| /****************************************************************************** |
| * |
| * Copyright(c) 2009-2014 Realtek Corporation. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of version 2 of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * The full GNU General Public License is included in this distribution in the |
| * file called LICENSE. |
| * |
| * Contact Information: |
| * wlanfae <wlanfae@realtek.com> |
| * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park, |
| * Hsinchu 300, Taiwan. |
| * |
| * Larry Finger <Larry.Finger@lwfinger.net> |
| * |
| *****************************************************************************/ |
| |
| #include "../wifi.h" |
| #include "../efuse.h" |
| #include "../base.h" |
| #include "../regd.h" |
| #include "../cam.h" |
| #include "../ps.h" |
| #include "../pci.h" |
| #include "reg.h" |
| #include "def.h" |
| #include "phy.h" |
| #include "../rtl8723com/phy_common.h" |
| #include "dm.h" |
| #include "../rtl8723com/dm_common.h" |
| #include "fw.h" |
| #include "../rtl8723com/fw_common.h" |
| #include "led.h" |
| #include "hw.h" |
| #include "../pwrseqcmd.h" |
| #include "pwrseq.h" |
| #include "../btcoexist/rtl_btc.h" |
| |
| #define LLT_CONFIG 5 |
| |
| static void _rtl8723be_return_beacon_queue_skb(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); |
| struct rtl8192_tx_ring *ring = &rtlpci->tx_ring[BEACON_QUEUE]; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&rtlpriv->locks.irq_th_lock, flags); |
| while (skb_queue_len(&ring->queue)) { |
| struct rtl_tx_desc *entry = &ring->desc[ring->idx]; |
| struct sk_buff *skb = __skb_dequeue(&ring->queue); |
| |
| pci_unmap_single(rtlpci->pdev, |
| rtlpriv->cfg->ops->get_desc( |
| (u8 *)entry, true, HW_DESC_TXBUFF_ADDR), |
| skb->len, PCI_DMA_TODEVICE); |
| kfree_skb(skb); |
| ring->idx = (ring->idx + 1) % ring->entries; |
| } |
| spin_unlock_irqrestore(&rtlpriv->locks.irq_th_lock, flags); |
| } |
| |
| static void _rtl8723be_set_bcn_ctrl_reg(struct ieee80211_hw *hw, |
| u8 set_bits, u8 clear_bits) |
| { |
| struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| |
| rtlpci->reg_bcn_ctrl_val |= set_bits; |
| rtlpci->reg_bcn_ctrl_val &= ~clear_bits; |
| |
| rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8)rtlpci->reg_bcn_ctrl_val); |
| } |
| |
| static void _rtl8723be_stop_tx_beacon(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| u8 tmp1byte; |
| |
| tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2); |
| rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte & (~BIT(6))); |
| rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0x64); |
| tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2); |
| tmp1byte &= ~(BIT(0)); |
| rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte); |
| } |
| |
| static void _rtl8723be_resume_tx_beacon(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| u8 tmp1byte; |
| |
| tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2); |
| rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte | BIT(6)); |
| rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff); |
| tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2); |
| tmp1byte |= BIT(1); |
| rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte); |
| } |
| |
| static void _rtl8723be_enable_bcn_sub_func(struct ieee80211_hw *hw) |
| { |
| _rtl8723be_set_bcn_ctrl_reg(hw, 0, BIT(1)); |
| } |
| |
| static void _rtl8723be_disable_bcn_sub_func(struct ieee80211_hw *hw) |
| { |
| _rtl8723be_set_bcn_ctrl_reg(hw, BIT(1), 0); |
| } |
| |
| static void _rtl8723be_set_fw_clock_on(struct ieee80211_hw *hw, u8 rpwm_val, |
| bool b_need_turn_off_ckk) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); |
| bool b_support_remote_wake_up; |
| u32 count = 0, isr_regaddr, content; |
| bool b_schedule_timer = b_need_turn_off_ckk; |
| rtlpriv->cfg->ops->get_hw_reg(hw, HAL_DEF_WOWLAN, |
| (u8 *)(&b_support_remote_wake_up)); |
| |
| if (!rtlhal->fw_ready) |
| return; |
| if (!rtlpriv->psc.fw_current_inpsmode) |
| return; |
| |
| while (1) { |
| spin_lock_bh(&rtlpriv->locks.fw_ps_lock); |
| if (rtlhal->fw_clk_change_in_progress) { |
| while (rtlhal->fw_clk_change_in_progress) { |
| spin_unlock_bh(&rtlpriv->locks.fw_ps_lock); |
| count++; |
| udelay(100); |
| if (count > 1000) |
| return; |
| spin_lock_bh(&rtlpriv->locks.fw_ps_lock); |
| } |
| spin_unlock_bh(&rtlpriv->locks.fw_ps_lock); |
| } else { |
| rtlhal->fw_clk_change_in_progress = false; |
| spin_unlock_bh(&rtlpriv->locks.fw_ps_lock); |
| break; |
| } |
| } |
| |
| if (IS_IN_LOW_POWER_STATE(rtlhal->fw_ps_state)) { |
| rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_SET_RPWM, |
| (u8 *)(&rpwm_val)); |
| if (FW_PS_IS_ACK(rpwm_val)) { |
| isr_regaddr = REG_HISR; |
| content = rtl_read_dword(rtlpriv, isr_regaddr); |
| while (!(content & IMR_CPWM) && (count < 500)) { |
| udelay(50); |
| count++; |
| content = rtl_read_dword(rtlpriv, isr_regaddr); |
| } |
| |
| if (content & IMR_CPWM) { |
| rtl_write_word(rtlpriv, isr_regaddr, 0x0100); |
| rtlhal->fw_ps_state = FW_PS_STATE_RF_ON; |
| RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD, |
| "Receive CPWM INT!!! Set pHalData->FwPSState = %X\n", |
| rtlhal->fw_ps_state); |
| } |
| } |
| |
| spin_lock_bh(&rtlpriv->locks.fw_ps_lock); |
| rtlhal->fw_clk_change_in_progress = false; |
| spin_unlock_bh(&rtlpriv->locks.fw_ps_lock); |
| if (b_schedule_timer) |
| mod_timer(&rtlpriv->works.fw_clockoff_timer, |
| jiffies + MSECS(10)); |
| } else { |
| spin_lock_bh(&rtlpriv->locks.fw_ps_lock); |
| rtlhal->fw_clk_change_in_progress = false; |
| spin_unlock_bh(&rtlpriv->locks.fw_ps_lock); |
| } |
| } |
| |
| static void _rtl8723be_set_fw_clock_off(struct ieee80211_hw *hw, u8 rpwm_val) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); |
| struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); |
| struct rtl8192_tx_ring *ring; |
| enum rf_pwrstate rtstate; |
| bool b_schedule_timer = false; |
| u8 queue; |
| |
| if (!rtlhal->fw_ready) |
| return; |
| if (!rtlpriv->psc.fw_current_inpsmode) |
| return; |
| if (!rtlhal->allow_sw_to_change_hwclc) |
| return; |
| rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RF_STATE, (u8 *)(&rtstate)); |
| if (rtstate == ERFOFF || rtlpriv->psc.inactive_pwrstate == ERFOFF) |
| return; |
| |
| for (queue = 0; queue < RTL_PCI_MAX_TX_QUEUE_COUNT; queue++) { |
| ring = &rtlpci->tx_ring[queue]; |
| if (skb_queue_len(&ring->queue)) { |
| b_schedule_timer = true; |
| break; |
| } |
| } |
| |
| if (b_schedule_timer) { |
| mod_timer(&rtlpriv->works.fw_clockoff_timer, |
| jiffies + MSECS(10)); |
| return; |
| } |
| |
| if (FW_PS_STATE(rtlhal->fw_ps_state) != FW_PS_STATE_RF_OFF_LOW_PWR) { |
| spin_lock_bh(&rtlpriv->locks.fw_ps_lock); |
| if (!rtlhal->fw_clk_change_in_progress) { |
| rtlhal->fw_clk_change_in_progress = true; |
| spin_unlock_bh(&rtlpriv->locks.fw_ps_lock); |
| rtlhal->fw_ps_state = FW_PS_STATE(rpwm_val); |
| rtl_write_word(rtlpriv, REG_HISR, 0x0100); |
| rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM, |
| (u8 *)(&rpwm_val)); |
| spin_lock_bh(&rtlpriv->locks.fw_ps_lock); |
| rtlhal->fw_clk_change_in_progress = false; |
| spin_unlock_bh(&rtlpriv->locks.fw_ps_lock); |
| } else { |
| spin_unlock_bh(&rtlpriv->locks.fw_ps_lock); |
| mod_timer(&rtlpriv->works.fw_clockoff_timer, |
| jiffies + MSECS(10)); |
| } |
| } |
| |
| } |
| |
| static void _rtl8723be_set_fw_ps_rf_on(struct ieee80211_hw *hw) |
| { |
| u8 rpwm_val = 0; |
| rpwm_val |= (FW_PS_STATE_RF_OFF | FW_PS_ACK); |
| _rtl8723be_set_fw_clock_on(hw, rpwm_val, true); |
| } |
| |
| static void _rtl8723be_fwlps_leave(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); |
| struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); |
| bool fw_current_inps = false; |
| u8 rpwm_val = 0, fw_pwrmode = FW_PS_ACTIVE_MODE; |
| |
| if (ppsc->low_power_enable) { |
| rpwm_val = (FW_PS_STATE_ALL_ON | FW_PS_ACK);/* RF on */ |
| _rtl8723be_set_fw_clock_on(hw, rpwm_val, false); |
| rtlhal->allow_sw_to_change_hwclc = false; |
| rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE, |
| (u8 *)(&fw_pwrmode)); |
| rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_FW_PSMODE_STATUS, |
| (u8 *)(&fw_current_inps)); |
| } else { |
| rpwm_val = FW_PS_STATE_ALL_ON; /* RF on */ |
| rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM, |
| (u8 *)(&rpwm_val)); |
| rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE, |
| (u8 *)(&fw_pwrmode)); |
| rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_FW_PSMODE_STATUS, |
| (u8 *)(&fw_current_inps)); |
| } |
| |
| } |
| |
| static void _rtl8723be_fwlps_enter(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); |
| struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); |
| bool fw_current_inps = true; |
| u8 rpwm_val; |
| |
| if (ppsc->low_power_enable) { |
| rpwm_val = FW_PS_STATE_RF_OFF_LOW_PWR; /* RF off */ |
| rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_FW_PSMODE_STATUS, |
| (u8 *)(&fw_current_inps)); |
| rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE, |
| (u8 *)(&ppsc->fwctrl_psmode)); |
| rtlhal->allow_sw_to_change_hwclc = true; |
| _rtl8723be_set_fw_clock_off(hw, rpwm_val); |
| } else { |
| rpwm_val = FW_PS_STATE_RF_OFF; /* RF off */ |
| rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_FW_PSMODE_STATUS, |
| (u8 *)(&fw_current_inps)); |
| rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE, |
| (u8 *)(&ppsc->fwctrl_psmode)); |
| rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM, |
| (u8 *)(&rpwm_val)); |
| } |
| |
| } |
| |
| void rtl8723be_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); |
| struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); |
| |
| switch (variable) { |
| case HW_VAR_RCR: |
| *((u32 *)(val)) = rtlpci->receive_config; |
| break; |
| case HW_VAR_RF_STATE: |
| *((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state; |
| break; |
| case HW_VAR_FWLPS_RF_ON:{ |
| enum rf_pwrstate rfState; |
| u32 val_rcr; |
| |
| rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RF_STATE, |
| (u8 *)(&rfState)); |
| if (rfState == ERFOFF) { |
