blob: 43b44961a41aa0bc1329ba13cbee4aef931c2639 [file] [log] [blame]
/*
* Copyright (c) 2010 Broadcom Corporation
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/kthread.h>
#include <linux/printk.h>
#include <linux/pci_ids.h>
#include <linux/netdevice.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
#include <linux/mmc/sdio.h>
#include <linux/mmc/sdio_func.h>
#include <linux/mmc/card.h>
#include <linux/semaphore.h>
#include <linux/firmware.h>
#include <linux/module.h>
#include <linux/bcma/bcma.h>
#include <asm/unaligned.h>
#include <defs.h>
#include <brcmu_wifi.h>
#include <brcmu_utils.h>
#include <brcm_hw_ids.h>
#include <soc.h>
#include "sdio_host.h"
#include "sdio_chip.h"
#define DCMD_RESP_TIMEOUT 2000 /* In milli second */
#ifdef BCMDBG
#define BRCMF_TRAP_INFO_SIZE 80
#define CBUF_LEN (128)
struct rte_log_le {
__le32 buf; /* Can't be pointer on (64-bit) hosts */
__le32 buf_size;
__le32 idx;
char *_buf_compat; /* Redundant pointer for backward compat. */
};
struct rte_console {
/* Virtual UART
* When there is no UART (e.g. Quickturn),
* the host should write a complete
* input line directly into cbuf and then write
* the length into vcons_in.
* This may also be used when there is a real UART
* (at risk of conflicting with
* the real UART). vcons_out is currently unused.
*/
uint vcons_in;
uint vcons_out;
/* Output (logging) buffer
* Console output is written to a ring buffer log_buf at index log_idx.
* The host may read the output when it sees log_idx advance.
* Output will be lost if the output wraps around faster than the host
* polls.
*/
struct rte_log_le log_le;
/* Console input line buffer
* Characters are read one at a time into cbuf
* until <CR> is received, then
* the buffer is processed as a command line.
* Also used for virtual UART.
*/
uint cbuf_idx;
char cbuf[CBUF_LEN];
};
#endif /* BCMDBG */
#include <chipcommon.h>
#include "dhd.h"
#include "dhd_bus.h"
#include "dhd_proto.h"
#include "dhd_dbg.h"
#include <bcmchip.h>
#define TXQLEN 2048 /* bulk tx queue length */
#define TXHI (TXQLEN - 256) /* turn on flow control above TXHI */
#define TXLOW (TXHI - 256) /* turn off flow control below TXLOW */
#define PRIOMASK 7
#define TXRETRIES 2 /* # of retries for tx frames */
#define BRCMF_RXBOUND 50 /* Default for max rx frames in
one scheduling */
#define BRCMF_TXBOUND 20 /* Default for max tx frames in
one scheduling */
#define BRCMF_TXMINMAX 1 /* Max tx frames if rx still pending */
#define MEMBLOCK 2048 /* Block size used for downloading
of dongle image */
#define MAX_DATA_BUF (32 * 1024) /* Must be large enough to hold
biggest possible glom */
#define BRCMF_FIRSTREAD (1 << 6)
/* SBSDIO_DEVICE_CTL */
/* 1: device will assert busy signal when receiving CMD53 */
#define SBSDIO_DEVCTL_SETBUSY 0x01
/* 1: assertion of sdio interrupt is synchronous to the sdio clock */
#define SBSDIO_DEVCTL_SPI_INTR_SYNC 0x02
/* 1: mask all interrupts to host except the chipActive (rev 8) */
#define SBSDIO_DEVCTL_CA_INT_ONLY 0x04
/* 1: isolate internal sdio signals, put external pads in tri-state; requires
* sdio bus power cycle to clear (rev 9) */
#define SBSDIO_DEVCTL_PADS_ISO 0x08
/* Force SD->SB reset mapping (rev 11) */
#define SBSDIO_DEVCTL_SB_RST_CTL 0x30
/* Determined by CoreControl bit */
#define SBSDIO_DEVCTL_RST_CORECTL 0x00
/* Force backplane reset */
#define SBSDIO_DEVCTL_RST_BPRESET 0x10
/* Force no backplane reset */
#define SBSDIO_DEVCTL_RST_NOBPRESET 0x20
/* direct(mapped) cis space */
/* MAPPED common CIS address */
#define SBSDIO_CIS_BASE_COMMON 0x1000
/* maximum bytes in one CIS */
#define SBSDIO_CIS_SIZE_LIMIT 0x200
/* cis offset addr is < 17 bits */
#define SBSDIO_CIS_OFT_ADDR_MASK 0x1FFFF
/* manfid tuple length, include tuple, link bytes */
#define SBSDIO_CIS_MANFID_TUPLE_LEN 6
/* intstatus */
#define I_SMB_SW0 (1 << 0) /* To SB Mail S/W interrupt 0 */
#define I_SMB_SW1 (1 << 1) /* To SB Mail S/W interrupt 1 */
#define I_SMB_SW2 (1 << 2) /* To SB Mail S/W interrupt 2 */
#define I_SMB_SW3 (1 << 3) /* To SB Mail S/W interrupt 3 */
#define I_SMB_SW_MASK 0x0000000f /* To SB Mail S/W interrupts mask */
#define I_SMB_SW_SHIFT 0 /* To SB Mail S/W interrupts shift */
#define I_HMB_SW0 (1 << 4) /* To Host Mail S/W interrupt 0 */
#define I_HMB_SW1 (1 << 5) /* To Host Mail S/W interrupt 1 */
#define I_HMB_SW2 (1 << 6) /* To Host Mail S/W interrupt 2 */
#define I_HMB_SW3 (1 << 7) /* To Host Mail S/W interrupt 3 */
#define I_HMB_SW_MASK 0x000000f0 /* To Host Mail S/W interrupts mask */
#define I_HMB_SW_SHIFT 4 /* To Host Mail S/W interrupts shift */
#define I_WR_OOSYNC (1 << 8) /* Write Frame Out Of Sync */
#define I_RD_OOSYNC (1 << 9) /* Read Frame Out Of Sync */
#define I_PC (1 << 10) /* descriptor error */
#define I_PD (1 << 11) /* data error */
#define I_DE (1 << 12) /* Descriptor protocol Error */
#define I_RU (1 << 13) /* Receive descriptor Underflow */
#define I_RO (1 << 14) /* Receive fifo Overflow */
#define I_XU (1 << 15) /* Transmit fifo Underflow */
#define I_RI (1 << 16) /* Receive Interrupt */
#define I_BUSPWR (1 << 17) /* SDIO Bus Power Change (rev 9) */
#define I_XMTDATA_AVAIL (1 << 23) /* bits in fifo */
#define I_XI (1 << 24) /* Transmit Interrupt */
#define I_RF_TERM (1 << 25) /* Read Frame Terminate */
#define I_WF_TERM (1 << 26) /* Write Frame Terminate */
#define I_PCMCIA_XU (1 << 27) /* PCMCIA Transmit FIFO Underflow */
#define I_SBINT (1 << 28) /* sbintstatus Interrupt */
#define I_CHIPACTIVE (1 << 29) /* chip from doze to active state */
#define I_SRESET (1 << 30) /* CCCR RES interrupt */
#define I_IOE2 (1U << 31) /* CCCR IOE2 Bit Changed */
#define I_ERRORS (I_PC | I_PD | I_DE | I_RU | I_RO | I_XU)
#define I_DMA (I_RI | I_XI | I_ERRORS)
/* corecontrol */
#define CC_CISRDY (1 << 0) /* CIS Ready */
#define CC_BPRESEN (1 << 1) /* CCCR RES signal */
#define CC_F2RDY (1 << 2) /* set CCCR IOR2 bit */
#define CC_CLRPADSISO (1 << 3) /* clear SDIO pads isolation */
#define CC_XMTDATAAVAIL_MODE (1 << 4)
#define CC_XMTDATAAVAIL_CTRL (1 << 5)
/* SDA_FRAMECTRL */
#define SFC_RF_TERM (1 << 0) /* Read Frame Terminate */
#define SFC_WF_TERM (1 << 1) /* Write Frame Terminate */
#define SFC_CRC4WOOS (1 << 2) /* CRC error for write out of sync */
#define SFC_ABORTALL (1 << 3) /* Abort all in-progress frames */
/* HW frame tag */
#define SDPCM_FRAMETAG_LEN 4 /* 2 bytes len, 2 bytes check val */
/* Total length of frame header for dongle protocol */
#define SDPCM_HDRLEN (SDPCM_FRAMETAG_LEN + SDPCM_SWHEADER_LEN)
#define SDPCM_RESERVE (SDPCM_HDRLEN + BRCMF_SDALIGN)
/*
* Software allocation of To SB Mailbox resources
*/
/* tosbmailbox bits corresponding to intstatus bits */
#define SMB_NAK (1 << 0) /* Frame NAK */
#define SMB_INT_ACK (1 << 1) /* Host Interrupt ACK */
#define SMB_USE_OOB (1 << 2) /* Use OOB Wakeup */
#define SMB_DEV_INT (1 << 3) /* Miscellaneous Interrupt */
/* tosbmailboxdata */
#define SMB_DATA_VERSION_SHIFT 16 /* host protocol version */
/*
* Software allocation of To Host Mailbox resources
*/
/* intstatus bits */
#define I_HMB_FC_STATE I_HMB_SW0 /* Flow Control State */
#define I_HMB_FC_CHANGE I_HMB_SW1 /* Flow Control State Changed */
#define I_HMB_FRAME_IND I_HMB_SW2 /* Frame Indication */
#define I_HMB_HOST_INT I_HMB_SW3 /* Miscellaneous Interrupt */
/* tohostmailboxdata */
#define HMB_DATA_NAKHANDLED 1 /* retransmit NAK'd frame */
#define HMB_DATA_DEVREADY 2 /* talk to host after enable */
#define HMB_DATA_FC 4 /* per prio flowcontrol update flag */
#define HMB_DATA_FWREADY 8 /* fw ready for protocol activity */
#define HMB_DATA_FCDATA_MASK 0xff000000
#define HMB_DATA_FCDATA_SHIFT 24
#define HMB_DATA_VERSION_MASK 0x00ff0000
#define HMB_DATA_VERSION_SHIFT 16
/*
* Software-defined protocol header
*/
/* Current protocol version */
#define SDPCM_PROT_VERSION 4
/* SW frame header */
#define SDPCM_PACKET_SEQUENCE(p) (((u8 *)p)[0] & 0xff)
#define SDPCM_CHANNEL_MASK 0x00000f00
#define SDPCM_CHANNEL_SHIFT 8
#define SDPCM_PACKET_CHANNEL(p) (((u8 *)p)[1] & 0x0f)
#define SDPCM_NEXTLEN_OFFSET 2
/* Data Offset from SOF (HW Tag, SW Tag, Pad) */
#define SDPCM_DOFFSET_OFFSET 3 /* Data Offset */
#define SDPCM_DOFFSET_VALUE(p) (((u8 *)p)[SDPCM_DOFFSET_OFFSET] & 0xff)
#define SDPCM_DOFFSET_MASK 0xff000000
#define SDPCM_DOFFSET_SHIFT 24
#define SDPCM_FCMASK_OFFSET 4 /* Flow control */
#define SDPCM_FCMASK_VALUE(p) (((u8 *)p)[SDPCM_FCMASK_OFFSET] & 0xff)
#define SDPCM_WINDOW_OFFSET 5 /* Credit based fc */
#define SDPCM_WINDOW_VALUE(p) (((u8 *)p)[SDPCM_WINDOW_OFFSET] & 0xff)
#define SDPCM_SWHEADER_LEN 8 /* SW header is 64 bits */
/* logical channel numbers */
#define SDPCM_CONTROL_CHANNEL 0 /* Control channel Id */
#define SDPCM_EVENT_CHANNEL 1 /* Asyc Event Indication Channel Id */
#define SDPCM_DATA_CHANNEL 2 /* Data Xmit/Recv Channel Id */
#define SDPCM_GLOM_CHANNEL 3 /* For coalesced packets */
#define SDPCM_TEST_CHANNEL 15 /* Reserved for test/debug packets */
#define SDPCM_SEQUENCE_WRAP 256 /* wrap-around val for 8bit frame seq */
#define SDPCM_GLOMDESC(p) (((u8 *)p)[1] & 0x80)
/*
* Shared structure between dongle and the host.
* The structure contains pointers to trap or assert information.
*/
#define SDPCM_SHARED_VERSION 0x0002
#define SDPCM_SHARED_VERSION_MASK 0x00FF
#define SDPCM_SHARED_ASSERT_BUILT 0x0100
#define SDPCM_SHARED_ASSERT 0x0200
#define SDPCM_SHARED_TRAP 0x0400
/* Space for header read, limit for data packets */
#define MAX_HDR_READ (1 << 6)
#define MAX_RX_DATASZ 2048
/* Maximum milliseconds to wait for F2 to come up */
#define BRCMF_WAIT_F2RDY 3000
/* Bump up limit on waiting for HT to account for first startup;
* if the image is doing a CRC calculation before programming the PMU
* for HT availability, it could take a couple hundred ms more, so
* max out at a 1 second (1000000us).
*/
#undef PMU_MAX_TRANSITION_DLY
#define PMU_MAX_TRANSITION_DLY 1000000
/* Value for ChipClockCSR during initial setup */
#define BRCMF_INIT_CLKCTL1 (SBSDIO_FORCE_HW_CLKREQ_OFF | \
SBSDIO_ALP_AVAIL_REQ)
/* Flags for SDH calls */
#define F2SYNC (SDIO_REQ_4BYTE | SDIO_REQ_FIXED)
/*
* Conversion of 802.1D priority to precedence level
*/
static uint prio2prec(u32 prio)
{
return (prio == PRIO_8021D_NONE || prio == PRIO_8021D_BE) ?
