| /* |
| * Intel 5000(P/V/X) class Memory Controllers kernel module |
| * |
| * This file may be distributed under the terms of the |
| * GNU General Public License. |
| * |
| * Written by Douglas Thompson Linux Networx (http://lnxi.com) |
| * norsk5@xmission.com |
| * |
| * This module is based on the following document: |
| * |
| * Intel 5000X Chipset Memory Controller Hub (MCH) - Datasheet |
| * http://developer.intel.com/design/chipsets/datashts/313070.htm |
| * |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/pci.h> |
| #include <linux/pci_ids.h> |
| #include <linux/slab.h> |
| #include <linux/edac.h> |
| #include <asm/mmzone.h> |
| |
| #include "edac_module.h" |
| |
| /* |
| * Alter this version for the I5000 module when modifications are made |
| */ |
| #define I5000_REVISION " Ver: 2.0.12" |
| #define EDAC_MOD_STR "i5000_edac" |
| |
| #define i5000_printk(level, fmt, arg...) \ |
| edac_printk(level, "i5000", fmt, ##arg) |
| |
| #define i5000_mc_printk(mci, level, fmt, arg...) \ |
| edac_mc_chipset_printk(mci, level, "i5000", fmt, ##arg) |
| |
| #ifndef PCI_DEVICE_ID_INTEL_FBD_0 |
| #define PCI_DEVICE_ID_INTEL_FBD_0 0x25F5 |
| #endif |
| #ifndef PCI_DEVICE_ID_INTEL_FBD_1 |
| #define PCI_DEVICE_ID_INTEL_FBD_1 0x25F6 |
| #endif |
| |
| /* Device 16, |
| * Function 0: System Address |
| * Function 1: Memory Branch Map, Control, Errors Register |
| * Function 2: FSB Error Registers |
| * |
| * All 3 functions of Device 16 (0,1,2) share the SAME DID |
| */ |
| #define PCI_DEVICE_ID_INTEL_I5000_DEV16 0x25F0 |
| |
| /* OFFSETS for Function 0 */ |
| |
| /* OFFSETS for Function 1 */ |
| #define AMBASE 0x48 |
| #define MAXCH 0x56 |
| #define MAXDIMMPERCH 0x57 |
| #define TOLM 0x6C |
| #define REDMEMB 0x7C |
| #define RED_ECC_LOCATOR(x) ((x) & 0x3FFFF) |
| #define REC_ECC_LOCATOR_EVEN(x) ((x) & 0x001FF) |
| #define REC_ECC_LOCATOR_ODD(x) ((x) & 0x3FE00) |
| #define MIR0 0x80 |
| #define MIR1 0x84 |
| #define MIR2 0x88 |
| #define AMIR0 0x8C |
| #define AMIR1 0x90 |
| #define AMIR2 0x94 |
| |
| #define FERR_FAT_FBD 0x98 |
| #define NERR_FAT_FBD 0x9C |
| #define EXTRACT_FBDCHAN_INDX(x) (((x)>>28) & 0x3) |
| #define FERR_FAT_FBDCHAN 0x30000000 |
| #define FERR_FAT_M3ERR 0x00000004 |
| #define FERR_FAT_M2ERR 0x00000002 |
| #define FERR_FAT_M1ERR 0x00000001 |
| #define FERR_FAT_MASK (FERR_FAT_M1ERR | \ |
| FERR_FAT_M2ERR | \ |
| FERR_FAT_M3ERR) |
| |
| #define FERR_NF_FBD 0xA0 |
| |
| /* Thermal and SPD or BFD errors */ |
| #define FERR_NF_M28ERR 0x01000000 |
| #define FERR_NF_M27ERR 0x00800000 |
| #define FERR_NF_M26ERR 0x00400000 |
| #define FERR_NF_M25ERR 0x00200000 |
| #define FERR_NF_M24ERR 0x00100000 |
| #define FERR_NF_M23ERR 0x00080000 |
| #define FERR_NF_M22ERR 0x00040000 |
| #define FERR_NF_M21ERR 0x00020000 |
| |
| /* Correctable errors */ |
| #define FERR_NF_M20ERR 0x00010000 |
| #define FERR_NF_M19ERR 0x00008000 |
| #define FERR_NF_M18ERR 0x00004000 |
| #define FERR_NF_M17ERR 0x00002000 |
| |
| /* Non-Retry or redundant Retry errors */ |
| #define FERR_NF_M16ERR 0x00001000 |
| #define FERR_NF_M15ERR 0x00000800 |
| #define FERR_NF_M14ERR 0x00000400 |
| #define FERR_NF_M13ERR 0x00000200 |
| |
| /* Uncorrectable errors */ |
| #define FERR_NF_M12ERR 0x00000100 |
| #define FERR_NF_M11ERR 0x00000080 |
| #define FERR_NF_M10ERR 0x00000040 |
| #define FERR_NF_M9ERR 0x00000020 |
| #define FERR_NF_M8ERR 0x00000010 |
| #define FERR_NF_M7ERR 0x00000008 |
| #define FERR_NF_M6ERR 0x00000004 |
| #define FERR_NF_M5ERR 0x00000002 |
| #define FERR_NF_M4ERR 0x00000001 |
| |
| #define FERR_NF_UNCORRECTABLE (FERR_NF_M12ERR | \ |
| FERR_NF_M11ERR | \ |
| FERR_NF_M10ERR | \ |
| FERR_NF_M9ERR | \ |
| FERR_NF_M8ERR | \ |
| FERR_NF_M7ERR | \ |
| FERR_NF_M6ERR | \ |
| FERR_NF_M5ERR | \ |
| FERR_NF_M4ERR) |
| #define FERR_NF_CORRECTABLE (FERR_NF_M20ERR | \ |
| FERR_NF_M19ERR | \ |
| FERR_NF_M18ERR | \ |
| FERR_NF_M17ERR) |
| #define FERR_NF_DIMM_SPARE (FERR_NF_M27ERR | \ |
| FERR_NF_M28ERR) |
| #define FERR_NF_THERMAL (FERR_NF_M26ERR | \ |
| FERR_NF_M25ERR | \ |
| FERR_NF_M24ERR | \ |
| FERR_NF_M23ERR) |
| #define FERR_NF_SPD_PROTOCOL (FERR_NF_M22ERR) |
| #define FERR_NF_NORTH_CRC (FERR_NF_M21ERR) |
| #define FERR_NF_NON_RETRY (FERR_NF_M13ERR | \ |
| FERR_NF_M14ERR | \ |
| FERR_NF_M15ERR) |
| |
| #define NERR_NF_FBD 0xA4 |
| #define FERR_NF_MASK (FERR_NF_UNCORRECTABLE | \ |
| FERR_NF_CORRECTABLE | \ |
| FERR_NF_DIMM_SPARE | \ |
| FERR_NF_THERMAL | \ |
| FERR_NF_SPD_PROTOCOL | \ |
| FERR_NF_NORTH_CRC | \ |
| FERR_NF_NON_RETRY) |
| |
| #define EMASK_FBD 0xA8 |
| #define EMASK_FBD_M28ERR 0x08000000 |
| #define EMASK_FBD_M27ERR 0x04000000 |
| #define EMASK_FBD_M26ERR 0x02000000 |
| #define EMASK_FBD_M25ERR 0x01000000 |
| #define EMASK_FBD_M24ERR 0x00800000 |
| #define EMASK_FBD_M23ERR 0x00400000 |
| #define EMASK_FBD_M22ERR 0x00200000 |
| #define EMASK_FBD_M21ERR 0x00100000 |
| #define EMASK_FBD_M20ERR 0x00080000 |
| #define EMASK_FBD_M19ERR 0x00040000 |
| #define EMASK_FBD_M18ERR 0x00020000 |
| #define EMASK_FBD_M17ERR 0x00010000 |
| |
| #define EMASK_FBD_M15ERR 0x00004000 |
| #define EMASK_FBD_M14ERR 0x00002000 |
| #define EMASK_FBD_M13ERR 0x00001000 |
| #define EMASK_FBD_M12ERR 0x00000800 |
| #define EMASK_FBD_M11ERR 0x00000400 |
| #define EMASK_FBD_M10ERR 0x00000200 |
| #define EMASK_FBD_M9ERR 0x00000100 |
| #define EMASK_FBD_M8ERR 0x00000080 |
| #define EMASK_FBD_M7ERR 0x00000040 |
| #define EMASK_FBD_M6ERR 0x00000020 |
| #define EMASK_FBD_M5ERR 0x00000010 |
| #define EMASK_FBD_M4ERR 0x00000008 |
| #define EMASK_FBD_M3ERR 0x00000004 |
| #define EMASK_FBD_M2ERR 0x00000002 |
| #define EMASK_FBD_M1ERR 0x00000001 |
| |
| #define ENABLE_EMASK_FBD_FATAL_ERRORS (EMASK_FBD_M1ERR | \ |
| EMASK_FBD_M2ERR | \ |
| EMASK_FBD_M3ERR) |
| |
| #define ENABLE_EMASK_FBD_UNCORRECTABLE (EMASK_FBD_M4ERR | \ |
| EMASK_FBD_M5ERR | \ |
| EMASK_FBD_M6ERR | \ |
| EMASK_FBD_M7ERR | \ |
| EMASK_FBD_M8ERR | \ |