| *((bool *)(val)) = true; |
| } else { |
| val_rcr = rtl_read_dword(rtlpriv, REG_RCR); |
| val_rcr &= 0x00070000; |
| if (val_rcr) |
| *((bool *)(val)) = false; |
| else |
| *((bool *)(val)) = true; |
| } |
| } |
| break; |
| case HW_VAR_FW_PSMODE_STATUS: |
| *((bool *)(val)) = ppsc->fw_current_inpsmode; |
| break; |
| case HW_VAR_CORRECT_TSF:{ |
| u64 tsf; |
| u32 *ptsf_low = (u32 *)&tsf; |
| u32 *ptsf_high = ((u32 *)&tsf) + 1; |
| |
| *ptsf_high = rtl_read_dword(rtlpriv, (REG_TSFTR + 4)); |
| *ptsf_low = rtl_read_dword(rtlpriv, REG_TSFTR); |
| |
| *((u64 *)(val)) = tsf; |
| } |
| break; |
| case HAL_DEF_WOWLAN: |
| break; |
| default: |
| RT_TRACE(rtlpriv, COMP_ERR, DBG_LOUD, |
| "switch case %#x not processed\n", variable); |
| break; |
| } |
| } |
| |
| static void _rtl8723be_download_rsvd_page(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| u8 tmp_regcr, tmp_reg422, bcnvalid_reg; |
| u8 count = 0, dlbcn_count = 0; |
| bool b_recover = false; |
| |
| tmp_regcr = rtl_read_byte(rtlpriv, REG_CR + 1); |
| rtl_write_byte(rtlpriv, REG_CR + 1, |
| (tmp_regcr | BIT(0))); |
| |
| _rtl8723be_set_bcn_ctrl_reg(hw, 0, BIT(3)); |
| _rtl8723be_set_bcn_ctrl_reg(hw, BIT(4), 0); |
| |
| tmp_reg422 = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2); |
| rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp_reg422 & (~BIT(6))); |
| if (tmp_reg422 & BIT(6)) |
| b_recover = true; |
| |
| do { |
| bcnvalid_reg = rtl_read_byte(rtlpriv, REG_TDECTRL + 2); |
| rtl_write_byte(rtlpriv, REG_TDECTRL + 2, |
| (bcnvalid_reg | BIT(0))); |
| _rtl8723be_return_beacon_queue_skb(hw); |
| |
| rtl8723be_set_fw_rsvdpagepkt(hw, 0); |
| bcnvalid_reg = rtl_read_byte(rtlpriv, REG_TDECTRL + 2); |
| count = 0; |
| while (!(bcnvalid_reg & BIT(0)) && count < 20) { |
| count++; |
| udelay(10); |
| bcnvalid_reg = rtl_read_byte(rtlpriv, |
| REG_TDECTRL + 2); |
| } |
| dlbcn_count++; |
| } while (!(bcnvalid_reg & BIT(0)) && dlbcn_count < 5); |
| |
| if (bcnvalid_reg & BIT(0)) |
| rtl_write_byte(rtlpriv, REG_TDECTRL + 2, BIT(0)); |
| |
| _rtl8723be_set_bcn_ctrl_reg(hw, BIT(3), 0); |
| _rtl8723be_set_bcn_ctrl_reg(hw, 0, BIT(4)); |
| |
| if (b_recover) |
| rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp_reg422); |
| |
| tmp_regcr = rtl_read_byte(rtlpriv, REG_CR + 1); |
| rtl_write_byte(rtlpriv, REG_CR + 1, (tmp_regcr & ~(BIT(0)))); |
| } |
| |
| void rtl8723be_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); |
| struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); |
| struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); |
| struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); |
| u8 idx; |
| |
| switch (variable) { |
| case HW_VAR_ETHER_ADDR: |
| for (idx = 0; idx < ETH_ALEN; idx++) |
| rtl_write_byte(rtlpriv, (REG_MACID + idx), val[idx]); |
| break; |
| case HW_VAR_BASIC_RATE:{ |
| u16 b_rate_cfg = ((u16 *)val)[0]; |
| u8 rate_index = 0; |
| b_rate_cfg = b_rate_cfg & 0x15f; |
| b_rate_cfg |= 0x01; |
| rtl_write_byte(rtlpriv, REG_RRSR, b_rate_cfg & 0xff); |
| rtl_write_byte(rtlpriv, REG_RRSR + 1, (b_rate_cfg >> 8) & 0xff); |
| while (b_rate_cfg > 0x1) { |
| b_rate_cfg = (b_rate_cfg >> 1); |
| rate_index++; |
| } |
| rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL, rate_index); |
| } |
| break; |
| case HW_VAR_BSSID: |
| for (idx = 0; idx < ETH_ALEN; idx++) |
| rtl_write_byte(rtlpriv, (REG_BSSID + idx), val[idx]); |
| |
| break; |
| case HW_VAR_SIFS: |
| rtl_write_byte(rtlpriv, REG_SIFS_CTX + 1, val[0]); |
| rtl_write_byte(rtlpriv, REG_SIFS_TRX + 1, val[1]); |
| |
| rtl_write_byte(rtlpriv, REG_SPEC_SIFS + 1, val[0]); |
| rtl_write_byte(rtlpriv, REG_MAC_SPEC_SIFS + 1, val[0]); |
| |
| if (!mac->ht_enable) |
| rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM, 0x0e0e); |
| else |
| rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM, |
| *((u16 *)val)); |
| break; |
| case HW_VAR_SLOT_TIME:{ |
| u8 e_aci; |
| |
| RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD, |
| "HW_VAR_SLOT_TIME %x\n", val[0]); |
| |
| rtl_write_byte(rtlpriv, REG_SLOT, val[0]); |
| |
| for (e_aci = 0; e_aci < AC_MAX; e_aci++) { |
| rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_AC_PARAM, |
| (u8 *)(&e_aci)); |
| } |
| } |
| break; |
| case HW_VAR_ACK_PREAMBLE:{ |
| u8 reg_tmp; |
| u8 short_preamble = (bool)(*(u8 *)val); |
| reg_tmp = rtl_read_byte(rtlpriv, REG_TRXPTCL_CTL + 2); |
| if (short_preamble) { |
| reg_tmp |= 0x02; |
| rtl_write_byte(rtlpriv, REG_TRXPTCL_CTL + 2, reg_tmp); |
| } else { |
| reg_tmp &= 0xFD; |
| rtl_write_byte(rtlpriv, REG_TRXPTCL_CTL + 2, reg_tmp); |
| } |
| } |
| break; |
| case HW_VAR_WPA_CONFIG: |
| rtl_write_byte(rtlpriv, REG_SECCFG, *((u8 *)val)); |
| break; |
| case HW_VAR_AMPDU_MIN_SPACE:{ |
| u8 min_spacing_to_set; |
| u8 sec_min_space; |
| |
| min_spacing_to_set = *((u8 *)val); |
| if (min_spacing_to_set <= 7) { |
| sec_min_space = 0; |
| |
| if (min_spacing_to_set < sec_min_space) |
| min_spacing_to_set = sec_min_space; |
| |
| mac->min_space_cfg = ((mac->min_space_cfg & 0xf8) | |
| min_spacing_to_set); |
| |
| *val = min_spacing_to_set; |
| |
| RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD, |
| "Set HW_VAR_AMPDU_MIN_SPACE: %#x\n", |
| mac->min_space_cfg); |
| |
| rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE, |
| mac->min_space_cfg); |
| } |
| } |
| break; |
| case HW_VAR_SHORTGI_DENSITY:{ |
| u8 density_to_set; |
| |
| density_to_set = *((u8 *)val); |
| mac->min_space_cfg |= (density_to_set << 3); |
| |
| RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD, |
| "Set HW_VAR_SHORTGI_DENSITY: %#x\n", |
| mac->min_space_cfg); |
| |
| rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE, |
| mac->min_space_cfg); |
| } |
| break; |
| case HW_VAR_AMPDU_FACTOR:{ |
| u8 regtoset_normal[4] = {0x41, 0xa8, 0x72, 0xb9}; |
| u8 factor_toset; |
| u8 *p_regtoset = NULL; |
| u8 index = 0; |
| |
| p_regtoset = regtoset_normal; |
| |
| factor_toset = *((u8 *)val); |
| if (factor_toset <= 3) { |
| factor_toset = (1 << (factor_toset + 2)); |
| if (factor_toset > 0xf) |
| factor_toset = 0xf; |
| |
| for (index = 0; index < 4; index++) { |
| if ((p_regtoset[index] & 0xf0) > |
| (factor_toset << 4)) |
| p_regtoset[index] = |
| (p_regtoset[index] & 0x0f) | |
| (factor_toset << 4); |
| |
| if ((p_regtoset[index] & 0x0f) > factor_toset) |
| p_regtoset[index] = |
| (p_regtoset[index] & 0xf0) | |
| (factor_toset); |
| |
| rtl_write_byte(rtlpriv, |
| (REG_AGGLEN_LMT + index), |
| p_regtoset[index]); |
| |
| } |
| |
| RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD, |
| "Set HW_VAR_AMPDU_FACTOR: %#x\n", |
| factor_toset); |
| } |
| } |
| break; |
| case HW_VAR_AC_PARAM:{ |
| u8 e_aci = *((u8 *)val); |
| rtl8723_dm_init_edca_turbo(hw); |
| |
| if (rtlpci->acm_method != EACMWAY2_SW) |
| rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ACM_CTRL, |
| (u8 *)(&e_aci)); |
| } |
| break; |
| case HW_VAR_ACM_CTRL:{ |
| u8 e_aci = *((u8 *)val); |
| union aci_aifsn *p_aci_aifsn = |
| (union aci_aifsn *)(&(mac->ac[0].aifs)); |
| u8 acm = p_aci_aifsn->f.acm; |
| u8 acm_ctrl = rtl_read_byte(rtlpriv, REG_ACMHWCTRL); |
| |
| acm_ctrl = |
| acm_ctrl | ((rtlpci->acm_method == 2) ? 0x0 : 0x1); |
| |
| if (acm) { |
| switch (e_aci) { |
| case AC0_BE: |
| acm_ctrl |= ACMHW_BEQEN; |
| break; |
| case AC2_VI: |
| acm_ctrl |= ACMHW_VIQEN; |
| break; |
| case AC3_VO: |
| acm_ctrl |= ACMHW_VOQEN; |
| break; |
| default: |
| RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, |
| "HW_VAR_ACM_CTRL acm set failed: eACI is %d\n", |
| acm); |
| break; |
| } |
| } else { |
| switch (e_aci) { |
| case AC0_BE: |
| acm_ctrl &= (~ACMHW_BEQEN); |
| break; |
| case AC2_VI: |
| acm_ctrl &= (~ACMHW_VIQEN); |
| break; |
| case AC3_VO: |
| acm_ctrl &= (~ACMHW_VOQEN); |
| break; |
| default: |
| RT_TRACE(rtlpriv, COMP_ERR, DBG_LOUD, |
| "switch case %#x not processed\n", |
| e_aci); |
| break; |
| } |
| } |
| |
| RT_TRACE(rtlpriv, COMP_QOS, DBG_TRACE, |
| "SetHwReg8190pci(): [HW_VAR_ACM_CTRL] Write 0x%X\n", |
| acm_ctrl); |
| rtl_write_byte(rtlpriv, REG_ACMHWCTRL, acm_ctrl); |
| } |
| break; |
| case HW_VAR_RCR: |
| rtl_write_dword(rtlpriv, REG_RCR, ((u32 *)(val))[0]); |
| rtlpci->receive_config = ((u32 *)(val))[0]; |
| break; |
| case HW_VAR_RETRY_LIMIT:{ |
| u8 retry_limit = ((u8 *)(val))[0]; |
| |
| rtl_write_word(rtlpriv, REG_RL, |
| retry_limit << RETRY_LIMIT_SHORT_SHIFT | |
| retry_limit << RETRY_LIMIT_LONG_SHIFT); |
| } |
| break; |
| case HW_VAR_DUAL_TSF_RST: |
| rtl_write_byte(rtlpriv, REG_DUAL_TSF_RST, (BIT(0) | BIT(1))); |
| break; |
| case HW_VAR_EFUSE_BYTES: |
| rtlefuse->efuse_usedbytes = *((u16 *)val); |
| break; |
| case HW_VAR_EFUSE_USAGE: |
| rtlefuse->efuse_usedpercentage = *((u8 *)val); |
| break; |
| case HW_VAR_IO_CMD: |
| rtl8723be_phy_set_io_cmd(hw, (*(enum io_type *)val)); |
| break; |
| case HW_VAR_SET_RPWM:{ |
| u8 rpwm_val; |
| |
| rpwm_val = rtl_read_byte(rtlpriv, REG_PCIE_HRPWM); |
| udelay(1); |
| |
| if (rpwm_val & BIT(7)) { |
| rtl_write_byte(rtlpriv, REG_PCIE_HRPWM, (*(u8 *)val)); |
| } else { |
| rtl_write_byte(rtlpriv, REG_PCIE_HRPWM, |
| ((*(u8 *)val) | BIT(7))); |
| } |
| } |
| break; |
| case HW_VAR_H2C_FW_PWRMODE: |
| rtl8723be_set_fw_pwrmode_cmd(hw, (*(u8 *)val)); |
| break; |
| case HW_VAR_FW_PSMODE_STATUS: |
| ppsc->fw_current_inpsmode = *((bool *)val); |
| break; |
| case HW_VAR_RESUME_CLK_ON: |
| _rtl8723be_set_fw_ps_rf_on(hw); |
| break; |
| case HW_VAR_FW_LPS_ACTION:{ |
| bool b_enter_fwlps = *((bool *)val); |
| |
| if (b_enter_fwlps) |
| _rtl8723be_fwlps_enter(hw); |
| else |
| _rtl8723be_fwlps_leave(hw); |
| } |
| break; |
| case HW_VAR_H2C_FW_JOINBSSRPT:{ |
| u8 mstatus = (*(u8 *)val); |
| |
| if (mstatus == RT_MEDIA_CONNECT) { |
| rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_AID, NULL); |
| _rtl8723be_download_rsvd_page(hw); |
| } |
| rtl8723be_set_fw_media_status_rpt_cmd(hw, mstatus); |
| } |
| break; |
| case HW_VAR_H2C_FW_P2P_PS_OFFLOAD: |
| rtl8723be_set_p2p_ps_offload_cmd(hw, (*(u8 *)val)); |
| break; |
| case HW_VAR_AID:{ |
| u16 u2btmp; |