(prio^2) : prio;
}
/* core registers */
struct sdpcmd_regs {
u32 corecontrol; /* 0x00, rev8 */
u32 corestatus; /* rev8 */
u32 PAD[1];
u32 biststatus; /* rev8 */
/* PCMCIA access */
u16 pcmciamesportaladdr; /* 0x010, rev8 */
u16 PAD[1];
u16 pcmciamesportalmask; /* rev8 */
u16 PAD[1];
u16 pcmciawrframebc; /* rev8 */
u16 PAD[1];
u16 pcmciaunderflowtimer; /* rev8 */
u16 PAD[1];
/* interrupt */
u32 intstatus; /* 0x020, rev8 */
u32 hostintmask; /* rev8 */
u32 intmask; /* rev8 */
u32 sbintstatus; /* rev8 */
u32 sbintmask; /* rev8 */
u32 funcintmask; /* rev4 */
u32 PAD[2];
u32 tosbmailbox; /* 0x040, rev8 */
u32 tohostmailbox; /* rev8 */
u32 tosbmailboxdata; /* rev8 */
u32 tohostmailboxdata; /* rev8 */
/* synchronized access to registers in SDIO clock domain */
u32 sdioaccess; /* 0x050, rev8 */
u32 PAD[3];
/* PCMCIA frame control */
u8 pcmciaframectrl; /* 0x060, rev8 */
u8 PAD[3];
u8 pcmciawatermark; /* rev8 */
u8 PAD[155];
/* interrupt batching control */
u32 intrcvlazy; /* 0x100, rev8 */
u32 PAD[3];
/* counters */
u32 cmd52rd; /* 0x110, rev8 */
u32 cmd52wr; /* rev8 */
u32 cmd53rd; /* rev8 */
u32 cmd53wr; /* rev8 */
u32 abort; /* rev8 */
u32 datacrcerror; /* rev8 */
u32 rdoutofsync; /* rev8 */
u32 wroutofsync; /* rev8 */
u32 writebusy; /* rev8 */
u32 readwait; /* rev8 */
u32 readterm; /* rev8 */
u32 writeterm; /* rev8 */
u32 PAD[40];
u32 clockctlstatus; /* rev8 */
u32 PAD[7];
u32 PAD[128]; /* DMA engines */
/* SDIO/PCMCIA CIS region */
char cis[512]; /* 0x400-0x5ff, rev6 */
/* PCMCIA function control registers */
char pcmciafcr[256]; /* 0x600-6ff, rev6 */
u16 PAD[55];
/* PCMCIA backplane access */
u16 backplanecsr; /* 0x76E, rev6 */
u16 backplaneaddr0; /* rev6 */
u16 backplaneaddr1; /* rev6 */
u16 backplaneaddr2; /* rev6 */
u16 backplaneaddr3; /* rev6 */
u16 backplanedata0; /* rev6 */
u16 backplanedata1; /* rev6 */
u16 backplanedata2; /* rev6 */
u16 backplanedata3; /* rev6 */
u16 PAD[31];
/* sprom "size" & "blank" info */
u16 spromstatus; /* 0x7BE, rev2 */
u32 PAD[464];
u16 PAD[0x80];
};
#ifdef BCMDBG
/* Device console log buffer state */
struct brcmf_console {
uint count; /* Poll interval msec counter */
uint log_addr; /* Log struct address (fixed) */
struct rte_log_le log_le; /* Log struct (host copy) */
uint bufsize; /* Size of log buffer */
u8 *buf; /* Log buffer (host copy) */
uint last; /* Last buffer read index */
};
#endif /* BCMDBG */
struct sdpcm_shared {
u32 flags;
u32 trap_addr;
u32 assert_exp_addr;
u32 assert_file_addr;
u32 assert_line;
u32 console_addr; /* Address of struct rte_console */
u32 msgtrace_addr;
u8 tag[32];
};
struct sdpcm_shared_le {
__le32 flags;
__le32 trap_addr;
__le32 assert_exp_addr;
__le32 assert_file_addr;
__le32 assert_line;
__le32 console_addr; /* Address of struct rte_console */
__le32 msgtrace_addr;
u8 tag[32];
};
/* misc chip info needed by some of the routines */
/* Private data for SDIO bus interaction */
struct brcmf_bus {
struct brcmf_pub *drvr;
struct brcmf_sdio_dev *sdiodev; /* sdio device handler */
struct chip_info *ci; /* Chip info struct */
char *vars; /* Variables (from CIS and/or other) */
uint varsz; /* Size of variables buffer */
u32 ramsize; /* Size of RAM in SOCRAM (bytes) */
u32 hostintmask; /* Copy of Host Interrupt Mask */
u32 intstatus; /* Intstatus bits (events) pending */
bool dpc_sched; /* Indicates DPC schedule (intrpt rcvd) */
bool fcstate; /* State of dongle flow-control */
uint blocksize; /* Block size of SDIO transfers */
uint roundup; /* Max roundup limit */
struct pktq txq; /* Queue length used for flow-control */
u8 flowcontrol; /* per prio flow control bitmask */
u8 tx_seq; /* Transmit sequence number (next) */
u8 tx_max; /* Maximum transmit sequence allowed */
u8 hdrbuf[MAX_HDR_READ + BRCMF_SDALIGN];
u8 *rxhdr; /* Header of current rx frame (in hdrbuf) */
u16 nextlen; /* Next Read Len from last header */
u8 rx_seq; /* Receive sequence number (expected) */
bool rxskip; /* Skip receive (awaiting NAK ACK) */
uint rxbound; /* Rx frames to read before resched */
uint txbound; /* Tx frames to send before resched */
uint txminmax;
struct sk_buff *glomd; /* Packet containing glomming descriptor */
struct sk_buff_head glom; /* Packet list for glommed superframe */
uint glomerr; /* Glom packet read errors */
u8 *rxbuf; /* Buffer for receiving control packets */
uint rxblen; /* Allocated length of rxbuf */
u8 *rxctl; /* Aligned pointer into rxbuf */
u8 *databuf; /* Buffer for receiving big glom packet */
u8 *dataptr; /* Aligned pointer into databuf */
uint rxlen; /* Length of valid data in buffer */
u8 sdpcm_ver; /* Bus protocol reported by dongle */
bool intr; /* Use interrupts */
bool poll; /* Use polling */
bool ipend; /* Device interrupt is pending */
uint intrcount; /* Count of device interrupt callbacks */
uint lastintrs; /* Count as of last watchdog timer */
uint spurious; /* Count of spurious interrupts */
uint pollrate; /* Ticks between device polls */
uint polltick; /* Tick counter */
uint pollcnt; /* Count of active polls */
#ifdef BCMDBG
uint console_interval;
struct brcmf_console console; /* Console output polling support */
uint console_addr; /* Console address from shared struct */
#endif /* BCMDBG */
uint regfails; /* Count of R_REG failures */
uint clkstate; /* State of sd and backplane clock(s) */
bool activity; /* Activity flag for clock down */
s32 idletime; /* Control for activity timeout */
s32 idlecount; /* Activity timeout counter */
s32 idleclock; /* How to set bus driver when idle */
s32 sd_rxchain;
bool use_rxchain; /* If brcmf should use PKT chains */
bool sleeping; /* Is SDIO bus sleeping? */
bool rxflow_mode; /* Rx flow control mode */
bool rxflow; /* Is rx flow control on */
bool alp_only; /* Don't use HT clock (ALP only) */
/* Field to decide if rx of control frames happen in rxbuf or lb-pool */
bool usebufpool;
/* Some additional counters */
uint tx_sderrs; /* Count of tx attempts with sd errors */
uint fcqueued; /* Tx packets that got queued */
uint rxrtx; /* Count of rtx requests (NAK to dongle) */
uint rx_toolong; /* Receive frames too long to receive */
uint rxc_errors; /* SDIO errors when reading control frames */
uint rx_hdrfail; /* SDIO errors on header reads */
uint rx_badhdr; /* Bad received headers (roosync?) */
uint rx_badseq; /* Mismatched rx sequence number */
uint fc_rcvd; /* Number of flow-control events received */
uint fc_xoff; /* Number which turned on flow-control */
uint fc_xon; /* Number which turned off flow-control */
uint rxglomfail; /* Failed deglom attempts */
uint rxglomframes; /* Number of glom frames (superframes) */
uint rxglompkts; /* Number of packets from glom frames */
uint f2rxhdrs; /* Number of header reads */
uint f2rxdata; /* Number of frame data reads */
uint f2txdata; /* Number of f2 frame writes */
uint f1regdata; /* Number of f1 register accesses */
u8 *ctrl_frame_buf;
u32 ctrl_frame_len;
bool ctrl_frame_stat;
spinlock_t txqlock;
wait_queue_head_t ctrl_wait;
wait_queue_head_t dcmd_resp_wait;
struct timer_list timer;
struct completion watchdog_wait;
struct task_struct *watchdog_tsk;
bool wd_timer_valid;
uint save_ms;
struct task_struct *dpc_tsk;
struct completion dpc_wait;
struct semaphore sdsem;
const char *fw_name;
const struct firmware *firmware;
const char *nv_name;
u32 fw_ptr;
};
/* clkstate */
#define CLK_NONE 0
#define CLK_SDONLY 1
#define CLK_PENDING 2 /* Not used yet */
#define CLK_AVAIL 3
#ifdef BCMDBG
static int qcount[NUMPRIO];
static int tx_packets[NUMPRIO];
#endif /* BCMDBG */
#define SDIO_DRIVE_STRENGTH 6 /* in milliamps */
#define RETRYCHAN(chan) ((chan) == SDPCM_EVENT_CHANNEL)
/* Retry count for register access failures */
static const uint retry_limit = 2;
/* Limit on rounding up frames */
static const uint max_roundup = 512;
#define ALIGNMENT 4
static void pkt_align(struct sk_buff *p, int len, int align)
{
uint datalign;
datalign = (unsigned long)(p->data);
datalign = roundup(datalign, (align)) - datalign;
if (datalign)
skb_pull(p, datalign);
__skb_trim(p, len);
}
/* To check if there's window offered */
static bool data_ok(struct brcmf_bus *bus)
{
return (u8)(bus->tx_max - bus->tx_seq) != 0 &&
((u8)(bus->tx_max - bus->tx_seq) & 0x80) == 0;
}
/*
* Reads a register in the SDIO hardware block. This block occupies a series of
* adresses on the 32 bit backplane bus.
*/
static void
r_sdreg32(struct brcmf_bus *bus, u32 *regvar, u32 reg_offset, u32 *retryvar)
{
u8 idx = brcmf_sdio_chip_getinfidx(bus->ci, BCMA_CORE_SDIO_DEV);
*retryvar = 0;
do {
*regvar = brcmf_sdcard_reg_read(bus->sdiodev,
bus->ci->c_inf[idx].base + reg_offset,
sizeof(u32));
} while (brcmf_sdcard_regfail(bus->sdiodev) &&
(++(*retryvar) <= retry_limit));
if (*retryvar) {
bus->regfails += (*retryvar-1);
if (*retryvar > retry_limit) {
brcmf_dbg(ERROR, "FAILED READ %Xh\n", reg_offset);
*regvar = 0;
}
}
}
static void
w_sdreg32(struct brcmf_bus *bus, u32 regval, u32 reg_offset, u32 *retryvar)
{
u8 idx = brcmf_sdio_chip_getinfidx(bus->ci, BCMA_CORE_SDIO_DEV);
*retryvar = 0;
do {
brcmf_sdcard_reg_write(bus->sdiodev,
bus->ci->c_inf[idx].base + reg_offset,
sizeof(u32), regval);
} while (brcmf_sdcard_regfail(bus->sdiodev) &&
(++(*retryvar) <= retry_limit));
if (*retryvar) {
bus->regfails += (*retryvar-1);
if (*retryvar > retry_limit)
brcmf_dbg(ERROR, "FAILED REGISTER WRITE %Xh\n",
reg_offset);
}
}
#define PKT_AVAILABLE() (intstatus & I_HMB_FRAME_IND)
#define HOSTINTMASK (I_HMB_SW_MASK | I_CHIPACTIVE)
/* Packet free applicable unconditionally for sdio and sdspi.
* Conditional if bufpool was present for gspi bus.
*/
static void brcmf_sdbrcm_pktfree2(struct brcmf_bus *bus, struct sk_buff *pkt)
{
if (bus->usebufpool)
brcmu_pkt_buf_free_skb(pkt);
}
/* Turn backplane clock on or off */
static int brcmf_sdbrcm_htclk(struct brcmf_bus *bus, bool on, bool pendok)
{
int err;
u8 clkctl, clkreq, devctl;
unsigned long timeout;
brcmf_dbg(TRACE, "Enter\n");
clkctl = 0;
if (on) {
/* Request HT Avail */
clkreq =
bus->alp_only ? SBSDIO_ALP_AVAIL_REQ : SBSDIO_HT_AVAIL_REQ;
brcmf_sdcard_cfg_write(bus->sdiodev, SDIO_FUNC_1,
SBSDIO_FUNC1_CHIPCLKCSR, clkreq, &err);
if (err) {
brcmf_dbg(ERROR, "HT Avail request error: %d\n", err);
return -EBADE;
}
if (pendok && ((bus->ci->c_inf[1].id == PCMCIA_CORE_ID)
&& (bus->ci->c_inf[1].rev == 9))) {
u32 dummy, retries;
r_sdreg32(bus, &dummy,
offsetof(struct sdpcmd_regs, clockctlstatus),
&retries);
}
/* Check current status */
clkctl = brcmf_sdcard_cfg_read(bus->sdiodev, SDIO_FUNC_1,
SBSDIO_FUNC1_CHIPCLKCSR, &err);
if (err) {
brcmf_dbg(ERROR, "HT Avail read error: %d\n", err);
return -EBADE;
}
/* Go to pending and await interrupt if appropriate */
if (!SBSDIO_CLKAV(clkctl, bus->alp_only) && pendok) {
/* Allow only clock-available interrupt */
devctl = brcmf_sdcard_cfg_read(bus->sdiodev,
SDIO_FUNC_1,
SBSDIO_DEVICE_CTL, &err);
if (err) {
brcmf_dbg(ERROR, "Devctl error setting CA: %d\n",
err);
return -EBADE;
}
devctl |= SBSDIO_DEVCTL_CA_INT_ONLY;
brcmf_sdcard_cfg_write(bus->sdiodev, SDIO_FUNC_1,
SBSDIO_DEVICE_CTL, devctl, &err);
brcmf_dbg(INFO, "CLKCTL: set PENDING\n");
bus->clkstate = CLK_PENDING;
return 0;
} else if (bus->clkstate == CLK_PENDING) {
/* Cancel CA-only interrupt filter */
devctl =
brcmf_sdcard_cfg_read(bus->sdiodev, SDIO_FUNC_1,
SBSDIO_DEVICE_CTL, &err);
devctl &= ~SBSDIO_DEVCTL_CA_INT_ONLY;
brcmf_sdcard_cfg_write(bus->sdiodev, SDIO_FUNC_1,
SBSDIO_DEVICE_CTL, devctl, &err);
}
/* Otherwise, wait here (polling) for HT Avail */
timeout = jiffies +
msecs_to_jiffies(PMU_MAX_TRANSITION_DLY/1000);
while (!SBSDIO_CLKAV(clkctl, bus->alp_only)) {
clkctl = brcmf_sdcard_cfg_read(bus->sdiodev,
SDIO_FUNC_1,
SBSDIO_FUNC1_CHIPCLKCSR,
&err);
if (time_after(jiffies, timeout))
break;
else
usleep_range(5000, 10000);
}
if (err) {
brcmf_dbg(ERROR, "HT Avail request error: %d\n", err);
return -EBADE;
}
if (!SBSDIO_CLKAV(clkctl, bus->alp_only)) {
brcmf_dbg(ERROR, "HT Avail timeout (%d): clkctl 0x%02x\n",
PMU_MAX_TRANSITION_DLY, clkctl);
return -EBADE;
}
/* Mark clock available */
bus->clkstate = CLK_AVAIL;
brcmf_dbg(INFO, "CLKCTL: turned ON\n");
#if defined(BCMDBG)
if (bus->alp_only != true) {
if (SBSDIO_ALPONLY(clkctl))
brcmf_dbg(ERROR, "HT Clock should be on\n");
}
#endif /* defined (BCMDBG) */
bus->activity = true;
} else {
clkreq = 0;
if (bus->clkstate == CLK_PENDING) {
/* Cancel CA-only interrupt filter */
devctl = brcmf_sdcard_cfg_read(bus->sdiodev,
SDIO_FUNC_1,
SBSDIO_DEVICE_CTL, &err);
devctl &= ~SBSDIO_DEVCTL_CA_INT_ONLY;
brcmf_sdcard_cfg_write(bus->sdiodev, SDIO_FUNC_1,
SBSDIO_DEVICE_CTL, devctl, &err);
}
bus->clkstate = CLK_SDONLY;
brcmf_sdcard_cfg_write(bus->sdiodev, SDIO_FUNC_1,
SBSDIO_FUNC1_CHIPCLKCSR, clkreq, &err);
brcmf_dbg(INFO, "CLKCTL: turned OFF\n");
if (err) {
brcmf_dbg(ERROR, "Failed access turning clock off: %d\n",
err);
return -EBADE;
}
}
return 0;
}
/* Change idle/active SD state */
static int brcmf_sdbrcm_sdclk(struct brcmf_bus *bus, bool on)
{
brcmf_dbg(TRACE, "Enter\n");
if (on)
bus->clkstate = CLK_SDONLY;
else
bus->clkstate = CLK_NONE;
return 0;
}
/* Transition SD and backplane clock readiness */
static int brcmf_sdbrcm_clkctl(struct brcmf_bus *bus, uint target, bool pendok)
{
#ifdef BCMDBG
uint oldstate = bus->clkstate;
#endif /* BCMDBG */
brcmf_dbg(TRACE, "Enter\n");
/* Early exit if we're already there */
if (bus->clkstate == target) {
if (target == CLK_AVAIL) {
brcmf_sdbrcm_wd_timer(bus, BRCMF_WD_POLL_MS);
bus->activity = true;
}
return 0;
}
switch (target) {
case CLK_AVAIL:
/* Make sure SD clock is available */
if (bus->clkstate == CLK_NONE)
brcmf_sdbrcm_sdclk(bus, true);
/* Now request HT Avail on the backplane */
brcmf_sdbrcm_htclk(bus, true, pendok);
brcmf_sdbrcm_wd_timer(bus, BRCMF_WD_POLL_MS);
bus->activity = true;
break;
case CLK_SDONLY:
/* Remove HT request, or bring up SD clock */
if (bus->clkstate == CLK_NONE)
brcmf_sdbrcm_sdclk(bus, true);
else if (bus->clkstate == CLK_AVAIL)
brcmf_sdbrcm_htclk(bus, false, false);
else
brcmf_dbg(ERROR, "request for %d -> %d\n",
bus->clkstate, target);
brcmf_sdbrcm_wd_timer(bus, BRCMF_WD_POLL_MS);
break;
case CLK_NONE:
/* Make sure to remove HT request */
if (bus->clkstate == CLK_AVAIL)
brcmf_sdbrcm_htclk(bus, false, false);
/* Now remove the SD clock */
brcmf_sdbrcm_sdclk(bus, false);
brcmf_sdbrcm_wd_timer(bus, 0);
break;
}
#ifdef BCMDBG
brcmf_dbg(INFO, "%d -> %d\n", oldstate, bus->clkstate);
#endif /* BCMDBG */
return 0;
}
static int brcmf_sdbrcm_bussleep(struct brcmf_bus *bus, bool sleep)
{
uint retries = 0;
brcmf_dbg(INFO, "request %s (currently %s)\n",
sleep ? "SLEEP" : "WAKE",
bus->sleeping ? "SLEEP" : "WAKE");
/* Done if we're already in the requested state */
if (sleep == bus->sleeping)
return 0;
/* Going to sleep: set the alarm and turn off the lights... */
if (sleep) {
/* Don't sleep if something is pending */
if (bus->dpc_sched || bus->rxskip || pktq_len(&bus->txq))
return -EBUSY;
/* Make sure the controller has the bus up */
brcmf_sdbrcm_clkctl(bus, CLK_AVAIL, false);
/* Tell device to start using OOB wakeup */
w_sdreg32(bus, SMB_USE_OOB,
offsetof(struct sdpcmd_regs, tosbmailbox), &retries);
if (retries > retry_limit)
brcmf_dbg(ERROR, "CANNOT SIGNAL CHIP, WILL NOT WAKE UP!!\n");
/* Turn off our contribution to the HT clock request */
brcmf_sdbrcm_clkctl(bus, CLK_SDONLY, false);
brcmf_sdcard_cfg_write(bus->sdiodev, SDIO_FUNC_1,
SBSDIO_FUNC1_CHIPCLKCSR,
SBSDIO_FORCE_HW_CLKREQ_OFF, NULL);
/* Isolate the bus */
brcmf_sdcard_cfg_write(bus->sdiodev, SDIO_FUNC_1,
SBSDIO_DEVICE_CTL,
SBSDIO_DEVCTL_PADS_ISO, NULL);
/* Change state */
bus->sleeping = true;
} else {
/* Waking up: bus power up is ok, set local state */
brcmf_sdcard_cfg_write(bus->sdiodev, SDIO_FUNC_1,
SBSDIO_FUNC1_CHIPCLKCSR, 0, NULL);
/* Force pad isolation off if possible
(in case power never toggled) */
if ((bus->ci->c_inf[1].id == PCMCIA_CORE_ID)
&& (bus->ci->c_inf[1].rev >= 10))
brcmf_sdcard_cfg_write(bus->sdiodev, SDIO_FUNC_1,
SBSDIO_DEVICE_CTL, 0, NULL);
/* Make sure the controller has the bus up */
brcmf_sdbrcm_clkctl(bus, CLK_AVAIL, false);
/* Send misc interrupt to indicate OOB not needed */
w_sdreg32(bus, 0, offsetof(struct sdpcmd_regs, tosbmailboxdata),
&retries);
if (retries <= retry_limit)
w_sdreg32(bus, SMB_DEV_INT,
offsetof(struct sdpcmd_regs, tosbmailbox),
&retries);
if (retries > retry_limit)
brcmf_dbg(ERROR, "CANNOT SIGNAL CHIP TO CLEAR OOB!!\n");
/* Make sure we have SD bus access */
brcmf_sdbrcm_clkctl(bus, CLK_SDONLY, false);
/* Change state */
bus->sleeping = false;
}
return 0;
}
static void bus_wake(struct brcmf_bus *bus)
{
if (bus->sleeping)
brcmf_sdbrcm_bussleep(bus, false);
}
static u32 brcmf_sdbrcm_hostmail(struct brcmf_bus *bus)
{
u32 intstatus = 0;
u32 hmb_data;
u8 fcbits;
uint retries = 0;
brcmf_dbg(TRACE, "Enter\n");
/* Read mailbox data and ack that we did so */
r_sdreg32(bus, &hmb_data,
offsetof(struct sdpcmd_regs, tohostmailboxdata), &retries);
if (retries <= retry_limit)
w_sdreg32(bus, SMB_INT_ACK,
offsetof(struct sdpcmd_regs, tosbmailbox), &retries);
bus->f1regdata += 2;
/* Dongle recomposed rx frames, accept them again */
if (hmb_data & HMB_DATA_NAKHANDLED) {
brcmf_dbg(INFO, "Dongle reports NAK handled, expect rtx of %d\n",
bus->rx_seq);
if (!bus->rxskip)
brcmf_dbg(ERROR, "unexpected NAKHANDLED!\n");
bus->rxskip = false;
intstatus |= I_HMB_FRAME_IND;
}
/*
* DEVREADY does not occur with gSPI.
