array
* cache on this cpu.
*/
if (likely(slabp->nodeid == node))
return 0;
l3 = cachep->nodelists[node];
STATS_INC_NODEFREES(cachep);
if (l3->alien && l3->alien[nodeid]) {
alien = l3->alien[nodeid];
spin_lock(&alien->lock);
if (unlikely(alien->avail == alien->limit)) {
STATS_INC_ACOVERFLOW(cachep);
__drain_alien_cache(cachep, alien, nodeid);
}
ac_put_obj(cachep, alien, objp);
spin_unlock(&alien->lock);
} else {
spin_lock(&(cachep->nodelists[nodeid])->list_lock);
free_block(cachep, &objp, 1, nodeid);
spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
}
return 1;
}
#endif
/*
* Allocates and initializes nodelists for a node on each slab cache, used for
* either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
* will be allocated off-node since memory is not yet online for the new node.
* When hotplugging memory or a cpu, existing nodelists are not replaced if
* already in use.
*
* Must hold slab_mutex.
*/
static int init_cache_nodelists_node(int node)
{
struct kmem_cache *cachep;
struct kmem_list3 *l3;
const int memsize = sizeof(struct kmem_list3);
list_for_each_entry(cachep, &slab_caches, list) {
/*
* Set up the size64 kmemlist for cpu before we can
* begin anything. Make sure some other cpu on this
* node has not already allocated this
*/
if (!cachep->nodelists[node]) {
l3 = kmalloc_node(memsize, GFP_KERNEL, node);
if (!l3)
return -ENOMEM;
kmem_list3_init(l3);
l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
((unsigned long)cachep) % REAPTIMEOUT_LIST3;
/*
* The l3s don't come and go as CPUs come and
* go. slab_mutex is sufficient
* protection here.
*/
cachep->nodelists[node] = l3;
}
spin_lock_irq(&cachep->nodelists[node]->list_lock);
cachep->nodelists[node]->free_limit =
(1 + nr_cpus_node(node)) *
cachep->batchcount + cachep->num;
spin_unlock_irq(&cachep->nodelists[node]->list_lock);
}
return 0;
}
static void __cpuinit cpuup_canceled(long cpu)
{
struct kmem_cache *cachep;
struct kmem_list3 *l3 = NULL;
int node = cpu_to_mem(cpu);
const struct cpumask *mask = cpumask_of_node(node);
list_for_each_entry(cachep, &slab_caches, list) {
struct array_cache *nc;
struct array_cache *shared;
struct array_cache **alien;
/* cpu is dead; no one can alloc from it. */
nc = cachep->array[cpu];
cachep->array[cpu] = NULL;
l3 = cachep->nodelists[node];
if (!l3)
goto free_array_cache;
spin_lock_irq(&l3->list_lock);
/* Free limit for this kmem_list3 */
l3->free_limit -= cachep->batchcount;
if (nc)
free_block(cachep, nc->entry, nc->avail, node);
if (!cpumask_empty(mask)) {
spin_unlock_irq(&l3->list_lock);
goto free_array_cache;
}
shared = l3->shared;
if (shared) {
free_block(cachep, shared->entry,
shared->avail, node);
l3->shared = NULL;
}
alien = l3->alien;
l3->alien = NULL;
spin_unlock_irq(&l3->list_lock);
kfree(shared);
if (alien) {
drain_alien_cache(cachep, alien);
free_alien_cache(alien);
}
free_array_cache:
kfree(nc);
}
/*
* In the previous loop, all the objects were freed to
* the respective cache's slabs, now we can go ahead and
* shrink each nodelist to its limit.
*/
list_for_each_entry(cachep, &slab_caches, list) {
l3 = cachep->nodelists[node];
if (!l3)
continue;
drain_freelist(cachep, l3, l3->free_objects);
}
}
static int __cpuinit cpuup_prepare(long cpu)
{
struct kmem_cache *cachep;
struct kmem_list3 *l3 = NULL;
int node = cpu_to_mem(cpu);
int err;
/*
* We need to do this right in the beginning since
* alloc_arraycache's are going to use this list.
* kmalloc_node allows us to add the slab to the right
* kmem_list3 and not this cpu's kmem_list3
*/
err = init_cache_nodelists_node(node);
if (err < 0)
goto bad;
/*
* Now we can go ahead with allocating the shared arrays and
* array caches
*/
list_for_each_entry(cachep, &slab_caches, list) {
struct array_cache *nc;
struct array_cache *shared = NULL;
struct array_cache **alien = NULL;
nc = alloc_arraycache(node, cachep->limit,
cachep->batchcount, GFP_KERNEL);
if (!nc)
goto bad;
if (cachep->shared) {
shared = alloc_arraycache(node,
cachep->shared * cachep->batchcount,
0xbaadf00d, GFP_KERNEL);
if (!shared) {
kfree(nc);
goto bad;
}
}
if (use_alien_caches) {
alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
if (!alien) {
kfree(shared);
kfree(nc);
goto bad;
}
}
cachep->array[cpu] = nc;
l3 = cachep->nodelists[node];
BUG_ON(!l3);
spin_lock_irq(&l3->list_lock);
if (!l3->shared) {
/*
* We are serialised from CPU_DEAD or
* CPU_UP_CANCELLED by the cpucontrol lock
*/
l3->shared = shared;
shared = NULL;
}
#ifdef CONFIG_NUMA
if (!l3->alien) {
l3->alien = alien;
alien = NULL;
}
#endif
spin_unlock_irq(&l3->list_lock);
kfree(shared);
free_alien_cache(alien);
if (cachep->flags & SLAB_DEBUG_OBJECTS)
slab_set_debugobj_lock_classes_node(cachep, node);
}
init_node_lock_keys(node);
return 0;
bad:
cpuup_canceled(cpu);
return -ENOMEM;
}
static int __cpuinit cpuup_callback(struct notifier_block *nfb,
unsigned long action, void *hcpu)
{
long cpu = (long)hcpu;
int err = 0;
switch (action) {
case CPU_UP_PREPARE:
case CPU_UP_PREPARE_FROZEN:
mutex_lock(&slab_mutex);
err = cpuup_prepare(cpu);
mutex_unlock(&slab_mutex);
break;
case CPU_ONLINE:
case CPU_ONLINE_FROZEN:
start_cpu_timer(cpu);
break;
#ifdef CONFIG_HOTPLUG_CPU
case CPU_DOWN_PREPARE:
case CPU_DOWN_PREPARE_FROZEN:
/*
* Shutdown cache reaper. Note that the slab_mutex is
* held so that if cache_reap() is invoked it cannot do
* anything expensive but will only modify reap_work
* and reschedule the timer.
*/
cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
/* Now the cache_reaper is guaranteed to be not running. */
per_cpu(slab_reap_work, cpu).work.func = NULL;
break;
case CPU_DOWN_FAILED:
case CPU_DOWN_FAILED_FROZEN:
start_cpu_timer(cpu);
break;
case CPU_DEAD:
case CPU_DEAD_FROZEN:
/*
* Even if all the cpus of a node are down, we don't free the
* kmem_list3 of any cache. This to avoid a race between
* cpu_down, and a kmalloc allocation from another cpu for
* memory from the node of the cpu going down. The list3
* structure is usually allocated from kmem_cache_create() and
* gets destroyed at kmem_cache_destroy().
*/
/* fall through */
#endif
case CPU_UP_CANCELED:
case CPU_UP_CANCELED_FROZEN:
mutex_lock(&slab_mutex);
cpuup_canceled(cpu);
mutex_unlock(&slab_mutex);
break;
}
return notifier_from_errno(err);
}
static struct notifier_block __cpuinitdata cpucache_notifier = {
&cpuup_callback, NULL, 0
};
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
/*
* Drains freelist for a node on each slab cache, used for memory hot-remove.
* Returns -EBUSY if all objects cannot be drained so that the node is not
* removed.
*
* Must hold slab_mutex.
*/
static int __meminit drain_cache_nodelists_node(int node)
{
struct kmem_cache *cachep;
int ret = 0;
list_for_each_entry(cachep, &slab_caches, list) {
struct kmem_list3 *l3;
l3 = cachep->nodelists[node];
if (!l3)
continue;
drain_freelist(cachep, l3, l3->free_objects);
if (!list_empty(&l3->slabs_full) ||
!list_empty(&l3->slabs_partial)) {
ret = -EBUSY;
break;
}
}
return ret;
}
static int __meminit slab_memory_callback(struct notifier_block *self,
unsigned long action, void *arg)
{
struct memory_notify *mnb = arg;
int ret = 0;
int nid;
nid = mnb->status_change_nid;
if (nid < 0)
goto out;
switch (action) {
case MEM_GOING_ONLINE:
mutex_lock(&slab_mutex);
ret = init_cache_nodelists_node(nid);
mutex_unlock(&slab_mutex);
break;
case MEM_GOING_OFFLINE:
mutex_lock(&slab_mutex);
ret = drain_cache_nodelists_node(nid);
mutex_unlock(&slab_mutex);
break;
case MEM_ONLINE:
case MEM_OFFLINE:
case MEM_CANCEL_ONLINE:
case MEM_CANCEL_OFFLINE:
break;
}
out:
return notifier_from_errno(ret);
}
#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
/*
* swap the static kmem_list3 with kmalloced memory
*/
static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
int nodeid)
{
struct kmem_list3 *ptr;
ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
BUG_ON(!ptr);
memcpy(ptr, list, sizeof(struct kmem_list3));
/*
* Do not assume that spinlocks can be initialized via memcpy:
*/
spin_lock_init(&ptr->list_lock);
MAKE_ALL_LISTS(cachep, ptr, nodeid);
cachep->nodelists[nodeid] = ptr;
}
/*
* For setting up all the kmem_list3s for cache whose buffer_size is same as
* size of kmem_list3.
*/
static void __init set_up_list3s(struct kmem_cache *cachep, int index)
{
int node;
for_each_online_node(node) {
cachep->nodelists[node] = &initkmem_list3[index + node];
cachep->nodelists[node]->next_reap = jiffies +
REAPTIMEOUT_LIST3 +
((unsigned long)cachep) % REAPTIMEOUT_LIST3;
}
}
/*
* Initialisation. Called after the page allocator have been initialised and
* before smp_init().
*/
void __init kmem_cache_init(void)
{
size_t left_over;
struct cache_sizes *sizes;
struct cache_names *names;
int i;
int order;
int node;
kmem_cache = &kmem_cache_boot;
if (num_possible_nodes() == 1)
use_alien_caches = 0;
for (i = 0; i < NUM_INIT_LISTS; i++) {
kmem_list3_init(&initkmem_list3[i]);
if (i < MAX_NUMNODES)
kmem_cache->nodelists[i] = NULL;
}
set_up_list3s(kmem_cache, CACHE_CACHE);
/*
* Fragmentation resistance on low memory - only use bigger
* page orders on machines with more than 32MB of memory if
* not overridden on the command line.