| u2btmp = rtl_read_word(rtlpriv, REG_BCN_PSR_RPT); |
| u2btmp &= 0xC000; |
| rtl_write_word(rtlpriv, REG_BCN_PSR_RPT, |
| (u2btmp | mac->assoc_id)); |
| } |
| break; |
| case HW_VAR_CORRECT_TSF:{ |
| u8 btype_ibss = ((u8 *)(val))[0]; |
| |
| if (btype_ibss) |
| _rtl8723be_stop_tx_beacon(hw); |
| |
| _rtl8723be_set_bcn_ctrl_reg(hw, 0, BIT(3)); |
| |
| rtl_write_dword(rtlpriv, REG_TSFTR, |
| (u32) (mac->tsf & 0xffffffff)); |
| rtl_write_dword(rtlpriv, REG_TSFTR + 4, |
| (u32) ((mac->tsf >> 32) & 0xffffffff)); |
| |
| _rtl8723be_set_bcn_ctrl_reg(hw, BIT(3), 0); |
| |
| if (btype_ibss) |
| _rtl8723be_resume_tx_beacon(hw); |
| } |
| break; |
| case HW_VAR_KEEP_ALIVE:{ |
| u8 array[2]; |
| array[0] = 0xff; |
| array[1] = *((u8 *)val); |
| rtl8723be_fill_h2c_cmd(hw, H2C_8723B_KEEP_ALIVE_CTRL, 2, array); |
| } |
| break; |
| default: |
| RT_TRACE(rtlpriv, COMP_ERR, DBG_LOUD, |
| "switch case %#x not processed\n", variable); |
| break; |
| } |
| } |
| |
| static bool _rtl8723be_llt_write(struct ieee80211_hw *hw, u32 address, u32 data) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| bool status = true; |
| long count = 0; |
| u32 value = _LLT_INIT_ADDR(address) | _LLT_INIT_DATA(data) | |
| _LLT_OP(_LLT_WRITE_ACCESS); |
| |
| rtl_write_dword(rtlpriv, REG_LLT_INIT, value); |
| |
| do { |
| value = rtl_read_dword(rtlpriv, REG_LLT_INIT); |
| if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value)) |
| break; |
| |
| if (count > POLLING_LLT_THRESHOLD) { |
| pr_err("Failed to polling write LLT done at address %d!\n", |
| address); |
| status = false; |
| break; |
| } |
| } while (++count); |
| |
| return status; |
| } |
| |
| static bool _rtl8723be_llt_table_init(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| unsigned short i; |
| u8 txpktbuf_bndy; |
| u8 maxPage; |
| bool status; |
| |
| maxPage = 255; |
| txpktbuf_bndy = 245; |
| |
| rtl_write_dword(rtlpriv, REG_TRXFF_BNDY, |
| (0x27FF0000 | txpktbuf_bndy)); |
| rtl_write_byte(rtlpriv, REG_TDECTRL + 1, txpktbuf_bndy); |
| |
| rtl_write_byte(rtlpriv, REG_TXPKTBUF_BCNQ_BDNY, txpktbuf_bndy); |
| rtl_write_byte(rtlpriv, REG_TXPKTBUF_MGQ_BDNY, txpktbuf_bndy); |
| |
| rtl_write_byte(rtlpriv, 0x45D, txpktbuf_bndy); |
| rtl_write_byte(rtlpriv, REG_PBP, 0x31); |
| rtl_write_byte(rtlpriv, REG_RX_DRVINFO_SZ, 0x4); |
| |
| for (i = 0; i < (txpktbuf_bndy - 1); i++) { |
| status = _rtl8723be_llt_write(hw, i, i + 1); |
| if (!status) |
| return status; |
| } |
| |
| status = _rtl8723be_llt_write(hw, (txpktbuf_bndy - 1), 0xFF); |
| |
| if (!status) |
| return status; |
| |
| for (i = txpktbuf_bndy; i < maxPage; i++) { |
| status = _rtl8723be_llt_write(hw, i, (i + 1)); |
| if (!status) |
| return status; |
| } |
| |
| status = _rtl8723be_llt_write(hw, maxPage, txpktbuf_bndy); |
| if (!status) |
| return status; |
| |
| rtl_write_dword(rtlpriv, REG_RQPN, 0x80e40808); |
| rtl_write_byte(rtlpriv, REG_RQPN_NPQ, 0x00); |
| |
| return true; |
| } |
| |
| static void _rtl8723be_gen_refresh_led_state(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); |
| struct rtl_led *pled0 = &rtlpriv->ledctl.sw_led0; |
| |
| if (rtlpriv->rtlhal.up_first_time) |
| return; |
| |
| if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS) |
| rtl8723be_sw_led_on(hw, pled0); |
| else if (ppsc->rfoff_reason == RF_CHANGE_BY_INIT) |
| rtl8723be_sw_led_on(hw, pled0); |
| else |
| rtl8723be_sw_led_off(hw, pled0); |
| } |
| |
| static bool _rtl8723be_init_mac(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); |
| struct rtl_hal *rtlhal = rtl_hal(rtlpriv); |
| unsigned char bytetmp; |
| unsigned short wordtmp; |
| |
| rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x00); |
| |
| /*Auto Power Down to CHIP-off State*/ |
| bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1) & (~BIT(7)); |
| rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, bytetmp); |
| |
| /* HW Power on sequence */ |
| if (!rtl_hal_pwrseqcmdparsing(rtlpriv, PWR_CUT_ALL_MSK, |
| PWR_FAB_ALL_MSK, PWR_INTF_PCI_MSK, |
| RTL8723_NIC_ENABLE_FLOW)) { |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, |
| "init MAC Fail as power on failure\n"); |
| return false; |
| } |
| |
| if (rtlpriv->cfg->ops->get_btc_status()) |
| rtlpriv->btcoexist.btc_ops->btc_power_on_setting(rtlpriv); |
| |
| bytetmp = rtl_read_byte(rtlpriv, REG_MULTI_FUNC_CTRL); |
| rtl_write_byte(rtlpriv, REG_MULTI_FUNC_CTRL, bytetmp | BIT(3)); |
| |
| bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO) | BIT(4); |
| rtl_write_byte(rtlpriv, REG_APS_FSMCO, bytetmp); |
| |
| bytetmp = rtl_read_byte(rtlpriv, REG_CR); |
| bytetmp = 0xff; |
| rtl_write_byte(rtlpriv, REG_CR, bytetmp); |
| mdelay(2); |
| |
| bytetmp = rtl_read_byte(rtlpriv, REG_HWSEQ_CTRL); |
| bytetmp |= 0x7f; |
| rtl_write_byte(rtlpriv, REG_HWSEQ_CTRL, bytetmp); |
| mdelay(2); |
| |
| bytetmp = rtl_read_byte(rtlpriv, REG_SYS_CFG + 3); |
| if (bytetmp & BIT(0)) { |
| bytetmp = rtl_read_byte(rtlpriv, 0x7c); |
| rtl_write_byte(rtlpriv, 0x7c, bytetmp | BIT(6)); |
| } |
| |
| bytetmp = rtl_read_byte(rtlpriv, REG_SYS_CLKR); |
| rtl_write_byte(rtlpriv, REG_SYS_CLKR, bytetmp | BIT(3)); |
| bytetmp = rtl_read_byte(rtlpriv, REG_GPIO_MUXCFG + 1); |
| rtl_write_byte(rtlpriv, REG_GPIO_MUXCFG + 1, bytetmp & (~BIT(4))); |
| |
| rtl_write_word(rtlpriv, REG_CR, 0x2ff); |
| |
| if (!rtlhal->mac_func_enable) { |
| if (_rtl8723be_llt_table_init(hw) == false) |
| return false; |
| } |
| |
| rtl_write_dword(rtlpriv, REG_HISR, 0xffffffff); |
| rtl_write_dword(rtlpriv, REG_HISRE, 0xffffffff); |
| |
| /* Enable FW Beamformer Interrupt */ |
| bytetmp = rtl_read_byte(rtlpriv, REG_FWIMR + 3); |
| rtl_write_byte(rtlpriv, REG_FWIMR + 3, bytetmp | BIT(6)); |
| |
| wordtmp = rtl_read_word(rtlpriv, REG_TRXDMA_CTRL); |
| wordtmp &= 0xf; |
| wordtmp |= 0xF5B1; |
| rtl_write_word(rtlpriv, REG_TRXDMA_CTRL, wordtmp); |
| |
| rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 1, 0x1F); |
| rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config); |
| rtl_write_word(rtlpriv, REG_RXFLTMAP2, 0xFFFF); |
| rtl_write_dword(rtlpriv, REG_TCR, rtlpci->transmit_config); |
| |
| rtl_write_dword(rtlpriv, REG_BCNQ_DESA, |
| ((u64) rtlpci->tx_ring[BEACON_QUEUE].dma) & |
| DMA_BIT_MASK(32)); |
| rtl_write_dword(rtlpriv, REG_MGQ_DESA, |
| (u64) rtlpci->tx_ring[MGNT_QUEUE].dma & |
| DMA_BIT_MASK(32)); |
| rtl_write_dword(rtlpriv, REG_VOQ_DESA, |
| (u64) rtlpci->tx_ring[VO_QUEUE].dma & DMA_BIT_MASK(32)); |
| rtl_write_dword(rtlpriv, REG_VIQ_DESA, |
| (u64) rtlpci->tx_ring[VI_QUEUE].dma & DMA_BIT_MASK(32)); |
| rtl_write_dword(rtlpriv, REG_BEQ_DESA, |
| (u64) rtlpci->tx_ring[BE_QUEUE].dma & DMA_BIT_MASK(32)); |
| rtl_write_dword(rtlpriv, REG_BKQ_DESA, |
| (u64) rtlpci->tx_ring[BK_QUEUE].dma & DMA_BIT_MASK(32)); |
| rtl_write_dword(rtlpriv, REG_HQ_DESA, |
| (u64) rtlpci->tx_ring[HIGH_QUEUE].dma & |
| DMA_BIT_MASK(32)); |
| rtl_write_dword(rtlpriv, REG_RX_DESA, |
| (u64) rtlpci->rx_ring[RX_MPDU_QUEUE].dma & |
| DMA_BIT_MASK(32)); |
| |
| bytetmp = rtl_read_byte(rtlpriv, REG_PCIE_CTRL_REG + 3); |
| rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 3, bytetmp | 0x77); |
| |
| rtl_write_dword(rtlpriv, REG_INT_MIG, 0); |
| |
| rtl_write_dword(rtlpriv, REG_MCUTST_1, 0x0); |
| |
| rtl_write_byte(rtlpriv, REG_SECONDARY_CCA_CTRL, 0x3); |
| |
| /* <20130114, Kordan> The following setting is |
| * only for DPDT and Fixed board type. |
| * TODO: A better solution is configure it |
| * according EFUSE during the run-time. |
| */ |
| rtl_set_bbreg(hw, 0x64, BIT(20), 0x0);/* 0x66[4]=0 */ |
| rtl_set_bbreg(hw, 0x64, BIT(24), 0x0);/* 0x66[8]=0 */ |
| rtl_set_bbreg(hw, 0x40, BIT(4), 0x0)/* 0x40[4]=0 */; |
| rtl_set_bbreg(hw, 0x40, BIT(3), 0x1)/* 0x40[3]=1 */; |
| rtl_set_bbreg(hw, 0x4C, BIT(24) | BIT(23), 0x2)/* 0x4C[24:23]=10 */; |
| rtl_set_bbreg(hw, 0x944, BIT(1) | BIT(0), 0x3)/* 0x944[1:0]=11 */; |
| rtl_set_bbreg(hw, 0x930, MASKBYTE0, 0x77)/* 0x930[7:0]=77 */; |
| rtl_set_bbreg(hw, 0x38, BIT(11), 0x1)/* 0x38[11]=1 */; |
| |
| bytetmp = rtl_read_byte(rtlpriv, REG_RXDMA_CONTROL); |
| rtl_write_byte(rtlpriv, REG_RXDMA_CONTROL, bytetmp & (~BIT(2))); |
| |
| _rtl8723be_gen_refresh_led_state(hw); |
| return true; |
| } |
| |
| static void _rtl8723be_hw_configure(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); |
| u32 reg_rrsr; |
| |
| reg_rrsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG; |
| /* Init value for RRSR. */ |
| rtl_write_dword(rtlpriv, REG_RRSR, reg_rrsr); |
| |
| /* ARFB table 9 for 11ac 5G 2SS */ |
| rtl_write_dword(rtlpriv, REG_ARFR0 + 4, 0xfffff000); |
| |
| /* ARFB table 10 for 11ac 5G 1SS */ |
| rtl_write_dword(rtlpriv, REG_ARFR1 + 4, 0x003ff000); |
| |
| /* CF-End setting. */ |
| rtl_write_word(rtlpriv, REG_FWHW_TXQ_CTRL, 0x1F00); |
| |
| /* 0x456 = 0x70, sugguested by Zhilin */ |
| rtl_write_byte(rtlpriv, REG_AMPDU_MAX_TIME, 0x70); |
| |
| /* Set retry limit */ |
| rtl_write_word(rtlpriv, REG_RL, 0x0707); |
| |
| /* Set Data / Response auto rate fallack retry count */ |
| rtl_write_dword(rtlpriv, REG_DARFRC, 0x01000000); |
| rtl_write_dword(rtlpriv, REG_DARFRC + 4, 0x07060504); |
| rtl_write_dword(rtlpriv, REG_RARFRC, 0x01000000); |
| rtl_write_dword(rtlpriv, REG_RARFRC + 4, 0x07060504); |
| |
| rtlpci->reg_bcn_ctrl_val = 0x1d; |
| rtl_write_byte(rtlpriv, REG_BCN_CTRL, rtlpci->reg_bcn_ctrl_val); |
| |
| /* TBTT prohibit hold time. Suggested by designer TimChen. */ |
| rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff); /* 8 ms */ |
| |
| rtl_write_word(rtlpriv, REG_NAV_PROT_LEN, 0x0040); |
| |
| /*For Rx TP. Suggested by SD1 Richard. Added by tynli. 2010.04.12.*/ |
| rtl_write_dword(rtlpriv, REG_FAST_EDCA_CTRL, 0x03086666); |
| |
| rtl_write_byte(rtlpriv, REG_HT_SINGLE_AMPDU, 0x80); |
| |
| rtl_write_byte(rtlpriv, REG_RX_PKT_LIMIT, 0x20); |
| |
| rtl_write_byte(rtlpriv, REG_MAX_AGGR_NUM, 0x1F); |
| } |
| |
| static u8 _rtl8723be_dbi_read(struct rtl_priv *rtlpriv, u16 addr) |
| { |
| u16 read_addr = addr & 0xfffc; |
| u8 ret = 0, tmp = 0, count = 0; |
| |
| rtl_write_word(rtlpriv, REG_DBI_ADDR, read_addr); |
| rtl_write_byte(rtlpriv, REG_DBI_FLAG, 0x2); |