*/
if (hmb_data & (HMB_DATA_DEVREADY | HMB_DATA_FWREADY)) {
bus->sdpcm_ver =
(hmb_data & HMB_DATA_VERSION_MASK) >>
HMB_DATA_VERSION_SHIFT;
if (bus->sdpcm_ver != SDPCM_PROT_VERSION)
brcmf_dbg(ERROR, "Version mismatch, dongle reports %d, "
"expecting %d\n",
bus->sdpcm_ver, SDPCM_PROT_VERSION);
else
brcmf_dbg(INFO, "Dongle ready, protocol version %d\n",
bus->sdpcm_ver);
}
/*
* Flow Control has been moved into the RX headers and this out of band
* method isn't used any more.
* remaining backward compatible with older dongles.
*/
if (hmb_data & HMB_DATA_FC) {
fcbits = (hmb_data & HMB_DATA_FCDATA_MASK) >>
HMB_DATA_FCDATA_SHIFT;
if (fcbits & ~bus->flowcontrol)
bus->fc_xoff++;
if (bus->flowcontrol & ~fcbits)
bus->fc_xon++;
bus->fc_rcvd++;
bus->flowcontrol = fcbits;
}
/* Shouldn't be any others */
if (hmb_data & ~(HMB_DATA_DEVREADY |
HMB_DATA_NAKHANDLED |
HMB_DATA_FC |
HMB_DATA_FWREADY |
HMB_DATA_FCDATA_MASK | HMB_DATA_VERSION_MASK))
brcmf_dbg(ERROR, "Unknown mailbox data content: 0x%02x\n",
hmb_data);
return intstatus;
}
static void brcmf_sdbrcm_rxfail(struct brcmf_bus *bus, bool abort, bool rtx)
{
uint retries = 0;
u16 lastrbc;
u8 hi, lo;
int err;
brcmf_dbg(ERROR, "%sterminate frame%s\n",
abort ? "abort command, " : "",
rtx ? ", send NAK" : "");
if (abort)
brcmf_sdcard_abort(bus->sdiodev, SDIO_FUNC_2);
brcmf_sdcard_cfg_write(bus->sdiodev, SDIO_FUNC_1,
SBSDIO_FUNC1_FRAMECTRL,
SFC_RF_TERM, &err);
bus->f1regdata++;
/* Wait until the packet has been flushed (device/FIFO stable) */
for (lastrbc = retries = 0xffff; retries > 0; retries--) {
hi = brcmf_sdcard_cfg_read(bus->sdiodev, SDIO_FUNC_1,
SBSDIO_FUNC1_RFRAMEBCHI, NULL);
lo = brcmf_sdcard_cfg_read(bus->sdiodev, SDIO_FUNC_1,
SBSDIO_FUNC1_RFRAMEBCLO, NULL);
bus->f1regdata += 2;
if ((hi == 0) && (lo == 0))
break;
if ((hi > (lastrbc >> 8)) && (lo > (lastrbc & 0x00ff))) {
brcmf_dbg(ERROR, "count growing: last 0x%04x now 0x%04x\n",
lastrbc, (hi << 8) + lo);
}
lastrbc = (hi << 8) + lo;
}
if (!retries)
brcmf_dbg(ERROR, "count never zeroed: last 0x%04x\n", lastrbc);
else
brcmf_dbg(INFO, "flush took %d iterations\n", 0xffff - retries);
if (rtx) {
bus->rxrtx++;
w_sdreg32(bus, SMB_NAK,
offsetof(struct sdpcmd_regs, tosbmailbox), &retries);
bus->f1regdata++;
if (retries <= retry_limit)
bus->rxskip = true;
}
/* Clear partial in any case */
bus->nextlen = 0;
/* If we can't reach the device, signal failure */
if (err || brcmf_sdcard_regfail(bus->sdiodev))
bus->drvr->busstate = BRCMF_BUS_DOWN;
}
/* copy a buffer into a pkt buffer chain */
static uint brcmf_sdbrcm_glom_from_buf(struct brcmf_bus *bus, uint len)
{
uint n, ret = 0;
struct sk_buff *p;
u8 *buf;
buf = bus->dataptr;
/* copy the data */
skb_queue_walk(&bus->glom, p) {
n = min_t(uint, p->len, len);
memcpy(p->data, buf, n);
buf += n;
len -= n;
ret += n;
if (!len)
break;
}
return ret;
}
static u8 brcmf_sdbrcm_rxglom(struct brcmf_bus *bus, u8 rxseq)
{
u16 dlen, totlen;
u8 *dptr, num = 0;
u16 sublen, check;
struct sk_buff *pfirst, *plast, *pnext, *save_pfirst;
int errcode;
u8 chan, seq, doff, sfdoff;
u8 txmax;
int ifidx = 0;
bool usechain = bus->use_rxchain;
/* If packets, issue read(s) and send up packet chain */
/* Return sequence numbers consumed? */
brcmf_dbg(TRACE, "start: glomd %p glom %p\n",
bus->glomd, skb_peek(&bus->glom));
/* If there's a descriptor, generate the packet chain */
if (bus->glomd) {
pfirst = plast = pnext = NULL;
dlen = (u16) (bus->glomd->len);
dptr = bus->glomd->data;
if (!dlen || (dlen & 1)) {
brcmf_dbg(ERROR, "bad glomd len(%d), ignore descriptor\n",
dlen);
dlen = 0;
}
for (totlen = num = 0; dlen; num++) {
/* Get (and move past) next length */
sublen = get_unaligned_le16(dptr);
dlen -= sizeof(u16);
dptr += sizeof(u16);
if ((sublen < SDPCM_HDRLEN) ||
((num == 0) && (sublen < (2 * SDPCM_HDRLEN)))) {
brcmf_dbg(ERROR, "descriptor len %d bad: %d\n",
num, sublen);
pnext = NULL;
break;
}
if (sublen % BRCMF_SDALIGN) {
brcmf_dbg(ERROR, "sublen %d not multiple of %d\n",
sublen, BRCMF_SDALIGN);
usechain = false;
}
totlen += sublen;
/* For last frame, adjust read len so total
is a block multiple */
if (!dlen) {
sublen +=
(roundup(totlen, bus->blocksize) - totlen);
totlen = roundup(totlen, bus->blocksize);
}
/* Allocate/chain packet for next subframe */
pnext = brcmu_pkt_buf_get_skb(sublen + BRCMF_SDALIGN);
if (pnext == NULL) {
brcmf_dbg(ERROR, "bcm_pkt_buf_get_skb failed, num %d len %d\n",
num, sublen);
break;
}
skb_queue_tail(&bus->glom, pnext);
/* Adhere to start alignment requirements */
pkt_align(pnext, sublen, BRCMF_SDALIGN);
}
/* If all allocations succeeded, save packet chain
in bus structure */
if (pnext) {
brcmf_dbg(GLOM, "allocated %d-byte packet chain for %d subframes\n",
totlen, num);
if (BRCMF_GLOM_ON() && bus->nextlen &&
totlen != bus->nextlen) {
brcmf_dbg(GLOM, "glomdesc mismatch: nextlen %d glomdesc %d rxseq %d\n",
bus->nextlen, totlen, rxseq);
}
pfirst = pnext = NULL;
} else {
if (!skb_queue_empty(&bus->glom))
skb_queue_walk_safe(&bus->glom, pfirst, pnext) {
skb_unlink(pfirst, &bus->glom);
brcmu_pkt_buf_free_skb(pfirst);
}
num = 0;
}
/* Done with descriptor packet */
brcmu_pkt_buf_free_skb(bus->glomd);
bus->glomd = NULL;
bus->nextlen = 0;
}
/* Ok -- either we just generated a packet chain,
or had one from before */
if (!skb_queue_empty(&bus->glom)) {
if (BRCMF_GLOM_ON()) {
brcmf_dbg(GLOM, "try superframe read, packet chain:\n");
skb_queue_walk(&bus->glom, pnext) {
brcmf_dbg(GLOM, " %p: %p len 0x%04x (%d)\n",
pnext, (u8 *) (pnext->data),
pnext->len, pnext->len);
}
}
pfirst = skb_peek(&bus->glom);
dlen = (u16) brcmu_pkttotlen(pfirst);
/* Do an SDIO read for the superframe. Configurable iovar to
* read directly into the chained packet, or allocate a large
* packet and and copy into the chain.
*/
if (usechain) {
errcode = brcmf_sdcard_recv_buf(bus->sdiodev,
bus->sdiodev->sbwad,
SDIO_FUNC_2,
F2SYNC, (u8 *) pfirst->data, dlen,
pfirst);
} else if (bus->dataptr) {
errcode = brcmf_sdcard_recv_buf(bus->sdiodev,
bus->sdiodev->sbwad,
SDIO_FUNC_2,
F2SYNC, bus->dataptr, dlen,
NULL);
sublen = (u16) brcmf_sdbrcm_glom_from_buf(bus, dlen);
if (sublen != dlen) {
brcmf_dbg(ERROR, "FAILED TO COPY, dlen %d sublen %d\n",
dlen, sublen);
errcode = -1;
}
pnext = NULL;
} else {
brcmf_dbg(ERROR, "COULDN'T ALLOC %d-BYTE GLOM, FORCE FAILURE\n",
dlen);
errcode = -1;
}
bus->f2rxdata++;
/* On failure, kill the superframe, allow a couple retries */
if (errcode < 0) {
brcmf_dbg(ERROR, "glom read of %d bytes failed: %d\n",
dlen, errcode);
bus->drvr->rx_errors++;
if (bus->glomerr++ < 3) {
brcmf_sdbrcm_rxfail(bus, true, true);
} else {
bus->glomerr = 0;
brcmf_sdbrcm_rxfail(bus, true, false);
bus->rxglomfail++;
skb_queue_walk_safe(&bus->glom, pfirst, pnext) {
skb_unlink(pfirst, &bus->glom);
brcmu_pkt_buf_free_skb(pfirst);
}
}
return 0;
}
#ifdef BCMDBG
if (BRCMF_GLOM_ON()) {
printk(KERN_DEBUG "SUPERFRAME:\n");
print_hex_dump_bytes("", DUMP_PREFIX_OFFSET,
pfirst->data, min_t(int, pfirst->len, 48));
}
#endif
/* Validate the superframe header */
dptr = (u8 *) (pfirst->data);
sublen = get_unaligned_le16(dptr);
check = get_unaligned_le16(dptr + sizeof(u16));
chan = SDPCM_PACKET_CHANNEL(&dptr[SDPCM_FRAMETAG_LEN]);
seq = SDPCM_PACKET_SEQUENCE(&dptr[SDPCM_FRAMETAG_LEN]);
bus->nextlen = dptr[SDPCM_FRAMETAG_LEN + SDPCM_NEXTLEN_OFFSET];
if ((bus->nextlen << 4) > MAX_RX_DATASZ) {
brcmf_dbg(INFO, "nextlen too large (%d) seq %d\n",
bus->nextlen, seq);
bus->nextlen = 0;
}
doff = SDPCM_DOFFSET_VALUE(&dptr[SDPCM_FRAMETAG_LEN]);
txmax = SDPCM_WINDOW_VALUE(&dptr[SDPCM_FRAMETAG_LEN]);
errcode = 0;
if ((u16)~(sublen ^ check)) {
brcmf_dbg(ERROR, "(superframe): HW hdr error: len/check 0x%04x/0x%04x\n",
sublen, check);
errcode = -1;
} else if (roundup(sublen, bus->blocksize) != dlen) {
brcmf_dbg(ERROR, "(superframe): len 0x%04x, rounded 0x%04x, expect 0x%04x\n",
sublen, roundup(sublen, bus->blocksize),
dlen);
errcode = -1;
} else if (SDPCM_PACKET_CHANNEL(&dptr[SDPCM_FRAMETAG_LEN]) !=
SDPCM_GLOM_CHANNEL) {
brcmf_dbg(ERROR, "(superframe): bad channel %d\n",
SDPCM_PACKET_CHANNEL(
&dptr[SDPCM_FRAMETAG_LEN]));
errcode = -1;
} else if (SDPCM_GLOMDESC(&dptr[SDPCM_FRAMETAG_LEN])) {
brcmf_dbg(ERROR, "(superframe): got 2nd descriptor?\n");
errcode = -1;
} else if ((doff < SDPCM_HDRLEN) ||
(doff > (pfirst->len - SDPCM_HDRLEN))) {
brcmf_dbg(ERROR, "(superframe): Bad data offset %d: HW %d pkt %d min %d\n",
doff, sublen, pfirst->len, SDPCM_HDRLEN);
errcode = -1;
}
/* Check sequence number of superframe SW header */
if (rxseq != seq) {
brcmf_dbg(INFO, "(superframe) rx_seq %d, expected %d\n",
seq, rxseq);
bus->rx_badseq++;
rxseq = seq;
}
/* Check window for sanity */
if ((u8) (txmax - bus->tx_seq) > 0x40) {
brcmf_dbg(ERROR, "unlikely tx max %d with tx_seq %d\n",
txmax, bus->tx_seq);
txmax = bus->tx_seq + 2;
}
bus->tx_max = txmax;
/* Remove superframe header, remember offset */
skb_pull(pfirst, doff);
sfdoff = doff;
/* Validate all the subframe headers */
for (num = 0, pnext = pfirst; pnext && !errcode;
num++, pnext = pnext->next) {
dptr = (u8 *) (pnext->data);
dlen = (u16) (pnext->len);
sublen = get_unaligned_le16(dptr);
check = get_unaligned_le16(dptr + sizeof(u16));
chan = SDPCM_PACKET_CHANNEL(&dptr[SDPCM_FRAMETAG_LEN]);
doff = SDPCM_DOFFSET_VALUE(&dptr[SDPCM_FRAMETAG_LEN]);
#ifdef BCMDBG
if (BRCMF_GLOM_ON()) {
printk(KERN_DEBUG "subframe:\n");
print_hex_dump_bytes("", DUMP_PREFIX_OFFSET,
dptr, 32);
}
#endif
if ((u16)~(sublen ^ check)) {
brcmf_dbg(ERROR, "(subframe %d): HW hdr error: len/check 0x%04x/0x%04x\n",
num, sublen, check);
errcode = -1;
} else if ((sublen > dlen) || (sublen < SDPCM_HDRLEN)) {
brcmf_dbg(ERROR, "(subframe %d): length mismatch: len 0x%04x, expect 0x%04x\n",
num, sublen, dlen);
errcode = -1;
} else if ((chan != SDPCM_DATA_CHANNEL) &&
(chan != SDPCM_EVENT_CHANNEL)) {
brcmf_dbg(ERROR, "(subframe %d): bad channel %d\n",
num, chan);
errcode = -1;
} else if ((doff < SDPCM_HDRLEN) || (doff > sublen)) {
brcmf_dbg(ERROR, "(subframe %d): Bad data offset %d: HW %d min %d\n",
num, doff, sublen, SDPCM_HDRLEN);
errcode = -1;
}
}
if (errcode) {
/* Terminate frame on error, request
a couple retries */
if (bus->glomerr++ < 3) {
/* Restore superframe header space */
skb_push(pfirst, sfdoff);
brcmf_sdbrcm_rxfail(bus, true, true);
} else {
bus->glomerr = 0;
brcmf_sdbrcm_rxfail(bus, true, false);
bus->rxglomfail++;
skb_queue_walk_safe(&bus->glom, pfirst, pnext) {
skb_unlink(pfirst, &bus->glom);
brcmu_pkt_buf_free_skb(pfirst);
}
}
bus->nextlen = 0;
return 0;
}
/* Basic SD framing looks ok - process each packet (header) */
save_pfirst = pfirst;
plast = NULL;
for (num = 0; pfirst; rxseq++, pfirst = pnext) {
pnext = pfirst->next;
pfirst->next = NULL;
dptr = (u8 *) (pfirst->data);
sublen = get_unaligned_le16(dptr);
chan = SDPCM_PACKET_CHANNEL(&dptr[SDPCM_FRAMETAG_LEN]);
seq = SDPCM_PACKET_SEQUENCE(&dptr[SDPCM_FRAMETAG_LEN]);
doff = SDPCM_DOFFSET_VALUE(&dptr[SDPCM_FRAMETAG_LEN]);
brcmf_dbg(GLOM, "Get subframe %d, %p(%p/%d), sublen %d chan %d seq %d\n",
num, pfirst, pfirst->data,
pfirst->len, sublen, chan, seq);
/* precondition: chan == SDPCM_DATA_CHANNEL ||
chan == SDPCM_EVENT_CHANNEL */
if (rxseq != seq) {
brcmf_dbg(GLOM, "rx_seq %d, expected %d\n",
seq, rxseq);
bus->rx_badseq++;
rxseq = seq;
}
#ifdef BCMDBG
if (BRCMF_BYTES_ON() && BRCMF_DATA_ON()) {
printk(KERN_DEBUG "Rx Subframe Data:\n");
print_hex_dump_bytes("", DUMP_PREFIX_OFFSET,
dptr, dlen);
}
#endif
__skb_trim(pfirst, sublen);
skb_pull(pfirst, doff);
if (pfirst->len == 0) {
brcmu_pkt_buf_free_skb(pfirst);
if (plast)
plast->next = pnext;
else
save_pfirst = pnext;
continue;
} else if (brcmf_proto_hdrpull(bus->drvr, &ifidx,
pfirst) != 0) {
brcmf_dbg(ERROR, "rx protocol error\n");
bus->drvr->rx_errors++;
brcmu_pkt_buf_free_skb(pfirst);
if (plast)
plast->next = pnext;
else
save_pfirst = pnext;
continue;
}
/* this packet will go up, link back into
chain and count it */
pfirst->next = pnext;
plast = pfirst;
num++;
#ifdef BCMDBG
if (BRCMF_GLOM_ON()) {
brcmf_dbg(GLOM, "subframe %d to stack, %p (%p/%d) nxt/lnk %p/%p\n",
num, pfirst, pfirst->data,