*/
if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
slab_max_order = SLAB_MAX_ORDER_HI;
/* Bootstrap is tricky, because several objects are allocated
* from caches that do not exist yet:
* 1) initialize the kmem_cache cache: it contains the struct
* kmem_cache structures of all caches, except kmem_cache itself:
* kmem_cache is statically allocated.
* Initially an __init data area is used for the head array and the
* kmem_list3 structures, it's replaced with a kmalloc allocated
* array at the end of the bootstrap.
* 2) Create the first kmalloc cache.
* The struct kmem_cache for the new cache is allocated normally.
* An __init data area is used for the head array.
* 3) Create the remaining kmalloc caches, with minimally sized
* head arrays.
* 4) Replace the __init data head arrays for kmem_cache and the first
* kmalloc cache with kmalloc allocated arrays.
* 5) Replace the __init data for kmem_list3 for kmem_cache and
* the other cache's with kmalloc allocated memory.
* 6) Resize the head arrays of the kmalloc caches to their final sizes.
*/
node = numa_mem_id();
/* 1) create the kmem_cache */
INIT_LIST_HEAD(&slab_caches);
list_add(&kmem_cache->list, &slab_caches);
kmem_cache->colour_off = cache_line_size();
kmem_cache->array[smp_processor_id()] = &initarray_cache.cache;
kmem_cache->nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
/*
* struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
*/
kmem_cache->size = offsetof(struct kmem_cache, array[nr_cpu_ids]) +
nr_node_ids * sizeof(struct kmem_list3 *);
kmem_cache->object_size = kmem_cache->size;
kmem_cache->size = ALIGN(kmem_cache->object_size,
cache_line_size());
kmem_cache->reciprocal_buffer_size =
reciprocal_value(kmem_cache->size);
for (order = 0; order < MAX_ORDER; order++) {
cache_estimate(order, kmem_cache->size,
cache_line_size(), 0, &left_over, &kmem_cache->num);
if (kmem_cache->num)
break;
}
BUG_ON(!kmem_cache->num);
kmem_cache->gfporder = order;
kmem_cache->colour = left_over / kmem_cache->colour_off;
kmem_cache->slab_size = ALIGN(kmem_cache->num * sizeof(kmem_bufctl_t) +
sizeof(struct slab), cache_line_size());
/* 2+3) create the kmalloc caches */
sizes = malloc_sizes;
names = cache_names;
/*
* Initialize the caches that provide memory for the array cache and the
* kmem_list3 structures first. Without this, further allocations will
* bug.
*/
sizes[INDEX_AC].cs_cachep = __kmem_cache_create(names[INDEX_AC].name,
sizes[INDEX_AC].cs_size,
ARCH_KMALLOC_MINALIGN,
ARCH_KMALLOC_FLAGS|SLAB_PANIC,
NULL);
list_add(&sizes[INDEX_AC].cs_cachep->list, &slab_caches);
if (INDEX_AC != INDEX_L3) {
sizes[INDEX_L3].cs_cachep =
__kmem_cache_create(names[INDEX_L3].name,
sizes[INDEX_L3].cs_size,
ARCH_KMALLOC_MINALIGN,
ARCH_KMALLOC_FLAGS|SLAB_PANIC,
NULL);
list_add(&sizes[INDEX_L3].cs_cachep->list, &slab_caches);
}
slab_early_init = 0;
while (sizes->cs_size != ULONG_MAX) {
/*
* For performance, all the general caches are L1 aligned.
* This should be particularly beneficial on SMP boxes, as it
* eliminates "false sharing".
* Note for systems short on memory removing the alignment will
* allow tighter packing of the smaller caches.
*/
if (!sizes->cs_cachep) {
sizes->cs_cachep = __kmem_cache_create(names->name,
sizes->cs_size,
ARCH_KMALLOC_MINALIGN,
ARCH_KMALLOC_FLAGS|SLAB_PANIC,
NULL);
list_add(&sizes->cs_cachep->list, &slab_caches);
}
#ifdef CONFIG_ZONE_DMA
sizes->cs_dmacachep = __kmem_cache_create(
names->name_dma,
sizes->cs_size,
ARCH_KMALLOC_MINALIGN,
ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
SLAB_PANIC,
NULL);
list_add(&sizes->cs_dmacachep->list, &slab_caches);
#endif
sizes++;
names++;
}
/* 4) Replace the bootstrap head arrays */
{
struct array_cache *ptr;
ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
BUG_ON(cpu_cache_get(kmem_cache) != &initarray_cache.cache);
memcpy(ptr, cpu_cache_get(kmem_cache),
sizeof(struct arraycache_init));
/*
* Do not assume that spinlocks can be initialized via memcpy:
*/
spin_lock_init(&ptr->lock);
kmem_cache->array[smp_processor_id()] = ptr;
ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
!= &initarray_generic.cache);
memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
sizeof(struct arraycache_init));
/*
* Do not assume that spinlocks can be initialized via memcpy:
*/
spin_lock_init(&ptr->lock);
malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
ptr;
}
/* 5) Replace the bootstrap kmem_list3's */
{
int nid;
for_each_online_node(nid) {
init_list(kmem_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
init_list(malloc_sizes[INDEX_AC].cs_cachep,
&initkmem_list3[SIZE_AC + nid], nid);
if (INDEX_AC != INDEX_L3) {
init_list(malloc_sizes[INDEX_L3].cs_cachep,
&initkmem_list3[SIZE_L3 + nid], nid);
}
}
}
slab_state = UP;
}
void __init kmem_cache_init_late(void)
{
struct kmem_cache *cachep;
slab_state = UP;
/* Annotate slab for lockdep -- annotate the malloc caches */
init_lock_keys();
/* 6) resize the head arrays to their final sizes */
mutex_lock(&slab_mutex);
list_for_each_entry(cachep, &slab_caches, list)
if (enable_cpucache(cachep, GFP_NOWAIT))
BUG();
mutex_unlock(&slab_mutex);
/* Done! */
slab_state = FULL;
/*
* Register a cpu startup notifier callback that initializes
* cpu_cache_get for all new cpus
*/
register_cpu_notifier(&cpucache_notifier);
#ifdef CONFIG_NUMA
/*
* Register a memory hotplug callback that initializes and frees
* nodelists.
*/
hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif
/*
* The reap timers are started later, with a module init call: That part
* of the kernel is not yet operational.
*/
}
static int __init cpucache_init(void)
{
int cpu;
/*
* Register the timers that return unneeded pages to the page allocator
*/
for_each_online_cpu(cpu)
start_cpu_timer(cpu);
/* Done! */
slab_state = FULL;
return 0;
}
__initcall(cpucache_init);
static noinline void
slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
{
struct kmem_list3 *l3;
struct slab *slabp;
unsigned long flags;
int node;
printk(KERN_WARNING
"SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
nodeid, gfpflags);
printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
cachep->name, cachep->size, cachep->gfporder);
for_each_online_node(node) {
unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
unsigned long active_slabs = 0, num_slabs = 0;
l3 = cachep->nodelists[node];
if (!l3)
continue;
spin_lock_irqsave(&l3->list_lock, flags);
list_for_each_entry(slabp, &l3->slabs_full, list) {
active_objs += cachep->num;
active_slabs++;
}
list_for_each_entry(slabp, &l3->slabs_partial, list) {
active_objs += slabp->inuse;
active_slabs++;
}
list_for_each_entry(slabp, &l3->slabs_free, list)
num_slabs++;
free_objects += l3->free_objects;
spin_unlock_irqrestore(&l3->list_lock, flags);
num_slabs += active_slabs;
num_objs = num_slabs * cachep->num;
printk(KERN_WARNING
" node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
node, active_slabs, num_slabs, active_objs, num_objs,
free_objects);
}
}
/*
* Interface to system's page allocator. No need to hold the cache-lock.
*
* If we requested dmaable memory, we will get it. Even if we
* did not request dmaable memory, we might get it, but that
* would be relatively rare and ignorable.
*/
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
struct page *page;
int nr_pages;
int i;
#ifndef CONFIG_MMU
/*
* Nommu uses slab's for process anonymous memory allocations, and thus
* requires __GFP_COMP to properly refcount higher order allocations
*/
flags |= __GFP_COMP;
#endif
flags |= cachep->allocflags;
if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
flags |= __GFP_RECLAIMABLE;
page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
if (!page) {
if (!(flags & __GFP_NOWARN) && printk_ratelimit())
slab_out_of_memory(cachep, flags, nodeid);
return NULL;
}
/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
if (unlikely(page->pfmemalloc))
pfmemalloc_active = true;
nr_pages = (1 << cachep->gfporder);
if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
add_zone_page_state(page_zone(page),
NR_SLAB_RECLAIMABLE, nr_pages);
else
add_zone_page_state(page_zone(page),
NR_SLAB_UNRECLAIMABLE, nr_pages);
for (i = 0; i < nr_pages; i++) {
__SetPageSlab(page + i);
if (page->pfmemalloc)
SetPageSlabPfmemalloc(page + i);
}
if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
if (cachep->ctor)
kmemcheck_mark_uninitialized_pages(page, nr_pages);
else
kmemcheck_mark_unallocated_pages(page, nr_pages);
}
return page_address(page);
}
/*
* Interface to system's page release.