| tmp = rtl_read_byte(rtlpriv, REG_DBI_FLAG); |
| count = 0; |
| while (tmp && count < 20) { |
| udelay(10); |
| tmp = rtl_read_byte(rtlpriv, REG_DBI_FLAG); |
| count++; |
| } |
| if (0 == tmp) { |
| read_addr = REG_DBI_RDATA + addr % 4; |
| ret = rtl_read_byte(rtlpriv, read_addr); |
| } |
| |
| return ret; |
| } |
| |
| static void _rtl8723be_dbi_write(struct rtl_priv *rtlpriv, u16 addr, u8 data) |
| { |
| u8 tmp = 0, count = 0; |
| u16 write_addr = 0, remainder = addr % 4; |
| |
| /* Write DBI 1Byte Data */ |
| write_addr = REG_DBI_WDATA + remainder; |
| rtl_write_byte(rtlpriv, write_addr, data); |
| |
| /* Write DBI 2Byte Address & Write Enable */ |
| write_addr = (addr & 0xfffc) | (BIT(0) << (remainder + 12)); |
| rtl_write_word(rtlpriv, REG_DBI_ADDR, write_addr); |
| |
| /* Write DBI Write Flag */ |
| rtl_write_byte(rtlpriv, REG_DBI_FLAG, 0x1); |
| |
| tmp = rtl_read_byte(rtlpriv, REG_DBI_FLAG); |
| count = 0; |
| while (tmp && count < 20) { |
| udelay(10); |
| tmp = rtl_read_byte(rtlpriv, REG_DBI_FLAG); |
| count++; |
| } |
| } |
| |
| static u16 _rtl8723be_mdio_read(struct rtl_priv *rtlpriv, u8 addr) |
| { |
| u16 ret = 0; |
| u8 tmp = 0, count = 0; |
| |
| rtl_write_byte(rtlpriv, REG_MDIO_CTL, addr | BIT(6)); |
| tmp = rtl_read_byte(rtlpriv, REG_MDIO_CTL) & BIT(6); |
| count = 0; |
| while (tmp && count < 20) { |
| udelay(10); |
| tmp = rtl_read_byte(rtlpriv, REG_MDIO_CTL) & BIT(6); |
| count++; |
| } |
| |
| if (0 == tmp) |
| ret = rtl_read_word(rtlpriv, REG_MDIO_RDATA); |
| |
| return ret; |
| } |
| |
| static void _rtl8723be_mdio_write(struct rtl_priv *rtlpriv, u8 addr, u16 data) |
| { |
| u8 tmp = 0, count = 0; |
| |
| rtl_write_word(rtlpriv, REG_MDIO_WDATA, data); |
| rtl_write_byte(rtlpriv, REG_MDIO_CTL, addr | BIT(5)); |
| tmp = rtl_read_byte(rtlpriv, REG_MDIO_CTL) & BIT(5); |
| count = 0; |
| while (tmp && count < 20) { |
| udelay(10); |
| tmp = rtl_read_byte(rtlpriv, REG_MDIO_CTL) & BIT(5); |
| count++; |
| } |
| } |
| |
| static void _rtl8723be_enable_aspm_back_door(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| u8 tmp8 = 0; |
| u16 tmp16 = 0; |
| |
| /* <Roger_Notes> Overwrite following ePHY parameter for |
| * some platform compatibility issue, |
| * especially when CLKReq is enabled, 2012.11.09. |
| */ |
| tmp16 = _rtl8723be_mdio_read(rtlpriv, 0x01); |
| if (tmp16 != 0x0663) |
| _rtl8723be_mdio_write(rtlpriv, 0x01, 0x0663); |
| |
| tmp16 = _rtl8723be_mdio_read(rtlpriv, 0x04); |
| if (tmp16 != 0x7544) |
| _rtl8723be_mdio_write(rtlpriv, 0x04, 0x7544); |
| |
| tmp16 = _rtl8723be_mdio_read(rtlpriv, 0x06); |
| if (tmp16 != 0xB880) |
| _rtl8723be_mdio_write(rtlpriv, 0x06, 0xB880); |
| |
| tmp16 = _rtl8723be_mdio_read(rtlpriv, 0x07); |
| if (tmp16 != 0x4000) |
| _rtl8723be_mdio_write(rtlpriv, 0x07, 0x4000); |
| |
| tmp16 = _rtl8723be_mdio_read(rtlpriv, 0x08); |
| if (tmp16 != 0x9003) |
| _rtl8723be_mdio_write(rtlpriv, 0x08, 0x9003); |
| |
| tmp16 = _rtl8723be_mdio_read(rtlpriv, 0x09); |
| if (tmp16 != 0x0D03) |
| _rtl8723be_mdio_write(rtlpriv, 0x09, 0x0D03); |
| |
| tmp16 = _rtl8723be_mdio_read(rtlpriv, 0x0A); |
| if (tmp16 != 0x4037) |
| _rtl8723be_mdio_write(rtlpriv, 0x0A, 0x4037); |
| |
| tmp16 = _rtl8723be_mdio_read(rtlpriv, 0x0B); |
| if (tmp16 != 0x0070) |
| _rtl8723be_mdio_write(rtlpriv, 0x0B, 0x0070); |
| |
| /* Configuration Space offset 0x70f BIT7 is used to control L0S */ |
| tmp8 = _rtl8723be_dbi_read(rtlpriv, 0x70f); |
| _rtl8723be_dbi_write(rtlpriv, 0x70f, tmp8 | BIT(7)); |
| |
| /* Configuration Space offset 0x719 Bit3 is for L1 |
| * BIT4 is for clock request |
| */ |
| tmp8 = _rtl8723be_dbi_read(rtlpriv, 0x719); |
| _rtl8723be_dbi_write(rtlpriv, 0x719, tmp8 | BIT(3) | BIT(4)); |
| } |
| |
| void rtl8723be_enable_hw_security_config(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| u8 sec_reg_value; |
| |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, |
| "PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n", |
| rtlpriv->sec.pairwise_enc_algorithm, |
| rtlpriv->sec.group_enc_algorithm); |
| |
| if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) { |
| RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, |
| "not open hw encryption\n"); |
| return; |
| } |
| |
| sec_reg_value = SCR_TXENCENABLE | SCR_RXDECENABLE; |
| |
| if (rtlpriv->sec.use_defaultkey) { |
| sec_reg_value |= SCR_TXUSEDK; |
| sec_reg_value |= SCR_RXUSEDK; |
| } |
| |
| sec_reg_value |= (SCR_RXBCUSEDK | SCR_TXBCUSEDK); |
| |
| rtl_write_byte(rtlpriv, REG_CR + 1, 0x02); |
| |
| RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, |
| "The SECR-value %x\n", sec_reg_value); |
| |
| rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value); |
| } |
| |
| static void _rtl8723be_poweroff_adapter(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); |
| u8 u1b_tmp; |
| |
| rtlhal->mac_func_enable = false; |
| /* Combo (PCIe + USB) Card and PCIe-MF Card */ |
| /* 1. Run LPS WL RFOFF flow */ |
| rtl_hal_pwrseqcmdparsing(rtlpriv, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK, |
| PWR_INTF_PCI_MSK, RTL8723_NIC_LPS_ENTER_FLOW); |
| |
| /* 2. 0x1F[7:0] = 0 */ |
| /* turn off RF */ |
| /* rtl_write_byte(rtlpriv, REG_RF_CTRL, 0x00); */ |
| if ((rtl_read_byte(rtlpriv, REG_MCUFWDL) & BIT(7)) && |
| rtlhal->fw_ready) { |
| rtl8723be_firmware_selfreset(hw); |
| } |
| |
| /* Reset MCU. Suggested by Filen. */ |
| u1b_tmp = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1); |
| rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, (u1b_tmp & (~BIT(2)))); |
| |
| /* g. MCUFWDL 0x80[1:0]=0 */ |
| /* reset MCU ready status */ |
| rtl_write_byte(rtlpriv, REG_MCUFWDL, 0x00); |
| |
| /* HW card disable configuration. */ |
| rtl_hal_pwrseqcmdparsing(rtlpriv, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK, |
| PWR_INTF_PCI_MSK, RTL8723_NIC_DISABLE_FLOW); |
| |
| /* Reset MCU IO Wrapper */ |
| u1b_tmp = rtl_read_byte(rtlpriv, REG_RSV_CTRL + 1); |
| rtl_write_byte(rtlpriv, REG_RSV_CTRL + 1, (u1b_tmp & (~BIT(0)))); |
| u1b_tmp = rtl_read_byte(rtlpriv, REG_RSV_CTRL + 1); |
| rtl_write_byte(rtlpriv, REG_RSV_CTRL + 1, u1b_tmp | BIT(0)); |
| |
| /* 7. RSV_CTRL 0x1C[7:0] = 0x0E */ |
| /* lock ISO/CLK/Power control register */ |
| rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0e); |
| } |
| |
| static bool _rtl8723be_check_pcie_dma_hang(struct rtl_priv *rtlpriv) |
| { |
| u8 tmp; |
| |
| /* write reg 0x350 Bit[26]=1. Enable debug port. */ |
| tmp = rtl_read_byte(rtlpriv, REG_DBI_CTRL + 3); |
| if (!(tmp & BIT(2))) { |
| rtl_write_byte(rtlpriv, REG_DBI_CTRL + 3, (tmp | BIT(2))); |
| mdelay(100); /* Suggested by DD Justin_tsai. */ |
| } |
| |
| /* read reg 0x350 Bit[25] if 1 : RX hang |
| * read reg 0x350 Bit[24] if 1 : TX hang |
| */ |
| tmp = rtl_read_byte(rtlpriv, REG_DBI_CTRL + 3); |
| if ((tmp & BIT(0)) || (tmp & BIT(1))) { |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, |
| "CheckPcieDMAHang8723BE(): true!!\n"); |
| return true; |
| } |
| return false; |
| } |
| |
| static void _rtl8723be_reset_pcie_interface_dma(struct rtl_priv *rtlpriv, |
| bool mac_power_on) |
| { |
| u8 tmp; |
| bool release_mac_rx_pause; |
| u8 backup_pcie_dma_pause; |
| |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, |
| "ResetPcieInterfaceDMA8723BE()\n"); |
| |
| /* Revise Note: Follow the document "PCIe RX DMA Hang Reset Flow_v03" |
| * released by SD1 Alan. |
| * 2013.05.07, by tynli. |
| */ |
| |
| /* 1. disable register write lock |
| * write 0x1C bit[1:0] = 2'h0 |
| * write 0xCC bit[2] = 1'b1 |
| */ |
| tmp = rtl_read_byte(rtlpriv, REG_RSV_CTRL); |
| tmp &= ~(BIT(1) | BIT(0)); |
| rtl_write_byte(rtlpriv, REG_RSV_CTRL, tmp); |
| tmp = rtl_read_byte(rtlpriv, REG_PMC_DBG_CTRL2); |
| tmp |= BIT(2); |
| rtl_write_byte(rtlpriv, REG_PMC_DBG_CTRL2, tmp); |
| |
| /* 2. Check and pause TRX DMA |
| * write 0x284 bit[18] = 1'b1 |
| * write 0x301 = 0xFF |
| */ |
| tmp = rtl_read_byte(rtlpriv, REG_RXDMA_CONTROL); |
| if (tmp & BIT(2)) { |
| /* Already pause before the function for another purpose. */ |
| release_mac_rx_pause = false; |
| } else { |
| rtl_write_byte(rtlpriv, REG_RXDMA_CONTROL, (tmp | BIT(2))); |
| release_mac_rx_pause = true; |
| } |
| |
| backup_pcie_dma_pause = rtl_read_byte(rtlpriv, REG_PCIE_CTRL_REG + 1); |
| if (backup_pcie_dma_pause != 0xFF) |
| rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0xFF); |
| |
| if (mac_power_on) { |
| /* 3. reset TRX function |
| * write 0x100 = 0x00 |
| */ |
| rtl_write_byte(rtlpriv, REG_CR, 0); |
| } |
| |
| /* 4. Reset PCIe DMA |
| * write 0x003 bit[0] = 0 |
| */ |
| tmp = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1); |
| tmp &= ~(BIT(0)); |
| rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmp); |
| |
| /* 5. Enable PCIe DMA |
| * write 0x003 bit[0] = 1 |
| */ |
| tmp = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1); |
| tmp |= BIT(0); |
| rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmp); |
| |
| if (mac_power_on) { |
| /* 6. enable TRX function |
| * write 0x100 = 0xFF |
| */ |
| rtl_write_byte(rtlpriv, REG_CR, 0xFF); |
| |
| /* We should init LLT & RQPN and |
| * prepare Tx/Rx descrptor address later |
| * because MAC function is reset. |
| */ |
| } |
| |
| /* 7. Restore PCIe autoload down bit |
| * write 0xF8 bit[17] = 1'b1 |
| */ |
| tmp = rtl_read_byte(rtlpriv, REG_MAC_PHY_CTRL_NORMAL + 2); |
| tmp |= BIT(1); |
| rtl_write_byte(rtlpriv, REG_MAC_PHY_CTRL_NORMAL + 2, tmp); |
| |
| /* In MAC power on state, BB and RF maybe in ON state, |
| * if we release TRx DMA here |
| * it will cause packets to be started to Tx/Rx, |
| * so we release Tx/Rx DMA later. |
| */ |
| if (!mac_power_on) { |
| /* 8. release TRX DMA |
| * write 0x284 bit[18] = 1'b0 |
| * write 0x301 = 0x00 |
| */ |
| if (release_mac_rx_pause) { |
| tmp = rtl_read_byte(rtlpriv, REG_RXDMA_CONTROL); |
| rtl_write_byte(rtlpriv, REG_RXDMA_CONTROL, |
| (tmp & (~BIT(2)))); |
| } |
| rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, |
| backup_pcie_dma_pause); |
| } |
| |
| /* 9. lock system register |
| * write 0xCC bit[2] = 1'b0 |
| */ |
| tmp = rtl_read_byte(rtlpriv, REG_PMC_DBG_CTRL2); |
| tmp &= ~(BIT(2)); |