| EMASK_FBD_M9ERR | \ |
| EMASK_FBD_M10ERR | \ |
| EMASK_FBD_M11ERR | \ |
| EMASK_FBD_M12ERR) |
| #define ENABLE_EMASK_FBD_CORRECTABLE (EMASK_FBD_M17ERR | \ |
| EMASK_FBD_M18ERR | \ |
| EMASK_FBD_M19ERR | \ |
| EMASK_FBD_M20ERR) |
| #define ENABLE_EMASK_FBD_DIMM_SPARE (EMASK_FBD_M27ERR | \ |
| EMASK_FBD_M28ERR) |
| #define ENABLE_EMASK_FBD_THERMALS (EMASK_FBD_M26ERR | \ |
| EMASK_FBD_M25ERR | \ |
| EMASK_FBD_M24ERR | \ |
| EMASK_FBD_M23ERR) |
| #define ENABLE_EMASK_FBD_SPD_PROTOCOL (EMASK_FBD_M22ERR) |
| #define ENABLE_EMASK_FBD_NORTH_CRC (EMASK_FBD_M21ERR) |
| #define ENABLE_EMASK_FBD_NON_RETRY (EMASK_FBD_M15ERR | \ |
| EMASK_FBD_M14ERR | \ |
| EMASK_FBD_M13ERR) |
| |
| #define ENABLE_EMASK_ALL (ENABLE_EMASK_FBD_NON_RETRY | \ |
| ENABLE_EMASK_FBD_NORTH_CRC | \ |
| ENABLE_EMASK_FBD_SPD_PROTOCOL | \ |
| ENABLE_EMASK_FBD_THERMALS | \ |
| ENABLE_EMASK_FBD_DIMM_SPARE | \ |
| ENABLE_EMASK_FBD_FATAL_ERRORS | \ |
| ENABLE_EMASK_FBD_CORRECTABLE | \ |
| ENABLE_EMASK_FBD_UNCORRECTABLE) |
| |
| #define ERR0_FBD 0xAC |
| #define ERR1_FBD 0xB0 |
| #define ERR2_FBD 0xB4 |
| #define MCERR_FBD 0xB8 |
| #define NRECMEMA 0xBE |
| #define NREC_BANK(x) (((x)>>12) & 0x7) |
| #define NREC_RDWR(x) (((x)>>11) & 1) |
| #define NREC_RANK(x) (((x)>>8) & 0x7) |
| #define NRECMEMB 0xC0 |
| #define NREC_CAS(x) (((x)>>16) & 0xFFFFFF) |
| #define NREC_RAS(x) ((x) & 0x7FFF) |
| #define NRECFGLOG 0xC4 |
| #define NREEECFBDA 0xC8 |
| #define NREEECFBDB 0xCC |
| #define NREEECFBDC 0xD0 |
| #define NREEECFBDD 0xD4 |
| #define NREEECFBDE 0xD8 |
| #define REDMEMA 0xDC |
| #define RECMEMA 0xE2 |
| #define REC_BANK(x) (((x)>>12) & 0x7) |
| #define REC_RDWR(x) (((x)>>11) & 1) |
| #define REC_RANK(x) (((x)>>8) & 0x7) |
| #define RECMEMB 0xE4 |
| #define REC_CAS(x) (((x)>>16) & 0xFFFFFF) |
| #define REC_RAS(x) ((x) & 0x7FFF) |
| #define RECFGLOG 0xE8 |
| #define RECFBDA 0xEC |
| #define RECFBDB 0xF0 |
| #define RECFBDC 0xF4 |
| #define RECFBDD 0xF8 |
| #define RECFBDE 0xFC |
| |
| /* OFFSETS for Function 2 */ |
| |
| /* |
| * Device 21, |
| * Function 0: Memory Map Branch 0 |
| * |
| * Device 22, |
| * Function 0: Memory Map Branch 1 |
| */ |
| #define PCI_DEVICE_ID_I5000_BRANCH_0 0x25F5 |
| #define PCI_DEVICE_ID_I5000_BRANCH_1 0x25F6 |
| |
| #define AMB_PRESENT_0 0x64 |
| #define AMB_PRESENT_1 0x66 |
| #define MTR0 0x80 |
| #define MTR1 0x84 |
| #define MTR2 0x88 |
| #define MTR3 0x8C |
| |
| #define NUM_MTRS 4 |
| #define CHANNELS_PER_BRANCH 2 |
| #define MAX_BRANCHES 2 |
| |
| /* Defines to extract the various fields from the |
| * MTRx - Memory Technology Registers |
| */ |
| #define MTR_DIMMS_PRESENT(mtr) ((mtr) & (0x1 << 8)) |
| #define MTR_DRAM_WIDTH(mtr) ((((mtr) >> 6) & 0x1) ? 8 : 4) |
| #define MTR_DRAM_BANKS(mtr) ((((mtr) >> 5) & 0x1) ? 8 : 4) |
| #define MTR_DRAM_BANKS_ADDR_BITS(mtr) ((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2) |
| #define MTR_DIMM_RANK(mtr) (((mtr) >> 4) & 0x1) |
| #define MTR_DIMM_RANK_ADDR_BITS(mtr) (MTR_DIMM_RANK(mtr) ? 2 : 1) |
| #define MTR_DIMM_ROWS(mtr) (((mtr) >> 2) & 0x3) |
| #define MTR_DIMM_ROWS_ADDR_BITS(mtr) (MTR_DIMM_ROWS(mtr) + 13) |
| #define MTR_DIMM_COLS(mtr) ((mtr) & 0x3) |
| #define MTR_DIMM_COLS_ADDR_BITS(mtr) (MTR_DIMM_COLS(mtr) + 10) |
| |
| /* enables the report of miscellaneous messages as CE errors - default off */ |
| static int misc_messages; |
| |
| /* Enumeration of supported devices */ |
| enum i5000_chips { |
| I5000P = 0, |
| I5000V = 1, /* future */ |
| I5000X = 2 /* future */ |
| }; |
| |
| /* Device name and register DID (Device ID) */ |
| struct i5000_dev_info { |
| const char *ctl_name; /* name for this device */ |
| u16 fsb_mapping_errors; /* DID for the branchmap,control */ |
| }; |
| |
| /* Table of devices attributes supported by this driver */ |
| static const struct i5000_dev_info i5000_devs[] = { |
| [I5000P] = { |
| .ctl_name = "I5000", |
| .fsb_mapping_errors = PCI_DEVICE_ID_INTEL_I5000_DEV16, |
| }, |
| }; |
| |
| struct i5000_dimm_info { |
| int megabytes; /* size, 0 means not present */ |
| int dual_rank; |
| }; |
| |
| #define MAX_CHANNELS 6 /* max possible channels */ |
| #define MAX_CSROWS (8*2) /* max possible csrows per channel */ |
| |
| /* driver private data structure */ |
| struct i5000_pvt { |
| struct pci_dev *system_address; /* 16.0 */ |
| struct pci_dev *branchmap_werrors; /* 16.1 */ |
| struct pci_dev *fsb_error_regs; /* 16.2 */ |
| struct pci_dev *branch_0; /* 21.0 */ |
| struct pci_dev *branch_1; /* 22.0 */ |
| |
| u16 tolm; /* top of low memory */ |
| union { |
| u64 ambase; /* AMB BAR */ |
| struct { |
| u32 ambase_bottom; |
| u32 ambase_top; |
| } u __packed; |
| }; |
| |
| u16 mir0, mir1, mir2; |
| |
| u16 b0_mtr[NUM_MTRS]; /* Memory Technlogy Reg */ |
| u16 b0_ambpresent0; /* Branch 0, Channel 0 */ |
| u16 b0_ambpresent1; /* Brnach 0, Channel 1 */ |
| |
| u16 b1_mtr[NUM_MTRS]; /* Memory Technlogy Reg */ |
| u16 b1_ambpresent0; /* Branch 1, Channel 8 */ |
| u16 b1_ambpresent1; /* Branch 1, Channel 1 */ |
| |
| /* DIMM information matrix, allocating architecture maximums */ |
| struct i5000_dimm_info dimm_info[MAX_CSROWS][MAX_CHANNELS]; |
| |
| /* Actual values for this controller */ |
| int maxch; /* Max channels */ |
| int maxdimmperch; /* Max DIMMs per channel */ |
| }; |
| |
| /* I5000 MCH error information retrieved from Hardware */ |
| struct i5000_error_info { |
| |
| /* These registers are always read from the MC */ |
| u32 ferr_fat_fbd; /* First Errors Fatal */ |
| u32 nerr_fat_fbd; /* Next Errors Fatal */ |
| u32 ferr_nf_fbd; /* First Errors Non-Fatal */ |
| u32 nerr_nf_fbd; /* Next Errors Non-Fatal */ |
| |
| /* These registers are input ONLY if there was a Recoverable Error */ |
| u32 redmemb; /* Recoverable Mem Data Error log B */ |
| u16 recmema; /* Recoverable Mem Error log A */ |
| u32 recmemb; /* Recoverable Mem Error log B */ |
| |
| /* These registers are input ONLY if there was a |