pfirst->len, pfirst->next,
pfirst->prev);
print_hex_dump_bytes("", DUMP_PREFIX_OFFSET,
pfirst->data,
min_t(int, pfirst->len, 32));
}
#endif /* BCMDBG */
}
if (num) {
up(&bus->sdsem);
brcmf_rx_frame(bus->drvr, ifidx, save_pfirst, num);
down(&bus->sdsem);
}
bus->rxglomframes++;
bus->rxglompkts += num;
}
return num;
}
static int brcmf_sdbrcm_dcmd_resp_wait(struct brcmf_bus *bus, uint *condition,
bool *pending)
{
DECLARE_WAITQUEUE(wait, current);
int timeout = msecs_to_jiffies(DCMD_RESP_TIMEOUT);
/* Wait until control frame is available */
add_wait_queue(&bus->dcmd_resp_wait, &wait);
set_current_state(TASK_INTERRUPTIBLE);
while (!(*condition) && (!signal_pending(current) && timeout))
timeout = schedule_timeout(timeout);
if (signal_pending(current))
*pending = true;
set_current_state(TASK_RUNNING);
remove_wait_queue(&bus->dcmd_resp_wait, &wait);
return timeout;
}
static int brcmf_sdbrcm_dcmd_resp_wake(struct brcmf_bus *bus)
{
if (waitqueue_active(&bus->dcmd_resp_wait))
wake_up_interruptible(&bus->dcmd_resp_wait);
return 0;
}
static void
brcmf_sdbrcm_read_control(struct brcmf_bus *bus, u8 *hdr, uint len, uint doff)
{
uint rdlen, pad;
int sdret;
brcmf_dbg(TRACE, "Enter\n");
/* Set rxctl for frame (w/optional alignment) */
bus->rxctl = bus->rxbuf;
bus->rxctl += BRCMF_FIRSTREAD;
pad = ((unsigned long)bus->rxctl % BRCMF_SDALIGN);
if (pad)
bus->rxctl += (BRCMF_SDALIGN - pad);
bus->rxctl -= BRCMF_FIRSTREAD;
/* Copy the already-read portion over */
memcpy(bus->rxctl, hdr, BRCMF_FIRSTREAD);
if (len <= BRCMF_FIRSTREAD)
goto gotpkt;
/* Raise rdlen to next SDIO block to avoid tail command */
rdlen = len - BRCMF_FIRSTREAD;
if (bus->roundup && bus->blocksize && (rdlen > bus->blocksize)) {
pad = bus->blocksize - (rdlen % bus->blocksize);
if ((pad <= bus->roundup) && (pad < bus->blocksize) &&
((len + pad) < bus->drvr->maxctl))
rdlen += pad;
} else if (rdlen % BRCMF_SDALIGN) {
rdlen += BRCMF_SDALIGN - (rdlen % BRCMF_SDALIGN);
}
/* Satisfy length-alignment requirements */
if (rdlen & (ALIGNMENT - 1))
rdlen = roundup(rdlen, ALIGNMENT);
/* Drop if the read is too big or it exceeds our maximum */
if ((rdlen + BRCMF_FIRSTREAD) > bus->drvr->maxctl) {
brcmf_dbg(ERROR, "%d-byte control read exceeds %d-byte buffer\n",
rdlen, bus->drvr->maxctl);
bus->drvr->rx_errors++;
brcmf_sdbrcm_rxfail(bus, false, false);
goto done;
}
if ((len - doff) > bus->drvr->maxctl) {
brcmf_dbg(ERROR, "%d-byte ctl frame (%d-byte ctl data) exceeds %d-byte limit\n",
len, len - doff, bus->drvr->maxctl);
bus->drvr->rx_errors++;
bus->rx_toolong++;
brcmf_sdbrcm_rxfail(bus, false, false);
goto done;
}
/* Read remainder of frame body into the rxctl buffer */
sdret = brcmf_sdcard_recv_buf(bus->sdiodev,
bus->sdiodev->sbwad,
SDIO_FUNC_2,
F2SYNC, (bus->rxctl + BRCMF_FIRSTREAD), rdlen,
NULL);
bus->f2rxdata++;
/* Control frame failures need retransmission */
if (sdret < 0) {
brcmf_dbg(ERROR, "read %d control bytes failed: %d\n",
rdlen, sdret);
bus->rxc_errors++;
brcmf_sdbrcm_rxfail(bus, true, true);
goto done;
}
gotpkt:
#ifdef BCMDBG
if (BRCMF_BYTES_ON() && BRCMF_CTL_ON()) {
printk(KERN_DEBUG "RxCtrl:\n");
print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, bus->rxctl, len);
}
#endif
/* Point to valid data and indicate its length */
bus->rxctl += doff;
bus->rxlen = len - doff;
done:
/* Awake any waiters */
brcmf_sdbrcm_dcmd_resp_wake(bus);
}
/* Pad read to blocksize for efficiency */
static void brcmf_pad(struct brcmf_bus *bus, u16 *pad, u16 *rdlen)
{
if (bus->roundup && bus->blocksize && *rdlen > bus->blocksize) {
*pad = bus->blocksize - (*rdlen % bus->blocksize);
if (*pad <= bus->roundup && *pad < bus->blocksize &&
*rdlen + *pad + BRCMF_FIRSTREAD < MAX_RX_DATASZ)
*rdlen += *pad;
} else if (*rdlen % BRCMF_SDALIGN) {
*rdlen += BRCMF_SDALIGN - (*rdlen % BRCMF_SDALIGN);
}
}
static void
brcmf_alloc_pkt_and_read(struct brcmf_bus *bus, u16 rdlen,
struct sk_buff **pkt, u8 **rxbuf)
{
int sdret; /* Return code from calls */
*pkt = brcmu_pkt_buf_get_skb(rdlen + BRCMF_SDALIGN);
if (*pkt == NULL)
return;
pkt_align(*pkt, rdlen, BRCMF_SDALIGN);
*rxbuf = (u8 *) ((*pkt)->data);
/* Read the entire frame */
sdret = brcmf_sdcard_recv_buf(bus->sdiodev, bus->sdiodev->sbwad,
SDIO_FUNC_2, F2SYNC,
*rxbuf, rdlen, *pkt);
bus->f2rxdata++;
if (sdret < 0) {
brcmf_dbg(ERROR, "(nextlen): read %d bytes failed: %d\n",
rdlen, sdret);
brcmu_pkt_buf_free_skb(*pkt);
bus->drvr->rx_errors++;
/* Force retry w/normal header read.
* Don't attempt NAK for
* gSPI
*/
brcmf_sdbrcm_rxfail(bus, true, true);
*pkt = NULL;
}
}
/* Checks the header */
static int
brcmf_check_rxbuf(struct brcmf_bus *bus, struct sk_buff *pkt, u8 *rxbuf,
u8 rxseq, u16 nextlen, u16 *len)
{
u16 check;
bool len_consistent; /* Result of comparing readahead len and
len from hw-hdr */
memcpy(bus->rxhdr, rxbuf, SDPCM_HDRLEN);
/* Extract hardware header fields */
*len = get_unaligned_le16(bus->rxhdr);
check = get_unaligned_le16(bus->rxhdr + sizeof(u16));
/* All zeros means readahead info was bad */
if (!(*len | check)) {
brcmf_dbg(INFO, "(nextlen): read zeros in HW header???\n");
goto fail;
}
/* Validate check bytes */
if ((u16)~(*len ^ check)) {
brcmf_dbg(ERROR, "(nextlen): HW hdr error: nextlen/len/check 0x%04x/0x%04x/0x%04x\n",
nextlen, *len, check);
bus->rx_badhdr++;
brcmf_sdbrcm_rxfail(bus, false, false);
goto fail;
}
/* Validate frame length */
if (*len < SDPCM_HDRLEN) {
brcmf_dbg(ERROR, "(nextlen): HW hdr length invalid: %d\n",
*len);
goto fail;
}
/* Check for consistency with readahead info */
len_consistent = (nextlen != (roundup(*len, 16) >> 4));
if (len_consistent) {
/* Mismatch, force retry w/normal
header (may be >4K) */
brcmf_dbg(ERROR, "(nextlen): mismatch, nextlen %d len %d rnd %d; expected rxseq %d\n",
nextlen, *len, roundup(*len, 16),
rxseq);
brcmf_sdbrcm_rxfail(bus, true, true);
goto fail;
}
return 0;
fail:
brcmf_sdbrcm_pktfree2(bus, pkt);
return -EINVAL;
}
/* Return true if there may be more frames to read */
static uint
brcmf_sdbrcm_readframes(struct brcmf_bus *bus, uint maxframes, bool *finished)
{
u16 len, check; /* Extracted hardware header fields */
u8 chan, seq, doff; /* Extracted software header fields */
u8 fcbits; /* Extracted fcbits from software header */
struct sk_buff *pkt; /* Packet for event or data frames */
u16 pad; /* Number of pad bytes to read */
u16 rdlen; /* Total number of bytes to read */
u8 rxseq; /* Next sequence number to expect */
uint rxleft = 0; /* Remaining number of frames allowed */
int sdret; /* Return code from calls */
u8 txmax; /* Maximum tx sequence offered */
u8 *rxbuf;
int ifidx = 0;
uint rxcount = 0; /* Total frames read */
brcmf_dbg(TRACE, "Enter\n");
/* Not finished unless we encounter no more frames indication */
*finished = false;
for (rxseq = bus->rx_seq, rxleft = maxframes;
!bus->rxskip && rxleft && bus->drvr->busstate != BRCMF_BUS_DOWN;
rxseq++, rxleft--) {
/* Handle glomming separately */
if (bus->glomd || !skb_queue_empty(&bus->glom)) {
u8 cnt;
brcmf_dbg(GLOM, "calling rxglom: glomd %p, glom %p\n",
bus->glomd, skb_peek(&bus->glom));
cnt = brcmf_sdbrcm_rxglom(bus, rxseq);
brcmf_dbg(GLOM, "rxglom returned %d\n", cnt);
rxseq += cnt - 1;
rxleft = (rxleft > cnt) ? (rxleft - cnt) : 1;
continue;
}
/* Try doing single read if we can */
if (bus->nextlen) {
u16 nextlen = bus->nextlen;
bus->nextlen = 0;
rdlen = len = nextlen << 4;
brcmf_pad(bus, &pad, &rdlen);
/*
* After the frame is received we have to
* distinguish whether it is data
* or non-data frame.
*/
brcmf_alloc_pkt_and_read(bus, rdlen, &pkt, &rxbuf);
if (pkt == NULL) {
/* Give up on data, request rtx of events */
brcmf_dbg(ERROR, "(nextlen): brcmf_alloc_pkt_and_read failed: len %d rdlen %d expected rxseq %d\n",
len, rdlen, rxseq);
continue;
}
if (brcmf_check_rxbuf(bus, pkt, rxbuf, rxseq, nextlen,
&len) < 0)
continue;
/* Extract software header fields */
chan = SDPCM_PACKET_CHANNEL(
&bus->rxhdr[SDPCM_FRAMETAG_LEN]);
seq = SDPCM_PACKET_SEQUENCE(
&bus->rxhdr[SDPCM_FRAMETAG_LEN]);
doff = SDPCM_DOFFSET_VALUE(
&bus->rxhdr[SDPCM_FRAMETAG_LEN]);
txmax = SDPCM_WINDOW_VALUE(
&bus->rxhdr[SDPCM_FRAMETAG_LEN]);
bus->nextlen =
bus->rxhdr[SDPCM_FRAMETAG_LEN +
SDPCM_NEXTLEN_OFFSET];
if ((bus->nextlen << 4) > MAX_RX_DATASZ) {
brcmf_dbg(INFO, "(nextlen): got frame w/nextlen too large (%d), seq %d\n",
bus->nextlen, seq);
bus->nextlen = 0;
}
bus->drvr->rx_readahead_cnt++;
/* Handle Flow Control */
fcbits = SDPCM_FCMASK_VALUE(
&bus->rxhdr[SDPCM_FRAMETAG_LEN]);
if (bus->flowcontrol != fcbits) {
if (~bus->flowcontrol & fcbits)
bus->fc_xoff++;
if (bus->flowcontrol & ~fcbits)
bus->fc_xon++;
bus->fc_rcvd++;
bus->flowcontrol = fcbits;
}
/* Check and update sequence number */
if (rxseq != seq) {
brcmf_dbg(INFO, "(nextlen): rx_seq %d, expected %d\n",
seq, rxseq);
bus->rx_badseq++;
rxseq = seq;
}
/* Check window for sanity */
if ((u8) (txmax - bus->tx_seq) > 0x40) {
brcmf_dbg(ERROR, "got unlikely tx max %d with tx_seq %d\n",
txmax, bus->tx_seq);
txmax = bus->tx_seq + 2;
}
bus->tx_max = txmax;
#ifdef BCMDBG
if (BRCMF_BYTES_ON() && BRCMF_DATA_ON()) {
printk(KERN_DEBUG "Rx Data:\n");
print_hex_dump_bytes("", DUMP_PREFIX_OFFSET,
rxbuf, len);
} else if (BRCMF_HDRS_ON()) {
printk(KERN_DEBUG "RxHdr:\n");
print_hex_dump_bytes("", DUMP_PREFIX_OFFSET,
bus->rxhdr, SDPCM_HDRLEN);
}
#endif
if (chan == SDPCM_CONTROL_CHANNEL) {
brcmf_dbg(ERROR, "(nextlen): readahead on control packet %d?\n",
seq);
/* Force retry w/normal header read */
bus->nextlen = 0;
brcmf_sdbrcm_rxfail(bus, false, true);
brcmf_sdbrcm_pktfree2(bus, pkt);
continue;
}
/* Validate data offset */
if ((doff < SDPCM_HDRLEN) || (doff > len)) {
brcmf_dbg(ERROR, "(nextlen): bad data offset %d: HW len %d min %d\n",
doff, len, SDPCM_HDRLEN);
brcmf_sdbrcm_rxfail(bus, false, false);
brcmf_sdbrcm_pktfree2(bus, pkt);
continue;
}
/* All done with this one -- now deliver the packet */
goto deliver;
}
/* Read frame header (hardware and software) */
sdret = brcmf_sdcard_recv_buf(bus->sdiodev, bus->sdiodev->sbwad,
SDIO_FUNC_2, F2SYNC, bus->rxhdr,
BRCMF_FIRSTREAD, NULL);
bus->f2rxhdrs++;
if (sdret < 0) {
brcmf_dbg(ERROR, "RXHEADER FAILED: %d\n", sdret);
bus->rx_hdrfail++;
brcmf_sdbrcm_rxfail(bus, true, true);
continue;
}
#ifdef BCMDBG
if (BRCMF_BYTES_ON() || BRCMF_HDRS_ON()) {
printk(KERN_DEBUG "RxHdr:\n");
print_hex_dump_bytes("", DUMP_PREFIX_OFFSET,
bus->rxhdr, SDPCM_HDRLEN);
}
#endif
/* Extract hardware header fields */
len = get_unaligned_le16(bus->rxhdr);
check = get_unaligned_le16(bus->rxhdr + sizeof(u16));
/* All zeros means no more frames */
if (!(len | check)) {
*finished = true;
break;
}
/* Validate check bytes */
if ((u16) ~(len ^ check)) {
brcmf_dbg(ERROR, "HW hdr err: len/check 0x%04x/0x%04x\n",
len, check);
bus->rx_badhdr++;
brcmf_sdbrcm_rxfail(bus, false, false);
continue;
}
/* Validate frame length */
if (len < SDPCM_HDRLEN) {
brcmf_dbg(ERROR, "HW hdr length invalid: %d\n", len);
continue;
}
/* Extract software header fields */
chan = SDPCM_PACKET_CHANNEL(&bus->rxhdr[SDPCM_FRAMETAG_LEN]);
seq = SDPCM_PACKET_SEQUENCE(&bus->rxhdr[SDPCM_FRAMETAG_LEN]);
doff = SDPCM_DOFFSET_VALUE(&bus->rxhdr[SDPCM_FRAMETAG_LEN]);
txmax = SDPCM_WINDOW_VALUE(&bus->rxhdr[SDPCM_FRAMETAG_LEN]);
/* Validate data offset */
if ((doff < SDPCM_HDRLEN) || (doff > len)) {
brcmf_dbg(ERROR, "Bad data offset %d: HW len %d, min %d seq %d\n",
doff, len, SDPCM_HDRLEN, seq);
bus->rx_badhdr++;
brcmf_sdbrcm_rxfail(bus, false, false);
continue;
}
/* Save the readahead length if there is one */
bus->nextlen =
bus->rxhdr[SDPCM_FRAMETAG_LEN + SDPCM_NEXTLEN_OFFSET];
if ((bus->nextlen << 4) > MAX_RX_DATASZ) {
brcmf_dbg(INFO, "(nextlen): got frame w/nextlen too large (%d), seq %d\n",
bus->nextlen, seq);
bus->nextlen = 0;
}
/* Handle Flow Control */
fcbits = SDPCM_FCMASK_VALUE(&bus->rxhdr[SDPCM_FRAMETAG_LEN]);
if (bus->flowcontrol != fcbits) {
if (~bus->flowcontrol & fcbits)
bus->fc_xoff++;
if (bus->flowcontrol & ~fcbits)
bus->fc_xon++;
bus->fc_rcvd++;
bus->flowcontrol = fcbits;
}
/* Check and update sequence number */
if (rxseq != seq) {