| rtl_write_byte(rtlpriv, REG_PMC_DBG_CTRL2, tmp); |
| } |
| |
| int rtl8723be_hw_init(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); |
| struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); |
| struct rtl_phy *rtlphy = &(rtlpriv->phy); |
| struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); |
| struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); |
| bool rtstatus = true; |
| int err; |
| u8 tmp_u1b; |
| unsigned long flags; |
| |
| /* reenable interrupts to not interfere with other devices */ |
| local_save_flags(flags); |
| local_irq_enable(); |
| |
| rtlhal->fw_ready = false; |
| rtlpriv->rtlhal.being_init_adapter = true; |
| rtlpriv->intf_ops->disable_aspm(hw); |
| |
| tmp_u1b = rtl_read_byte(rtlpriv, REG_CR); |
| if (tmp_u1b != 0 && tmp_u1b != 0xea) { |
| rtlhal->mac_func_enable = true; |
| } else { |
| rtlhal->mac_func_enable = false; |
| rtlhal->fw_ps_state = FW_PS_STATE_ALL_ON; |
| } |
| |
| if (_rtl8723be_check_pcie_dma_hang(rtlpriv)) { |
| _rtl8723be_reset_pcie_interface_dma(rtlpriv, |
| rtlhal->mac_func_enable); |
| rtlhal->mac_func_enable = false; |
| } |
| if (rtlhal->mac_func_enable) { |
| _rtl8723be_poweroff_adapter(hw); |
| rtlhal->mac_func_enable = false; |
| } |
| rtstatus = _rtl8723be_init_mac(hw); |
| if (!rtstatus) { |
| pr_err("Init MAC failed\n"); |
| err = 1; |
| goto exit; |
| } |
| |
| tmp_u1b = rtl_read_byte(rtlpriv, REG_SYS_CFG); |
| rtl_write_byte(rtlpriv, REG_SYS_CFG, tmp_u1b & 0x7F); |
| |
| err = rtl8723_download_fw(hw, true, FW_8723B_POLLING_TIMEOUT_COUNT); |
| if (err) { |
| RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, |
| "Failed to download FW. Init HW without FW now..\n"); |
| err = 1; |
| goto exit; |
| } |
| rtlhal->fw_ready = true; |
| |
| rtlhal->last_hmeboxnum = 0; |
| rtl8723be_phy_mac_config(hw); |
| /* because last function modify RCR, so we update |
| * rcr var here, or TP will unstable for receive_config |
| * is wrong, RX RCR_ACRC32 will cause TP unstable & Rx |
| * RCR_APP_ICV will cause mac80211 unassoc for cisco 1252 |
| */ |
| rtlpci->receive_config = rtl_read_dword(rtlpriv, REG_RCR); |
| rtlpci->receive_config &= ~(RCR_ACRC32 | RCR_AICV); |
| rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config); |
| |
| rtl8723be_phy_bb_config(hw); |
| rtl8723be_phy_rf_config(hw); |
| |
| rtlphy->rfreg_chnlval[0] = rtl_get_rfreg(hw, (enum radio_path)0, |
| RF_CHNLBW, RFREG_OFFSET_MASK); |
| rtlphy->rfreg_chnlval[1] = rtl_get_rfreg(hw, (enum radio_path)1, |
| RF_CHNLBW, RFREG_OFFSET_MASK); |
| rtlphy->rfreg_chnlval[0] &= 0xFFF03FF; |
| rtlphy->rfreg_chnlval[0] |= (BIT(10) | BIT(11)); |
| |
| _rtl8723be_hw_configure(hw); |
| rtlhal->mac_func_enable = true; |
| rtl_cam_reset_all_entry(hw); |
| rtl8723be_enable_hw_security_config(hw); |
| |
| ppsc->rfpwr_state = ERFON; |
| |
| rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR, mac->mac_addr); |
| _rtl8723be_enable_aspm_back_door(hw); |
| rtlpriv->intf_ops->enable_aspm(hw); |
| |
| rtl8723be_bt_hw_init(hw); |
| |
| if (ppsc->rfpwr_state == ERFON) { |
| rtl8723be_phy_set_rfpath_switch(hw, 1); |
| /* when use 1ant NIC, iqk will disturb BT music |
| * root cause is not clear now, is something |
| * related with 'mdelay' and Reg[0x948] |
| */ |
| if (rtlpriv->btcoexist.btc_info.ant_num == ANT_X2 || |
| !rtlpriv->cfg->ops->get_btc_status()) { |
| rtl8723be_phy_iq_calibrate(hw, |
| (rtlphy->iqk_initialized ? |
| true : false)); |
| rtlphy->iqk_initialized = true; |
| } |
| rtl8723be_dm_check_txpower_tracking(hw); |
| rtl8723be_phy_lc_calibrate(hw); |
| } |
| rtl_write_byte(rtlpriv, REG_NAV_UPPER, ((30000 + 127) / 128)); |
| |
| /* Release Rx DMA. */ |
| tmp_u1b = rtl_read_byte(rtlpriv, REG_RXDMA_CONTROL); |
| if (tmp_u1b & BIT(2)) { |
| /* Release Rx DMA if needed */ |
| tmp_u1b &= (~BIT(2)); |
| rtl_write_byte(rtlpriv, REG_RXDMA_CONTROL, tmp_u1b); |
| } |
| /* Release Tx/Rx PCIE DMA. */ |
| rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0); |
| |
| rtl8723be_dm_init(hw); |
| exit: |
| local_irq_restore(flags); |
| rtlpriv->rtlhal.being_init_adapter = false; |
| return err; |
| } |
| |
| static enum version_8723e _rtl8723be_read_chip_version(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_phy *rtlphy = &(rtlpriv->phy); |
| enum version_8723e version = VERSION_UNKNOWN; |
| u32 value32; |
| |
| value32 = rtl_read_dword(rtlpriv, REG_SYS_CFG1); |
| if ((value32 & (CHIP_8723B)) != CHIP_8723B) |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "unknown chip version\n"); |
| else |
| version = (enum version_8723e)CHIP_8723B; |
| |
| rtlphy->rf_type = RF_1T1R; |
| |
| /* treat rtl8723be chip as MP version in default */ |
| version = (enum version_8723e)(version | NORMAL_CHIP); |
| |
| value32 = rtl_read_dword(rtlpriv, REG_SYS_CFG); |
| /* cut version */ |
| version |= (enum version_8723e)(value32 & CHIP_VER_RTL_MASK); |
| /* Manufacture */ |
| if (((value32 & EXT_VENDOR_ID) >> 18) == 0x01) |
| version = (enum version_8723e)(version | CHIP_VENDOR_SMIC); |
| |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, |
| "Chip RF Type: %s\n", (rtlphy->rf_type == RF_2T2R) ? |
| "RF_2T2R" : "RF_1T1R"); |
| |
| return version; |
| } |
| |
| static int _rtl8723be_set_media_status(struct ieee80211_hw *hw, |
| enum nl80211_iftype type) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| u8 bt_msr = rtl_read_byte(rtlpriv, MSR) & 0xfc; |
| enum led_ctl_mode ledaction = LED_CTL_NO_LINK; |
| u8 mode = MSR_NOLINK; |
| |
| switch (type) { |
| case NL80211_IFTYPE_UNSPECIFIED: |
| mode = MSR_NOLINK; |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, |
| "Set Network type to NO LINK!\n"); |
| break; |
| case NL80211_IFTYPE_ADHOC: |
| case NL80211_IFTYPE_MESH_POINT: |
| mode = MSR_ADHOC; |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, |
| "Set Network type to Ad Hoc!\n"); |
| break; |
| case NL80211_IFTYPE_STATION: |
| mode = MSR_INFRA; |
| ledaction = LED_CTL_LINK; |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, |
| "Set Network type to STA!\n"); |
| break; |
| case NL80211_IFTYPE_AP: |
| mode = MSR_AP; |
| ledaction = LED_CTL_LINK; |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, |
| "Set Network type to AP!\n"); |
| break; |
| default: |
| pr_err("Network type %d not support!\n", type); |
| return 1; |
| } |
| |
| /* MSR_INFRA == Link in infrastructure network; |
| * MSR_ADHOC == Link in ad hoc network; |
| * Therefore, check link state is necessary. |
| * |
| * MSR_AP == AP mode; link state is not cared here. |
| */ |
| if (mode != MSR_AP && rtlpriv->mac80211.link_state < MAC80211_LINKED) { |
| mode = MSR_NOLINK; |
| ledaction = LED_CTL_NO_LINK; |
| } |
| |
| if (mode == MSR_NOLINK || mode == MSR_INFRA) { |
| _rtl8723be_stop_tx_beacon(hw); |
| _rtl8723be_enable_bcn_sub_func(hw); |
| } else if (mode == MSR_ADHOC || mode == MSR_AP) { |
| _rtl8723be_resume_tx_beacon(hw); |
| _rtl8723be_disable_bcn_sub_func(hw); |
| } else { |
| RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, |
| "Set HW_VAR_MEDIA_STATUS: No such media status(%x).\n", |
| mode); |
| } |
| |
| rtl_write_byte(rtlpriv, MSR, bt_msr | mode); |
| rtlpriv->cfg->ops->led_control(hw, ledaction); |
| if (mode == MSR_AP) |
| rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x00); |
| else |
| rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x66); |
| return 0; |
| } |
| |
| void rtl8723be_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); |
| u32 reg_rcr = rtlpci->receive_config; |
| |
| if (rtlpriv->psc.rfpwr_state != ERFON) |
| return; |
| |
| if (check_bssid) { |
| reg_rcr |= (RCR_CBSSID_DATA | RCR_CBSSID_BCN); |
| rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, |
| (u8 *)(®_rcr)); |
| _rtl8723be_set_bcn_ctrl_reg(hw, 0, BIT(4)); |
| } else if (!check_bssid) { |
| reg_rcr &= (~(RCR_CBSSID_DATA | RCR_CBSSID_BCN)); |
| _rtl8723be_set_bcn_ctrl_reg(hw, BIT(4), 0); |
| rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, |
| (u8 *)(®_rcr)); |
| } |
| |
| } |
| |
| int rtl8723be_set_network_type(struct ieee80211_hw *hw, |
| enum nl80211_iftype type) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| |
| if (_rtl8723be_set_media_status(hw, type)) |
| return -EOPNOTSUPP; |
| |
| if (rtlpriv->mac80211.link_state == MAC80211_LINKED) { |
| if (type != NL80211_IFTYPE_AP) |
| rtl8723be_set_check_bssid(hw, true); |
| } else { |
| rtl8723be_set_check_bssid(hw, false); |
| } |
| |
| return 0; |
| } |
| |
| /* don't set REG_EDCA_BE_PARAM here |
| * because mac80211 will send pkt when scan |
| */ |
| void rtl8723be_set_qos(struct ieee80211_hw *hw, int aci) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| |
| rtl8723_dm_init_edca_turbo(hw); |
| switch (aci) { |
| case AC1_BK: |
| rtl_write_dword(rtlpriv, REG_EDCA_BK_PARAM, 0xa44f); |
| break; |
| case AC0_BE: |
| break; |
| case AC2_VI: |
| rtl_write_dword(rtlpriv, REG_EDCA_VI_PARAM, 0x5e4322); |
| break; |
| case AC3_VO: |
| rtl_write_dword(rtlpriv, REG_EDCA_VO_PARAM, 0x2f3222); |
| break; |
| default: |
| WARN_ONCE(true, "rtl8723be: invalid aci: %d !\n", aci); |
| break; |
| } |
| } |
| |
| void rtl8723be_enable_interrupt(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); |
| |
| rtl_write_dword(rtlpriv, REG_HIMR, rtlpci->irq_mask[0] & 0xFFFFFFFF); |
| rtl_write_dword(rtlpriv, REG_HIMRE, rtlpci->irq_mask[1] & 0xFFFFFFFF); |
| rtlpci->irq_enabled = true; |
| |
| /*enable system interrupt*/ |
| rtl_write_dword(rtlpriv, REG_HSIMR, rtlpci->sys_irq_mask & 0xFFFFFFFF); |
| } |
| |
| void rtl8723be_disable_interrupt(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); |
| |
| rtl_write_dword(rtlpriv, REG_HIMR, IMR_DISABLED); |
| rtl_write_dword(rtlpriv, REG_HIMRE, IMR_DISABLED); |
| rtlpci->irq_enabled = false; |
| /*synchronize_irq(rtlpci->pdev->irq);*/ |
| } |
| |
| void rtl8723be_card_disable(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); |
| struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); |
| enum nl80211_iftype opmode; |
| |
| mac->link_state = MAC80211_NOLINK; |
| opmode = NL80211_IFTYPE_UNSPECIFIED; |
| _rtl8723be_set_media_status(hw, opmode); |