| * Non-Recoverable Error */ |
| u16 nrecmema; /* Non-Recoverable Mem log A */ |
| u16 nrecmemb; /* Non-Recoverable Mem log B */ |
| |
| }; |
| |
| static struct edac_pci_ctl_info *i5000_pci; |
| |
| /* |
| * i5000_get_error_info Retrieve the hardware error information from |
| * the hardware and cache it in the 'info' |
| * structure |
| */ |
| static void i5000_get_error_info(struct mem_ctl_info *mci, |
| struct i5000_error_info *info) |
| { |
| struct i5000_pvt *pvt; |
| u32 value; |
| |
| pvt = mci->pvt_info; |
| |
| /* read in the 1st FATAL error register */ |
| pci_read_config_dword(pvt->branchmap_werrors, FERR_FAT_FBD, &value); |
| |
| /* Mask only the bits that the doc says are valid |
| */ |
| value &= (FERR_FAT_FBDCHAN | FERR_FAT_MASK); |
| |
| /* If there is an error, then read in the */ |
| /* NEXT FATAL error register and the Memory Error Log Register A */ |
| if (value & FERR_FAT_MASK) { |
| info->ferr_fat_fbd = value; |
| |
| /* harvest the various error data we need */ |
| pci_read_config_dword(pvt->branchmap_werrors, |
| NERR_FAT_FBD, &info->nerr_fat_fbd); |
| pci_read_config_word(pvt->branchmap_werrors, |
| NRECMEMA, &info->nrecmema); |
| pci_read_config_word(pvt->branchmap_werrors, |
| NRECMEMB, &info->nrecmemb); |
| |
| /* Clear the error bits, by writing them back */ |
| pci_write_config_dword(pvt->branchmap_werrors, |
| FERR_FAT_FBD, value); |
| } else { |
| info->ferr_fat_fbd = 0; |
| info->nerr_fat_fbd = 0; |
| info->nrecmema = 0; |
| info->nrecmemb = 0; |
| } |
| |
| /* read in the 1st NON-FATAL error register */ |
| pci_read_config_dword(pvt->branchmap_werrors, FERR_NF_FBD, &value); |
| |
| /* If there is an error, then read in the 1st NON-FATAL error |
| * register as well */ |
| if (value & FERR_NF_MASK) { |
| info->ferr_nf_fbd = value; |
| |
| /* harvest the various error data we need */ |
| pci_read_config_dword(pvt->branchmap_werrors, |
| NERR_NF_FBD, &info->nerr_nf_fbd); |
| pci_read_config_word(pvt->branchmap_werrors, |
| RECMEMA, &info->recmema); |
| pci_read_config_dword(pvt->branchmap_werrors, |
| RECMEMB, &info->recmemb); |
| pci_read_config_dword(pvt->branchmap_werrors, |
| REDMEMB, &info->redmemb); |
| |
| /* Clear the error bits, by writing them back */ |
| pci_write_config_dword(pvt->branchmap_werrors, |
| FERR_NF_FBD, value); |
| } else { |
| info->ferr_nf_fbd = 0; |
| info->nerr_nf_fbd = 0; |
| info->recmema = 0; |
| info->recmemb = 0; |
| info->redmemb = 0; |
| } |
| } |
| |
| /* |
| * i5000_process_fatal_error_info(struct mem_ctl_info *mci, |
| * struct i5000_error_info *info, |
| * int handle_errors); |
| * |
| * handle the Intel FATAL errors, if any |
| */ |
| static void i5000_process_fatal_error_info(struct mem_ctl_info *mci, |
| struct i5000_error_info *info, |
| int handle_errors) |
| { |
| char msg[EDAC_MC_LABEL_LEN + 1 + 160]; |
| char *specific = NULL; |
| u32 allErrors; |
| int channel; |
| int bank; |
| int rank; |
| int rdwr; |
| int ras, cas; |
| |
| /* mask off the Error bits that are possible */ |
| allErrors = (info->ferr_fat_fbd & FERR_FAT_MASK); |
| if (!allErrors) |
| return; /* if no error, return now */ |
| |
| channel = EXTRACT_FBDCHAN_INDX(info->ferr_fat_fbd); |
| |
| /* Use the NON-Recoverable macros to extract data */ |
| bank = NREC_BANK(info->nrecmema); |
| rank = NREC_RANK(info->nrecmema); |
| rdwr = NREC_RDWR(info->nrecmema); |
| ras = NREC_RAS(info->nrecmemb); |
| cas = NREC_CAS(info->nrecmemb); |
| |
| edac_dbg(0, "\t\tCSROW= %d Channel= %d (DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n", |
| rank, channel, bank, |
| rdwr ? "Write" : "Read", ras, cas); |
| |
| /* Only 1 bit will be on */ |
| switch (allErrors) { |
| case FERR_FAT_M1ERR: |
| specific = "Alert on non-redundant retry or fast " |
| "reset timeout"; |
| break; |
| case FERR_FAT_M2ERR: |
| specific = "Northbound CRC error on non-redundant " |
| "retry"; |
| break; |
| case FERR_FAT_M3ERR: |
| { |
| static int done; |
| |
| /* |
| * This error is generated to inform that the intelligent |
| * throttling is disabled and the temperature passed the |
| * specified middle point. Since this is something the BIOS |
| * should take care of, we'll warn only once to avoid |
| * worthlessly flooding the log. |
| */ |
| if (done) |
| return; |
| done++; |
| |
| specific = ">Tmid Thermal event with intelligent " |
| "throttling disabled"; |
| } |
| break; |
| } |
| |
| /* Form out message */ |
| snprintf(msg, sizeof(msg), |
| "Bank=%d RAS=%d CAS=%d FATAL Err=0x%x (%s)", |
| bank, ras, cas, allErrors, specific); |
| |
| /* Call the helper to output message */ |
| edac_mc_handle_error(HW_EVENT_ERR_FATAL, mci, 1, 0, 0, 0, |
| channel >> 1, channel & 1, rank, |
| rdwr ? "Write error" : "Read error", |
| msg); |
| } |
| |
| /* |
| * i5000_process_fatal_error_info(struct mem_ctl_info *mci, |
| * struct i5000_error_info *info, |
| * int handle_errors); |
| * |
| * handle the Intel NON-FATAL errors, if any |
| */ |
| static void i5000_process_nonfatal_error_info(struct mem_ctl_info *mci, |
| struct i5000_error_info *info, |
| int handle_errors) |
| { |
| char msg[EDAC_MC_LABEL_LEN + 1 + 170]; |
| char *specific = NULL; |
| u32 allErrors; |
| u32 ue_errors; |
| u32 ce_errors; |
| u32 misc_errors; |
| int branch; |
| int channel; |
| int bank; |
| int rank; |
| int rdwr; |
| int ras, cas; |
| |
| /* mask off the Error bits that are possible */ |
| allErrors = (info->ferr_nf_fbd & FERR_NF_MASK); |
| if (!allErrors) |
| return; /* if no error, return now */ |
| |
| /* ONLY ONE of the possible error bits will be set, as per the docs */ |
| ue_errors = allErrors & FERR_NF_UNCORRECTABLE; |
| if (ue_errors) { |
| edac_dbg(0, "\tUncorrected bits= 0x%x\n", ue_errors); |
| |
| branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd); |
| |
| /* |
| * According with i5000 datasheet, bit 28 has no significance |