*/
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
{
unsigned long i = (1 << cachep->gfporder);
struct page *page = virt_to_page(addr);
const unsigned long nr_freed = i;
kmemcheck_free_shadow(page, cachep->gfporder);
if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
sub_zone_page_state(page_zone(page),
NR_SLAB_RECLAIMABLE, nr_freed);
else
sub_zone_page_state(page_zone(page),
NR_SLAB_UNRECLAIMABLE, nr_freed);
while (i--) {
BUG_ON(!PageSlab(page));
__ClearPageSlabPfmemalloc(page);
__ClearPageSlab(page);
page++;
}
if (current->reclaim_state)
current->reclaim_state->reclaimed_slab += nr_freed;
free_pages((unsigned long)addr, cachep->gfporder);
}
static void kmem_rcu_free(struct rcu_head *head)
{
struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
struct kmem_cache *cachep = slab_rcu->cachep;
kmem_freepages(cachep, slab_rcu->addr);
if (OFF_SLAB(cachep))
kmem_cache_free(cachep->slabp_cache, slab_rcu);
}
#if DEBUG
#ifdef CONFIG_DEBUG_PAGEALLOC
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
unsigned long caller)
{
int size = cachep->object_size;
addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
if (size < 5 * sizeof(unsigned long))
return;
*addr++ = 0x12345678;
*addr++ = caller;
*addr++ = smp_processor_id();
size -= 3 * sizeof(unsigned long);
{
unsigned long *sptr = &caller;
unsigned long svalue;
while (!kstack_end(sptr)) {
svalue = *sptr++;
if (kernel_text_address(svalue)) {
*addr++ = svalue;
size -= sizeof(unsigned long);
if (size <= sizeof(unsigned long))
break;
}
}
}
*addr++ = 0x87654321;
}
#endif
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
{
int size = cachep->object_size;
addr = &((char *)addr)[obj_offset(cachep)];
memset(addr, val, size);
*(unsigned char *)(addr + size - 1) = POISON_END;
}
static void dump_line(char *data, int offset, int limit)
{
int i;
unsigned char error = 0;
int bad_count = 0;
printk(KERN_ERR "%03x: ", offset);
for (i = 0; i < limit; i++) {
if (data[offset + i] != POISON_FREE) {
error = data[offset + i];
bad_count++;
}
}
print_hex_dump(KERN_CONT, "", 0, 16, 1,
&data[offset], limit, 1);
if (bad_count == 1) {
error ^= POISON_FREE;
if (!(error & (error - 1))) {
printk(KERN_ERR "Single bit error detected. Probably "
"bad RAM.\n");
#ifdef CONFIG_X86
printk(KERN_ERR "Run memtest86+ or a similar memory "
"test tool.\n");
#else
printk(KERN_ERR "Run a memory test tool.\n");
#endif
}
}
}
#endif
#if DEBUG
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
{
int i, size;
char *realobj;
if (cachep->flags & SLAB_RED_ZONE) {
printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
*dbg_redzone1(cachep, objp),
*dbg_redzone2(cachep, objp));
}
if (cachep->flags & SLAB_STORE_USER) {
printk(KERN_ERR "Last user: [<%p>]",
*dbg_userword(cachep, objp));
print_symbol("(%s)",
(unsigned long)*dbg_userword(cachep, objp));
printk("\n");
}
realobj = (char *)objp + obj_offset(cachep);
size = cachep->object_size;
for (i = 0; i < size && lines; i += 16, lines--) {
int limit;
limit = 16;
if (i + limit > size)
limit = size - i;
dump_line(realobj, i, limit);
}
}
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
{
char *realobj;
int size, i;
int lines = 0;
realobj = (char *)objp + obj_offset(cachep);
size = cachep->object_size;
for (i = 0; i < size; i++) {
char exp = POISON_FREE;
if (i == size - 1)
exp = POISON_END;
if (realobj[i] != exp) {
int limit;
/* Mismatch ! */
/* Print header */
if (lines == 0) {
printk(KERN_ERR
"Slab corruption (%s): %s start=%p, len=%d\n",
print_tainted(), cachep->name, realobj, size);
print_objinfo(cachep, objp, 0);
}
/* Hexdump the affected line */
i = (i / 16) * 16;
limit = 16;
if (i + limit > size)
limit = size - i;
dump_line(realobj, i, limit);
i += 16;
lines++;
/* Limit to 5 lines */
if (lines > 5)
break;
}
}
if (lines != 0) {
/* Print some data about the neighboring objects, if they
* exist:
*/
struct slab *slabp = virt_to_slab(objp);
unsigned int objnr;
objnr = obj_to_index(cachep, slabp, objp);
if (objnr) {
objp = index_to_obj(cachep, slabp, objnr - 1);
realobj = (char *)objp + obj_offset(cachep);
printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
realobj, size);
print_objinfo(cachep, objp, 2);
}
if (objnr + 1 < cachep->num) {
objp = index_to_obj(cachep, slabp, objnr + 1);
realobj = (char *)objp + obj_offset(cachep);
printk(KERN_ERR "Next obj: start=%p, len=%d\n",
realobj, size);
print_objinfo(cachep, objp, 2);
}
}
}
#endif
#if DEBUG
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
{
int i;
for (i = 0; i < cachep->num; i++) {
void *objp = index_to_obj(cachep, slabp, i);
if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
if (cachep->size % PAGE_SIZE == 0 &&
OFF_SLAB(cachep))
kernel_map_pages(virt_to_page(objp),
cachep->size / PAGE_SIZE, 1);
else
check_poison_obj(cachep, objp);
#else
check_poison_obj(cachep, objp);
#endif
}
if (cachep->flags & SLAB_RED_ZONE) {
if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
slab_error(cachep, "start of a freed object "
"was overwritten");
if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
slab_error(cachep, "end of a freed object "
"was overwritten");
}
}
}
#else
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
{
}
#endif
/**
* slab_destroy - destroy and release all objects in a slab
* @cachep: cache pointer being destroyed
* @slabp: slab pointer being destroyed
*
* Destroy all the objs in a slab, and release the mem back to the system.
* Before calling the slab must have been unlinked from the cache. The
* cache-lock is not held/needed.
*/
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
{
void *addr = slabp->s_mem - slabp->colouroff;
slab_destroy_debugcheck(cachep, slabp);
if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
struct slab_rcu *slab_rcu;
slab_rcu = (struct slab_rcu *)slabp;
slab_rcu->cachep = cachep;
slab_rcu->addr = addr;
call_rcu(&slab_rcu->head, kmem_rcu_free);
} else {
kmem_freepages(cachep, addr);
if (OFF_SLAB(cachep))
kmem_cache_free(cachep->slabp_cache, slabp);
}
}
/**
* calculate_slab_order - calculate size (page order) of slabs
* @cachep: pointer to the cache that is being created
* @size: size of objects to be created in this cache.
* @align: required alignment for the objects.
* @flags: slab allocation flags
*
* Also calculates the number of objects per slab.
*
* This could be made much more intelligent. For now, try to avoid using
* high order pages for slabs. When the gfp() functions are more friendly
* towards high-order requests, this should be changed.
*/
static size_t calculate_slab_order(struct kmem_cache *cachep,
size_t size, size_t align, unsigned long flags)
{
unsigned long offslab_limit;
size_t left_over = 0;
int gfporder;
for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
unsigned int num;
size_t remainder;
cache_estimate(gfporder, size, align, flags, &remainder, &num);
if (!num)
continue;
if (flags & CFLGS_OFF_SLAB) {
/*
* Max number of objs-per-slab for caches which
* use off-slab slabs. Needed to avoid a possible
* looping condition in cache_grow().
*/
offslab_limit = size - sizeof(struct slab);
offslab_limit /= sizeof(kmem_bufctl_t);
if (num > offslab_limit)
break;
}
/* Found something acceptable - save it away */
cachep->num = num;
cachep->gfporder = gfporder;
left_over = remainder;
/*
* A VFS-reclaimable slab tends to have most allocations
* as GFP_NOFS and we really don't want to have to be allocating
* higher-order pages when we are unable to shrink dcache.
*/
if (flags & SLAB_RECLAIM_ACCOUNT)
break;
/*
* Large number of objects is good, but very large slabs are
* currently bad for the gfp()s.
*/
if (gfporder >= slab_max_order)
break;
/*
* Acceptable internal fragmentation?
*/
if (left_over * 8 <= (PAGE_SIZE << gfporder))
break;
}
return left_over;
}
static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
{
if (slab_state >= FULL)
return enable_cpucache(cachep, gfp);
if (slab_state == DOWN) {
/*
* Note: the first kmem_cache_create must create the cache
* that's used by kmalloc(24), otherwise the creation of
* further caches will BUG().
*/
cachep->array[smp_processor_id()] = &initarray_generic.cache;
/*
* If the cache that's used by kmalloc(sizeof(kmem_list3)) is
* the first cache, then we need to set up all its list3s,
* otherwise the creation of further caches will BUG().
*/
set_up_list3s(cachep, SIZE_AC);
if (INDEX_AC == INDEX_L3)
slab_state = PARTIAL_L3;
else
slab_state = PARTIAL_ARRAYCACHE;
} else {
cachep->array[smp_processor_id()] =
kmalloc(sizeof(struct arraycache_init), gfp);
if (slab_state == PARTIAL_ARRAYCACHE) {
set_up_list3s(cachep, SIZE_L3);
slab_state = PARTIAL_L3;
} else {
int node;
for_each_online_node(node) {
cachep->nodelists[node] =
kmalloc_node(sizeof(struct kmem_list3),
gfp, node);
BUG_ON(!cachep->nodelists[node]);
kmem_list3_init(cachep->nodelists[node]);
}
}
}
cachep->nodelists[numa_mem_id()]->next_reap =
jiffies + REAPTIMEOUT_LIST3 +
((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cpu_cache_get(cachep)->avail = 0;
cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
cpu_cache_get(cachep)->batchcount = 1;
cpu_cache_get(cachep)->touched = 0;
cachep->batchcount = 1;
cachep->limit = BOOT_CPUCACHE_ENTRIES;
return 0;
}
/**
* __kmem_cache_create - Create a cache.
* @name: A string which is used in /proc/slabinfo to identify this cache.
* @size: The size of objects to be created in this cache.
* @align: The required alignment for the objects.
* @flags: SLAB flags
* @ctor: A constructor for the objects.
*
* Returns a ptr to the cache on success, NULL on failure.
* Cannot be called within a int, but can be interrupted.
* The @ctor is run when new pages are allocated by the cache.
*
* The flags are
*
* %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
* to catch references to uninitialised memory.
*
* %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
* for buffer overruns.
*
* %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
* cacheline. This can be beneficial if you're counting cycles as closely
* as davem.
*/
struct kmem_cache *
__kmem_cache_create (const char *name, size_t size, size_t align,
unsigned long flags, void (*ctor)(void *))
{
size_t left_over, slab_size, ralign;
struct kmem_cache *cachep = NULL;
gfp_t gfp;
#if DEBUG
#if FORCED_DEBUG
/*
* Enable redzoning and last user accounting, except for caches with
* large objects, if the increased size would increase the object size
* above the next power of two: caches with object sizes just above a
* power of two have a significant amount of internal fragmentation.
*/
if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2 * sizeof(unsigned long long)))
flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
if (!(flags & SLAB_DESTROY_BY_RCU))
flags |= SLAB_POISON;
#endif
if (flags & SLAB_DESTROY_BY_RCU)
BUG_ON(flags & SLAB_POISON);
#endif
/*
* Always checks flags, a caller might be expecting debug support which
* isn't available.
*/
BUG_ON(flags & ~CREATE_MASK);
/*
* Check that size is in terms of words. This is needed to avoid
* unaligned accesses for some archs when redzoning is used, and makes
* sure any on-slab bufctl's are also correctly aligned.
*/
if (size & (BYTES_PER_WORD - 1)) {
size += (BYTES_PER_WORD - 1);
size &= ~(BYTES_PER_WORD - 1);
}
/* calculate the final buffer alignment: */
/* 1) arch recommendation: can be overridden for debug */
if (flags & SLAB_HWCACHE_ALIGN) {
/*
* Default alignment: as specified by the arch code. Except if
* an object is really small, then squeeze multiple objects into
* one cacheline.
*/
ralign = cache_line_size();
while (size <= ralign / 2)
ralign /= 2;
} else {
ralign = BYTES_PER_WORD;
}
/*
* Redzoning and user store require word alignment or possibly larger.