| if (rtlpriv->rtlhal.driver_is_goingto_unload || |
| ppsc->rfoff_reason > RF_CHANGE_BY_PS) |
| rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF); |
| RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC); |
| _rtl8723be_poweroff_adapter(hw); |
| |
| /* after power off we should do iqk again */ |
| if (!rtlpriv->cfg->ops->get_btc_status()) |
| rtlpriv->phy.iqk_initialized = false; |
| } |
| |
| void rtl8723be_interrupt_recognized(struct ieee80211_hw *hw, |
| u32 *p_inta, u32 *p_intb) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); |
| |
| *p_inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0]; |
| rtl_write_dword(rtlpriv, ISR, *p_inta); |
| |
| *p_intb = rtl_read_dword(rtlpriv, REG_HISRE) & |
| rtlpci->irq_mask[1]; |
| rtl_write_dword(rtlpriv, REG_HISRE, *p_intb); |
| } |
| |
| void rtl8723be_set_beacon_related_registers(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); |
| u16 bcn_interval, atim_window; |
| |
| bcn_interval = mac->beacon_interval; |
| atim_window = 2; /*FIX MERGE */ |
| rtl8723be_disable_interrupt(hw); |
| rtl_write_word(rtlpriv, REG_ATIMWND, atim_window); |
| rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval); |
| rtl_write_word(rtlpriv, REG_BCNTCFG, 0x660f); |
| rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_CCK, 0x18); |
| rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x18); |
| rtl_write_byte(rtlpriv, 0x606, 0x30); |
| rtl8723be_enable_interrupt(hw); |
| } |
| |
| void rtl8723be_set_beacon_interval(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); |
| u16 bcn_interval = mac->beacon_interval; |
| |
| RT_TRACE(rtlpriv, COMP_BEACON, DBG_DMESG, |
| "beacon_interval:%d\n", bcn_interval); |
| rtl8723be_disable_interrupt(hw); |
| rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval); |
| rtl8723be_enable_interrupt(hw); |
| } |
| |
| void rtl8723be_update_interrupt_mask(struct ieee80211_hw *hw, |
| u32 add_msr, u32 rm_msr) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); |
| |
| RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD, |
| "add_msr:%x, rm_msr:%x\n", add_msr, rm_msr); |
| |
| if (add_msr) |
| rtlpci->irq_mask[0] |= add_msr; |
| if (rm_msr) |
| rtlpci->irq_mask[0] &= (~rm_msr); |
| rtl8723be_disable_interrupt(hw); |
| rtl8723be_enable_interrupt(hw); |
| } |
| |
| static u8 _rtl8723be_get_chnl_group(u8 chnl) |
| { |
| u8 group; |
| |
| if (chnl < 3) |
| group = 0; |
| else if (chnl < 9) |
| group = 1; |
| else |
| group = 2; |
| return group; |
| } |
| |
| static void _rtl8723be_read_power_value_fromprom(struct ieee80211_hw *hw, |
| struct txpower_info_2g *pw2g, |
| struct txpower_info_5g *pw5g, |
| bool autoload_fail, u8 *hwinfo) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| u32 path, addr = EEPROM_TX_PWR_INX, group, cnt = 0; |
| |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, |
| "hal_ReadPowerValueFromPROM8723BE(): PROMContent[0x%x]=0x%x\n", |
| (addr + 1), hwinfo[addr + 1]); |
| if (0xFF == hwinfo[addr + 1]) /*YJ,add,120316*/ |
| autoload_fail = true; |
| |
| if (autoload_fail) { |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, |
| "auto load fail : Use Default value!\n"); |
| for (path = 0; path < MAX_RF_PATH; path++) { |
| /* 2.4G default value */ |
| for (group = 0 ; group < MAX_CHNL_GROUP_24G; group++) { |
| pw2g->index_cck_base[path][group] = 0x2D; |
| pw2g->index_bw40_base[path][group] = 0x2D; |
| } |
| for (cnt = 0; cnt < MAX_TX_COUNT; cnt++) { |
| if (cnt == 0) { |
| pw2g->bw20_diff[path][0] = 0x02; |
| pw2g->ofdm_diff[path][0] = 0x04; |
| } else { |
| pw2g->bw20_diff[path][cnt] = 0xFE; |
| pw2g->bw40_diff[path][cnt] = 0xFE; |
| pw2g->cck_diff[path][cnt] = 0xFE; |
| pw2g->ofdm_diff[path][cnt] = 0xFE; |
| } |
| } |
| } |
| return; |
| } |
| |
| for (path = 0; path < MAX_RF_PATH; path++) { |
| /*2.4G default value*/ |
| for (group = 0; group < MAX_CHNL_GROUP_24G; group++) { |
| pw2g->index_cck_base[path][group] = hwinfo[addr++]; |
| if (pw2g->index_cck_base[path][group] == 0xFF) |
| pw2g->index_cck_base[path][group] = 0x2D; |
| |
| } |
| for (group = 0; group < MAX_CHNL_GROUP_24G - 1; group++) { |
| pw2g->index_bw40_base[path][group] = hwinfo[addr++]; |
| if (pw2g->index_bw40_base[path][group] == 0xFF) |
| pw2g->index_bw40_base[path][group] = 0x2D; |
| } |
| for (cnt = 0; cnt < MAX_TX_COUNT; cnt++) { |
| if (cnt == 0) { |
| pw2g->bw40_diff[path][cnt] = 0; |
| if (hwinfo[addr] == 0xFF) { |
| pw2g->bw20_diff[path][cnt] = 0x02; |
| } else { |
| pw2g->bw20_diff[path][cnt] = |
| (hwinfo[addr] & 0xf0) >> 4; |
| /*bit sign number to 8 bit sign number*/ |
| if (pw2g->bw20_diff[path][cnt] & BIT(3)) |
| pw2g->bw20_diff[path][cnt] |= |
| 0xF0; |
| } |
| |
| if (hwinfo[addr] == 0xFF) { |
| pw2g->ofdm_diff[path][cnt] = 0x04; |
| } else { |
| pw2g->ofdm_diff[path][cnt] = |
| (hwinfo[addr] & 0x0f); |
| /*bit sign number to 8 bit sign number*/ |
| if (pw2g->ofdm_diff[path][cnt] & BIT(3)) |
| pw2g->ofdm_diff[path][cnt] |= |
| 0xF0; |
| } |
| pw2g->cck_diff[path][cnt] = 0; |
| addr++; |
| } else { |
| if (hwinfo[addr] == 0xFF) { |
| pw2g->bw40_diff[path][cnt] = 0xFE; |
| } else { |
| pw2g->bw40_diff[path][cnt] = |
| (hwinfo[addr] & 0xf0) >> 4; |
| if (pw2g->bw40_diff[path][cnt] & BIT(3)) |
| pw2g->bw40_diff[path][cnt] |= |
| 0xF0; |
| } |
| |
| if (hwinfo[addr] == 0xFF) { |
| pw2g->bw20_diff[path][cnt] = 0xFE; |
| } else { |
| pw2g->bw20_diff[path][cnt] = |
| (hwinfo[addr] & 0x0f); |
| if (pw2g->bw20_diff[path][cnt] & BIT(3)) |
| pw2g->bw20_diff[path][cnt] |= |
| 0xF0; |
| } |
| addr++; |
| |
| if (hwinfo[addr] == 0xFF) { |
| pw2g->ofdm_diff[path][cnt] = 0xFE; |
| } else { |
| pw2g->ofdm_diff[path][cnt] = |
| (hwinfo[addr] & 0xf0) >> 4; |
| if (pw2g->ofdm_diff[path][cnt] & BIT(3)) |
| pw2g->ofdm_diff[path][cnt] |= |
| 0xF0; |
| } |
| |
| if (hwinfo[addr] == 0xFF) |
| pw2g->cck_diff[path][cnt] = 0xFE; |
| else { |
| pw2g->cck_diff[path][cnt] = |
| (hwinfo[addr] & 0x0f); |
| if (pw2g->cck_diff[path][cnt] & BIT(3)) |
| pw2g->cck_diff[path][cnt] |= |
| 0xF0; |
| } |
| addr++; |
| } |
| } |
| |
| /*5G default value*/ |
| for (group = 0; group < MAX_CHNL_GROUP_5G; group++) { |
| pw5g->index_bw40_base[path][group] = hwinfo[addr++]; |
| if (pw5g->index_bw40_base[path][group] == 0xFF) |
| pw5g->index_bw40_base[path][group] = 0xFE; |
| } |
| |
| for (cnt = 0; cnt < MAX_TX_COUNT; cnt++) { |
| if (cnt == 0) { |
| pw5g->bw40_diff[path][cnt] = 0; |
| |
| if (hwinfo[addr] == 0xFF) { |
| pw5g->bw20_diff[path][cnt] = 0; |
| } else { |
| pw5g->bw20_diff[path][0] = |
| (hwinfo[addr] & 0xf0) >> 4; |
| if (pw5g->bw20_diff[path][cnt] & BIT(3)) |
| pw5g->bw20_diff[path][cnt] |= |
| 0xF0; |
| } |
| |
| if (hwinfo[addr] == 0xFF) |
| pw5g->ofdm_diff[path][cnt] = 0x04; |
| else { |
| pw5g->ofdm_diff[path][0] = |
| (hwinfo[addr] & 0x0f); |
| if (pw5g->ofdm_diff[path][cnt] & BIT(3)) |
| pw5g->ofdm_diff[path][cnt] |= |
| 0xF0; |
| } |
| addr++; |
| } else { |
| if (hwinfo[addr] == 0xFF) { |
| pw5g->bw40_diff[path][cnt] = 0xFE; |
| } else { |
| pw5g->bw40_diff[path][cnt] = |
| (hwinfo[addr] & 0xf0) >> 4; |
| if (pw5g->bw40_diff[path][cnt] & BIT(3)) |
| pw5g->bw40_diff[path][cnt] |= 0xF0; |
| } |
| |
| if (hwinfo[addr] == 0xFF) { |
| pw5g->bw20_diff[path][cnt] = 0xFE; |
| } else { |
| pw5g->bw20_diff[path][cnt] = |
| (hwinfo[addr] & 0x0f); |
| if (pw5g->bw20_diff[path][cnt] & BIT(3)) |
| pw5g->bw20_diff[path][cnt] |= 0xF0; |
| } |
| addr++; |
| } |
| } |
| |
| if (hwinfo[addr] == 0xFF) { |
| pw5g->ofdm_diff[path][1] = 0xFE; |
| pw5g->ofdm_diff[path][2] = 0xFE; |
| } else { |
| pw5g->ofdm_diff[path][1] = (hwinfo[addr] & 0xf0) >> 4; |
| pw5g->ofdm_diff[path][2] = (hwinfo[addr] & 0x0f); |
| } |
| addr++; |
| |
| if (hwinfo[addr] == 0xFF) |
| pw5g->ofdm_diff[path][3] = 0xFE; |
| else |
| pw5g->ofdm_diff[path][3] = (hwinfo[addr] & 0x0f); |
| addr++; |
| |
| for (cnt = 1; cnt < MAX_TX_COUNT; cnt++) { |
| if (pw5g->ofdm_diff[path][cnt] == 0xFF) |
| pw5g->ofdm_diff[path][cnt] = 0xFE; |
| else if (pw5g->ofdm_diff[path][cnt] & BIT(3)) |
| pw5g->ofdm_diff[path][cnt] |= 0xF0; |
| } |
| } |
| } |
| |
| static void _rtl8723be_read_txpower_info_from_hwpg(struct ieee80211_hw *hw, |
| bool autoload_fail, |
| u8 *hwinfo) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); |
| struct txpower_info_2g pw2g; |
| struct txpower_info_5g pw5g; |
| u8 rf_path, index; |
| u8 i; |
| |
| _rtl8723be_read_power_value_fromprom(hw, &pw2g, &pw5g, autoload_fail, |
| hwinfo); |
| |
| for (rf_path = 0; rf_path < 2; rf_path++) { |
| for (i = 0; i < 14; i++) { |
| index = _rtl8723be_get_chnl_group(i+1); |
| |
| rtlefuse->txpwrlevel_cck[rf_path][i] = |
| pw2g.index_cck_base[rf_path][index]; |
| rtlefuse->txpwrlevel_ht40_1s[rf_path][i] = |
| pw2g.index_bw40_base[rf_path][index]; |
| } |
| for (i = 0; i < MAX_TX_COUNT; i++) { |
| rtlefuse->txpwr_ht20diff[rf_path][i] = |
| pw2g.bw20_diff[rf_path][i]; |
| rtlefuse->txpwr_ht40diff[rf_path][i] = |
| pw2g.bw40_diff[rf_path][i]; |
| rtlefuse->txpwr_legacyhtdiff[rf_path][i] = |
| pw2g.ofdm_diff[rf_path][i]; |
| } |
| |
| for (i = 0; i < 14; i++) { |
| RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, |
| "RF(%d)-Ch(%d) [CCK / HT40_1S ] = [0x%x / 0x%x ]\n", |
| rf_path, i, |
| rtlefuse->txpwrlevel_cck[rf_path][i], |
| rtlefuse->txpwrlevel_ht40_1s[rf_path][i]); |
| } |
| } |
| |
| if (!autoload_fail) |
| rtlefuse->eeprom_thermalmeter = |
| hwinfo[EEPROM_THERMAL_METER_88E]; |
| else |
| rtlefuse->eeprom_thermalmeter = EEPROM_DEFAULT_THERMALMETER; |
| |
| if (rtlefuse->eeprom_thermalmeter == 0xff || autoload_fail) { |
| rtlefuse->apk_thermalmeterignore = true; |
| rtlefuse->eeprom_thermalmeter = EEPROM_DEFAULT_THERMALMETER; |
| } |
| |
| rtlefuse->thermalmeter[0] = rtlefuse->eeprom_thermalmeter; |
| RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, |
| "thermalmeter = 0x%x\n", rtlefuse->eeprom_thermalmeter); |
| |
| if (!autoload_fail) { |
| rtlefuse->eeprom_regulatory = |
| hwinfo[EEPROM_RF_BOARD_OPTION_88E] & 0x07;/*bit0~2*/ |
| if (hwinfo[EEPROM_RF_BOARD_OPTION_88E] == 0xFF) |
| rtlefuse->eeprom_regulatory = 0; |
| } else { |
| rtlefuse->eeprom_regulatory = 0; |