| * for errors M4Err-M12Err and M17Err-M21Err, on FERR_NF_FBD |
| */ |
| channel = branch & 2; |
| |
| bank = NREC_BANK(info->nrecmema); |
| rank = NREC_RANK(info->nrecmema); |
| rdwr = NREC_RDWR(info->nrecmema); |
| ras = NREC_RAS(info->nrecmemb); |
| cas = NREC_CAS(info->nrecmemb); |
| |
| edac_dbg(0, "\t\tCSROW= %d Channels= %d,%d (Branch= %d DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n", |
| rank, channel, channel + 1, branch >> 1, bank, |
| rdwr ? "Write" : "Read", ras, cas); |
| |
| switch (ue_errors) { |
| case FERR_NF_M12ERR: |
| specific = "Non-Aliased Uncorrectable Patrol Data ECC"; |
| break; |
| case FERR_NF_M11ERR: |
| specific = "Non-Aliased Uncorrectable Spare-Copy " |
| "Data ECC"; |
| break; |
| case FERR_NF_M10ERR: |
| specific = "Non-Aliased Uncorrectable Mirrored Demand " |
| "Data ECC"; |
| break; |
| case FERR_NF_M9ERR: |
| specific = "Non-Aliased Uncorrectable Non-Mirrored " |
| "Demand Data ECC"; |
| break; |
| case FERR_NF_M8ERR: |
| specific = "Aliased Uncorrectable Patrol Data ECC"; |
| break; |
| case FERR_NF_M7ERR: |
| specific = "Aliased Uncorrectable Spare-Copy Data ECC"; |
| break; |
| case FERR_NF_M6ERR: |
| specific = "Aliased Uncorrectable Mirrored Demand " |
| "Data ECC"; |
| break; |
| case FERR_NF_M5ERR: |
| specific = "Aliased Uncorrectable Non-Mirrored Demand " |
| "Data ECC"; |
| break; |
| case FERR_NF_M4ERR: |
| specific = "Uncorrectable Data ECC on Replay"; |
| break; |
| } |
| |
| /* Form out message */ |
| snprintf(msg, sizeof(msg), |
| "Rank=%d Bank=%d RAS=%d CAS=%d, UE Err=0x%x (%s)", |
| rank, bank, ras, cas, ue_errors, specific); |
| |
| /* Call the helper to output message */ |
| edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, 0, 0, 0, |
| channel >> 1, -1, rank, |
| rdwr ? "Write error" : "Read error", |
| msg); |
| } |
| |
| /* Check correctable errors */ |
| ce_errors = allErrors & FERR_NF_CORRECTABLE; |
| if (ce_errors) { |
| edac_dbg(0, "\tCorrected bits= 0x%x\n", ce_errors); |
| |
| branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd); |
| |
| channel = 0; |
| if (REC_ECC_LOCATOR_ODD(info->redmemb)) |
| channel = 1; |
| |
| /* Convert channel to be based from zero, instead of |
| * from branch base of 0 */ |
| channel += branch; |
| |
| bank = REC_BANK(info->recmema); |
| rank = REC_RANK(info->recmema); |
| rdwr = REC_RDWR(info->recmema); |
| ras = REC_RAS(info->recmemb); |
| cas = REC_CAS(info->recmemb); |
| |
| edac_dbg(0, "\t\tCSROW= %d Channel= %d (Branch %d DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n", |
| rank, channel, branch >> 1, bank, |
| rdwr ? "Write" : "Read", ras, cas); |
| |
| switch (ce_errors) { |
| case FERR_NF_M17ERR: |
| specific = "Correctable Non-Mirrored Demand Data ECC"; |
| break; |
| case FERR_NF_M18ERR: |
| specific = "Correctable Mirrored Demand Data ECC"; |
| break; |
| case FERR_NF_M19ERR: |
| specific = "Correctable Spare-Copy Data ECC"; |
| break; |
| case FERR_NF_M20ERR: |
| specific = "Correctable Patrol Data ECC"; |
| break; |
| } |
| |
| /* Form out message */ |
| snprintf(msg, sizeof(msg), |
| "Rank=%d Bank=%d RDWR=%s RAS=%d " |
| "CAS=%d, CE Err=0x%x (%s))", branch >> 1, bank, |
| rdwr ? "Write" : "Read", ras, cas, ce_errors, |
| specific); |
| |
| /* Call the helper to output message */ |
| edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, 0, |
| channel >> 1, channel % 2, rank, |
| rdwr ? "Write error" : "Read error", |
| msg); |
| } |
| |
| if (!misc_messages) |
| return; |
| |
| misc_errors = allErrors & (FERR_NF_NON_RETRY | FERR_NF_NORTH_CRC | |
| FERR_NF_SPD_PROTOCOL | FERR_NF_DIMM_SPARE); |
| if (misc_errors) { |
| switch (misc_errors) { |
| case FERR_NF_M13ERR: |
| specific = "Non-Retry or Redundant Retry FBD Memory " |
| "Alert or Redundant Fast Reset Timeout"; |
| break; |
| case FERR_NF_M14ERR: |
| specific = "Non-Retry or Redundant Retry FBD " |
| "Configuration Alert"; |
| break; |
| case FERR_NF_M15ERR: |
| specific = "Non-Retry or Redundant Retry FBD " |
| "Northbound CRC error on read data"; |
| break; |
| case FERR_NF_M21ERR: |
| specific = "FBD Northbound CRC error on " |
| "FBD Sync Status"; |
| break; |
| case FERR_NF_M22ERR: |
| specific = "SPD protocol error"; |
| break; |
| case FERR_NF_M27ERR: |
| specific = "DIMM-spare copy started"; |
| break; |
| case FERR_NF_M28ERR: |
| specific = "DIMM-spare copy completed"; |
| break; |
| } |
| branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd); |
| |
| /* Form out message */ |
| snprintf(msg, sizeof(msg), |
| "Err=%#x (%s)", misc_errors, specific); |
| |
| /* Call the helper to output message */ |
| edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, 0, |
| branch >> 1, -1, -1, |
| "Misc error", msg); |
| } |
| } |
| |
| /* |
| * i5000_process_error_info Process the error info that is |
| * in the 'info' structure, previously retrieved from hardware |
| */ |
| static void i5000_process_error_info(struct mem_ctl_info *mci, |
| struct i5000_error_info *info, |
| int handle_errors) |
| { |
| /* First handle any fatal errors that occurred */ |
| i5000_process_fatal_error_info(mci, info, handle_errors); |
| |
| /* now handle any non-fatal errors that occurred */ |
| i5000_process_nonfatal_error_info(mci, info, handle_errors); |
| } |
| |
| /* |
| * i5000_clear_error Retrieve any error from the hardware |
| * but do NOT process that error. |
| * Used for 'clearing' out of previous errors |
| * Called by the Core module. |
| */ |
| static void i5000_clear_error(struct mem_ctl_info *mci) |
| { |
| struct i5000_error_info info; |
| |
| i5000_get_error_info(mci, &info); |
| } |
| |
| /* |
| * i5000_check_error Retrieve and process errors reported by the |
| * hardware. Called by the Core module. |
| */ |
| static void i5000_check_error(struct mem_ctl_info *mci) |
| { |
| struct i5000_error_info info; |
| edac_dbg(4, "MC%d\n", mci->mc_idx); |
| i5000_get_error_info(mci, &info); |