* Note this will be overridden by architecture or caller mandated
* alignment if either is greater than BYTES_PER_WORD.
*/
if (flags & SLAB_STORE_USER)
ralign = BYTES_PER_WORD;
if (flags & SLAB_RED_ZONE) {
ralign = REDZONE_ALIGN;
/* If redzoning, ensure that the second redzone is suitably
* aligned, by adjusting the object size accordingly. */
size += REDZONE_ALIGN - 1;
size &= ~(REDZONE_ALIGN - 1);
}
/* 2) arch mandated alignment */
if (ralign < ARCH_SLAB_MINALIGN) {
ralign = ARCH_SLAB_MINALIGN;
}
/* 3) caller mandated alignment */
if (ralign < align) {
ralign = align;
}
/* disable debug if necessary */
if (ralign > __alignof__(unsigned long long))
flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
/*
* 4) Store it.
*/
align = ralign;
if (slab_is_available())
gfp = GFP_KERNEL;
else
gfp = GFP_NOWAIT;
/* Get cache's description obj. */
cachep = kmem_cache_zalloc(kmem_cache, gfp);
if (!cachep)
return NULL;
cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
cachep->object_size = size;
cachep->align = align;
#if DEBUG
/*
* Both debugging options require word-alignment which is calculated
* into align above.
*/
if (flags & SLAB_RED_ZONE) {
/* add space for red zone words */
cachep->obj_offset += sizeof(unsigned long long);
size += 2 * sizeof(unsigned long long);
}
if (flags & SLAB_STORE_USER) {
/* user store requires one word storage behind the end of
* the real object. But if the second red zone needs to be
* aligned to 64 bits, we must allow that much space.
*/
if (flags & SLAB_RED_ZONE)
size += REDZONE_ALIGN;
else
size += BYTES_PER_WORD;
}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
&& cachep->object_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
size = PAGE_SIZE;
}
#endif
#endif
/*
* Determine if the slab management is 'on' or 'off' slab.
* (bootstrapping cannot cope with offslab caches so don't do
* it too early on. Always use on-slab management when
* SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
*/
if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
!(flags & SLAB_NOLEAKTRACE))
/*
* Size is large, assume best to place the slab management obj
* off-slab (should allow better packing of objs).
*/
flags |= CFLGS_OFF_SLAB;
size = ALIGN(size, align);
left_over = calculate_slab_order(cachep, size, align, flags);
if (!cachep->num) {
printk(KERN_ERR
"kmem_cache_create: couldn't create cache %s.\n", name);
kmem_cache_free(kmem_cache, cachep);
return NULL;
}
slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
+ sizeof(struct slab), align);
/*
* If the slab has been placed off-slab, and we have enough space then
* move it on-slab. This is at the expense of any extra colouring.
*/
if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
flags &= ~CFLGS_OFF_SLAB;
left_over -= slab_size;
}
if (flags & CFLGS_OFF_SLAB) {
/* really off slab. No need for manual alignment */
slab_size =
cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
#ifdef CONFIG_PAGE_POISONING
/* If we're going to use the generic kernel_map_pages()
* poisoning, then it's going to smash the contents of
* the redzone and userword anyhow, so switch them off.
*/
if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif
}
cachep->colour_off = cache_line_size();
/* Offset must be a multiple of the alignment. */
if (cachep->colour_off < align)
cachep->colour_off = align;
cachep->colour = left_over / cachep->colour_off;
cachep->slab_size = slab_size;
cachep->flags = flags;
cachep->allocflags = 0;
if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
cachep->allocflags |= GFP_DMA;
cachep->size = size;
cachep->reciprocal_buffer_size = reciprocal_value(size);
if (flags & CFLGS_OFF_SLAB) {
cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
/*
* This is a possibility for one of the malloc_sizes caches.
* But since we go off slab only for object size greater than
* PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
* this should not happen at all.
* But leave a BUG_ON for some lucky dude.
*/
BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
}
cachep->ctor = ctor;
cachep->name = name;
cachep->refcount = 1;
if (setup_cpu_cache(cachep, gfp)) {
__kmem_cache_shutdown(cachep);
return NULL;
}
if (flags & SLAB_DEBUG_OBJECTS) {
/*
* Would deadlock through slab_destroy()->call_rcu()->
* debug_object_activate()->kmem_cache_alloc().
*/
WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
slab_set_debugobj_lock_classes(cachep);
}
return cachep;
}
#if DEBUG
static void check_irq_off(void)
{
BUG_ON(!irqs_disabled());
}
static void check_irq_on(void)
{
BUG_ON(irqs_disabled());
}
static void check_spinlock_acquired(struct kmem_cache *cachep)
{
#ifdef CONFIG_SMP
check_irq_off();
assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
#endif
}
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
{
#ifdef CONFIG_SMP
check_irq_off();
assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}
#else
#define check_irq_off() do { } while(0)
#define check_irq_on() do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
#define check_spinlock_acquired_node(x, y) do { } while(0)
#endif
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
struct array_cache *ac,
int force, int node);
static void do_drain(void *arg)
{
struct kmem_cache *cachep = arg;
struct array_cache *ac;
int node = numa_mem_id();
check_irq_off();
ac = cpu_cache_get(cachep);
spin_lock(&cachep->nodelists[node]->list_lock);
free_block(cachep, ac->entry, ac->avail, node);
spin_unlock(&cachep->nodelists[node]->list_lock);
ac->avail = 0;
}
static void drain_cpu_caches(struct kmem_cache *cachep)
{
struct kmem_list3 *l3;
int node;
on_each_cpu(do_drain, cachep, 1);
check_irq_on();
for_each_online_node(node) {
l3 = cachep->nodelists[node];
if (l3 && l3->alien)
drain_alien_cache(cachep, l3->alien);
}
for_each_online_node(node) {
l3 = cachep->nodelists[node];
if (l3)
drain_array(cachep, l3, l3->shared, 1, node);
}
}
/*
* Remove slabs from the list of free slabs.
* Specify the number of slabs to drain in tofree.
*
* Returns the actual number of slabs released.
*/
static int drain_freelist(struct kmem_cache *cache,
struct kmem_list3 *l3, int tofree)
{
struct list_head *p;
int nr_freed;
struct slab *slabp;
nr_freed = 0;
while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
spin_lock_irq(&l3->list_lock);
p = l3->slabs_free.prev;
if (p == &l3->slabs_free) {
spin_unlock_irq(&l3->list_lock);
goto out;
}
slabp = list_entry(p, struct slab, list);
#if DEBUG
BUG_ON(slabp->inuse);
#endif
list_del(&slabp->list);
/*
* Safe to drop the lock. The slab is no longer linked
* to the cache.
*/
l3->free_objects -= cache->num;
spin_unlock_irq(&l3->list_lock);
slab_destroy(cache, slabp);
nr_freed++;
}
out:
return nr_freed;
}
/* Called with slab_mutex held to protect against cpu hotplug */
static int __cache_shrink(struct kmem_cache *cachep)
{
int ret = 0, i = 0;
struct kmem_list3 *l3;
drain_cpu_caches(cachep);
check_irq_on();
for_each_online_node(i) {
l3 = cachep->nodelists[i];
if (!l3)
continue;
drain_freelist(cachep, l3, l3->free_objects);
ret += !list_empty(&l3->slabs_full) ||
!list_empty(&l3->slabs_partial);
}
return (ret ? 1 : 0);
}
/**
* kmem_cache_shrink - Shrink a cache.
* @cachep: The cache to shrink.
*
* Releases as many slabs as possible for a cache.
* To help debugging, a zero exit status indicates all slabs were released.
*/
int kmem_cache_shrink(struct kmem_cache *cachep)
{
int ret;
BUG_ON(!cachep || in_interrupt());
get_online_cpus();
mutex_lock(&slab_mutex);
ret = __cache_shrink(cachep);
mutex_unlock(&slab_mutex);
put_online_cpus();
return ret;
}
EXPORT_SYMBOL(kmem_cache_shrink);
int __kmem_cache_shutdown(struct kmem_cache *cachep)
{
int i;
struct kmem_list3 *l3;
int rc = __cache_shrink(cachep);
if (rc)
return rc;
for_each_online_cpu(i)
kfree(cachep->array[i]);
/* NUMA: free the list3 structures */
for_each_online_node(i) {
l3 = cachep->nodelists[i];
if (l3) {
kfree(l3->shared);
free_alien_cache(l3->alien);
kfree(l3);
}
}
return 0;
}
/*
* Get the memory for a slab management obj.
* For a slab cache when the slab descriptor is off-slab, slab descriptors
* always come from malloc_sizes caches. The slab descriptor cannot
* come from the same cache which is getting created because,
* when we are searching for an appropriate cache for these
* descriptors in kmem_cache_create, we search through the malloc_sizes array.
* If we are creating a malloc_sizes cache here it would not be visible to
* kmem_find_general_cachep till the initialization is complete.
* Hence we cannot have slabp_cache same as the original cache.
*/
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
int colour_off, gfp_t local_flags,
int nodeid)
{
struct slab *slabp;
if (OFF_SLAB(cachep)) {
/* Slab management obj is off-slab. */
slabp = kmem_cache_alloc_node(cachep->slabp_cache,
local_flags, nodeid);
/*
* If the first object in the slab is leaked (it's allocated
* but no one has a reference to it), we want to make sure
* kmemleak does not treat the ->s_mem pointer as a reference
* to the object. Otherwise we will not report the leak.
*/
kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
local_flags);
if (!slabp)
return NULL;
} else {
slabp = objp + colour_off;
colour_off += cachep->slab_size;
}
slabp->inuse = 0;
slabp->colouroff = colour_off;
slabp->s_mem = objp + colour_off;
slabp->nodeid = nodeid;
slabp->free = 0;
return slabp;
}
static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
return (kmem_bufctl_t *) (slabp + 1);
}
static void cache_init_objs(struct kmem_cache *cachep,
struct slab *slabp)
{
int i;
for (i = 0; i < cachep->num; i++) {
void *objp = index_to_obj(cachep, slabp, i);
#if DEBUG
/* need to poison the objs? */
if (cachep->flags & SLAB_POISON)
poison_obj(cachep, objp, POISON_FREE);
if (cachep->flags & SLAB_STORE_USER)
*dbg_userword(cachep, objp) = NULL;
if (cachep->flags & SLAB_RED_ZONE) {
*dbg_redzone1(cachep, objp) = RED_INACTIVE;
*dbg_redzone2(cachep, objp) = RED_INACTIVE;
}
/*
* Constructors are not allowed to allocate memory from the same
* cache which they are a constructor for. Otherwise, deadlock.
* They must also be threaded.