| } |
| RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, |
| "eeprom_regulatory = 0x%x\n", rtlefuse->eeprom_regulatory); |
| } |
| |
| static u8 _rtl8723be_read_package_type(struct ieee80211_hw *hw) |
| { |
| u8 package_type; |
| u8 value; |
| |
| efuse_power_switch(hw, false, true); |
| if (!efuse_one_byte_read(hw, 0x1FB, &value)) |
| value = 0; |
| efuse_power_switch(hw, false, false); |
| |
| switch (value & 0x7) { |
| case 0x4: |
| package_type = PACKAGE_TFBGA79; |
| break; |
| case 0x5: |
| package_type = PACKAGE_TFBGA90; |
| break; |
| case 0x6: |
| package_type = PACKAGE_QFN68; |
| break; |
| case 0x7: |
| package_type = PACKAGE_TFBGA80; |
| break; |
| default: |
| package_type = PACKAGE_DEFAULT; |
| break; |
| } |
| |
| return package_type; |
| } |
| |
| static void _rtl8723be_read_adapter_info(struct ieee80211_hw *hw, |
| bool pseudo_test) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); |
| struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); |
| int params[] = {RTL8723BE_EEPROM_ID, EEPROM_VID, EEPROM_DID, |
| EEPROM_SVID, EEPROM_SMID, EEPROM_MAC_ADDR, |
| EEPROM_CHANNELPLAN, EEPROM_VERSION, EEPROM_CUSTOMER_ID, |
| COUNTRY_CODE_WORLD_WIDE_13}; |
| u8 *hwinfo; |
| int i; |
| bool is_toshiba_smid1 = false; |
| bool is_toshiba_smid2 = false; |
| bool is_samsung_smid = false; |
| bool is_lenovo_smid = false; |
| u16 toshiba_smid1[] = { |
| 0x6151, 0x6152, 0x6154, 0x6155, 0x6177, 0x6178, 0x6179, 0x6180, |
| 0x7151, 0x7152, 0x7154, 0x7155, 0x7177, 0x7178, 0x7179, 0x7180, |
| 0x8151, 0x8152, 0x8154, 0x8155, 0x8181, 0x8182, 0x8184, 0x8185, |
| 0x9151, 0x9152, 0x9154, 0x9155, 0x9181, 0x9182, 0x9184, 0x9185 |
| }; |
| u16 toshiba_smid2[] = { |
| 0x6181, 0x6184, 0x6185, 0x7181, 0x7182, 0x7184, 0x7185, 0x8181, |
| 0x8182, 0x8184, 0x8185, 0x9181, 0x9182, 0x9184, 0x9185 |
| }; |
| u16 samsung_smid[] = { |
| 0x6191, 0x6192, 0x6193, 0x7191, 0x7192, 0x7193, 0x8191, 0x8192, |
| 0x8193, 0x9191, 0x9192, 0x9193 |
| }; |
| u16 lenovo_smid[] = { |
| 0x8195, 0x9195, 0x7194, 0x8200, 0x8201, 0x8202, 0x9199, 0x9200 |
| }; |
| |
| if (pseudo_test) { |
| /* needs to be added */ |
| return; |
| } |
| |
| hwinfo = kzalloc(HWSET_MAX_SIZE, GFP_KERNEL); |
| if (!hwinfo) |
| return; |
| |
| if (rtl_get_hwinfo(hw, rtlpriv, HWSET_MAX_SIZE, hwinfo, params)) |
| goto exit; |
| |
| /*parse xtal*/ |
| rtlefuse->crystalcap = hwinfo[EEPROM_XTAL_8723BE]; |
| if (rtlefuse->crystalcap == 0xFF) |
| rtlefuse->crystalcap = 0x20; |
| |
| _rtl8723be_read_txpower_info_from_hwpg(hw, rtlefuse->autoload_failflag, |
| hwinfo); |
| |
| rtl8723be_read_bt_coexist_info_from_hwpg(hw, |
| rtlefuse->autoload_failflag, |
| hwinfo); |
| |
| rtlhal->package_type = _rtl8723be_read_package_type(hw); |
| |
| /* set channel plan from efuse */ |
| rtlefuse->channel_plan = rtlefuse->eeprom_channelplan; |
| |
| if (rtlhal->oem_id == RT_CID_DEFAULT) { |
| /* Does this one have a Toshiba SMID from group 1? */ |
| for (i = 0; i < sizeof(toshiba_smid1) / sizeof(u16); i++) { |
| if (rtlefuse->eeprom_smid == toshiba_smid1[i]) { |
| is_toshiba_smid1 = true; |
| break; |
| } |
| } |
| /* Does this one have a Toshiba SMID from group 2? */ |
| for (i = 0; i < sizeof(toshiba_smid2) / sizeof(u16); i++) { |
| if (rtlefuse->eeprom_smid == toshiba_smid2[i]) { |
| is_toshiba_smid2 = true; |
| break; |
| } |
| } |
| /* Does this one have a Samsung SMID? */ |
| for (i = 0; i < sizeof(samsung_smid) / sizeof(u16); i++) { |
| if (rtlefuse->eeprom_smid == samsung_smid[i]) { |
| is_samsung_smid = true; |
| break; |
| } |
| } |
| /* Does this one have a Lenovo SMID? */ |
| for (i = 0; i < sizeof(lenovo_smid) / sizeof(u16); i++) { |
| if (rtlefuse->eeprom_smid == lenovo_smid[i]) { |
| is_lenovo_smid = true; |
| break; |
| } |
| } |
| switch (rtlefuse->eeprom_oemid) { |
| case EEPROM_CID_DEFAULT: |
| if (rtlefuse->eeprom_did == 0x8176) { |
| if (rtlefuse->eeprom_svid == 0x10EC && |
| is_toshiba_smid1) { |
| rtlhal->oem_id = RT_CID_TOSHIBA; |
| } else if (rtlefuse->eeprom_svid == 0x1025) { |
| rtlhal->oem_id = RT_CID_819X_ACER; |
| } else if (rtlefuse->eeprom_svid == 0x10EC && |
| is_samsung_smid) { |
| rtlhal->oem_id = RT_CID_819X_SAMSUNG; |
| } else if (rtlefuse->eeprom_svid == 0x10EC && |
| is_lenovo_smid) { |
| rtlhal->oem_id = RT_CID_819X_LENOVO; |
| } else if ((rtlefuse->eeprom_svid == 0x10EC && |
| rtlefuse->eeprom_smid == 0x8197) || |
| (rtlefuse->eeprom_svid == 0x10EC && |
| rtlefuse->eeprom_smid == 0x9196)) { |
| rtlhal->oem_id = RT_CID_819X_CLEVO; |
| } else if ((rtlefuse->eeprom_svid == 0x1028 && |
| rtlefuse->eeprom_smid == 0x8194) || |
| (rtlefuse->eeprom_svid == 0x1028 && |
| rtlefuse->eeprom_smid == 0x8198) || |
| (rtlefuse->eeprom_svid == 0x1028 && |
| rtlefuse->eeprom_smid == 0x9197) || |
| (rtlefuse->eeprom_svid == 0x1028 && |
| rtlefuse->eeprom_smid == 0x9198)) { |
| rtlhal->oem_id = RT_CID_819X_DELL; |
| } else if ((rtlefuse->eeprom_svid == 0x103C && |
| rtlefuse->eeprom_smid == 0x1629)) { |
| rtlhal->oem_id = RT_CID_819X_HP; |
| } else if ((rtlefuse->eeprom_svid == 0x1A32 && |
| rtlefuse->eeprom_smid == 0x2315)) { |
| rtlhal->oem_id = RT_CID_819X_QMI; |
| } else if ((rtlefuse->eeprom_svid == 0x10EC && |
| rtlefuse->eeprom_smid == 0x8203)) { |
| rtlhal->oem_id = RT_CID_819X_PRONETS; |
| } else if ((rtlefuse->eeprom_svid == 0x1043 && |
| rtlefuse->eeprom_smid == 0x84B5)) { |
| rtlhal->oem_id = RT_CID_819X_EDIMAX_ASUS; |
| } else { |
| rtlhal->oem_id = RT_CID_DEFAULT; |
| } |
| } else if (rtlefuse->eeprom_did == 0x8178) { |
| if (rtlefuse->eeprom_svid == 0x10EC && |
| is_toshiba_smid2) |
| rtlhal->oem_id = RT_CID_TOSHIBA; |
| else if (rtlefuse->eeprom_svid == 0x1025) |
| rtlhal->oem_id = RT_CID_819X_ACER; |
| else if ((rtlefuse->eeprom_svid == 0x10EC && |
| rtlefuse->eeprom_smid == 0x8186)) |
| rtlhal->oem_id = RT_CID_819X_PRONETS; |
| else if ((rtlefuse->eeprom_svid == 0x1043 && |
| rtlefuse->eeprom_smid == 0x84B6)) |
| rtlhal->oem_id = |
| RT_CID_819X_EDIMAX_ASUS; |
| else |
| rtlhal->oem_id = RT_CID_DEFAULT; |
| } else { |
| rtlhal->oem_id = RT_CID_DEFAULT; |
| } |
| break; |
| case EEPROM_CID_TOSHIBA: |
| rtlhal->oem_id = RT_CID_TOSHIBA; |
| break; |
| case EEPROM_CID_CCX: |
| rtlhal->oem_id = RT_CID_CCX; |
| break; |
| case EEPROM_CID_QMI: |
| rtlhal->oem_id = RT_CID_819X_QMI; |
| break; |
| case EEPROM_CID_WHQL: |
| break; |
| default: |
| rtlhal->oem_id = RT_CID_DEFAULT; |
| break; |
| } |
| } |
| exit: |
| kfree(hwinfo); |
| } |
| |
| static void _rtl8723be_hal_customized_behavior(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); |
| |
| rtlpriv->ledctl.led_opendrain = true; |
| switch (rtlhal->oem_id) { |
| case RT_CID_819X_HP: |
| rtlpriv->ledctl.led_opendrain = true; |
| break; |
| case RT_CID_819X_LENOVO: |
| case RT_CID_DEFAULT: |
| case RT_CID_TOSHIBA: |
| case RT_CID_CCX: |
| case RT_CID_819X_ACER: |
| case RT_CID_WHQL: |
| default: |
| break; |
| } |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, |
| "RT Customized ID: 0x%02X\n", rtlhal->oem_id); |
| } |
| |
| void rtl8723be_read_eeprom_info(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); |
| struct rtl_phy *rtlphy = &(rtlpriv->phy); |
| struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); |
| u8 tmp_u1b; |
| |
| rtlhal->version = _rtl8723be_read_chip_version(hw); |
| if (get_rf_type(rtlphy) == RF_1T1R) |
| rtlpriv->dm.rfpath_rxenable[0] = true; |
| else |
| rtlpriv->dm.rfpath_rxenable[0] = |
| rtlpriv->dm.rfpath_rxenable[1] = true; |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "VersionID = 0x%4x\n", |
| rtlhal->version); |
| tmp_u1b = rtl_read_byte(rtlpriv, REG_9346CR); |
| if (tmp_u1b & BIT(4)) { |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n"); |
| rtlefuse->epromtype = EEPROM_93C46; |
| } else { |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n"); |
| rtlefuse->epromtype = EEPROM_BOOT_EFUSE; |
| } |
| if (tmp_u1b & BIT(5)) { |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n"); |
| rtlefuse->autoload_failflag = false; |
| _rtl8723be_read_adapter_info(hw, false); |
| } else { |
| pr_err("Autoload ERR!!\n"); |
| } |
| _rtl8723be_hal_customized_behavior(hw); |
| } |
| |
| static u8 _rtl8723be_mrate_idx_to_arfr_id(struct ieee80211_hw *hw, |
| u8 rate_index) |
| { |
| u8 ret = 0; |
| switch (rate_index) { |
| case RATR_INX_WIRELESS_NGB: |
| ret = 1; |
| break; |
| case RATR_INX_WIRELESS_N: |
| case RATR_INX_WIRELESS_NG: |
| ret = 5; |
| break; |
| case RATR_INX_WIRELESS_NB: |
| ret = 3; |
| break; |
| case RATR_INX_WIRELESS_GB: |
| ret = 6; |
| break; |
| case RATR_INX_WIRELESS_G: |
| ret = 7; |
| break; |
| case RATR_INX_WIRELESS_B: |
| ret = 8; |
| break; |
| default: |
| ret = 0; |
| break; |
| } |
| return ret; |
| } |
| |
| static void rtl8723be_update_hal_rate_mask(struct ieee80211_hw *hw, |
| struct ieee80211_sta *sta, |
| u8 rssi_level) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_phy *rtlphy = &(rtlpriv->phy); |
| struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); |
| struct rtl_sta_info *sta_entry = NULL; |
| u32 ratr_bitmap; |
| u8 ratr_index; |
| u8 curtxbw_40mhz = (sta->ht_cap.cap & |
| IEEE80211_HT_CAP_SUP_WIDTH_20_40) ? 1 : 0; |
| u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ? |
| 1 : 0; |
| u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ? |
| 1 : 0; |
| enum wireless_mode wirelessmode = 0; |
| bool shortgi = false; |
| u8 rate_mask[7]; |
| u8 macid = 0; |
| |
| sta_entry = (struct rtl_sta_info *)sta->drv_priv; |
| wirelessmode = sta_entry->wireless_mode; |
| if (mac->opmode == NL80211_IFTYPE_STATION || |
| mac->opmode == NL80211_IFTYPE_MESH_POINT) |
| curtxbw_40mhz = mac->bw_40; |
| else if (mac->opmode == NL80211_IFTYPE_AP || |
| mac->opmode == NL80211_IFTYPE_ADHOC) |
| macid = sta->aid + 1; |
| |
| ratr_bitmap = sta->supp_rates[0]; |
| |
| if (mac->opmode == NL80211_IFTYPE_ADHOC) |
| ratr_bitmap = 0xfff; |
| |
| ratr_bitmap |= (sta->ht_cap.mcs.rx_mask[1] << 20 | |
| sta->ht_cap.mcs.rx_mask[0] << 12); |
| switch (wirelessmode) { |
| case WIRELESS_MODE_B: |
| ratr_index = RATR_INX_WIRELESS_B; |
| if (ratr_bitmap & 0x0000000c) |