| i5000_process_error_info(mci, &info, 1); |
| } |
| |
| /* |
| * i5000_get_devices Find and perform 'get' operation on the MCH's |
| * device/functions we want to reference for this driver |
| * |
| * Need to 'get' device 16 func 1 and func 2 |
| */ |
| static int i5000_get_devices(struct mem_ctl_info *mci, int dev_idx) |
| { |
| //const struct i5000_dev_info *i5000_dev = &i5000_devs[dev_idx]; |
| struct i5000_pvt *pvt; |
| struct pci_dev *pdev; |
| |
| pvt = mci->pvt_info; |
| |
| /* Attempt to 'get' the MCH register we want */ |
| pdev = NULL; |
| while (1) { |
| pdev = pci_get_device(PCI_VENDOR_ID_INTEL, |
| PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev); |
| |
| /* End of list, leave */ |
| if (pdev == NULL) { |
| i5000_printk(KERN_ERR, |
| "'system address,Process Bus' " |
| "device not found:" |
| "vendor 0x%x device 0x%x FUNC 1 " |
| "(broken BIOS?)\n", |
| PCI_VENDOR_ID_INTEL, |
| PCI_DEVICE_ID_INTEL_I5000_DEV16); |
| |
| return 1; |
| } |
| |
| /* Scan for device 16 func 1 */ |
| if (PCI_FUNC(pdev->devfn) == 1) |
| break; |
| } |
| |
| pvt->branchmap_werrors = pdev; |
| |
| /* Attempt to 'get' the MCH register we want */ |
| pdev = NULL; |
| while (1) { |
| pdev = pci_get_device(PCI_VENDOR_ID_INTEL, |
| PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev); |
| |
| if (pdev == NULL) { |
| i5000_printk(KERN_ERR, |
| "MC: 'branchmap,control,errors' " |
| "device not found:" |
| "vendor 0x%x device 0x%x Func 2 " |
| "(broken BIOS?)\n", |
| PCI_VENDOR_ID_INTEL, |
| PCI_DEVICE_ID_INTEL_I5000_DEV16); |
| |
| pci_dev_put(pvt->branchmap_werrors); |
| return 1; |
| } |
| |
| /* Scan for device 16 func 1 */ |
| if (PCI_FUNC(pdev->devfn) == 2) |
| break; |
| } |
| |
| pvt->fsb_error_regs = pdev; |
| |
| edac_dbg(1, "System Address, processor bus- PCI Bus ID: %s %x:%x\n", |
| pci_name(pvt->system_address), |
| pvt->system_address->vendor, pvt->system_address->device); |
| edac_dbg(1, "Branchmap, control and errors - PCI Bus ID: %s %x:%x\n", |
| pci_name(pvt->branchmap_werrors), |
| pvt->branchmap_werrors->vendor, |
| pvt->branchmap_werrors->device); |
| edac_dbg(1, "FSB Error Regs - PCI Bus ID: %s %x:%x\n", |
| pci_name(pvt->fsb_error_regs), |
| pvt->fsb_error_regs->vendor, pvt->fsb_error_regs->device); |
| |
| pdev = NULL; |
| pdev = pci_get_device(PCI_VENDOR_ID_INTEL, |
| PCI_DEVICE_ID_I5000_BRANCH_0, pdev); |
| |
| if (pdev == NULL) { |
| i5000_printk(KERN_ERR, |
| "MC: 'BRANCH 0' device not found:" |
| "vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n", |
| PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_I5000_BRANCH_0); |
| |
| pci_dev_put(pvt->branchmap_werrors); |
| pci_dev_put(pvt->fsb_error_regs); |
| return 1; |
| } |
| |
| pvt->branch_0 = pdev; |
| |
| /* If this device claims to have more than 2 channels then |
| * fetch Branch 1's information |
| */ |
| if (pvt->maxch >= CHANNELS_PER_BRANCH) { |
| pdev = NULL; |
| pdev = pci_get_device(PCI_VENDOR_ID_INTEL, |
| PCI_DEVICE_ID_I5000_BRANCH_1, pdev); |
| |
| if (pdev == NULL) { |
| i5000_printk(KERN_ERR, |
| "MC: 'BRANCH 1' device not found:" |
| "vendor 0x%x device 0x%x Func 0 " |
| "(broken BIOS?)\n", |
| PCI_VENDOR_ID_INTEL, |
| PCI_DEVICE_ID_I5000_BRANCH_1); |
| |
| pci_dev_put(pvt->branchmap_werrors); |
| pci_dev_put(pvt->fsb_error_regs); |
| pci_dev_put(pvt->branch_0); |
| return 1; |
| } |
| |
| pvt->branch_1 = pdev; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * i5000_put_devices 'put' all the devices that we have |
| * reserved via 'get' |
| */ |
| static void i5000_put_devices(struct mem_ctl_info *mci) |
| { |
| struct i5000_pvt *pvt; |
| |
| pvt = mci->pvt_info; |
| |
| pci_dev_put(pvt->branchmap_werrors); /* FUNC 1 */ |
| pci_dev_put(pvt->fsb_error_regs); /* FUNC 2 */ |
| pci_dev_put(pvt->branch_0); /* DEV 21 */ |
| |
| /* Only if more than 2 channels do we release the second branch */ |
| if (pvt->maxch >= CHANNELS_PER_BRANCH) |
| pci_dev_put(pvt->branch_1); /* DEV 22 */ |
| } |
| |
| /* |
| * determine_amb_resent |
| * |
| * the information is contained in NUM_MTRS different registers |
| * determineing which of the NUM_MTRS requires knowing |
| * which channel is in question |
| * |
| * 2 branches, each with 2 channels |
| * b0_ambpresent0 for channel '0' |
| * b0_ambpresent1 for channel '1' |
| * b1_ambpresent0 for channel '2' |
| * b1_ambpresent1 for channel '3' |
| */ |
| static int determine_amb_present_reg(struct i5000_pvt *pvt, int channel) |
| { |
| int amb_present; |
| |
| if (channel < CHANNELS_PER_BRANCH) { |
| if (channel & 0x1) |
| amb_present = pvt->b0_ambpresent1; |
| else |
| amb_present = pvt->b0_ambpresent0; |
| } else { |
| if (channel & 0x1) |
| amb_present = pvt->b1_ambpresent1; |
| else |
| amb_present = pvt->b1_ambpresent0; |
| } |
| |
| return amb_present; |
| } |
| |
| /* |
| * determine_mtr(pvt, csrow, channel) |
| * |
| * return the proper MTR register as determine by the csrow and channel desired |
| */ |
| static int determine_mtr(struct i5000_pvt *pvt, int slot, int channel) |
| { |
| int mtr; |
| |
| if (channel < CHANNELS_PER_BRANCH) |
| mtr = pvt->b0_mtr[slot]; |
| else |
| mtr = pvt->b1_mtr[slot]; |
| |
| return mtr; |
| } |
| |
| /* |
| */ |
| static void decode_mtr(int slot_row, u16 mtr) |
| { |
| int ans; |
| |
| ans = MTR_DIMMS_PRESENT(mtr); |
| |
| edac_dbg(2, "\tMTR%d=0x%x: DIMMs are %sPresent\n", |
| slot_row, mtr, ans ? "" : "NOT "); |
| if (!ans) |
| return; |
| |
| edac_dbg(2, "\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr)); |
| edac_dbg(2, "\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr)); |
| edac_dbg(2, "\t\tNUMRANK: %s\n", |
| MTR_DIMM_RANK(mtr) ? "double" : "single"); |
| edac_dbg(2, "\t\tNUMROW: %s\n", |
| MTR_DIMM_ROWS(mtr) == 0 ? "8,192 - 13 rows" : |
| MTR_DIMM_ROWS(mtr) == 1 ? "16,384 - 14 rows" : |
| MTR_DIMM_ROWS(mtr) == 2 ? "32,768 - 15 rows" : |
| "reserved"); |