*/
if (cachep->ctor && !(cachep->flags & SLAB_POISON))
cachep->ctor(objp + obj_offset(cachep));
if (cachep->flags & SLAB_RED_ZONE) {
if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
slab_error(cachep, "constructor overwrote the"
" end of an object");
if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
slab_error(cachep, "constructor overwrote the"
" start of an object");
}
if ((cachep->size % PAGE_SIZE) == 0 &&
OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
kernel_map_pages(virt_to_page(objp),
cachep->size / PAGE_SIZE, 0);
#else
if (cachep->ctor)
cachep->ctor(objp);
#endif
slab_bufctl(slabp)[i] = i + 1;
}
slab_bufctl(slabp)[i - 1] = BUFCTL_END;
}
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
{
if (CONFIG_ZONE_DMA_FLAG) {
if (flags & GFP_DMA)
BUG_ON(!(cachep->allocflags & GFP_DMA));
else
BUG_ON(cachep->allocflags & GFP_DMA);
}
}
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
int nodeid)
{
void *objp = index_to_obj(cachep, slabp, slabp->free);
kmem_bufctl_t next;
slabp->inuse++;
next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
WARN_ON(slabp->nodeid != nodeid);
#endif
slabp->free = next;
return objp;
}
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
void *objp, int nodeid)
{
unsigned int objnr = obj_to_index(cachep, slabp, objp);
#if DEBUG
/* Verify that the slab belongs to the intended node */
WARN_ON(slabp->nodeid != nodeid);
if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
printk(KERN_ERR "slab: double free detected in cache "
"'%s', objp %p\n", cachep->name, objp);
BUG();
}
#endif
slab_bufctl(slabp)[objnr] = slabp->free;
slabp->free = objnr;
slabp->inuse--;
}
/*
* Map pages beginning at addr to the given cache and slab. This is required
* for the slab allocator to be able to lookup the cache and slab of a
* virtual address for kfree, ksize, and slab debugging.
*/
static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
void *addr)
{
int nr_pages;
struct page *page;
page = virt_to_page(addr);
nr_pages = 1;
if (likely(!PageCompound(page)))
nr_pages <<= cache->gfporder;
do {
page->slab_cache = cache;
page->slab_page = slab;
page++;
} while (--nr_pages);
}
/*
* Grow (by 1) the number of slabs within a cache. This is called by
* kmem_cache_alloc() when there are no active objs left in a cache.
*/
static int cache_grow(struct kmem_cache *cachep,
gfp_t flags, int nodeid, void *objp)
{
struct slab *slabp;
size_t offset;
gfp_t local_flags;
struct kmem_list3 *l3;
/*
* Be lazy and only check for valid flags here, keeping it out of the
* critical path in kmem_cache_alloc().
*/
BUG_ON(flags & GFP_SLAB_BUG_MASK);
local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
/* Take the l3 list lock to change the colour_next on this node */
check_irq_off();
l3 = cachep->nodelists[nodeid];
spin_lock(&l3->list_lock);
/* Get colour for the slab, and cal the next value. */
offset = l3->colour_next;
l3->colour_next++;
if (l3->colour_next >= cachep->colour)
l3->colour_next = 0;
spin_unlock(&l3->list_lock);
offset *= cachep->colour_off;
if (local_flags & __GFP_WAIT)
local_irq_enable();
/*
* The test for missing atomic flag is performed here, rather than
* the more obvious place, simply to reduce the critical path length
* in kmem_cache_alloc(). If a caller is seriously mis-behaving they
* will eventually be caught here (where it matters).
*/
kmem_flagcheck(cachep, flags);
/*
* Get mem for the objs. Attempt to allocate a physical page from
* 'nodeid'.
*/
if (!objp)
objp = kmem_getpages(cachep, local_flags, nodeid);
if (!objp)
goto failed;
/* Get slab management. */
slabp = alloc_slabmgmt(cachep, objp, offset,
local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
if (!slabp)
goto opps1;
slab_map_pages(cachep, slabp, objp);
cache_init_objs(cachep, slabp);
if (local_flags & __GFP_WAIT)
local_irq_disable();
check_irq_off();
spin_lock(&l3->list_lock);
/* Make slab active. */
list_add_tail(&slabp->list, &(l3->slabs_free));
STATS_INC_GROWN(cachep);
l3->free_objects += cachep->num;
spin_unlock(&l3->list_lock);
return 1;
opps1:
kmem_freepages(cachep, objp);
failed:
if (local_flags & __GFP_WAIT)
local_irq_disable();
return 0;
}
#if DEBUG
/*
* Perform extra freeing checks:
* - detect bad pointers.
* - POISON/RED_ZONE checking
*/
static void kfree_debugcheck(const void *objp)
{
if (!virt_addr_valid(objp)) {
printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
(unsigned long)objp);
BUG();
}
}
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
unsigned long long redzone1, redzone2;
redzone1 = *dbg_redzone1(cache, obj);
redzone2 = *dbg_redzone2(cache, obj);
/*
* Redzone is ok.
*/
if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
return;
if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
slab_error(cache, "double free detected");
else
slab_error(cache, "memory outside object was overwritten");
printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
obj, redzone1, redzone2);
}
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
void *caller)
{
struct page *page;
unsigned int objnr;
struct slab *slabp;
BUG_ON(virt_to_cache(objp) != cachep);
objp -= obj_offset(cachep);
kfree_debugcheck(objp);
page = virt_to_head_page(objp);
slabp = page->slab_page;
if (cachep->flags & SLAB_RED_ZONE) {
verify_redzone_free(cachep, objp);
*dbg_redzone1(cachep, objp) = RED_INACTIVE;
*dbg_redzone2(cachep, objp) = RED_INACTIVE;
}
if (cachep->flags & SLAB_STORE_USER)
*dbg_userword(cachep, objp) = caller;
objnr = obj_to_index(cachep, slabp, objp);
BUG_ON(objnr >= cachep->num);
BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
#ifdef CONFIG_DEBUG_SLAB_LEAK
slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
#endif
if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
store_stackinfo(cachep, objp, (unsigned long)caller);
kernel_map_pages(virt_to_page(objp),
cachep->size / PAGE_SIZE, 0);
} else {
poison_obj(cachep, objp, POISON_FREE);
}
#else
poison_obj(cachep, objp, POISON_FREE);
#endif
}
return objp;
}
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
{
kmem_bufctl_t i;
int entries = 0;
/* Check slab's freelist to see if this obj is there. */
for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
entries++;
if (entries > cachep->num || i >= cachep->num)
goto bad;
}
if (entries != cachep->num - slabp->inuse) {
bad:
printk(KERN_ERR "slab: Internal list corruption detected in "
"cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
cachep->name, cachep->num, slabp, slabp->inuse,
print_tainted());
print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
1);
BUG();
}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
bool force_refill)
{
int batchcount;
struct kmem_list3 *l3;
struct array_cache *ac;
int node;
check_irq_off();
node = numa_mem_id();
if (unlikely(force_refill))
goto force_grow;
retry:
ac = cpu_cache_get(cachep);
batchcount = ac->batchcount;
if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
/*
* If there was little recent activity on this cache, then
* perform only a partial refill. Otherwise we could generate
* refill bouncing.
*/
batchcount = BATCHREFILL_LIMIT;
}
l3 = cachep->nodelists[node];
BUG_ON(ac->avail > 0 || !l3);
spin_lock(&l3->list_lock);
/* See if we can refill from the shared array */
if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
l3->shared->touched = 1;
goto alloc_done;
}
while (batchcount > 0) {
struct list_head *entry;
struct slab *slabp;
/* Get slab alloc is to come from. */
entry = l3->slabs_partial.next;
if (entry == &l3->slabs_partial) {
l3->free_touched = 1;
entry = l3->slabs_free.next;
if (entry == &l3->slabs_free)
goto must_grow;
}
slabp = list_entry(entry, struct slab, list);
check_slabp(cachep, slabp);
check_spinlock_acquired(cachep);
/*
* The slab was either on partial or free list so
* there must be at least one object available for
* allocation.
*/
BUG_ON(slabp->inuse >= cachep->num);
while (slabp->inuse < cachep->num && batchcount--) {
STATS_INC_ALLOCED(cachep);
STATS_INC_ACTIVE(cachep);
STATS_SET_HIGH(cachep);
ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
node));
}
check_slabp(cachep, slabp);
/* move slabp to correct slabp list: */
list_del(&slabp->list);
if (slabp->free == BUFCTL_END)
list_add(&slabp->list, &l3->slabs_full);
else
list_add(&slabp->list, &l3->slabs_partial);
}
must_grow:
l3->free_objects -= ac->avail;
alloc_done:
spin_unlock(&l3->list_lock);
if (unlikely(!ac->avail)) {
int x;
force_grow:
x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
/* cache_grow can reenable interrupts, then ac could change. */
ac = cpu_cache_get(cachep);
/* no objects in sight? abort */
if (!x && (ac->avail == 0 || force_refill))
return NULL;
if (!ac->avail) /* objects refilled by interrupt? */
goto retry;
}
ac->touched = 1;
return ac_get_obj(cachep, ac, flags, force_refill);
}
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
gfp_t flags)
{
might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
kmem_flagcheck(cachep, flags);
#endif
}
#if DEBUG
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
gfp_t flags, void *objp, void *caller)
{
if (!objp)
return objp;
if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
kernel_map_pages(virt_to_page(objp),
cachep->size / PAGE_SIZE, 1);
else
check_poison_obj(cachep, objp);
#else
check_poison_obj(cachep, objp);
#endif
poison_obj(cachep, objp, POISON_INUSE);
}
if (cachep->flags & SLAB_STORE_USER)
*dbg_userword(cachep, objp) = caller;
if (cachep->flags & SLAB_RED_ZONE) {
if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
slab_error(cachep, "double free, or memory outside"
" object was overwritten");
printk(KERN_ERR
"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
objp, *dbg_redzone1(cachep, objp),
*dbg_redzone2(cachep, objp));
}
*dbg_redzone1(cachep, objp) = RED_ACTIVE;
*dbg_redzone2(cachep, objp) = RED_ACTIVE;
}
#ifdef CONFIG_DEBUG_SLAB_LEAK
{
struct slab *slabp;
unsigned objnr;
slabp = virt_to_head_page(objp)->slab_page;
objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
}
#endif
objp += obj_offset(cachep);
if (cachep->ctor && cachep->flags & SLAB_POISON)
cachep->ctor(objp);
if (ARCH_SLAB_MINALIGN &&
((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
objp, (int)ARCH_SLAB_MINALIGN);
}
return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif
static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
{
if (cachep == kmem_cache)
return false;
return should_failslab(cachep->object_size, flags, cachep->flags);
}
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
void *objp;
struct array_cache *ac;
bool force_refill = false;
check_irq_off();
ac = cpu_cache_get(cachep);
if (likely(ac->avail)) {
ac->touched = 1;
objp = ac_get_obj(cachep, ac, flags, false);
/*
* Allow for the possibility all avail objects are not allowed
* by the current flags
*/
if (objp) {
STATS_INC_ALLOCHIT(cachep);
goto out;
}
force_refill = true;
}
STATS_INC_ALLOCMISS(cachep);
objp = cache_alloc_refill(cachep, flags, force_refill);
/*
* the 'ac' may be updated by cache_alloc_refill(),
* and kmemleak_erase() requires its correct value.