brcmf_dbg(INFO, "rx_seq %d, expected %d\n", seq, rxseq);
bus->rx_badseq++;
rxseq = seq;
}
/* Check window for sanity */
if ((u8) (txmax - bus->tx_seq) > 0x40) {
brcmf_dbg(ERROR, "unlikely tx max %d with tx_seq %d\n",
txmax, bus->tx_seq);
txmax = bus->tx_seq + 2;
}
bus->tx_max = txmax;
/* Call a separate function for control frames */
if (chan == SDPCM_CONTROL_CHANNEL) {
brcmf_sdbrcm_read_control(bus, bus->rxhdr, len, doff);
continue;
}
/* precondition: chan is either SDPCM_DATA_CHANNEL,
SDPCM_EVENT_CHANNEL, SDPCM_TEST_CHANNEL or
SDPCM_GLOM_CHANNEL */
/* Length to read */
rdlen = (len > BRCMF_FIRSTREAD) ? (len - BRCMF_FIRSTREAD) : 0;
/* May pad read to blocksize for efficiency */
if (bus->roundup && bus->blocksize &&
(rdlen > bus->blocksize)) {
pad = bus->blocksize - (rdlen % bus->blocksize);
if ((pad <= bus->roundup) && (pad < bus->blocksize) &&
((rdlen + pad + BRCMF_FIRSTREAD) < MAX_RX_DATASZ))
rdlen += pad;
} else if (rdlen % BRCMF_SDALIGN) {
rdlen += BRCMF_SDALIGN - (rdlen % BRCMF_SDALIGN);
}
/* Satisfy length-alignment requirements */
if (rdlen & (ALIGNMENT - 1))
rdlen = roundup(rdlen, ALIGNMENT);
if ((rdlen + BRCMF_FIRSTREAD) > MAX_RX_DATASZ) {
/* Too long -- skip this frame */
brcmf_dbg(ERROR, "too long: len %d rdlen %d\n",
len, rdlen);
bus->drvr->rx_errors++;
bus->rx_toolong++;
brcmf_sdbrcm_rxfail(bus, false, false);
continue;
}
pkt = brcmu_pkt_buf_get_skb(rdlen +
BRCMF_FIRSTREAD + BRCMF_SDALIGN);
if (!pkt) {
/* Give up on data, request rtx of events */
brcmf_dbg(ERROR, "brcmu_pkt_buf_get_skb failed: rdlen %d chan %d\n",
rdlen, chan);
bus->drvr->rx_dropped++;
brcmf_sdbrcm_rxfail(bus, false, RETRYCHAN(chan));
continue;
}
/* Leave room for what we already read, and align remainder */
skb_pull(pkt, BRCMF_FIRSTREAD);
pkt_align(pkt, rdlen, BRCMF_SDALIGN);
/* Read the remaining frame data */
sdret = brcmf_sdcard_recv_buf(bus->sdiodev, bus->sdiodev->sbwad,
SDIO_FUNC_2, F2SYNC, ((u8 *) (pkt->data)),
rdlen, pkt);
bus->f2rxdata++;
if (sdret < 0) {
brcmf_dbg(ERROR, "read %d %s bytes failed: %d\n", rdlen,
((chan == SDPCM_EVENT_CHANNEL) ? "event"
: ((chan == SDPCM_DATA_CHANNEL) ? "data"
: "test")), sdret);
brcmu_pkt_buf_free_skb(pkt);
bus->drvr->rx_errors++;
brcmf_sdbrcm_rxfail(bus, true, RETRYCHAN(chan));
continue;
}
/* Copy the already-read portion */
skb_push(pkt, BRCMF_FIRSTREAD);
memcpy(pkt->data, bus->rxhdr, BRCMF_FIRSTREAD);
#ifdef BCMDBG
if (BRCMF_BYTES_ON() && BRCMF_DATA_ON()) {
printk(KERN_DEBUG "Rx Data:\n");
print_hex_dump_bytes("", DUMP_PREFIX_OFFSET,
pkt->data, len);
}
#endif
deliver:
/* Save superframe descriptor and allocate packet frame */
if (chan == SDPCM_GLOM_CHANNEL) {
if (SDPCM_GLOMDESC(&bus->rxhdr[SDPCM_FRAMETAG_LEN])) {
brcmf_dbg(GLOM, "glom descriptor, %d bytes:\n",
len);
#ifdef BCMDBG
if (BRCMF_GLOM_ON()) {
printk(KERN_DEBUG "Glom Data:\n");
print_hex_dump_bytes("",
DUMP_PREFIX_OFFSET,
pkt->data, len);
}
#endif
__skb_trim(pkt, len);
skb_pull(pkt, SDPCM_HDRLEN);
bus->glomd = pkt;
} else {
brcmf_dbg(ERROR, "%s: glom superframe w/o "
"descriptor!\n", __func__);
brcmf_sdbrcm_rxfail(bus, false, false);
}
continue;
}
/* Fill in packet len and prio, deliver upward */
__skb_trim(pkt, len);
skb_pull(pkt, doff);
if (pkt->len == 0) {
brcmu_pkt_buf_free_skb(pkt);
continue;
} else if (brcmf_proto_hdrpull(bus->drvr, &ifidx, pkt) != 0) {
brcmf_dbg(ERROR, "rx protocol error\n");
brcmu_pkt_buf_free_skb(pkt);
bus->drvr->rx_errors++;
continue;
}
/* Unlock during rx call */
up(&bus->sdsem);
brcmf_rx_frame(bus->drvr, ifidx, pkt, 1);
down(&bus->sdsem);
}
rxcount = maxframes - rxleft;
#ifdef BCMDBG
/* Message if we hit the limit */
if (!rxleft)
brcmf_dbg(DATA, "hit rx limit of %d frames\n",
maxframes);
else
#endif /* BCMDBG */
brcmf_dbg(DATA, "processed %d frames\n", rxcount);
/* Back off rxseq if awaiting rtx, update rx_seq */
if (bus->rxskip)
rxseq--;
bus->rx_seq = rxseq;
return rxcount;
}
static int
brcmf_sdbrcm_send_buf(struct brcmf_bus *bus, u32 addr, uint fn, uint flags,
u8 *buf, uint nbytes, struct sk_buff *pkt)
{
return brcmf_sdcard_send_buf
(bus->sdiodev, addr, fn, flags, buf, nbytes, pkt);
}
static void
brcmf_sdbrcm_wait_for_event(struct brcmf_bus *bus, bool *lockvar)
{
up(&bus->sdsem);
wait_event_interruptible_timeout(bus->ctrl_wait,
(*lockvar == false), HZ * 2);
down(&bus->sdsem);
return;
}
static void
brcmf_sdbrcm_wait_event_wakeup(struct brcmf_bus *bus)
{
if (waitqueue_active(&bus->ctrl_wait))
wake_up_interruptible(&bus->ctrl_wait);
return;
}
/* Writes a HW/SW header into the packet and sends it. */
/* Assumes: (a) header space already there, (b) caller holds lock */
static int brcmf_sdbrcm_txpkt(struct brcmf_bus *bus, struct sk_buff *pkt,
uint chan, bool free_pkt)
{
int ret;
u8 *frame;
u16 len, pad = 0;
u32 swheader;
struct sk_buff *new;
int i;
brcmf_dbg(TRACE, "Enter\n");
frame = (u8 *) (pkt->data);
/* Add alignment padding, allocate new packet if needed */
pad = ((unsigned long)frame % BRCMF_SDALIGN);
if (pad) {
if (skb_headroom(pkt) < pad) {
brcmf_dbg(INFO, "insufficient headroom %d for %d pad\n",
skb_headroom(pkt), pad);
bus->drvr->tx_realloc++;
new = brcmu_pkt_buf_get_skb(pkt->len + BRCMF_SDALIGN);
if (!new) {
brcmf_dbg(ERROR, "couldn't allocate new %d-byte packet\n",
pkt->len + BRCMF_SDALIGN);
ret = -ENOMEM;
goto done;
}
pkt_align(new, pkt->len, BRCMF_SDALIGN);
memcpy(new->data, pkt->data, pkt->len);
if (free_pkt)
brcmu_pkt_buf_free_skb(pkt);
/* free the pkt if canned one is not used */
free_pkt = true;
pkt = new;
frame = (u8 *) (pkt->data);
/* precondition: (frame % BRCMF_SDALIGN) == 0) */
pad = 0;
} else {
skb_push(pkt, pad);
frame = (u8 *) (pkt->data);
/* precondition: pad + SDPCM_HDRLEN <= pkt->len */
memset(frame, 0, pad + SDPCM_HDRLEN);
}
}
/* precondition: pad < BRCMF_SDALIGN */
/* Hardware tag: 2 byte len followed by 2 byte ~len check (all LE) */
len = (u16) (pkt->len);
*(__le16 *) frame = cpu_to_le16(len);
*(((__le16 *) frame) + 1) = cpu_to_le16(~len);
/* Software tag: channel, sequence number, data offset */
swheader =
((chan << SDPCM_CHANNEL_SHIFT) & SDPCM_CHANNEL_MASK) | bus->tx_seq |
(((pad +
SDPCM_HDRLEN) << SDPCM_DOFFSET_SHIFT) & SDPCM_DOFFSET_MASK);
put_unaligned_le32(swheader, frame + SDPCM_FRAMETAG_LEN);
put_unaligned_le32(0, frame + SDPCM_FRAMETAG_LEN + sizeof(swheader));
#ifdef BCMDBG
tx_packets[pkt->priority]++;
if (BRCMF_BYTES_ON() &&
(((BRCMF_CTL_ON() && (chan == SDPCM_CONTROL_CHANNEL)) ||
(BRCMF_DATA_ON() && (chan != SDPCM_CONTROL_CHANNEL))))) {
printk(KERN_DEBUG "Tx Frame:\n");
print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, frame, len);
} else if (BRCMF_HDRS_ON()) {
printk(KERN_DEBUG "TxHdr:\n");
print_hex_dump_bytes("", DUMP_PREFIX_OFFSET,
frame, min_t(u16, len, 16));
}
#endif
/* Raise len to next SDIO block to eliminate tail command */
if (bus->roundup && bus->blocksize && (len > bus->blocksize)) {
u16 pad = bus->blocksize - (len % bus->blocksize);
if ((pad <= bus->roundup) && (pad < bus->blocksize))
len += pad;
} else if (len % BRCMF_SDALIGN) {
len += BRCMF_SDALIGN - (len % BRCMF_SDALIGN);
}
/* Some controllers have trouble with odd bytes -- round to even */
if (len & (ALIGNMENT - 1))
len = roundup(len, ALIGNMENT);
ret = brcmf_sdbrcm_send_buf(bus, bus->sdiodev->sbwad,
SDIO_FUNC_2, F2SYNC, frame,
len, pkt);
bus->f2txdata++;
if (ret < 0) {
/* On failure, abort the command and terminate the frame */
brcmf_dbg(INFO, "sdio error %d, abort command and terminate frame\n",
ret);
bus->tx_sderrs++;
brcmf_sdcard_abort(bus->sdiodev, SDIO_FUNC_2);
brcmf_sdcard_cfg_write(bus->sdiodev, SDIO_FUNC_1,
SBSDIO_FUNC1_FRAMECTRL, SFC_WF_TERM,
NULL);
bus->f1regdata++;
for (i = 0; i < 3; i++) {
u8 hi, lo;
hi = brcmf_sdcard_cfg_read(bus->sdiodev,
SDIO_FUNC_1,
SBSDIO_FUNC1_WFRAMEBCHI,
NULL);
lo = brcmf_sdcard_cfg_read(bus->sdiodev,
SDIO_FUNC_1,
SBSDIO_FUNC1_WFRAMEBCLO,
NULL);
bus->f1regdata += 2;
if ((hi == 0) && (lo == 0))
break;
}
}
if (ret == 0)
bus->tx_seq = (bus->tx_seq + 1) % SDPCM_SEQUENCE_WRAP;
done:
/* restore pkt buffer pointer before calling tx complete routine */
skb_pull(pkt, SDPCM_HDRLEN + pad);
up(&bus->sdsem);
brcmf_txcomplete(bus->drvr, pkt, ret != 0);
down(&bus->sdsem);
if (free_pkt)
brcmu_pkt_buf_free_skb(pkt);
return ret;
}
static uint brcmf_sdbrcm_sendfromq(struct brcmf_bus *bus, uint maxframes)
{
struct sk_buff *pkt;
u32 intstatus = 0;
uint retries = 0;
int ret = 0, prec_out;
uint cnt = 0;
uint datalen;
u8 tx_prec_map;
struct brcmf_pub *drvr = bus->drvr;
brcmf_dbg(TRACE, "Enter\n");
tx_prec_map = ~bus->flowcontrol;
/* Send frames until the limit or some other event */
for (cnt = 0; (cnt < maxframes) && data_ok(bus); cnt++) {
spin_lock_bh(&bus->txqlock);
pkt = brcmu_pktq_mdeq(&bus->txq, tx_prec_map, &prec_out);
if (pkt == NULL) {
spin_unlock_bh(&bus->txqlock);
break;
}
spin_unlock_bh(&bus->txqlock);
datalen = pkt->len - SDPCM_HDRLEN;
ret = brcmf_sdbrcm_txpkt(bus, pkt, SDPCM_DATA_CHANNEL, true);
if (ret)
bus->drvr->tx_errors++;
else
bus->drvr->dstats.tx_bytes += datalen;
/* In poll mode, need to check for other events */
if (!bus->intr && cnt) {
/* Check device status, signal pending interrupt */
r_sdreg32(bus, &intstatus,
offsetof(struct sdpcmd_regs, intstatus),
&retries);
bus->f2txdata++;
if (brcmf_sdcard_regfail(bus->sdiodev))
break;
if (intstatus & bus->hostintmask)
bus->ipend = true;
}
}
/* Deflow-control stack if needed */
if (drvr->up && (drvr->busstate == BRCMF_BUS_DATA) &&
drvr->txoff && (pktq_len(&bus->txq) < TXLOW))
brcmf_txflowcontrol(drvr, 0, OFF);
return cnt;
}
static bool brcmf_sdbrcm_dpc(struct brcmf_bus *bus)
{
u32 intstatus, newstatus = 0;
uint retries = 0;
uint rxlimit = bus->rxbound; /* Rx frames to read before resched */
uint txlimit = bus->txbound; /* Tx frames to send before resched */
uint framecnt = 0; /* Temporary counter of tx/rx frames */
bool rxdone = true; /* Flag for no more read data */
bool resched = false; /* Flag indicating resched wanted */
brcmf_dbg(TRACE, "Enter\n");
/* Start with leftover status bits */
intstatus = bus->intstatus;
down(&bus->sdsem);
/* If waiting for HTAVAIL, check status */
if (bus->clkstate == CLK_PENDING) {
int err;
u8 clkctl, devctl = 0;
#ifdef BCMDBG
/* Check for inconsistent device control */
devctl = brcmf_sdcard_cfg_read(bus->sdiodev, SDIO_FUNC_1,
SBSDIO_DEVICE_CTL, &err);
if (err) {
brcmf_dbg(ERROR, "error reading DEVCTL: %d\n", err);
bus->drvr->busstate = BRCMF_BUS_DOWN;
}
#endif /* BCMDBG */
/* Read CSR, if clock on switch to AVAIL, else ignore */
clkctl = brcmf_sdcard_cfg_read(bus->sdiodev, SDIO_FUNC_1,
SBSDIO_FUNC1_CHIPCLKCSR, &err);
if (err) {
brcmf_dbg(ERROR, "error reading CSR: %d\n",
err);
bus->drvr->busstate = BRCMF_BUS_DOWN;
}
brcmf_dbg(INFO, "DPC: PENDING, devctl 0x%02x clkctl 0x%02x\n",
devctl, clkctl);
if (SBSDIO_HTAV(clkctl)) {
devctl = brcmf_sdcard_cfg_read(bus->sdiodev,
SDIO_FUNC_1,
SBSDIO_DEVICE_CTL, &err);
if (err) {
brcmf_dbg(ERROR, "error reading DEVCTL: %d\n",
err);
bus->drvr->busstate = BRCMF_BUS_DOWN;
}
devctl &= ~SBSDIO_DEVCTL_CA_INT_ONLY;
brcmf_sdcard_cfg_write(bus->sdiodev, SDIO_FUNC_1,
SBSDIO_DEVICE_CTL, devctl, &err);
if (err) {
brcmf_dbg(ERROR, "error writing DEVCTL: %d\n",
err);
bus->drvr->busstate = BRCMF_BUS_DOWN;
}
bus->clkstate = CLK_AVAIL;
} else {
goto clkwait;
}
}
bus_wake(bus);
/* Make sure backplane clock is on */
brcmf_sdbrcm_clkctl(bus, CLK_AVAIL, true);
if (bus->clkstate == CLK_PENDING)
goto clkwait;
/* Pending interrupt indicates new device status */
if (bus->ipend) {
bus->ipend = false;
r_sdreg32(bus, &newstatus,
offsetof(struct sdpcmd_regs, intstatus), &retries);
bus->f1regdata++;
if (brcmf_sdcard_regfail(bus->sdiodev))
newstatus = 0;
newstatus &= bus->hostintmask;
bus->fcstate = !!(newstatus & I_HMB_FC_STATE);
if (newstatus) {
w_sdreg32(bus, newstatus,
offsetof(struct sdpcmd_regs, intstatus),
&retries);
bus->f1regdata++;
}
}
/* Merge new bits with previous */
intstatus |= newstatus;
bus->intstatus = 0;
/* Handle flow-control change: read new state in case our ack
* crossed another change interrupt. If change still set, assume
* FC ON for safety, let next loop through do the debounce.