| edac_dbg(2, "\t\tNUMCOL: %s\n", |
| MTR_DIMM_COLS(mtr) == 0 ? "1,024 - 10 columns" : |
| MTR_DIMM_COLS(mtr) == 1 ? "2,048 - 11 columns" : |
| MTR_DIMM_COLS(mtr) == 2 ? "4,096 - 12 columns" : |
| "reserved"); |
| } |
| |
| static void handle_channel(struct i5000_pvt *pvt, int slot, int channel, |
| struct i5000_dimm_info *dinfo) |
| { |
| int mtr; |
| int amb_present_reg; |
| int addrBits; |
| |
| mtr = determine_mtr(pvt, slot, channel); |
| if (MTR_DIMMS_PRESENT(mtr)) { |
| amb_present_reg = determine_amb_present_reg(pvt, channel); |
| |
| /* Determine if there is a DIMM present in this DIMM slot */ |
| if (amb_present_reg) { |
| dinfo->dual_rank = MTR_DIMM_RANK(mtr); |
| |
| /* Start with the number of bits for a Bank |
| * on the DRAM */ |
| addrBits = MTR_DRAM_BANKS_ADDR_BITS(mtr); |
| /* Add the number of ROW bits */ |
| addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr); |
| /* add the number of COLUMN bits */ |
| addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr); |
| |
| /* Dual-rank memories have twice the size */ |
| if (dinfo->dual_rank) |
| addrBits++; |
| |
| addrBits += 6; /* add 64 bits per DIMM */ |
| addrBits -= 20; /* divide by 2^^20 */ |
| addrBits -= 3; /* 8 bits per bytes */ |
| |
| dinfo->megabytes = 1 << addrBits; |
| } |
| } |
| } |
| |
| /* |
| * calculate_dimm_size |
| * |
| * also will output a DIMM matrix map, if debug is enabled, for viewing |
| * how the DIMMs are populated |
| */ |
| static void calculate_dimm_size(struct i5000_pvt *pvt) |
| { |
| struct i5000_dimm_info *dinfo; |
| int slot, channel, branch; |
| char *p, *mem_buffer; |
| int space, n; |
| |
| /* ================= Generate some debug output ================= */ |
| space = PAGE_SIZE; |
| mem_buffer = p = kmalloc(space, GFP_KERNEL); |
| if (p == NULL) { |
| i5000_printk(KERN_ERR, "MC: %s:%s() kmalloc() failed\n", |
| __FILE__, __func__); |
| return; |
| } |
| |
| /* Scan all the actual slots |
| * and calculate the information for each DIMM |
| * Start with the highest slot first, to display it first |
| * and work toward the 0th slot |
| */ |
| for (slot = pvt->maxdimmperch - 1; slot >= 0; slot--) { |
| |
| /* on an odd slot, first output a 'boundary' marker, |
| * then reset the message buffer */ |
| if (slot & 0x1) { |
| n = snprintf(p, space, "--------------------------" |
| "--------------------------------"); |
| p += n; |
| space -= n; |
| edac_dbg(2, "%s\n", mem_buffer); |
| p = mem_buffer; |
| space = PAGE_SIZE; |
| } |
| n = snprintf(p, space, "slot %2d ", slot); |
| p += n; |
| space -= n; |
| |
| for (channel = 0; channel < pvt->maxch; channel++) { |
| dinfo = &pvt->dimm_info[slot][channel]; |
| handle_channel(pvt, slot, channel, dinfo); |
| if (dinfo->megabytes) |
| n = snprintf(p, space, "%4d MB %dR| ", |
| dinfo->megabytes, dinfo->dual_rank + 1); |
| else |
| n = snprintf(p, space, "%4d MB | ", 0); |
| p += n; |
| space -= n; |
| } |
| p += n; |
| space -= n; |
| edac_dbg(2, "%s\n", mem_buffer); |
| p = mem_buffer; |
| space = PAGE_SIZE; |
| } |
| |
| /* Output the last bottom 'boundary' marker */ |
| n = snprintf(p, space, "--------------------------" |
| "--------------------------------"); |
| p += n; |
| space -= n; |
| edac_dbg(2, "%s\n", mem_buffer); |
| p = mem_buffer; |
| space = PAGE_SIZE; |
| |
| /* now output the 'channel' labels */ |
| n = snprintf(p, space, " "); |
| p += n; |
| space -= n; |
| for (channel = 0; channel < pvt->maxch; channel++) { |
| n = snprintf(p, space, "channel %d | ", channel); |
| p += n; |
| space -= n; |
| } |
| edac_dbg(2, "%s\n", mem_buffer); |
| p = mem_buffer; |
| space = PAGE_SIZE; |
| |
| n = snprintf(p, space, " "); |
| p += n; |
| for (branch = 0; branch < MAX_BRANCHES; branch++) { |
| n = snprintf(p, space, " branch %d | ", branch); |
| p += n; |
| space -= n; |
| } |
| |
| /* output the last message and free buffer */ |
| edac_dbg(2, "%s\n", mem_buffer); |
| kfree(mem_buffer); |
| } |
| |
| /* |
| * i5000_get_mc_regs read in the necessary registers and |
| * cache locally |
| * |
| * Fills in the private data members |
| */ |
| static void i5000_get_mc_regs(struct mem_ctl_info *mci) |
| { |
| struct i5000_pvt *pvt; |
| u32 actual_tolm; |
| u16 limit; |
| int slot_row; |
| int maxch; |
| int maxdimmperch; |
| int way0, way1; |
| |
| pvt = mci->pvt_info; |
| |
| pci_read_config_dword(pvt->system_address, AMBASE, |
| &pvt->u.ambase_bottom); |
| pci_read_config_dword(pvt->system_address, AMBASE + sizeof(u32), |
| &pvt->u.ambase_top); |
| |
| maxdimmperch = pvt->maxdimmperch; |
| maxch = pvt->maxch; |
| |
| edac_dbg(2, "AMBASE= 0x%lx MAXCH= %d MAX-DIMM-Per-CH= %d\n", |
| (long unsigned int)pvt->ambase, pvt->maxch, pvt->maxdimmperch); |
| |
| /* Get the Branch Map regs */ |
| pci_read_config_word(pvt->branchmap_werrors, TOLM, &pvt->tolm); |
| pvt->tolm >>= 12; |
| edac_dbg(2, "TOLM (number of 256M regions) =%u (0x%x)\n", |
| pvt->tolm, pvt->tolm); |
| |
| actual_tolm = pvt->tolm << 28; |
| edac_dbg(2, "Actual TOLM byte addr=%u (0x%x)\n", |
| actual_tolm, actual_tolm); |
| |
| pci_read_config_word(pvt->branchmap_werrors, MIR0, &pvt->mir0); |
| pci_read_config_word(pvt->branchmap_werrors, MIR1, &pvt->mir1); |
| pci_read_config_word(pvt->branchmap_werrors, MIR2, &pvt->mir2); |
| |
| /* Get the MIR[0-2] regs */ |
| limit = (pvt->mir0 >> 4) & 0x0FFF; |
| way0 = pvt->mir0 & 0x1; |
| way1 = pvt->mir0 & 0x2; |
| edac_dbg(2, "MIR0: limit= 0x%x WAY1= %u WAY0= %x\n", |
| limit, way1, way0); |
| limit = (pvt->mir1 >> 4) & 0x0FFF; |
| way0 = pvt->mir1 & 0x1; |
| way1 = pvt->mir1 & 0x2; |
| edac_dbg(2, "MIR1: limit= 0x%x WAY1= %u WAY0= %x\n", |
| limit, way1, way0); |
| limit = (pvt->mir2 >> 4) & 0x0FFF; |
| way0 = pvt->mir2 & 0x1; |
| way1 = pvt->mir2 & 0x2; |
| edac_dbg(2, "MIR2: limit= 0x%x WAY1= %u WAY0= %x\n", |
| limit, way1, way0); |
| |
| /* Get the MTR[0-3] regs */ |
| for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) { |