*/
ac = cpu_cache_get(cachep);
out:
/*
* To avoid a false negative, if an object that is in one of the
* per-CPU caches is leaked, we need to make sure kmemleak doesn't
* treat the array pointers as a reference to the object.
*/
if (objp)
kmemleak_erase(&ac->entry[ac->avail]);
return objp;
}
#ifdef CONFIG_NUMA
/*
* Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
*
* If we are in_interrupt, then process context, including cpusets and
* mempolicy, may not apply and should not be used for allocation policy.
*/
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
int nid_alloc, nid_here;
if (in_interrupt() || (flags & __GFP_THISNODE))
return NULL;
nid_alloc = nid_here = numa_mem_id();
if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
nid_alloc = cpuset_slab_spread_node();
else if (current->mempolicy)
nid_alloc = slab_node();
if (nid_alloc != nid_here)
return ____cache_alloc_node(cachep, flags, nid_alloc);
return NULL;
}
/*
* Fallback function if there was no memory available and no objects on a
* certain node and fall back is permitted. First we scan all the
* available nodelists for available objects. If that fails then we
* perform an allocation without specifying a node. This allows the page
* allocator to do its reclaim / fallback magic. We then insert the
* slab into the proper nodelist and then allocate from it.
*/
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
{
struct zonelist *zonelist;
gfp_t local_flags;
struct zoneref *z;
struct zone *zone;
enum zone_type high_zoneidx = gfp_zone(flags);
void *obj = NULL;
int nid;
unsigned int cpuset_mems_cookie;
if (flags & __GFP_THISNODE)
return NULL;
local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
retry_cpuset:
cpuset_mems_cookie = get_mems_allowed();
zonelist = node_zonelist(slab_node(), flags);
retry:
/*
* Look through allowed nodes for objects available
* from existing per node queues.
*/
for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
nid = zone_to_nid(zone);
if (cpuset_zone_allowed_hardwall(zone, flags) &&
cache->nodelists[nid] &&
cache->nodelists[nid]->free_objects) {
obj = ____cache_alloc_node(cache,
flags | GFP_THISNODE, nid);
if (obj)
break;
}
}
if (!obj) {
/*
* This allocation will be performed within the constraints
* of the current cpuset / memory policy requirements.
* We may trigger various forms of reclaim on the allowed
* set and go into memory reserves if necessary.
*/
if (local_flags & __GFP_WAIT)
local_irq_enable();
kmem_flagcheck(cache, flags);
obj = kmem_getpages(cache, local_flags, numa_mem_id());
if (local_flags & __GFP_WAIT)
local_irq_disable();
if (obj) {
/*
* Insert into the appropriate per node queues
*/
nid = page_to_nid(virt_to_page(obj));
if (cache_grow(cache, flags, nid, obj)) {
obj = ____cache_alloc_node(cache,
flags | GFP_THISNODE, nid);
if (!obj)
/*
* Another processor may allocate the
* objects in the slab since we are
* not holding any locks.
*/
goto retry;
} else {
/* cache_grow already freed obj */
obj = NULL;
}
}
}
if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
goto retry_cpuset;
return obj;
}
/*
* A interface to enable slab creation on nodeid
*/
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
int nodeid)
{
struct list_head *entry;
struct slab *slabp;
struct kmem_list3 *l3;
void *obj;
int x;
l3 = cachep->nodelists[nodeid];
BUG_ON(!l3);
retry:
check_irq_off();
spin_lock(&l3->list_lock);
entry = l3->slabs_partial.next;
if (entry == &l3->slabs_partial) {
l3->free_touched = 1;
entry = l3->slabs_free.next;
if (entry == &l3->slabs_free)
goto must_grow;
}
slabp = list_entry(entry, struct slab, list);
check_spinlock_acquired_node(cachep, nodeid);
check_slabp(cachep, slabp);
STATS_INC_NODEALLOCS(cachep);
STATS_INC_ACTIVE(cachep);
STATS_SET_HIGH(cachep);
BUG_ON(slabp->inuse == cachep->num);
obj = slab_get_obj(cachep, slabp, nodeid);
check_slabp(cachep, slabp);
l3->free_objects--;
/* move slabp to correct slabp list: */
list_del(&slabp->list);
if (slabp->free == BUFCTL_END)
list_add(&slabp->list, &l3->slabs_full);
else
list_add(&slabp->list, &l3->slabs_partial);
spin_unlock(&l3->list_lock);
goto done;
must_grow:
spin_unlock(&l3->list_lock);
x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
if (x)
goto retry;
return fallback_alloc(cachep, flags);
done:
return obj;
}
/**
* kmem_cache_alloc_node - Allocate an object on the specified node
* @cachep: The cache to allocate from.
* @flags: See kmalloc().
* @nodeid: node number of the target node.
* @caller: return address of caller, used for debug information
*
* Identical to kmem_cache_alloc but it will allocate memory on the given
* node, which can improve the performance for cpu bound structures.
*
* Fallback to other node is possible if __GFP_THISNODE is not set.
*/
static __always_inline void *
__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
void *caller)
{
unsigned long save_flags;
void *ptr;
int slab_node = numa_mem_id();
flags &= gfp_allowed_mask;
lockdep_trace_alloc(flags);
if (slab_should_failslab(cachep, flags))
return NULL;
cache_alloc_debugcheck_before(cachep, flags);
local_irq_save(save_flags);
if (nodeid == NUMA_NO_NODE)
nodeid = slab_node;
if (unlikely(!cachep->nodelists[nodeid])) {
/* Node not bootstrapped yet */
ptr = fallback_alloc(cachep, flags);
goto out;
}
if (nodeid == slab_node) {
/*
* Use the locally cached objects if possible.
* However ____cache_alloc does not allow fallback
* to other nodes. It may fail while we still have
* objects on other nodes available.
*/
ptr = ____cache_alloc(cachep, flags);
if (ptr)
goto out;
}
/* ___cache_alloc_node can fall back to other nodes */
ptr = ____cache_alloc_node(cachep, flags, nodeid);
out:
local_irq_restore(save_flags);
ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
flags);
if (likely(ptr))
kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
if (unlikely((flags & __GFP_ZERO) && ptr))
memset(ptr, 0, cachep->object_size);
return ptr;
}
static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
void *objp;
if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
objp = alternate_node_alloc(cache, flags);
if (objp)
goto out;
}
objp = ____cache_alloc(cache, flags);
/*
* We may just have run out of memory on the local node.
* ____cache_alloc_node() knows how to locate memory on other nodes
*/
if (!objp)
objp = ____cache_alloc_node(cache, flags, numa_mem_id());
out:
return objp;
}
#else
static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
return ____cache_alloc(cachep, flags);
}
#endif /* CONFIG_NUMA */
static __always_inline void *
__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
{
unsigned long save_flags;
void *objp;
flags &= gfp_allowed_mask;
lockdep_trace_alloc(flags);
if (slab_should_failslab(cachep, flags))
return NULL;
cache_alloc_debugcheck_before(cachep, flags);
local_irq_save(save_flags);
objp = __do_cache_alloc(cachep, flags);
local_irq_restore(save_flags);
objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
flags);
prefetchw(objp);
if (likely(objp))
kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
if (unlikely((flags & __GFP_ZERO) && objp))
memset(objp, 0, cachep->object_size);
return objp;
}
/*
* Caller needs to acquire correct kmem_list's list_lock
*/
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
int node)
{
int i;
struct kmem_list3 *l3;
for (i = 0; i < nr_objects; i++) {
void *objp;
struct slab *slabp;
clear_obj_pfmemalloc(&objpp[i]);
objp = objpp[i];
slabp = virt_to_slab(objp);
l3 = cachep->nodelists[node];
list_del(&slabp->list);
check_spinlock_acquired_node(cachep, node);
check_slabp(cachep, slabp);
slab_put_obj(cachep, slabp, objp, node);
STATS_DEC_ACTIVE(cachep);
l3->free_objects++;
check_slabp(cachep, slabp);
/* fixup slab chains */
if (slabp->inuse == 0) {
if (l3->free_objects > l3->free_limit) {
l3->free_objects -= cachep->num;
/* No need to drop any previously held
* lock here, even if we have a off-slab slab
* descriptor it is guaranteed to come from
* a different cache, refer to comments before
* alloc_slabmgmt.
*/
slab_destroy(cachep, slabp);
} else {
list_add(&slabp->list, &l3->slabs_free);
}
} else {
/* Unconditionally move a slab to the end of the
* partial list on free - maximum time for the
* other objects to be freed, too.
*/
list_add_tail(&slabp->list, &l3->slabs_partial);
}
}
}
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
{
int batchcount;
struct kmem_list3 *l3;
int node = numa_mem_id();
batchcount = ac->batchcount;
#if DEBUG
BUG_ON(!batchcount || batchcount > ac->avail);
#endif
check_irq_off();
l3 = cachep->nodelists[node];
spin_lock(&l3->list_lock);
if (l3->shared) {
struct array_cache *shared_array = l3->shared;
int max = shared_array->limit - shared_array->avail;
if (max) {
if (batchcount > max)
batchcount = max;
memcpy(&(shared_array->entry[shared_array->avail]),
ac->entry, sizeof(void *) * batchcount);
shared_array->avail += batchcount;
goto free_done;
}
}
free_block(cachep, ac->entry, batchcount, node);
free_done:
#if STATS
{
int i = 0;
struct list_head *p;
p = l3->slabs_free.next;
while (p != &(l3->slabs_free)) {
struct slab *slabp;
slabp = list_entry(p, struct slab, list);
BUG_ON(slabp->inuse);
i++;
p = p->next;
}
STATS_SET_FREEABLE(cachep, i);
}
#endif
spin_unlock(&l3->list_lock);
ac->avail -= batchcount;
memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
}
/*
* Release an obj back to its cache. If the obj has a constructed state, it must
* be in this state _before_ it is released. Called with disabled ints.
*/
static inline void __cache_free(struct kmem_cache *cachep, void *objp,
void *caller)
{
struct array_cache *ac = cpu_cache_get(cachep);
check_irq_off();
kmemleak_free_recursive(objp, cachep->flags);
objp = cache_free_debugcheck(cachep, objp, caller);
kmemcheck_slab_free(cachep, objp, cachep->object_size);
/*
* Skip calling cache_free_alien() when the platform is not numa.
* This will avoid cache misses that happen while accessing slabp (which
* is per page memory reference) to get nodeid. Instead use a global
* variable to skip the call, which is mostly likely to be present in
* the cache.