*/
if (intstatus & I_HMB_FC_CHANGE) {
intstatus &= ~I_HMB_FC_CHANGE;
w_sdreg32(bus, I_HMB_FC_CHANGE,
offsetof(struct sdpcmd_regs, intstatus), &retries);
r_sdreg32(bus, &newstatus,
offsetof(struct sdpcmd_regs, intstatus), &retries);
bus->f1regdata += 2;
bus->fcstate =
!!(newstatus & (I_HMB_FC_STATE | I_HMB_FC_CHANGE));
intstatus |= (newstatus & bus->hostintmask);
}
/* Handle host mailbox indication */
if (intstatus & I_HMB_HOST_INT) {
intstatus &= ~I_HMB_HOST_INT;
intstatus |= brcmf_sdbrcm_hostmail(bus);
}
/* Generally don't ask for these, can get CRC errors... */
if (intstatus & I_WR_OOSYNC) {
brcmf_dbg(ERROR, "Dongle reports WR_OOSYNC\n");
intstatus &= ~I_WR_OOSYNC;
}
if (intstatus & I_RD_OOSYNC) {
brcmf_dbg(ERROR, "Dongle reports RD_OOSYNC\n");
intstatus &= ~I_RD_OOSYNC;
}
if (intstatus & I_SBINT) {
brcmf_dbg(ERROR, "Dongle reports SBINT\n");
intstatus &= ~I_SBINT;
}
/* Would be active due to wake-wlan in gSPI */
if (intstatus & I_CHIPACTIVE) {
brcmf_dbg(INFO, "Dongle reports CHIPACTIVE\n");
intstatus &= ~I_CHIPACTIVE;
}
/* Ignore frame indications if rxskip is set */
if (bus->rxskip)
intstatus &= ~I_HMB_FRAME_IND;
/* On frame indication, read available frames */
if (PKT_AVAILABLE()) {
framecnt = brcmf_sdbrcm_readframes(bus, rxlimit, &rxdone);
if (rxdone || bus->rxskip)
intstatus &= ~I_HMB_FRAME_IND;
rxlimit -= min(framecnt, rxlimit);
}
/* Keep still-pending events for next scheduling */
bus->intstatus = intstatus;
clkwait:
if (data_ok(bus) && bus->ctrl_frame_stat &&
(bus->clkstate == CLK_AVAIL)) {
int ret, i;
ret = brcmf_sdbrcm_send_buf(bus, bus->sdiodev->sbwad,
SDIO_FUNC_2, F2SYNC, (u8 *) bus->ctrl_frame_buf,
(u32) bus->ctrl_frame_len, NULL);
if (ret < 0) {
/* On failure, abort the command and
terminate the frame */
brcmf_dbg(INFO, "sdio error %d, abort command and terminate frame\n",
ret);
bus->tx_sderrs++;
brcmf_sdcard_abort(bus->sdiodev, SDIO_FUNC_2);
brcmf_sdcard_cfg_write(bus->sdiodev, SDIO_FUNC_1,
SBSDIO_FUNC1_FRAMECTRL, SFC_WF_TERM,
NULL);
bus->f1regdata++;
for (i = 0; i < 3; i++) {
u8 hi, lo;
hi = brcmf_sdcard_cfg_read(bus->sdiodev,
SDIO_FUNC_1,
SBSDIO_FUNC1_WFRAMEBCHI,
NULL);
lo = brcmf_sdcard_cfg_read(bus->sdiodev,
SDIO_FUNC_1,
SBSDIO_FUNC1_WFRAMEBCLO,
NULL);
bus->f1regdata += 2;
if ((hi == 0) && (lo == 0))
break;
}
}
if (ret == 0)
bus->tx_seq = (bus->tx_seq + 1) % SDPCM_SEQUENCE_WRAP;
brcmf_dbg(INFO, "Return_dpc value is : %d\n", ret);
bus->ctrl_frame_stat = false;
brcmf_sdbrcm_wait_event_wakeup(bus);
}
/* Send queued frames (limit 1 if rx may still be pending) */
else if ((bus->clkstate == CLK_AVAIL) && !bus->fcstate &&
brcmu_pktq_mlen(&bus->txq, ~bus->flowcontrol) && txlimit
&& data_ok(bus)) {
framecnt = rxdone ? txlimit : min(txlimit, bus->txminmax);
framecnt = brcmf_sdbrcm_sendfromq(bus, framecnt);
txlimit -= framecnt;
}
/* Resched if events or tx frames are pending,
else await next interrupt */
/* On failed register access, all bets are off:
no resched or interrupts */
if ((bus->drvr->busstate == BRCMF_BUS_DOWN) ||
brcmf_sdcard_regfail(bus->sdiodev)) {
brcmf_dbg(ERROR, "failed backplane access over SDIO, halting operation %d\n",
brcmf_sdcard_regfail(bus->sdiodev));
bus->drvr->busstate = BRCMF_BUS_DOWN;
bus->intstatus = 0;
} else if (bus->clkstate == CLK_PENDING) {
brcmf_dbg(INFO, "rescheduled due to CLK_PENDING awaiting I_CHIPACTIVE interrupt\n");
resched = true;
} else if (bus->intstatus || bus->ipend ||
(!bus->fcstate && brcmu_pktq_mlen(&bus->txq, ~bus->flowcontrol)
&& data_ok(bus)) || PKT_AVAILABLE()) {
resched = true;
}
bus->dpc_sched = resched;
/* If we're done for now, turn off clock request. */
if ((bus->clkstate != CLK_PENDING)
&& bus->idletime == BRCMF_IDLE_IMMEDIATE) {
bus->activity = false;
brcmf_sdbrcm_clkctl(bus, CLK_NONE, false);
}
up(&bus->sdsem);
return resched;
}
static int brcmf_sdbrcm_dpc_thread(void *data)
{
struct brcmf_bus *bus = (struct brcmf_bus *) data;
allow_signal(SIGTERM);
/* Run until signal received */
while (1) {
if (kthread_should_stop())
break;
if (!wait_for_completion_interruptible(&bus->dpc_wait)) {
/* Call bus dpc unless it indicated down
(then clean stop) */
if (bus->drvr->busstate != BRCMF_BUS_DOWN) {
if (brcmf_sdbrcm_dpc(bus))
complete(&bus->dpc_wait);
} else {
/* after stopping the bus, exit thread */
brcmf_sdbrcm_bus_stop(bus);
bus->dpc_tsk = NULL;
break;
}
} else
break;
}
return 0;
}
int brcmf_sdbrcm_bus_txdata(struct brcmf_bus *bus, struct sk_buff *pkt)
{
int ret = -EBADE;
uint datalen, prec;
brcmf_dbg(TRACE, "Enter\n");
datalen = pkt->len;
/* Add space for the header */
skb_push(pkt, SDPCM_HDRLEN);
/* precondition: IS_ALIGNED((unsigned long)(pkt->data), 2) */
prec = prio2prec((pkt->priority & PRIOMASK));
/* Check for existing queue, current flow-control,
pending event, or pending clock */
brcmf_dbg(TRACE, "deferring pktq len %d\n", pktq_len(&bus->txq));
bus->fcqueued++;
/* Priority based enq */
spin_lock_bh(&bus->txqlock);
if (brcmf_c_prec_enq(bus->drvr, &bus->txq, pkt, prec) == false) {
skb_pull(pkt, SDPCM_HDRLEN);
brcmf_txcomplete(bus->drvr, pkt, false);
brcmu_pkt_buf_free_skb(pkt);
brcmf_dbg(ERROR, "out of bus->txq !!!\n");
ret = -ENOSR;
} else {
ret = 0;
}
spin_unlock_bh(&bus->txqlock);
if (pktq_len(&bus->txq) >= TXHI)
brcmf_txflowcontrol(bus->drvr, 0, ON);
#ifdef BCMDBG
if (pktq_plen(&bus->txq, prec) > qcount[prec])
qcount[prec] = pktq_plen(&bus->txq, prec);
#endif
/* Schedule DPC if needed to send queued packet(s) */
if (!bus->dpc_sched) {
bus->dpc_sched = true;
if (bus->dpc_tsk)
complete(&bus->dpc_wait);
}
return ret;
}
static int
brcmf_sdbrcm_membytes(struct brcmf_bus *bus, bool write, u32 address, u8 *data,
uint size)
{
int bcmerror = 0;
u32 sdaddr;
uint dsize;
/* Determine initial transfer parameters */
sdaddr = address & SBSDIO_SB_OFT_ADDR_MASK;
if ((sdaddr + size) & SBSDIO_SBWINDOW_MASK)
dsize = (SBSDIO_SB_OFT_ADDR_LIMIT - sdaddr);
else
dsize = size;
/* Set the backplane window to include the start address */
bcmerror = brcmf_sdcard_set_sbaddr_window(bus->sdiodev, address);
if (bcmerror) {
brcmf_dbg(ERROR, "window change failed\n");
goto xfer_done;
}
/* Do the transfer(s) */
while (size) {
brcmf_dbg(INFO, "%s %d bytes at offset 0x%08x in window 0x%08x\n",
write ? "write" : "read", dsize,
sdaddr, address & SBSDIO_SBWINDOW_MASK);
bcmerror = brcmf_sdcard_rwdata(bus->sdiodev, write,
sdaddr, data, dsize);
if (bcmerror) {
brcmf_dbg(ERROR, "membytes transfer failed\n");
break;
}
/* Adjust for next transfer (if any) */
size -= dsize;
if (size) {
data += dsize;
address += dsize;
bcmerror = brcmf_sdcard_set_sbaddr_window(bus->sdiodev,
address);
if (bcmerror) {
brcmf_dbg(ERROR, "window change failed\n");
break;
}
sdaddr = 0;
dsize = min_t(uint, SBSDIO_SB_OFT_ADDR_LIMIT, size);
}
}
xfer_done:
/* Return the window to backplane enumeration space for core access */
if (brcmf_sdcard_set_sbaddr_window(bus->sdiodev, bus->sdiodev->sbwad))
brcmf_dbg(ERROR, "FAILED to set window back to 0x%x\n",
bus->sdiodev->sbwad);
return bcmerror;
}
#ifdef BCMDBG
#define CONSOLE_LINE_MAX 192
static int brcmf_sdbrcm_readconsole(struct brcmf_bus *bus)
{
struct brcmf_console *c = &bus->console;
u8 line[CONSOLE_LINE_MAX], ch;
u32 n, idx, addr;
int rv;
/* Don't do anything until FWREADY updates console address */
if (bus->console_addr == 0)
return 0;
/* Read console log struct */
addr = bus->console_addr + offsetof(struct rte_console, log_le);
rv = brcmf_sdbrcm_membytes(bus, false, addr, (u8 *)&c->log_le,
sizeof(c->log_le));
if (rv < 0)
return rv;
/* Allocate console buffer (one time only) */
if (c->buf == NULL) {
c->bufsize = le32_to_cpu(c->log_le.buf_size);
c->buf = kmalloc(c->bufsize, GFP_ATOMIC);
if (c->buf == NULL)
return -ENOMEM;
}
idx = le32_to_cpu(c->log_le.idx);
/* Protect against corrupt value */
if (idx > c->bufsize)
return -EBADE;
/* Skip reading the console buffer if the index pointer
has not moved */
if (idx == c->last)
return 0;
/* Read the console buffer */
addr = le32_to_cpu(c->log_le.buf);
rv = brcmf_sdbrcm_membytes(bus, false, addr, c->buf, c->bufsize);
if (rv < 0)
return rv;
while (c->last != idx) {
for (n = 0; n < CONSOLE_LINE_MAX - 2; n++) {
if (c->last == idx) {
/* This would output a partial line.
* Instead, back up
* the buffer pointer and output this
* line next time around.
*/
if (c->last >= n)
c->last -= n;
else
c->last = c->bufsize - n;
goto break2;
}
ch = c->buf[c->last];
c->last = (c->last + 1) % c->bufsize;
if (ch == '\n')
break;
line[n] = ch;
}
if (n > 0) {
if (line[n - 1] == '\r')
n--;
line[n] = 0;
printk(KERN_DEBUG "CONSOLE: %s\n", line);
}
}
break2:
return 0;
}
#endif /* BCMDBG */
static int brcmf_tx_frame(struct brcmf_bus *bus, u8 *frame, u16 len)
{
int i;
int ret;
bus->ctrl_frame_stat = false;
ret = brcmf_sdbrcm_send_buf(bus, bus->sdiodev->sbwad,
SDIO_FUNC_2, F2SYNC, frame, len, NULL);
if (ret < 0) {
/* On failure, abort the command and terminate the frame */
brcmf_dbg(INFO, "sdio error %d, abort command and terminate frame\n",
ret);
bus->tx_sderrs++;
brcmf_sdcard_abort(bus->sdiodev, SDIO_FUNC_2);
brcmf_sdcard_cfg_write(bus->sdiodev, SDIO_FUNC_1,
SBSDIO_FUNC1_FRAMECTRL,
SFC_WF_TERM, NULL);
bus->f1regdata++;
for (i = 0; i < 3; i++) {
u8 hi, lo;
hi = brcmf_sdcard_cfg_read(bus->sdiodev, SDIO_FUNC_1,
SBSDIO_FUNC1_WFRAMEBCHI,
NULL);
lo = brcmf_sdcard_cfg_read(bus->sdiodev, SDIO_FUNC_1,
SBSDIO_FUNC1_WFRAMEBCLO,
NULL);
bus->f1regdata += 2;
if (hi == 0 && lo == 0)
break;
}
return ret;
}
bus->tx_seq = (bus->tx_seq + 1) % SDPCM_SEQUENCE_WRAP;
return ret;
}
int
brcmf_sdbrcm_bus_txctl(struct brcmf_bus *bus, unsigned char *msg, uint msglen)
{
u8 *frame;
u16 len;
u32 swheader;
uint retries = 0;
u8 doff = 0;
int ret = -1;
brcmf_dbg(TRACE, "Enter\n");
/* Back the pointer to make a room for bus header */
frame = msg - SDPCM_HDRLEN;
len = (msglen += SDPCM_HDRLEN);
/* Add alignment padding (optional for ctl frames) */
doff = ((unsigned long)frame % BRCMF_SDALIGN);
if (doff) {
frame -= doff;
len += doff;
msglen += doff;
memset(frame, 0, doff + SDPCM_HDRLEN);
}
/* precondition: doff < BRCMF_SDALIGN */
doff += SDPCM_HDRLEN;
/* Round send length to next SDIO block */
if (bus->roundup && bus->blocksize && (len > bus->blocksize)) {
u16 pad = bus->blocksize - (len % bus->blocksize);
if ((pad <= bus->roundup) && (pad < bus->blocksize))
len += pad;
} else if (len % BRCMF_SDALIGN) {
len += BRCMF_SDALIGN - (len % BRCMF_SDALIGN);
}
/* Satisfy length-alignment requirements */
if (len & (ALIGNMENT - 1))
len = roundup(len, ALIGNMENT);
/* precondition: IS_ALIGNED((unsigned long)frame, 2) */
/* Need to lock here to protect txseq and SDIO tx calls */
down(&bus->sdsem);
bus_wake(bus);
/* Make sure backplane clock is on */
brcmf_sdbrcm_clkctl(bus, CLK_AVAIL, false);
/* Hardware tag: 2 byte len followed by 2 byte ~len check (all LE) */
*(__le16 *) frame = cpu_to_le16((u16) msglen);
*(((__le16 *) frame) + 1) = cpu_to_le16(~msglen);
/* Software tag: channel, sequence number, data offset */
swheader =
((SDPCM_CONTROL_CHANNEL << SDPCM_CHANNEL_SHIFT) &
SDPCM_CHANNEL_MASK)
| bus->tx_seq | ((doff << SDPCM_DOFFSET_SHIFT) &
SDPCM_DOFFSET_MASK);
put_unaligned_le32(swheader, frame + SDPCM_FRAMETAG_LEN);
put_unaligned_le32(0, frame + SDPCM_FRAMETAG_LEN + sizeof(swheader));
if (!data_ok(bus)) {
brcmf_dbg(INFO, "No bus credit bus->tx_max %d, bus->tx_seq %d\n",
bus->tx_max, bus->tx_seq);
bus->ctrl_frame_stat = true;
/* Send from dpc */
bus->ctrl_frame_buf = frame;
bus->ctrl_frame_len = len;
brcmf_sdbrcm_wait_for_event(bus, &bus->ctrl_frame_stat);
if (bus->ctrl_frame_stat == false) {
brcmf_dbg(INFO, "ctrl_frame_stat == false\n");
ret = 0;
} else {
brcmf_dbg(INFO, "ctrl_frame_stat == true\n");
ret = -1;
}
}
if (ret == -1) {
#ifdef BCMDBG
if (BRCMF_BYTES_ON() && BRCMF_CTL_ON()) {
printk(KERN_DEBUG "Tx Frame:\n");
print_hex_dump_bytes("", DUMP_PREFIX_OFFSET,
frame, len);
} else if (BRCMF_HDRS_ON()) {
printk(KERN_DEBUG "TxHdr:\n");
print_hex_dump_bytes("", DUMP_PREFIX_OFFSET,
frame, min_t(u16, len, 16));
}
#endif
do {
ret = brcmf_tx_frame(bus, frame, len);
} while (ret < 0 && retries++ < TXRETRIES);
}
if ((bus->idletime == BRCMF_IDLE_IMMEDIATE) && !bus->dpc_sched) {
bus->activity = false;
brcmf_sdbrcm_clkctl(bus, CLK_NONE, true);
}
up(&bus->sdsem);
if (ret)
bus->drvr->tx_ctlerrs++;
else
bus->drvr->tx_ctlpkts++;
return ret ? -EIO : 0;
}
int
brcmf_sdbrcm_bus_rxctl(struct brcmf_bus *bus, unsigned char *msg, uint msglen)
{
int timeleft;
uint rxlen = 0;
bool pending;
brcmf_dbg(TRACE, "Enter\n");
/* Wait until control frame is available */
timeleft = brcmf_sdbrcm_dcmd_resp_wait(bus, &bus->rxlen, &pending);
down(&bus->sdsem);
rxlen = bus->rxlen;
memcpy(msg, bus->rxctl, min(msglen, rxlen));
bus->rxlen = 0;
up(&bus->sdsem);
if (rxlen) {
brcmf_dbg(CTL, "resumed on rxctl frame, got %d expected %d\n",
rxlen, msglen);
} else if (timeleft == 0) {
brcmf_dbg(ERROR, "resumed on timeout\n");
} else if (pending == true) {
brcmf_dbg(CTL, "cancelled\n");
return -ERESTARTSYS;
} else {
brcmf_dbg(CTL, "resumed for unknown reason?\n");
}
if (rxlen)
bus->drvr->rx_ctlpkts++;
else
bus->drvr->rx_ctlerrs++;
return rxlen ? (int)rxlen : -ETIMEDOUT;
}
static int brcmf_sdbrcm_downloadvars(struct brcmf_bus *bus, void *arg, int len)
{
int bcmerror = 0;
brcmf_dbg(TRACE, "Enter\n");
/* Basic sanity checks */
if (bus->drvr->up) {
bcmerror = -EISCONN;
goto err;
}
if (!len) {
bcmerror = -EOVERFLOW;
goto err;
}
/* Free the old ones and replace with passed variables */
kfree(bus->vars);
bus->vars = kmalloc(len, GFP_ATOMIC);
bus->varsz = bus->vars ? len : 0;
if (bus->vars == NULL) {
bcmerror = -ENOMEM;
goto err;
}
/* Copy the passed variables, which should include the
terminating double-null */
memcpy(bus->vars, arg, bus->varsz);
err:
return bcmerror;
}
static int brcmf_sdbrcm_write_vars(struct brcmf_bus *bus)
{
int bcmerror = 0;
u32 varsize;
u32 varaddr;
u8 *vbuffer;
u32 varsizew;
__le32 varsizew_le;
#ifdef BCMDBG
char *nvram_ularray;
#endif /* BCMDBG */
/* Even if there are no vars are to be written, we still
need to set the ramsize. */
varsize = bus->varsz ? roundup(bus->varsz, 4) : 0;
varaddr = (bus->ramsize - 4) - varsize;
if (bus->vars) {
vbuffer = kzalloc(varsize, GFP_ATOMIC);
if (!vbuffer)
return -ENOMEM;
memcpy(vbuffer, bus->vars, bus->varsz);
/* Write the vars list */
bcmerror =
brcmf_sdbrcm_membytes(bus, true, varaddr, vbuffer, varsize);
#ifdef BCMDBG
/* Verify NVRAM bytes */
brcmf_dbg(INFO, "Compare NVRAM dl & ul; varsize=%d\n", varsize);
nvram_ularray = kmalloc(varsize, GFP_ATOMIC);
if (!nvram_ularray)
return -ENOMEM;
/* Upload image to verify downloaded contents. */
memset(nvram_ularray, 0xaa, varsize);
/* Read the vars list to temp buffer for comparison */
bcmerror =
brcmf_sdbrcm_membytes(bus, false, varaddr, nvram_ularray,
varsize);
if (bcmerror) {
brcmf_dbg(ERROR, "error %d on reading %d nvram bytes at 0x%08x\n",
bcmerror, varsize, varaddr);
}
/* Compare the org NVRAM with the one read from RAM */
if (memcmp(vbuffer, nvram_ularray, varsize))
brcmf_dbg(ERROR, "Downloaded NVRAM image is corrupted\n");
else
brcmf_dbg(ERROR, "Download/Upload/Compare of NVRAM ok\n");
kfree(nvram_ularray);
#endif /* BCMDBG */
kfree(vbuffer);
}
/* adjust to the user specified RAM */
brcmf_dbg(INFO, "Physical memory size: %d\n", bus->ramsize);
brcmf_dbg(INFO, "Vars are at %d, orig varsize is %d\n",
varaddr, varsize);
varsize = ((bus->ramsize - 4) - varaddr);
/*
* Determine the length token:
* Varsize, converted to words, in lower 16-bits, checksum
* in upper 16-bits.