| int where = MTR0 + (slot_row * sizeof(u32)); |
| |
| pci_read_config_word(pvt->branch_0, where, |
| &pvt->b0_mtr[slot_row]); |
| |
| edac_dbg(2, "MTR%d where=0x%x B0 value=0x%x\n", |
| slot_row, where, pvt->b0_mtr[slot_row]); |
| |
| if (pvt->maxch >= CHANNELS_PER_BRANCH) { |
| pci_read_config_word(pvt->branch_1, where, |
| &pvt->b1_mtr[slot_row]); |
| edac_dbg(2, "MTR%d where=0x%x B1 value=0x%x\n", |
| slot_row, where, pvt->b1_mtr[slot_row]); |
| } else { |
| pvt->b1_mtr[slot_row] = 0; |
| } |
| } |
| |
| /* Read and dump branch 0's MTRs */ |
| edac_dbg(2, "Memory Technology Registers:\n"); |
| edac_dbg(2, " Branch 0:\n"); |
| for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) { |
| decode_mtr(slot_row, pvt->b0_mtr[slot_row]); |
| } |
| pci_read_config_word(pvt->branch_0, AMB_PRESENT_0, |
| &pvt->b0_ambpresent0); |
| edac_dbg(2, "\t\tAMB-Branch 0-present0 0x%x:\n", pvt->b0_ambpresent0); |
| pci_read_config_word(pvt->branch_0, AMB_PRESENT_1, |
| &pvt->b0_ambpresent1); |
| edac_dbg(2, "\t\tAMB-Branch 0-present1 0x%x:\n", pvt->b0_ambpresent1); |
| |
| /* Only if we have 2 branchs (4 channels) */ |
| if (pvt->maxch < CHANNELS_PER_BRANCH) { |
| pvt->b1_ambpresent0 = 0; |
| pvt->b1_ambpresent1 = 0; |
| } else { |
| /* Read and dump branch 1's MTRs */ |
| edac_dbg(2, " Branch 1:\n"); |
| for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) { |
| decode_mtr(slot_row, pvt->b1_mtr[slot_row]); |
| } |
| pci_read_config_word(pvt->branch_1, AMB_PRESENT_0, |
| &pvt->b1_ambpresent0); |
| edac_dbg(2, "\t\tAMB-Branch 1-present0 0x%x:\n", |
| pvt->b1_ambpresent0); |
| pci_read_config_word(pvt->branch_1, AMB_PRESENT_1, |
| &pvt->b1_ambpresent1); |
| edac_dbg(2, "\t\tAMB-Branch 1-present1 0x%x:\n", |
| pvt->b1_ambpresent1); |
| } |
| |
| /* Go and determine the size of each DIMM and place in an |
| * orderly matrix */ |
| calculate_dimm_size(pvt); |
| } |
| |
| /* |
| * i5000_init_csrows Initialize the 'csrows' table within |
| * the mci control structure with the |
| * addressing of memory. |
| * |
| * return: |
| * 0 success |
| * 1 no actual memory found on this MC |
| */ |
| static int i5000_init_csrows(struct mem_ctl_info *mci) |
| { |
| struct i5000_pvt *pvt; |
| struct dimm_info *dimm; |
| int empty, channel_count; |
| int max_csrows; |
| int mtr; |
| int csrow_megs; |
| int channel; |
| int slot; |
| |
| pvt = mci->pvt_info; |
| |
| channel_count = pvt->maxch; |
| max_csrows = pvt->maxdimmperch * 2; |
| |
| empty = 1; /* Assume NO memory */ |
| |
| /* |
| * FIXME: The memory layout used to map slot/channel into the |
| * real memory architecture is weird: branch+slot are "csrows" |
| * and channel is channel. That required an extra array (dimm_info) |
| * to map the dimms. A good cleanup would be to remove this array, |
| * and do a loop here with branch, channel, slot |
| */ |
| for (slot = 0; slot < max_csrows; slot++) { |
| for (channel = 0; channel < pvt->maxch; channel++) { |
| |
| mtr = determine_mtr(pvt, slot, channel); |
| |
| if (!MTR_DIMMS_PRESENT(mtr)) |
| continue; |
| |
| dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, |
| channel / MAX_BRANCHES, |
| channel % MAX_BRANCHES, slot); |
| |
| csrow_megs = pvt->dimm_info[slot][channel].megabytes; |
| dimm->grain = 8; |
| |
| /* Assume DDR2 for now */ |
| dimm->mtype = MEM_FB_DDR2; |
| |
| /* ask what device type on this row */ |
| if (MTR_DRAM_WIDTH(mtr) == 8) |
| dimm->dtype = DEV_X8; |
| else |
| dimm->dtype = DEV_X4; |
| |
| dimm->edac_mode = EDAC_S8ECD8ED; |
| dimm->nr_pages = csrow_megs << 8; |
| } |
| |
| empty = 0; |
| } |
| |
| return empty; |
| } |
| |
| /* |
| * i5000_enable_error_reporting |
| * Turn on the memory reporting features of the hardware |
| */ |
| static void i5000_enable_error_reporting(struct mem_ctl_info *mci) |
| { |
| struct i5000_pvt *pvt; |
| u32 fbd_error_mask; |
| |
| pvt = mci->pvt_info; |
| |
| /* Read the FBD Error Mask Register */ |
| pci_read_config_dword(pvt->branchmap_werrors, EMASK_FBD, |
| &fbd_error_mask); |
| |
| /* Enable with a '0' */ |
| fbd_error_mask &= ~(ENABLE_EMASK_ALL); |
| |
| pci_write_config_dword(pvt->branchmap_werrors, EMASK_FBD, |
| fbd_error_mask); |
| } |
| |
| /* |
| * i5000_get_dimm_and_channel_counts(pdev, &nr_csrows, &num_channels) |
| * |
| * ask the device how many channels are present and how many CSROWS |
| * as well |
| */ |
| static void i5000_get_dimm_and_channel_counts(struct pci_dev *pdev, |
| int *num_dimms_per_channel, |
| int *num_channels) |
| { |
| u8 value; |
| |
| /* Need to retrieve just how many channels and dimms per channel are |
| * supported on this memory controller |
| */ |
| pci_read_config_byte(pdev, MAXDIMMPERCH, &value); |
| *num_dimms_per_channel = (int)value; |
| |
| pci_read_config_byte(pdev, MAXCH, &value); |
| *num_channels = (int)value; |
| } |
| |
| /* |
| * i5000_probe1 Probe for ONE instance of device to see if it is |
| * present. |
| * return: |
| * 0 for FOUND a device |
| * < 0 for error code |
| */ |
| static int i5000_probe1(struct pci_dev *pdev, int dev_idx) |
| { |
| struct mem_ctl_info *mci; |
| struct edac_mc_layer layers[3]; |
| struct i5000_pvt *pvt; |
| int num_channels; |
| int num_dimms_per_channel; |
| |
| edac_dbg(0, "MC: pdev bus %u dev=0x%x fn=0x%x\n", |
| pdev->bus->number, |
| PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); |
| |
| /* We only are looking for func 0 of the set */ |
| if (PCI_FUNC(pdev->devfn) != 0) |
| return -ENODEV; |
| |
| /* Ask the devices for the number of CSROWS and CHANNELS so |
| * that we can calculate the memory resources, etc |
| * |
| * The Chipset will report what it can handle which will be greater |
| * or equal to what the motherboard manufacturer will implement. |
| * |
| * As we don't have a motherboard identification routine to determine |
| * actual number of slots/dimms per channel, we thus utilize the |