*/
if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
return;
if (likely(ac->avail < ac->limit)) {
STATS_INC_FREEHIT(cachep);
} else {
STATS_INC_FREEMISS(cachep);
cache_flusharray(cachep, ac);
}
ac_put_obj(cachep, ac, objp);
}
/**
* kmem_cache_alloc - Allocate an object
* @cachep: The cache to allocate from.
* @flags: See kmalloc().
*
* Allocate an object from this cache. The flags are only relevant
* if the cache has no available objects.
*/
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
trace_kmem_cache_alloc(_RET_IP_, ret,
cachep->object_size, cachep->size, flags);
return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc);
#ifdef CONFIG_TRACING
void *
kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags)
{
void *ret;
ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
trace_kmalloc(_RET_IP_, ret,
size, slab_buffer_size(cachep), flags);
return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_trace);
#endif
#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
void *ret = __cache_alloc_node(cachep, flags, nodeid,
__builtin_return_address(0));
trace_kmem_cache_alloc_node(_RET_IP_, ret,
cachep->object_size, cachep->size,
flags, nodeid);
return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_node);
#ifdef CONFIG_TRACING
void *kmem_cache_alloc_node_trace(size_t size,
struct kmem_cache *cachep,
gfp_t flags,
int nodeid)
{
void *ret;
ret = __cache_alloc_node(cachep, flags, nodeid,
__builtin_return_address(0));
trace_kmalloc_node(_RET_IP_, ret,
size, slab_buffer_size(cachep),
flags, nodeid);
return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
#endif
static __always_inline void *
__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
{
struct kmem_cache *cachep;
cachep = kmem_find_general_cachep(size, flags);
if (unlikely(ZERO_OR_NULL_PTR(cachep)))
return cachep;
return kmem_cache_alloc_node_trace(size, cachep, flags, node);
}
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
return __do_kmalloc_node(size, flags, node,
__builtin_return_address(0));
}
EXPORT_SYMBOL(__kmalloc_node);
void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
int node, unsigned long caller)
{
return __do_kmalloc_node(size, flags, node, (void *)caller);
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#else
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
return __do_kmalloc_node(size, flags, node, NULL);
}
EXPORT_SYMBOL(__kmalloc_node);
#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
#endif /* CONFIG_NUMA */
/**
* __do_kmalloc - allocate memory
* @size: how many bytes of memory are required.
* @flags: the type of memory to allocate (see kmalloc).
* @caller: function caller for debug tracking of the caller
*/
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
void *caller)
{
struct kmem_cache *cachep;
void *ret;
/* If you want to save a few bytes .text space: replace
* __ with kmem_.
* Then kmalloc uses the uninlined functions instead of the inline
* functions.
*/
cachep = __find_general_cachep(size, flags);
if (unlikely(ZERO_OR_NULL_PTR(cachep)))
return cachep;
ret = __cache_alloc(cachep, flags, caller);
trace_kmalloc((unsigned long) caller, ret,
size, cachep->size, flags);
return ret;
}
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
void *__kmalloc(size_t size, gfp_t flags)
{
return __do_kmalloc(size, flags, __builtin_return_address(0));
}
EXPORT_SYMBOL(__kmalloc);
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
{
return __do_kmalloc(size, flags, (void *)caller);
}
EXPORT_SYMBOL(__kmalloc_track_caller);
#else
void *__kmalloc(size_t size, gfp_t flags)
{
return __do_kmalloc(size, flags, NULL);
}
EXPORT_SYMBOL(__kmalloc);
#endif
/**
* kmem_cache_free - Deallocate an object
* @cachep: The cache the allocation was from.
* @objp: The previously allocated object.
*
* Free an object which was previously allocated from this
* cache.
*/
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
{
unsigned long flags;
local_irq_save(flags);
debug_check_no_locks_freed(objp, cachep->object_size);
if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
debug_check_no_obj_freed(objp, cachep->object_size);
__cache_free(cachep, objp, __builtin_return_address(0));
local_irq_restore(flags);
trace_kmem_cache_free(_RET_IP_, objp);
}
EXPORT_SYMBOL(kmem_cache_free);
/**
* kfree - free previously allocated memory
* @objp: pointer returned by kmalloc.
*
* If @objp is NULL, no operation is performed.
*
* Don't free memory not originally allocated by kmalloc()
* or you will run into trouble.
*/
void kfree(const void *objp)
{
struct kmem_cache *c;
unsigned long flags;
trace_kfree(_RET_IP_, objp);
if (unlikely(ZERO_OR_NULL_PTR(objp)))
return;
local_irq_save(flags);
kfree_debugcheck(objp);
c = virt_to_cache(objp);
debug_check_no_locks_freed(objp, c->object_size);
debug_check_no_obj_freed(objp, c->object_size);
__cache_free(c, (void *)objp, __builtin_return_address(0));
local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);
unsigned int kmem_cache_size(struct kmem_cache *cachep)
{
return cachep->object_size;
}
EXPORT_SYMBOL(kmem_cache_size);
/*
* This initializes kmem_list3 or resizes various caches for all nodes.
*/
static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
{
int node;
struct kmem_list3 *l3;
struct array_cache *new_shared;
struct array_cache **new_alien = NULL;
for_each_online_node(node) {
if (use_alien_caches) {
new_alien = alloc_alien_cache(node, cachep->limit, gfp);
if (!new_alien)
goto fail;
}
new_shared = NULL;
if (cachep->shared) {
new_shared = alloc_arraycache(node,
cachep->shared*cachep->batchcount,
0xbaadf00d, gfp);
if (!new_shared) {
free_alien_cache(new_alien);
goto fail;
}
}
l3 = cachep->nodelists[node];
if (l3) {
struct array_cache *shared = l3->shared;
spin_lock_irq(&l3->list_lock);
if (shared)
free_block(cachep, shared->entry,
shared->avail, node);
l3->shared = new_shared;
if (!l3->alien) {
l3->alien = new_alien;
new_alien = NULL;
}
l3->free_limit = (1 + nr_cpus_node(node)) *
cachep->batchcount + cachep->num;
spin_unlock_irq(&l3->list_lock);
kfree(shared);
free_alien_cache(new_alien);
continue;
}
l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
if (!l3) {
free_alien_cache(new_alien);
kfree(new_shared);
goto fail;
}
kmem_list3_init(l3);
l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
((unsigned long)cachep) % REAPTIMEOUT_LIST3;
l3->shared = new_shared;
l3->alien = new_alien;
l3->free_limit = (1 + nr_cpus_node(node)) *
cachep->batchcount + cachep->num;
cachep->nodelists[node] = l3;
}
return 0;
fail:
if (!cachep->list.next) {
/* Cache is not active yet. Roll back what we did */
node--;
while (node >= 0) {
if (cachep->nodelists[node]) {
l3 = cachep->nodelists[node];
kfree(l3->shared);
free_alien_cache(l3->alien);
kfree(l3);
cachep->nodelists[node] = NULL;
}
node--;
}
}
return -ENOMEM;
}
struct ccupdate_struct {
struct kmem_cache *cachep;
struct array_cache *new[0];
};
static void do_ccupdate_local(void *info)
{
struct ccupdate_struct *new = info;
struct array_cache *old;
check_irq_off();
old = cpu_cache_get(new->cachep);
new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
new->new[smp_processor_id()] = old;
}
/* Always called with the slab_mutex held */
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
int batchcount, int shared, gfp_t gfp)
{
struct ccupdate_struct *new;
int i;
new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
gfp);
if (!new)
return -ENOMEM;
for_each_online_cpu(i) {
new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
batchcount, gfp);
if (!new->new[i]) {
for (i--; i >= 0; i--)
kfree(new->new[i]);
kfree(new);
return -ENOMEM;
}
}
new->cachep = cachep;
on_each_cpu(do_ccupdate_local, (void *)new, 1);
check_irq_on();
cachep->batchcount = batchcount;
cachep->limit = limit;
cachep->shared = shared;
for_each_online_cpu(i) {
struct array_cache *ccold = new->new[i];
if (!ccold)
continue;
spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
kfree(ccold);
}
kfree(new);
return alloc_kmemlist(cachep, gfp);
}
/* Called with slab_mutex held always */
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
{
int err;
int limit, shared;
/*
* The head array serves three purposes:
* - create a LIFO ordering, i.e. return objects that are cache-warm
* - reduce the number of spinlock operations.
* - reduce the number of linked list operations on the slab and
* bufctl chains: array operations are cheaper.
* The numbers are guessed, we should auto-tune as described by
* Bonwick.
*/
if (cachep->size > 131072)
limit = 1;
else if (cachep->size > PAGE_SIZE)
limit = 8;
else if (cachep->size > 1024)
limit = 24;
else if (cachep->size > 256)
limit = 54;
else
limit = 120;
/*
* CPU bound tasks (e.g. network routing) can exhibit cpu bound
* allocation behaviour: Most allocs on one cpu, most free operations
* on another cpu. For these cases, an efficient object passing between
* cpus is necessary. This is provided by a shared array. The array
* replaces Bonwick's magazine layer.
* On uniprocessor, it's functionally equivalent (but less efficient)
* to a larger limit. Thus disabled by default.
*/
shared = 0;
if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
shared = 8;
#if DEBUG
/*
* With debugging enabled, large batchcount lead to excessively long
* periods with disabled local interrupts. Limit the batchcount
*/
if (limit > 32)
limit = 32;
#endif
err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
if (err)
printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
cachep->name, -err);
return err;
}
/*
* Drain an array if it contains any elements taking the l3 lock only if
* necessary. Note that the l3 listlock also protects the array_cache
* if drain_array() is used on the shared array.
*/
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
struct array_cache *ac, int force, int node)
{
int tofree;
if (!ac || !ac->avail)
return;
if (ac->touched && !force) {
ac->touched = 0;
} else {
spin_lock_irq(&l3->list_lock);
if (ac->avail) {
tofree = force ? ac->avail : (ac->limit + 4) / 5;
if (tofree > ac->avail)
tofree = (ac->avail + 1) / 2;
free_block(cachep, ac->entry, tofree, node);
ac->avail -= tofree;
memmove(ac->entry, &(ac->entry[tofree]),
sizeof(void *) * ac->avail);
}
spin_unlock_irq(&l3->list_lock);
}
}
/**
* cache_reap - Reclaim memory from caches.
* @w: work descriptor
*
* Called from workqueue/eventd every few seconds.
* Purpose:
* - clear the per-cpu caches for this CPU.
* - return freeable pages to the main free memory pool.
*
* If we cannot acquire the cache chain mutex then just give up - we'll try
* again on the next iteration.
*/
static void cache_reap(struct work_struct *w)
{
struct kmem_cache *searchp;
struct kmem_list3 *l3;
int node = numa_mem_id();
struct delayed_work *work = to_delayed_work(w);
if (!mutex_trylock(&slab_mutex))
/* Give up. Setup the next iteration. */
goto out;
list_for_each_entry(searchp, &slab_caches, list) {
check_irq_on();
/*
* We only take the l3 lock if absolutely necessary and we
* have established with reasonable certainty that
* we can do some work if the lock was obtained.