*/
if (bcmerror) {
varsizew = 0;
varsizew_le = cpu_to_le32(0);
} else {
varsizew = varsize / 4;
varsizew = (~varsizew << 16) | (varsizew & 0x0000FFFF);
varsizew_le = cpu_to_le32(varsizew);
}
brcmf_dbg(INFO, "New varsize is %d, length token=0x%08x\n",
varsize, varsizew);
/* Write the length token to the last word */
bcmerror = brcmf_sdbrcm_membytes(bus, true, (bus->ramsize - 4),
(u8 *)&varsizew_le, 4);
return bcmerror;
}
static int brcmf_sdbrcm_download_state(struct brcmf_bus *bus, bool enter)
{
uint retries;
int bcmerror = 0;
u8 idx;
struct chip_info *ci = bus->ci;
/* To enter download state, disable ARM and reset SOCRAM.
* To exit download state, simply reset ARM (default is RAM boot).
*/
if (enter) {
bus->alp_only = true;
idx = brcmf_sdio_chip_getinfidx(ci, BCMA_CORE_ARM_CM3);
brcmf_sdio_chip_coredisable(bus->sdiodev, ci->c_inf[idx].base);
idx = brcmf_sdio_chip_getinfidx(ci, BCMA_CORE_INTERNAL_MEM);
brcmf_sdio_chip_resetcore(bus->sdiodev, ci->c_inf[idx].base);
/* Clear the top bit of memory */
if (bus->ramsize) {
u32 zeros = 0;
brcmf_sdbrcm_membytes(bus, true, bus->ramsize - 4,
(u8 *)&zeros, 4);
}
} else {
idx = brcmf_sdio_chip_getinfidx(ci, BCMA_CORE_INTERNAL_MEM);
if (!brcmf_sdio_chip_iscoreup(bus->sdiodev,
ci->c_inf[idx].base)) {
brcmf_dbg(ERROR, "SOCRAM core is down after reset?\n");
bcmerror = -EBADE;
goto fail;
}
bcmerror = brcmf_sdbrcm_write_vars(bus);
if (bcmerror) {
brcmf_dbg(ERROR, "no vars written to RAM\n");
bcmerror = 0;
}
w_sdreg32(bus, 0xFFFFFFFF,
offsetof(struct sdpcmd_regs, intstatus), &retries);
idx = brcmf_sdio_chip_getinfidx(ci, BCMA_CORE_ARM_CM3);
brcmf_sdio_chip_resetcore(bus->sdiodev, ci->c_inf[idx].base);
/* Allow HT Clock now that the ARM is running. */
bus->alp_only = false;
bus->drvr->busstate = BRCMF_BUS_LOAD;
}
fail:
return bcmerror;
}
static int brcmf_sdbrcm_get_image(char *buf, int len, struct brcmf_bus *bus)
{
if (bus->firmware->size < bus->fw_ptr + len)
len = bus->firmware->size - bus->fw_ptr;
memcpy(buf, &bus->firmware->data[bus->fw_ptr], len);
bus->fw_ptr += len;
return len;
}
MODULE_FIRMWARE(BCM4329_FW_NAME);
MODULE_FIRMWARE(BCM4329_NV_NAME);
static int brcmf_sdbrcm_download_code_file(struct brcmf_bus *bus)
{
int offset = 0;
uint len;
u8 *memblock = NULL, *memptr;
int ret;
brcmf_dbg(INFO, "Enter\n");
bus->fw_name = BCM4329_FW_NAME;
ret = request_firmware(&bus->firmware, bus->fw_name,
&bus->sdiodev->func[2]->dev);
if (ret) {
brcmf_dbg(ERROR, "Fail to request firmware %d\n", ret);
return ret;
}
bus->fw_ptr = 0;
memptr = memblock = kmalloc(MEMBLOCK + BRCMF_SDALIGN, GFP_ATOMIC);
if (memblock == NULL) {
ret = -ENOMEM;
goto err;
}
if ((u32)(unsigned long)memblock % BRCMF_SDALIGN)
memptr += (BRCMF_SDALIGN -
((u32)(unsigned long)memblock % BRCMF_SDALIGN));
/* Download image */
while ((len =
brcmf_sdbrcm_get_image((char *)memptr, MEMBLOCK, bus))) {
ret = brcmf_sdbrcm_membytes(bus, true, offset, memptr, len);
if (ret) {
brcmf_dbg(ERROR, "error %d on writing %d membytes at 0x%08x\n",
ret, MEMBLOCK, offset);
goto err;
}
offset += MEMBLOCK;
}
err:
kfree(memblock);
release_firmware(bus->firmware);
bus->fw_ptr = 0;
return ret;
}
/*
* ProcessVars:Takes a buffer of "<var>=<value>\n" lines read from a file
* and ending in a NUL.
* Removes carriage returns, empty lines, comment lines, and converts
* newlines to NULs.
* Shortens buffer as needed and pads with NULs. End of buffer is marked
* by two NULs.
*/
static uint brcmf_process_nvram_vars(char *varbuf, uint len)
{
char *dp;
bool findNewline;
int column;
uint buf_len, n;
dp = varbuf;
findNewline = false;
column = 0;
for (n = 0; n < len; n++) {
if (varbuf[n] == 0)
break;
if (varbuf[n] == '\r')
continue;
if (findNewline && varbuf[n] != '\n')
continue;
findNewline = false;
if (varbuf[n] == '#') {
findNewline = true;
continue;
}
if (varbuf[n] == '\n') {
if (column == 0)
continue;
*dp++ = 0;
column = 0;
continue;
}
*dp++ = varbuf[n];
column++;
}
buf_len = dp - varbuf;
while (dp < varbuf + n)
*dp++ = 0;
return buf_len;
}
static int brcmf_sdbrcm_download_nvram(struct brcmf_bus *bus)
{
uint len;
char *memblock = NULL;
char *bufp;
int ret;
bus->nv_name = BCM4329_NV_NAME;
ret = request_firmware(&bus->firmware, bus->nv_name,
&bus->sdiodev->func[2]->dev);
if (ret) {
brcmf_dbg(ERROR, "Fail to request nvram %d\n", ret);
return ret;
}
bus->fw_ptr = 0;
memblock = kmalloc(MEMBLOCK, GFP_ATOMIC);
if (memblock == NULL) {
ret = -ENOMEM;
goto err;
}
len = brcmf_sdbrcm_get_image(memblock, MEMBLOCK, bus);
if (len > 0 && len < MEMBLOCK) {
bufp = (char *)memblock;
bufp[len] = 0;
len = brcmf_process_nvram_vars(bufp, len);
bufp += len;
*bufp++ = 0;
if (len)
ret = brcmf_sdbrcm_downloadvars(bus, memblock, len + 1);
if (ret)
brcmf_dbg(ERROR, "error downloading vars: %d\n", ret);
} else {
brcmf_dbg(ERROR, "error reading nvram file: %d\n", len);
ret = -EIO;
}
err:
kfree(memblock);
release_firmware(bus->firmware);
bus->fw_ptr = 0;
return ret;
}
static int _brcmf_sdbrcm_download_firmware(struct brcmf_bus *bus)
{
int bcmerror = -1;
/* Keep arm in reset */
if (brcmf_sdbrcm_download_state(bus, true)) {
brcmf_dbg(ERROR, "error placing ARM core in reset\n");
goto err;
}
/* External image takes precedence if specified */
if (brcmf_sdbrcm_download_code_file(bus)) {
brcmf_dbg(ERROR, "dongle image file download failed\n");
goto err;
}
/* External nvram takes precedence if specified */
if (brcmf_sdbrcm_download_nvram(bus))
brcmf_dbg(ERROR, "dongle nvram file download failed\n");
/* Take arm out of reset */
if (brcmf_sdbrcm_download_state(bus, false)) {
brcmf_dbg(ERROR, "error getting out of ARM core reset\n");
goto err;
}
bcmerror = 0;
err:
return bcmerror;
}
static bool
brcmf_sdbrcm_download_firmware(struct brcmf_bus *bus)
{
bool ret;
/* Download the firmware */
brcmf_sdbrcm_clkctl(bus, CLK_AVAIL, false);
ret = _brcmf_sdbrcm_download_firmware(bus) == 0;
brcmf_sdbrcm_clkctl(bus, CLK_SDONLY, false);
return ret;
}
void brcmf_sdbrcm_bus_stop(struct brcmf_bus *bus)
{
u32 local_hostintmask;
u8 saveclk;
uint retries;
int err;
struct sk_buff *cur;
struct sk_buff *next;
brcmf_dbg(TRACE, "Enter\n");
if (bus->watchdog_tsk) {
send_sig(SIGTERM, bus->watchdog_tsk, 1);
kthread_stop(bus->watchdog_tsk);
bus->watchdog_tsk = NULL;
}
if (bus->dpc_tsk && bus->dpc_tsk != current) {
send_sig(SIGTERM, bus->dpc_tsk, 1);
kthread_stop(bus->dpc_tsk);
bus->dpc_tsk = NULL;
}
down(&bus->sdsem);
bus_wake(bus);
/* Enable clock for device interrupts */
brcmf_sdbrcm_clkctl(bus, CLK_AVAIL, false);
/* Disable and clear interrupts at the chip level also */
w_sdreg32(bus, 0, offsetof(struct sdpcmd_regs, hostintmask), &retries);
local_hostintmask = bus->hostintmask;
bus->hostintmask = 0;
/* Change our idea of bus state */
bus->drvr->busstate = BRCMF_BUS_DOWN;
/* Force clocks on backplane to be sure F2 interrupt propagates */
saveclk = brcmf_sdcard_cfg_read(bus->sdiodev, SDIO_FUNC_1,
SBSDIO_FUNC1_CHIPCLKCSR, &err);
if (!err) {
brcmf_sdcard_cfg_write(bus->sdiodev, SDIO_FUNC_1,
SBSDIO_FUNC1_CHIPCLKCSR,
(saveclk | SBSDIO_FORCE_HT), &err);
}
if (err)
brcmf_dbg(ERROR, "Failed to force clock for F2: err %d\n", err);
/* Turn off the bus (F2), free any pending packets */
brcmf_dbg(INTR, "disable SDIO interrupts\n");
brcmf_sdcard_cfg_write(bus->sdiodev, SDIO_FUNC_0, SDIO_CCCR_IOEx,
SDIO_FUNC_ENABLE_1, NULL);
/* Clear any pending interrupts now that F2 is disabled */
w_sdreg32(bus, local_hostintmask,
offsetof(struct sdpcmd_regs, intstatus), &retries);
/* Turn off the backplane clock (only) */
brcmf_sdbrcm_clkctl(bus, CLK_SDONLY, false);
/* Clear the data packet queues */
brcmu_pktq_flush(&bus->txq, true, NULL, NULL);
/* Clear any held glomming stuff */
if (bus->glomd)
brcmu_pkt_buf_free_skb(bus->glomd);
if (!skb_queue_empty(&bus->glom))
skb_queue_walk_safe(&bus->glom, cur, next) {
skb_unlink(cur, &bus->glom);
brcmu_pkt_buf_free_skb(cur);
}
/* Clear rx control and wake any waiters */
bus->rxlen = 0;
brcmf_sdbrcm_dcmd_resp_wake(bus);
/* Reset some F2 state stuff */
bus->rxskip = false;
bus->tx_seq = bus->rx_seq = 0;
up(&bus->sdsem);
}
int brcmf_sdbrcm_bus_init(struct brcmf_pub *drvr)
{
struct brcmf_bus *bus = drvr->bus;
unsigned long timeout;
uint retries = 0;
u8 ready, enable;
int err, ret = 0;
u8 saveclk;
brcmf_dbg(TRACE, "Enter\n");
/* try to download image and nvram to the dongle */
if (drvr->busstate == BRCMF_BUS_DOWN) {
if (!(brcmf_sdbrcm_download_firmware(bus)))
return -1;
}
if (!bus->drvr)
return 0;
/* Start the watchdog timer */
bus->drvr->tickcnt = 0;
brcmf_sdbrcm_wd_timer(bus, BRCMF_WD_POLL_MS);
down(&bus->sdsem);
/* Make sure backplane clock is on, needed to generate F2 interrupt */
brcmf_sdbrcm_clkctl(bus, CLK_AVAIL, false);
if (bus->clkstate != CLK_AVAIL)
goto exit;
/* Force clocks on backplane to be sure F2 interrupt propagates */
saveclk =
brcmf_sdcard_cfg_read(bus->sdiodev, SDIO_FUNC_1,
SBSDIO_FUNC1_CHIPCLKCSR, &err);
if (!err) {
brcmf_sdcard_cfg_write(bus->sdiodev, SDIO_FUNC_1,
SBSDIO_FUNC1_CHIPCLKCSR,
(saveclk | SBSDIO_FORCE_HT), &err);
}
if (err) {
brcmf_dbg(ERROR, "Failed to force clock for F2: err %d\n", err);
goto exit;
}
/* Enable function 2 (frame transfers) */
w_sdreg32(bus, SDPCM_PROT_VERSION << SMB_DATA_VERSION_SHIFT,
offsetof(struct sdpcmd_regs, tosbmailboxdata), &retries);
enable = (SDIO_FUNC_ENABLE_1 | SDIO_FUNC_ENABLE_2);
brcmf_sdcard_cfg_write(bus->sdiodev, SDIO_FUNC_0, SDIO_CCCR_IOEx,
enable, NULL);
timeout = jiffies + msecs_to_jiffies(BRCMF_WAIT_F2RDY);
ready = 0;
while (enable != ready) {
ready = brcmf_sdcard_cfg_read(bus->sdiodev, SDIO_FUNC_0,
SDIO_CCCR_IORx, NULL);
if (time_after(jiffies, timeout))
break;
else if (time_after(jiffies, timeout - BRCMF_WAIT_F2RDY + 50))
/* prevent busy waiting if it takes too long */
msleep_interruptible(20);
}
brcmf_dbg(INFO, "enable 0x%02x, ready 0x%02x\n", enable, ready);
/* If F2 successfully enabled, set core and enable interrupts */
if (ready == enable) {
/* Set up the interrupt mask and enable interrupts */
bus->hostintmask = HOSTINTMASK;
w_sdreg32(bus, bus->hostintmask,
offsetof(struct sdpcmd_regs, hostintmask), &retries);
brcmf_sdcard_cfg_write(bus->sdiodev, SDIO_FUNC_1,
SBSDIO_WATERMARK, 8, &err);
/* Set bus state according to enable result */
drvr->busstate = BRCMF_BUS_DATA;
}
else {
/* Disable F2 again */
enable = SDIO_FUNC_ENABLE_1;
brcmf_sdcard_cfg_write(bus->sdiodev, SDIO_FUNC_0,
SDIO_CCCR_IOEx, enable, NULL);
}
/* Restore previous clock setting */
brcmf_sdcard_cfg_write(bus->sdiodev, SDIO_FUNC_1,
SBSDIO_FUNC1_CHIPCLKCSR, saveclk, &err);
/* If we didn't come up, turn off backplane clock */
if (drvr->busstate != BRCMF_BUS_DATA)
brcmf_sdbrcm_clkctl(bus, CLK_NONE, false);
exit:
up(&bus->sdsem);
return ret;
}
void brcmf_sdbrcm_isr(void *arg)
{
struct brcmf_bus *bus = (struct brcmf_bus *) arg;
brcmf_dbg(TRACE, "Enter\n");
if (!bus) {
brcmf_dbg(ERROR, "bus is null pointer, exiting\n");
return;
}
if (bus->drvr->busstate == BRCMF_BUS_DOWN) {
brcmf_dbg(ERROR, "bus is down. we have nothing to do\n");
return;
}
/* Count the interrupt call */
bus->intrcount++;
bus->ipend = true;
/* Shouldn't get this interrupt if we're sleeping? */
if (bus->sleeping) {
brcmf_dbg(ERROR, "INTERRUPT WHILE SLEEPING??\n");
return;
}
/* Disable additional interrupts (is this needed now)? */
if (!bus->intr)
brcmf_dbg(ERROR, "isr w/o interrupt configured!\n");
bus->dpc_sched = true;
if (bus->dpc_tsk)
complete(&bus->dpc_wait);
}
static bool brcmf_sdbrcm_bus_watchdog(struct brcmf_pub *drvr)
{
struct brcmf_bus *bus;
brcmf_dbg(TIMER, "Enter\n");
bus = drvr->bus;
/* Ignore the timer if simulating bus down */
if (bus->sleeping)