| * resource as specified by the chipset. Thus, we might have |
| * have more DIMMs per channel than actually on the mobo, but this |
| * allows the driver to support up to the chipset max, without |
| * some fancy mobo determination. |
| */ |
| i5000_get_dimm_and_channel_counts(pdev, &num_dimms_per_channel, |
| &num_channels); |
| |
| edac_dbg(0, "MC: Number of Branches=2 Channels= %d DIMMS= %d\n", |
| num_channels, num_dimms_per_channel); |
| |
| /* allocate a new MC control structure */ |
| |
| layers[0].type = EDAC_MC_LAYER_BRANCH; |
| layers[0].size = MAX_BRANCHES; |
| layers[0].is_virt_csrow = false; |
| layers[1].type = EDAC_MC_LAYER_CHANNEL; |
| layers[1].size = num_channels / MAX_BRANCHES; |
| layers[1].is_virt_csrow = false; |
| layers[2].type = EDAC_MC_LAYER_SLOT; |
| layers[2].size = num_dimms_per_channel; |
| layers[2].is_virt_csrow = true; |
| mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt)); |
| if (mci == NULL) |
| return -ENOMEM; |
| |
| edac_dbg(0, "MC: mci = %p\n", mci); |
| |
| mci->pdev = &pdev->dev; /* record ptr to the generic device */ |
| |
| pvt = mci->pvt_info; |
| pvt->system_address = pdev; /* Record this device in our private */ |
| pvt->maxch = num_channels; |
| pvt->maxdimmperch = num_dimms_per_channel; |
| |
| /* 'get' the pci devices we want to reserve for our use */ |
| if (i5000_get_devices(mci, dev_idx)) |
| goto fail0; |
| |
| /* Time to get serious */ |
| i5000_get_mc_regs(mci); /* retrieve the hardware registers */ |
| |
| mci->mc_idx = 0; |
| mci->mtype_cap = MEM_FLAG_FB_DDR2; |
| mci->edac_ctl_cap = EDAC_FLAG_NONE; |
| mci->edac_cap = EDAC_FLAG_NONE; |
| mci->mod_name = "i5000_edac.c"; |
| mci->mod_ver = I5000_REVISION; |
| mci->ctl_name = i5000_devs[dev_idx].ctl_name; |
| mci->dev_name = pci_name(pdev); |
| mci->ctl_page_to_phys = NULL; |
| |
| /* Set the function pointer to an actual operation function */ |
| mci->edac_check = i5000_check_error; |
| |
| /* initialize the MC control structure 'csrows' table |
| * with the mapping and control information */ |
| if (i5000_init_csrows(mci)) { |
| edac_dbg(0, "MC: Setting mci->edac_cap to EDAC_FLAG_NONE because i5000_init_csrows() returned nonzero value\n"); |
| mci->edac_cap = EDAC_FLAG_NONE; /* no csrows found */ |
| } else { |
| edac_dbg(1, "MC: Enable error reporting now\n"); |
| i5000_enable_error_reporting(mci); |
| } |
| |
| /* add this new MC control structure to EDAC's list of MCs */ |
| if (edac_mc_add_mc(mci)) { |
| edac_dbg(0, "MC: failed edac_mc_add_mc()\n"); |
| /* FIXME: perhaps some code should go here that disables error |
| * reporting if we just enabled it |
| */ |
| goto fail1; |
| } |
| |
| i5000_clear_error(mci); |
| |
| /* allocating generic PCI control info */ |
| i5000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR); |
| if (!i5000_pci) { |
| printk(KERN_WARNING |
| "%s(): Unable to create PCI control\n", |
| __func__); |
| printk(KERN_WARNING |
| "%s(): PCI error report via EDAC not setup\n", |
| __func__); |
| } |
| |
| return 0; |
| |
| /* Error exit unwinding stack */ |
| fail1: |
| |
| i5000_put_devices(mci); |
| |
| fail0: |
| edac_mc_free(mci); |
| return -ENODEV; |
| } |
| |
| /* |
| * i5000_init_one constructor for one instance of device |
| * |
| * returns: |
| * negative on error |
| * count (>= 0) |
| */ |
| static int i5000_init_one(struct pci_dev *pdev, const struct pci_device_id *id) |
| { |
| int rc; |
| |
| edac_dbg(0, "MC:\n"); |
| |
| /* wake up device */ |
| rc = pci_enable_device(pdev); |
| if (rc) |
| return rc; |
| |
| /* now probe and enable the device */ |
| return i5000_probe1(pdev, id->driver_data); |
| } |
| |
| /* |
| * i5000_remove_one destructor for one instance of device |
| * |
| */ |
| static void i5000_remove_one(struct pci_dev *pdev) |
| { |
| struct mem_ctl_info *mci; |
| |
| edac_dbg(0, "\n"); |
| |
| if (i5000_pci) |
| edac_pci_release_generic_ctl(i5000_pci); |
| |
| if ((mci = edac_mc_del_mc(&pdev->dev)) == NULL) |
| return; |
| |
| /* retrieve references to resources, and free those resources */ |
| i5000_put_devices(mci); |
| edac_mc_free(mci); |
| } |
| |
| /* |
| * pci_device_id table for which devices we are looking for |
| * |
| * The "E500P" device is the first device supported. |
| */ |
| static const struct pci_device_id i5000_pci_tbl[] = { |
| {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I5000_DEV16), |
| .driver_data = I5000P}, |
| |
| {0,} /* 0 terminated list. */ |
| }; |
| |
| MODULE_DEVICE_TABLE(pci, i5000_pci_tbl); |
| |
| /* |
| * i5000_driver pci_driver structure for this module |
| * |
| */ |
| static struct pci_driver i5000_driver = { |
| .name = KBUILD_BASENAME, |
| .probe = i5000_init_one, |
| .remove = i5000_remove_one, |
| .id_table = i5000_pci_tbl, |
| }; |
| |
| /* |
| * i5000_init Module entry function |
| * Try to initialize this module for its devices |
| */ |
| static int __init i5000_init(void) |
| { |
| int pci_rc; |
| |
| edac_dbg(2, "MC:\n"); |
| |
| /* Ensure that the OPSTATE is set correctly for POLL or NMI */ |
| opstate_init(); |
| |
| pci_rc = pci_register_driver(&i5000_driver); |
| |
| return (pci_rc < 0) ? pci_rc : 0; |
| } |
| |
| /* |
| * i5000_exit() Module exit function |
| * Unregister the driver |
| */ |
| static void __exit i5000_exit(void) |
| { |
| edac_dbg(2, "MC:\n"); |
| pci_unregister_driver(&i5000_driver); |
| } |
| |
| module_init(i5000_init); |
| module_exit(i5000_exit); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR |
| ("Linux Networx (http://lnxi.com) Doug Thompson <norsk5@xmission.com>"); |
| MODULE_DESCRIPTION("MC Driver for Intel I5000 memory controllers - " |
| I5000_REVISION); |
| |
| module_param(edac_op_state, int, 0444); |
| MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); |
| module_param(misc_messages, int, 0444); |
| MODULE_PARM_DESC(misc_messages, "Log miscellaneous non fatal messages"); |
| |