*/
l3 = searchp->nodelists[node];
reap_alien(searchp, l3);
drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
/*
* These are racy checks but it does not matter
* if we skip one check or scan twice.
*/
if (time_after(l3->next_reap, jiffies))
goto next;
l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
drain_array(searchp, l3, l3->shared, 0, node);
if (l3->free_touched)
l3->free_touched = 0;
else {
int freed;
freed = drain_freelist(searchp, l3, (l3->free_limit +
5 * searchp->num - 1) / (5 * searchp->num));
STATS_ADD_REAPED(searchp, freed);
}
next:
cond_resched();
}
check_irq_on();
mutex_unlock(&slab_mutex);
next_reap_node();
out:
/* Set up the next iteration */
schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
}
#ifdef CONFIG_SLABINFO
static void print_slabinfo_header(struct seq_file *m)
{
/*
* Output format version, so at least we can change it
* without _too_ many complaints.
*/
#if STATS
seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
#else
seq_puts(m, "slabinfo - version: 2.1\n");
#endif
seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
"<objperslab> <pagesperslab>");
seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
#if STATS
seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
"<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
#endif
seq_putc(m, '\n');
}
static void *s_start(struct seq_file *m, loff_t *pos)
{
loff_t n = *pos;
mutex_lock(&slab_mutex);
if (!n)
print_slabinfo_header(m);
return seq_list_start(&slab_caches, *pos);
}
static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
return seq_list_next(p, &slab_caches, pos);
}
static void s_stop(struct seq_file *m, void *p)
{
mutex_unlock(&slab_mutex);
}
static int s_show(struct seq_file *m, void *p)
{
struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
struct slab *slabp;
unsigned long active_objs;
unsigned long num_objs;
unsigned long active_slabs = 0;
unsigned long num_slabs, free_objects = 0, shared_avail = 0;
const char *name;
char *error = NULL;
int node;
struct kmem_list3 *l3;
active_objs = 0;
num_slabs = 0;
for_each_online_node(node) {
l3 = cachep->nodelists[node];
if (!l3)
continue;
check_irq_on();
spin_lock_irq(&l3->list_lock);
list_for_each_entry(slabp, &l3->slabs_full, list) {
if (slabp->inuse != cachep->num && !error)
error = "slabs_full accounting error";
active_objs += cachep->num;
active_slabs++;
}
list_for_each_entry(slabp, &l3->slabs_partial, list) {
if (slabp->inuse == cachep->num && !error)
error = "slabs_partial inuse accounting error";
if (!slabp->inuse && !error)
error = "slabs_partial/inuse accounting error";
active_objs += slabp->inuse;
active_slabs++;
}
list_for_each_entry(slabp, &l3->slabs_free, list) {
if (slabp->inuse && !error)
error = "slabs_free/inuse accounting error";
num_slabs++;
}
free_objects += l3->free_objects;
if (l3->shared)
shared_avail += l3->shared->avail;
spin_unlock_irq(&l3->list_lock);
}
num_slabs += active_slabs;
num_objs = num_slabs * cachep->num;
if (num_objs - active_objs != free_objects && !error)
error = "free_objects accounting error";
name = cachep->name;
if (error)
printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
name, active_objs, num_objs, cachep->size,
cachep->num, (1 << cachep->gfporder));
seq_printf(m, " : tunables %4u %4u %4u",
cachep->limit, cachep->batchcount, cachep->shared);
seq_printf(m, " : slabdata %6lu %6lu %6lu",
active_slabs, num_slabs, shared_avail);
#if STATS
{ /* list3 stats */
unsigned long high = cachep->high_mark;
unsigned long allocs = cachep->num_allocations;
unsigned long grown = cachep->grown;
unsigned long reaped = cachep->reaped;
unsigned long errors = cachep->errors;
unsigned long max_freeable = cachep->max_freeable;
unsigned long node_allocs = cachep->node_allocs;
unsigned long node_frees = cachep->node_frees;
unsigned long overflows = cachep->node_overflow;
seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
"%4lu %4lu %4lu %4lu %4lu",
allocs, high, grown,
reaped, errors, max_freeable, node_allocs,
node_frees, overflows);
}
/* cpu stats */
{
unsigned long allochit = atomic_read(&cachep->allochit);
unsigned long allocmiss = atomic_read(&cachep->allocmiss);
unsigned long freehit = atomic_read(&cachep->freehit);
unsigned long freemiss = atomic_read(&cachep->freemiss);
seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
allochit, allocmiss, freehit, freemiss);
}
#endif
seq_putc(m, '\n');
return 0;
}
/*
* slabinfo_op - iterator that generates /proc/slabinfo
*
* Output layout:
* cache-name
* num-active-objs
* total-objs
* object size
* num-active-slabs
* total-slabs
* num-pages-per-slab
* + further values on SMP and with statistics enabled
*/
static const struct seq_operations slabinfo_op = {
.start = s_start,
.next = s_next,
.stop = s_stop,
.show = s_show,
};
#define MAX_SLABINFO_WRITE 128
/**
* slabinfo_write - Tuning for the slab allocator
* @file: unused
* @buffer: user buffer
* @count: data length
* @ppos: unused
*/
static ssize_t slabinfo_write(struct file *file, const char __user *buffer,
size_t count, loff_t *ppos)
{
char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
int limit, batchcount, shared, res;
struct kmem_cache *cachep;
if (count > MAX_SLABINFO_WRITE)
return -EINVAL;
if (copy_from_user(&kbuf, buffer, count))
return -EFAULT;
kbuf[MAX_SLABINFO_WRITE] = '\0';
tmp = strchr(kbuf, ' ');
if (!tmp)
return -EINVAL;
*tmp = '\0';
tmp++;
if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
return -EINVAL;
/* Find the cache in the chain of caches. */
mutex_lock(&slab_mutex);
res = -EINVAL;
list_for_each_entry(cachep, &slab_caches, list) {
if (!strcmp(cachep->name, kbuf)) {
if (limit < 1 || batchcount < 1 ||
batchcount > limit || shared < 0) {
res = 0;
} else {
res = do_tune_cpucache(cachep, limit,
batchcount, shared,
GFP_KERNEL);
}
break;
}
}
mutex_unlock(&slab_mutex);
if (res >= 0)
res = count;
return res;
}
static int slabinfo_open(struct inode *inode, struct file *file)
{
return seq_open(file, &slabinfo_op);
}
static const struct file_operations proc_slabinfo_operations = {
.open = slabinfo_open,
.read = seq_read,
.write = slabinfo_write,
.llseek = seq_lseek,
.release = seq_release,
};
#ifdef CONFIG_DEBUG_SLAB_LEAK
static void *leaks_start(struct seq_file *m, loff_t *pos)
{
mutex_lock(&slab_mutex);
return seq_list_start(&slab_caches, *pos);
}
static inline int add_caller(unsigned long *n, unsigned long v)
{
unsigned long *p;
int l;
if (!v)
return 1;
l = n[1];
p = n + 2;
while (l) {
int i = l/2;
unsigned long *q = p + 2 * i;
if (*q == v) {
q[1]++;
return 1;
}
if (*q > v) {
l = i;
} else {
p = q + 2;
l -= i + 1;
}
}
if (++n[1] == n[0])
return 0;
memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
p[0] = v;
p[1] = 1;
return 1;
}
static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
{
void *p;
int i;
if (n[0] == n[1])
return;
for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
continue;
if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
return;
}
}
static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
unsigned long offset, size;
char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
if (modname[0])
seq_printf(m, " [%s]", modname);
return;
}
#endif
seq_printf(m, "%p", (void *)address);
}
static int leaks_show(struct seq_file *m, void *p)
{
struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
struct slab *slabp;
struct kmem_list3 *l3;
const char *name;
unsigned long *n = m->private;
int node;
int i;
if (!(cachep->flags & SLAB_STORE_USER))
return 0;
if (!(cachep->flags & SLAB_RED_ZONE))
return 0;
/* OK, we can do it */
n[1] = 0;
for_each_online_node(node) {
l3 = cachep->nodelists[node];
if (!l3)
continue;
check_irq_on();
spin_lock_irq(&l3->list_lock);
list_for_each_entry(slabp, &l3->slabs_full, list)
handle_slab(n, cachep, slabp);
list_for_each_entry(slabp, &l3->slabs_partial, list)
handle_slab(n, cachep, slabp);
spin_unlock_irq(&l3->list_lock);
}
name = cachep->name;
if (n[0] == n[1]) {
/* Increase the buffer size */
mutex_unlock(&slab_mutex);
m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
if (!m->private) {
/* Too bad, we are really out */
m->private = n;
mutex_lock(&slab_mutex);
return -ENOMEM;
}
*(unsigned long *)m->private = n[0] * 2;
kfree(n);
mutex_lock(&slab_mutex);
/* Now make sure this entry will be retried */
m->count = m->size;
return 0;
}
for (i = 0; i < n[1]; i++) {
seq_printf(m, "%s: %lu ", name, n[2*i+3]);
show_symbol(m, n[2*i+2]);
seq_putc(m, '\n');
}
return 0;
}
static const struct seq_operations slabstats_op = {
.start = leaks_start,
.next = s_next,
.stop = s_stop,
.show = leaks_show,
};
static int slabstats_open(struct inode *inode, struct file *file)
{
unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
int ret = -ENOMEM;
if (n) {
ret = seq_open(file, &slabstats_op);
if (!ret) {
struct seq_file *m = file->private_data;
*n = PAGE_SIZE / (2 * sizeof(unsigned long));
m->private = n;
n = NULL;
}
kfree(n);
}
return ret;
}
static const struct file_operations proc_slabstats_operations = {
.open = slabstats_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release_private,
};
#endif
static int __init slab_proc_init(void)
{
proc_create("slabinfo",S_IWUSR|S_IRUSR,NULL,&proc_slabinfo_operations);
#ifdef CONFIG_DEBUG_SLAB_LEAK
proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
#endif
return 0;
}
module_init(slab_proc_init);
#endif
/**
* ksize - get the actual amount of memory allocated for a given object
* @objp: Pointer to the object
*
* kmalloc may internally round up allocations and return more memory
* than requested. ksize() can be used to determine the actual amount of
* memory allocated. The caller may use this additional memory, even though
* a smaller amount of memory was initially specified with the kmalloc call.
* The caller must guarantee that objp points to a valid object previously
* allocated with either kmalloc() or kmem_cache_alloc(). The object
* must not be freed during the duration of the call.
*/
size_t ksize(const void *objp)
{
BUG_ON(!objp);
if (unlikely(objp == ZERO_SIZE_PTR))
return 0;
return virt_to_cache(objp)->object_size;
}
EXPORT_SYMBOL(ksize);