return false;
down(&bus->sdsem);
/* Poll period: check device if appropriate. */
if (bus->poll && (++bus->polltick >= bus->pollrate)) {
u32 intstatus = 0;
/* Reset poll tick */
bus->polltick = 0;
/* Check device if no interrupts */
if (!bus->intr || (bus->intrcount == bus->lastintrs)) {
if (!bus->dpc_sched) {
u8 devpend;
devpend = brcmf_sdcard_cfg_read(bus->sdiodev,
SDIO_FUNC_0, SDIO_CCCR_INTx,
NULL);
intstatus =
devpend & (INTR_STATUS_FUNC1 |
INTR_STATUS_FUNC2);
}
/* If there is something, make like the ISR and
schedule the DPC */
if (intstatus) {
bus->pollcnt++;
bus->ipend = true;
bus->dpc_sched = true;
if (bus->dpc_tsk)
complete(&bus->dpc_wait);
}
}
/* Update interrupt tracking */
bus->lastintrs = bus->intrcount;
}
#ifdef BCMDBG
/* Poll for console output periodically */
if (drvr->busstate == BRCMF_BUS_DATA && bus->console_interval != 0) {
bus->console.count += BRCMF_WD_POLL_MS;
if (bus->console.count >= bus->console_interval) {
bus->console.count -= bus->console_interval;
/* Make sure backplane clock is on */
brcmf_sdbrcm_clkctl(bus, CLK_AVAIL, false);
if (brcmf_sdbrcm_readconsole(bus) < 0)
/* stop on error */
bus->console_interval = 0;
}
}
#endif /* BCMDBG */
/* On idle timeout clear activity flag and/or turn off clock */
if ((bus->idletime > 0) && (bus->clkstate == CLK_AVAIL)) {
if (++bus->idlecount >= bus->idletime) {
bus->idlecount = 0;
if (bus->activity) {
bus->activity = false;
brcmf_sdbrcm_wd_timer(bus, BRCMF_WD_POLL_MS);
} else {
brcmf_sdbrcm_clkctl(bus, CLK_NONE, false);
}
}
}
up(&bus->sdsem);
return bus->ipend;
}
static bool brcmf_sdbrcm_chipmatch(u16 chipid)
{
if (chipid == BCM4329_CHIP_ID)
return true;
return false;
}
static void brcmf_sdbrcm_release_malloc(struct brcmf_bus *bus)
{
brcmf_dbg(TRACE, "Enter\n");
kfree(bus->rxbuf);
bus->rxctl = bus->rxbuf = NULL;
bus->rxlen = 0;
kfree(bus->databuf);
bus->databuf = NULL;
}
static bool brcmf_sdbrcm_probe_malloc(struct brcmf_bus *bus)
{
brcmf_dbg(TRACE, "Enter\n");
if (bus->drvr->maxctl) {
bus->rxblen =
roundup((bus->drvr->maxctl + SDPCM_HDRLEN),
ALIGNMENT) + BRCMF_SDALIGN;
bus->rxbuf = kmalloc(bus->rxblen, GFP_ATOMIC);
if (!(bus->rxbuf))
goto fail;
}
/* Allocate buffer to receive glomed packet */
bus->databuf = kmalloc(MAX_DATA_BUF, GFP_ATOMIC);
if (!(bus->databuf)) {
/* release rxbuf which was already located as above */
if (!bus->rxblen)
kfree(bus->rxbuf);
goto fail;
}
/* Align the buffer */
if ((unsigned long)bus->databuf % BRCMF_SDALIGN)
bus->dataptr = bus->databuf + (BRCMF_SDALIGN -
((unsigned long)bus->databuf % BRCMF_SDALIGN));
else
bus->dataptr = bus->databuf;
return true;
fail:
return false;
}
static bool
brcmf_sdbrcm_probe_attach(struct brcmf_bus *bus, u32 regsva)
{
u8 clkctl = 0;
int err = 0;
int reg_addr;
u32 reg_val;
u8 idx;
bus->alp_only = true;
/* Return the window to backplane enumeration space for core access */
if (brcmf_sdcard_set_sbaddr_window(bus->sdiodev, SI_ENUM_BASE))
brcmf_dbg(ERROR, "FAILED to return to SI_ENUM_BASE\n");
#ifdef BCMDBG
printk(KERN_DEBUG "F1 signature read @0x18000000=0x%4x\n",
brcmf_sdcard_reg_read(bus->sdiodev, SI_ENUM_BASE, 4));
#endif /* BCMDBG */
/*
* Force PLL off until brcmf_sdio_chip_attach()
* programs PLL control regs
*/
brcmf_sdcard_cfg_write(bus->sdiodev, SDIO_FUNC_1,
SBSDIO_FUNC1_CHIPCLKCSR,
BRCMF_INIT_CLKCTL1, &err);
if (!err)
clkctl =
brcmf_sdcard_cfg_read(bus->sdiodev, SDIO_FUNC_1,
SBSDIO_FUNC1_CHIPCLKCSR, &err);
if (err || ((clkctl & ~SBSDIO_AVBITS) != BRCMF_INIT_CLKCTL1)) {
brcmf_dbg(ERROR, "ChipClkCSR access: err %d wrote 0x%02x read 0x%02x\n",
err, BRCMF_INIT_CLKCTL1, clkctl);
goto fail;
}
if (brcmf_sdio_chip_attach(bus->sdiodev, &bus->ci, regsva)) {
brcmf_dbg(ERROR, "brcmf_sdio_chip_attach failed!\n");
goto fail;
}
if (!brcmf_sdbrcm_chipmatch((u16) bus->ci->chip)) {
brcmf_dbg(ERROR, "unsupported chip: 0x%04x\n", bus->ci->chip);
goto fail;
}
brcmf_sdio_chip_drivestrengthinit(bus->sdiodev, bus->ci,
SDIO_DRIVE_STRENGTH);
/* Get info on the SOCRAM cores... */
bus->ramsize = bus->ci->ramsize;
if (!(bus->ramsize)) {
brcmf_dbg(ERROR, "failed to find SOCRAM memory!\n");
goto fail;
}
/* Set core control so an SDIO reset does a backplane reset */
idx = brcmf_sdio_chip_getinfidx(bus->ci, BCMA_CORE_SDIO_DEV);
reg_addr = bus->ci->c_inf[idx].base +
offsetof(struct sdpcmd_regs, corecontrol);
reg_val = brcmf_sdcard_reg_read(bus->sdiodev, reg_addr, sizeof(u32));
brcmf_sdcard_reg_write(bus->sdiodev, reg_addr, sizeof(u32),
reg_val | CC_BPRESEN);
brcmu_pktq_init(&bus->txq, (PRIOMASK + 1), TXQLEN);
/* Locate an appropriately-aligned portion of hdrbuf */
bus->rxhdr = (u8 *) roundup((unsigned long)&bus->hdrbuf[0],
BRCMF_SDALIGN);
/* Set the poll and/or interrupt flags */
bus->intr = true;
bus->poll = false;
if (bus->poll)
bus->pollrate = 1;
return true;
fail:
return false;
}
static bool brcmf_sdbrcm_probe_init(struct brcmf_bus *bus)
{
brcmf_dbg(TRACE, "Enter\n");
/* Disable F2 to clear any intermediate frame state on the dongle */
brcmf_sdcard_cfg_write(bus->sdiodev, SDIO_FUNC_0, SDIO_CCCR_IOEx,
SDIO_FUNC_ENABLE_1, NULL);
bus->drvr->busstate = BRCMF_BUS_DOWN;
bus->sleeping = false;
bus->rxflow = false;
/* Done with backplane-dependent accesses, can drop clock... */
brcmf_sdcard_cfg_write(bus->sdiodev, SDIO_FUNC_1,
SBSDIO_FUNC1_CHIPCLKCSR, 0, NULL);
/* ...and initialize clock/power states */
bus->clkstate = CLK_SDONLY;
bus->idletime = BRCMF_IDLE_INTERVAL;
bus->idleclock = BRCMF_IDLE_ACTIVE;
/* Query the F2 block size, set roundup accordingly */
bus->blocksize = bus->sdiodev->func[2]->cur_blksize;
bus->roundup = min(max_roundup, bus->blocksize);
/* bus module does not support packet chaining */
bus->use_rxchain = false;
bus->sd_rxchain = false;
return true;
}
static int
brcmf_sdbrcm_watchdog_thread(void *data)
{
struct brcmf_bus *bus = (struct brcmf_bus *)data;
allow_signal(SIGTERM);
/* Run until signal received */
while (1) {
if (kthread_should_stop())
break;
if (!wait_for_completion_interruptible(&bus->watchdog_wait)) {
brcmf_sdbrcm_bus_watchdog(bus->drvr);
/* Count the tick for reference */
bus->drvr->tickcnt++;
} else
break;
}
return 0;
}
static void
brcmf_sdbrcm_watchdog(unsigned long data)
{
struct brcmf_bus *bus = (struct brcmf_bus *)data;
if (bus->watchdog_tsk) {
complete(&bus->watchdog_wait);
/* Reschedule the watchdog */
if (bus->wd_timer_valid)
mod_timer(&bus->timer,
jiffies + BRCMF_WD_POLL_MS * HZ / 1000);
}
}
static void brcmf_sdbrcm_release_dongle(struct brcmf_bus *bus)
{
brcmf_dbg(TRACE, "Enter\n");
if (bus->ci) {
brcmf_sdbrcm_clkctl(bus, CLK_AVAIL, false);
brcmf_sdbrcm_clkctl(bus, CLK_NONE, false);
brcmf_sdio_chip_detach(&bus->ci);
if (bus->vars && bus->varsz)
kfree(bus->vars);
bus->vars = NULL;
}
brcmf_dbg(TRACE, "Disconnected\n");
}
/* Detach and free everything */
static void brcmf_sdbrcm_release(struct brcmf_bus *bus)
{
brcmf_dbg(TRACE, "Enter\n");
if (bus) {
/* De-register interrupt handler */
brcmf_sdcard_intr_dereg(bus->sdiodev);
if (bus->drvr) {
brcmf_detach(bus->drvr);
brcmf_sdbrcm_release_dongle(bus);
bus->drvr = NULL;
}
brcmf_sdbrcm_release_malloc(bus);
kfree(bus);
}
brcmf_dbg(TRACE, "Disconnected\n");
}
void *brcmf_sdbrcm_probe(u16 bus_no, u16 slot, u16 func, uint bustype,
u32 regsva, struct brcmf_sdio_dev *sdiodev)
{
int ret;
struct brcmf_bus *bus;
/* Init global variables at run-time, not as part of the declaration.
* This is required to support init/de-init of the driver.
* Initialization
* of globals as part of the declaration results in non-deterministic
* behavior since the value of the globals may be different on the
* first time that the driver is initialized vs subsequent
* initializations.
*/
brcmf_c_init();
brcmf_dbg(TRACE, "Enter\n");
/* We make an assumption about address window mappings:
* regsva == SI_ENUM_BASE*/
/* Allocate private bus interface state */
bus = kzalloc(sizeof(struct brcmf_bus), GFP_ATOMIC);
if (!bus)
goto fail;
bus->sdiodev = sdiodev;
sdiodev->bus = bus;
skb_queue_head_init(&bus->glom);
bus->txbound = BRCMF_TXBOUND;
bus->rxbound = BRCMF_RXBOUND;
bus->txminmax = BRCMF_TXMINMAX;
bus->tx_seq = SDPCM_SEQUENCE_WRAP - 1;
bus->usebufpool = false; /* Use bufpool if allocated,
else use locally malloced rxbuf */
/* attempt to attach to the dongle */
if (!(brcmf_sdbrcm_probe_attach(bus, regsva))) {
brcmf_dbg(ERROR, "brcmf_sdbrcm_probe_attach failed\n");
goto fail;
}
spin_lock_init(&bus->txqlock);
init_waitqueue_head(&bus->ctrl_wait);
init_waitqueue_head(&bus->dcmd_resp_wait);
/* Set up the watchdog timer */
init_timer(&bus->timer);
bus->timer.data = (unsigned long)bus;
bus->timer.function = brcmf_sdbrcm_watchdog;
/* Initialize thread based operation and lock */
sema_init(&bus->sdsem, 1);
/* Initialize watchdog thread */
init_completion(&bus->watchdog_wait);
bus->watchdog_tsk = kthread_run(brcmf_sdbrcm_watchdog_thread,
bus, "brcmf_watchdog");
if (IS_ERR(bus->watchdog_tsk)) {
printk(KERN_WARNING
"brcmf_watchdog thread failed to start\n");
bus->watchdog_tsk = NULL;
}
/* Initialize DPC thread */
init_completion(&bus->dpc_wait);
bus->dpc_tsk = kthread_run(brcmf_sdbrcm_dpc_thread,
bus, "brcmf_dpc");
if (IS_ERR(bus->dpc_tsk)) {
printk(KERN_WARNING
"brcmf_dpc thread failed to start\n");
bus->dpc_tsk = NULL;
}
/* Attach to the brcmf/OS/network interface */
bus->drvr = brcmf_attach(bus, SDPCM_RESERVE);
if (!bus->drvr) {
brcmf_dbg(ERROR, "brcmf_attach failed\n");
goto fail;
}
/* Allocate buffers */
if (!(brcmf_sdbrcm_probe_malloc(bus))) {
brcmf_dbg(ERROR, "brcmf_sdbrcm_probe_malloc failed\n");
goto fail;
}
if (!(brcmf_sdbrcm_probe_init(bus))) {
brcmf_dbg(ERROR, "brcmf_sdbrcm_probe_init failed\n");
goto fail;
}
/* Register interrupt callback, but mask it (not operational yet). */
brcmf_dbg(INTR, "disable SDIO interrupts (not interested yet)\n");
ret = brcmf_sdcard_intr_reg(bus->sdiodev);
if (ret != 0) {
brcmf_dbg(ERROR, "FAILED: sdcard_intr_reg returned %d\n", ret);
goto fail;
}
brcmf_dbg(INTR, "registered SDIO interrupt function ok\n");
brcmf_dbg(INFO, "completed!!\n");
/* if firmware path present try to download and bring up bus */
ret = brcmf_bus_start(bus->drvr);
if (ret != 0) {
if (ret == -ENOLINK) {
brcmf_dbg(ERROR, "dongle is not responding\n");
goto fail;
}
}
/* add interface and open for business */
if (brcmf_add_if((struct brcmf_info *)bus->drvr, 0, "wlan%d", NULL)) {
brcmf_dbg(ERROR, "Add primary net device interface failed!!\n");
goto fail;
}
return bus;
fail:
brcmf_sdbrcm_release(bus);
return NULL;
}
void brcmf_sdbrcm_disconnect(void *ptr)
{
struct brcmf_bus *bus = (struct brcmf_bus *)ptr;
brcmf_dbg(TRACE, "Enter\n");
if (bus)
brcmf_sdbrcm_release(bus);
brcmf_dbg(TRACE, "Disconnected\n");
}
struct device *brcmf_bus_get_device(struct brcmf_bus *bus)
{
return &bus->sdiodev->func[2]->dev;
}
void
brcmf_sdbrcm_wd_timer(struct brcmf_bus *bus, uint wdtick)
{
/* Totally stop the timer */
if (!wdtick && bus->wd_timer_valid == true) {
del_timer_sync(&bus->timer);
bus->wd_timer_valid = false;
bus->save_ms = wdtick;
return;
}
/* don't start the wd until fw is loaded */
if (bus->drvr->busstate == BRCMF_BUS_DOWN)
return;
if (wdtick) {
if (bus->save_ms != BRCMF_WD_POLL_MS) {
if (bus->wd_timer_valid == true)
/* Stop timer and restart at new value */
del_timer_sync(&bus->timer);
/* Create timer again when watchdog period is
dynamically changed or in the first instance
*/
bus->timer.expires =
jiffies + BRCMF_WD_POLL_MS * HZ / 1000;
add_timer(&bus->timer);
} else {
/* Re arm the timer, at last watchdog period */
mod_timer(&bus->timer,
jiffies + BRCMF_WD_POLL_MS * HZ / 1000);
}
bus->wd_timer_valid = true;
bus->save_ms = wdtick;
}
}