| ratr_bitmap &= 0x0000000d; |
| else |
| ratr_bitmap &= 0x0000000f; |
| break; |
| case WIRELESS_MODE_G: |
| ratr_index = RATR_INX_WIRELESS_GB; |
| |
| if (rssi_level == 1) |
| ratr_bitmap &= 0x00000f00; |
| else if (rssi_level == 2) |
| ratr_bitmap &= 0x00000ff0; |
| else |
| ratr_bitmap &= 0x00000ff5; |
| break; |
| case WIRELESS_MODE_N_24G: |
| case WIRELESS_MODE_N_5G: |
| ratr_index = RATR_INX_WIRELESS_NGB; |
| if (rtlphy->rf_type == RF_1T1R) { |
| if (curtxbw_40mhz) { |
| if (rssi_level == 1) |
| ratr_bitmap &= 0x000f0000; |
| else if (rssi_level == 2) |
| ratr_bitmap &= 0x000ff000; |
| else |
| ratr_bitmap &= 0x000ff015; |
| } else { |
| if (rssi_level == 1) |
| ratr_bitmap &= 0x000f0000; |
| else if (rssi_level == 2) |
| ratr_bitmap &= 0x000ff000; |
| else |
| ratr_bitmap &= 0x000ff005; |
| } |
| } else { |
| if (curtxbw_40mhz) { |
| if (rssi_level == 1) |
| ratr_bitmap &= 0x0f8f0000; |
| else if (rssi_level == 2) |
| ratr_bitmap &= 0x0f8ff000; |
| else |
| ratr_bitmap &= 0x0f8ff015; |
| } else { |
| if (rssi_level == 1) |
| ratr_bitmap &= 0x0f8f0000; |
| else if (rssi_level == 2) |
| ratr_bitmap &= 0x0f8ff000; |
| else |
| ratr_bitmap &= 0x0f8ff005; |
| } |
| } |
| if ((curtxbw_40mhz && curshortgi_40mhz) || |
| (!curtxbw_40mhz && curshortgi_20mhz)) { |
| if (macid == 0) |
| shortgi = true; |
| else if (macid == 1) |
| shortgi = false; |
| } |
| break; |
| default: |
| ratr_index = RATR_INX_WIRELESS_NGB; |
| |
| if (rtlphy->rf_type == RF_1T2R) |
| ratr_bitmap &= 0x000ff0ff; |
| else |
| ratr_bitmap &= 0x0f0ff0ff; |
| break; |
| } |
| |
| sta_entry->ratr_index = ratr_index; |
| |
| RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, |
| "ratr_bitmap :%x\n", ratr_bitmap); |
| *(u32 *)&rate_mask = (ratr_bitmap & 0x0fffffff) | |
| (ratr_index << 28); |
| rate_mask[0] = macid; |
| rate_mask[1] = _rtl8723be_mrate_idx_to_arfr_id(hw, ratr_index) | |
| (shortgi ? 0x80 : 0x00); |
| rate_mask[2] = curtxbw_40mhz; |
| |
| rate_mask[3] = (u8)(ratr_bitmap & 0x000000ff); |
| rate_mask[4] = (u8)((ratr_bitmap & 0x0000ff00) >> 8); |
| rate_mask[5] = (u8)((ratr_bitmap & 0x00ff0000) >> 16); |
| rate_mask[6] = (u8)((ratr_bitmap & 0xff000000) >> 24); |
| |
| RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, |
| "Rate_index:%x, ratr_val:%x, %x:%x:%x:%x:%x:%x:%x\n", |
| ratr_index, ratr_bitmap, |
| rate_mask[0], rate_mask[1], |
| rate_mask[2], rate_mask[3], |
| rate_mask[4], rate_mask[5], |
| rate_mask[6]); |
| rtl8723be_fill_h2c_cmd(hw, H2C_8723B_RA_MASK, 7, rate_mask); |
| _rtl8723be_set_bcn_ctrl_reg(hw, BIT(3), 0); |
| } |
| |
| void rtl8723be_update_hal_rate_tbl(struct ieee80211_hw *hw, |
| struct ieee80211_sta *sta, |
| u8 rssi_level) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| if (rtlpriv->dm.useramask) |
| rtl8723be_update_hal_rate_mask(hw, sta, rssi_level); |
| } |
| |
| void rtl8723be_update_channel_access_setting(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); |
| u16 sifs_timer; |
| |
| rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME, &mac->slot_time); |
| if (!mac->ht_enable) |
| sifs_timer = 0x0a0a; |
| else |
| sifs_timer = 0x0e0e; |
| rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer); |
| } |
| |
| bool rtl8723be_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); |
| struct rtl_phy *rtlphy = &(rtlpriv->phy); |
| enum rf_pwrstate e_rfpowerstate_toset, cur_rfstate; |
| u8 u1tmp; |
| bool b_actuallyset = false; |
| |
| if (rtlpriv->rtlhal.being_init_adapter) |
| return false; |
| |
| if (ppsc->swrf_processing) |
| return false; |
| |
| spin_lock(&rtlpriv->locks.rf_ps_lock); |
| if (ppsc->rfchange_inprogress) { |
| spin_unlock(&rtlpriv->locks.rf_ps_lock); |
| return false; |
| } else { |
| ppsc->rfchange_inprogress = true; |
| spin_unlock(&rtlpriv->locks.rf_ps_lock); |
| } |
| |
| cur_rfstate = ppsc->rfpwr_state; |
| |
| rtl_write_byte(rtlpriv, REG_GPIO_IO_SEL_2, |
| rtl_read_byte(rtlpriv, REG_GPIO_IO_SEL_2) & ~(BIT(1))); |
| |
| u1tmp = rtl_read_byte(rtlpriv, REG_GPIO_PIN_CTRL_2); |
| |
| if (rtlphy->polarity_ctl) |
| e_rfpowerstate_toset = (u1tmp & BIT(1)) ? ERFOFF : ERFON; |
| else |
| e_rfpowerstate_toset = (u1tmp & BIT(1)) ? ERFON : ERFOFF; |
| |
| if ((ppsc->hwradiooff) && (e_rfpowerstate_toset == ERFON)) { |
| RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG, |
| "GPIOChangeRF - HW Radio ON, RF ON\n"); |
| |
| e_rfpowerstate_toset = ERFON; |
| ppsc->hwradiooff = false; |
| b_actuallyset = true; |
| } else if (!ppsc->hwradiooff && (e_rfpowerstate_toset == ERFOFF)) { |
| RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG, |
| "GPIOChangeRF - HW Radio OFF, RF OFF\n"); |
| |
| e_rfpowerstate_toset = ERFOFF; |
| ppsc->hwradiooff = true; |
| b_actuallyset = true; |
| } |
| |
| if (b_actuallyset) { |
| spin_lock(&rtlpriv->locks.rf_ps_lock); |
| ppsc->rfchange_inprogress = false; |
| spin_unlock(&rtlpriv->locks.rf_ps_lock); |
| } else { |
| if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC) |
| RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC); |
| |
| spin_lock(&rtlpriv->locks.rf_ps_lock); |
| ppsc->rfchange_inprogress = false; |
| spin_unlock(&rtlpriv->locks.rf_ps_lock); |
| } |
| |
| *valid = 1; |
| return !ppsc->hwradiooff; |
| |
| } |
| |
| void rtl8723be_set_key(struct ieee80211_hw *hw, u32 key_index, |
| u8 *p_macaddr, bool is_group, u8 enc_algo, |
| bool is_wepkey, bool clear_all) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); |
| struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); |
| u8 *macaddr = p_macaddr; |
| u32 entry_id = 0; |
| bool is_pairwise = false; |
| |
| static u8 cam_const_addr[4][6] = { |
| {0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, |
| {0x00, 0x00, 0x00, 0x00, 0x00, 0x01}, |
| {0x00, 0x00, 0x00, 0x00, 0x00, 0x02}, |
| {0x00, 0x00, 0x00, 0x00, 0x00, 0x03} |
| }; |
| static u8 cam_const_broad[] = { |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff |
| }; |
| |
| if (clear_all) { |
| u8 idx = 0; |
| u8 cam_offset = 0; |
| u8 clear_number = 5; |
| |
| RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n"); |
| |
| for (idx = 0; idx < clear_number; idx++) { |
| rtl_cam_mark_invalid(hw, cam_offset + idx); |
| rtl_cam_empty_entry(hw, cam_offset + idx); |
| |
| if (idx < 5) { |
| memset(rtlpriv->sec.key_buf[idx], 0, |
| MAX_KEY_LEN); |
| rtlpriv->sec.key_len[idx] = 0; |
| } |
| } |
| |
| } else { |
| switch (enc_algo) { |
| case WEP40_ENCRYPTION: |
| enc_algo = CAM_WEP40; |
| break; |
| case WEP104_ENCRYPTION: |
| enc_algo = CAM_WEP104; |
| break; |
| case TKIP_ENCRYPTION: |
| enc_algo = CAM_TKIP; |
| break; |
| case AESCCMP_ENCRYPTION: |
| enc_algo = CAM_AES; |
| break; |
| default: |
| RT_TRACE(rtlpriv, COMP_ERR, DBG_LOUD, |
| "switch case %#x not processed\n", enc_algo); |
| enc_algo = CAM_TKIP; |
| break; |
| } |
| |
| if (is_wepkey || rtlpriv->sec.use_defaultkey) { |
| macaddr = cam_const_addr[key_index]; |
| entry_id = key_index; |
| } else { |
| if (is_group) { |
| macaddr = cam_const_broad; |
| entry_id = key_index; |
| } else { |
| if (mac->opmode == NL80211_IFTYPE_AP) { |
| entry_id = rtl_cam_get_free_entry(hw, |
| p_macaddr); |
| if (entry_id >= TOTAL_CAM_ENTRY) { |
| pr_err("Can not find free hw security cam entry\n"); |
| return; |
| } |
| } else { |
| entry_id = CAM_PAIRWISE_KEY_POSITION; |
| } |
| |
| key_index = PAIRWISE_KEYIDX; |
| is_pairwise = true; |
| } |
| } |
| |
| if (rtlpriv->sec.key_len[key_index] == 0) { |
| RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, |
| "delete one entry, entry_id is %d\n", |
| entry_id); |
| if (mac->opmode == NL80211_IFTYPE_AP) |
| rtl_cam_del_entry(hw, p_macaddr); |
| rtl_cam_delete_one_entry(hw, p_macaddr, entry_id); |
| } else { |
| RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, |
| "add one entry\n"); |
| if (is_pairwise) { |
| RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, |
| "set Pairwise key\n"); |
| |
| rtl_cam_add_one_entry(hw, macaddr, key_index, |
| entry_id, enc_algo, |
| CAM_CONFIG_NO_USEDK, |
| rtlpriv->sec.key_buf[key_index]); |
| } else { |
| RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, |
| "set group key\n"); |
| |
| if (mac->opmode == NL80211_IFTYPE_ADHOC) { |
| rtl_cam_add_one_entry(hw, |
| rtlefuse->dev_addr, |
| PAIRWISE_KEYIDX, |
| CAM_PAIRWISE_KEY_POSITION, |
| enc_algo, |
| CAM_CONFIG_NO_USEDK, |
| rtlpriv->sec.key_buf |
| [entry_id]); |
| } |
| |
| rtl_cam_add_one_entry(hw, macaddr, key_index, |
| entry_id, enc_algo, |
| CAM_CONFIG_NO_USEDK, |
| rtlpriv->sec.key_buf[entry_id]); |
| } |
| } |
| } |
| } |
| |
| void rtl8723be_read_bt_coexist_info_from_hwpg(struct ieee80211_hw *hw, |
| bool auto_load_fail, u8 *hwinfo) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_mod_params *mod_params = rtlpriv->cfg->mod_params; |
| u8 value; |
| u32 tmpu_32; |
| |
| if (!auto_load_fail) { |
| tmpu_32 = rtl_read_dword(rtlpriv, REG_MULTI_FUNC_CTRL); |
| if (tmpu_32 & BIT(18)) |
| rtlpriv->btcoexist.btc_info.btcoexist = 1; |
| else |
| rtlpriv->btcoexist.btc_info.btcoexist = 0; |
| value = hwinfo[EEPROM_RF_BT_SETTING_8723B]; |
| rtlpriv->btcoexist.btc_info.bt_type = BT_RTL8723B; |
| rtlpriv->btcoexist.btc_info.ant_num = (value & 0x1); |
| rtlpriv->btcoexist.btc_info.single_ant_path = |
| (value & 0x40); /*0xc3[6]*/ |
| } else { |
| rtlpriv->btcoexist.btc_info.btcoexist = 0; |
| rtlpriv->btcoexist.btc_info.bt_type = BT_RTL8723B; |
| rtlpriv->btcoexist.btc_info.ant_num = ANT_X2; |
| rtlpriv->btcoexist.btc_info.single_ant_path = 0; |
| } |
| |
| /* override ant_num / ant_path */ |
| if (mod_params->ant_sel) { |
| rtlpriv->btcoexist.btc_info.ant_num = |
| (mod_params->ant_sel == 1 ? ANT_X2 : ANT_X1); |
| |
| rtlpriv->btcoexist.btc_info.single_ant_path = |
| (mod_params->ant_sel == 1 ? 0 : 1); |
| } |
| } |
| |
| void rtl8723be_bt_reg_init(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| |
| /* 0:Low, 1:High, 2:From Efuse. */ |
| rtlpriv->btcoexist.reg_bt_iso = 2; |
| /* 0:Idle, 1:None-SCO, 2:SCO, 3:From Counter. */ |
| rtlpriv->btcoexist.reg_bt_sco = 3; |
| /* 0:Disable BT control A-MPDU, 1:Enable BT control A-MPDU. */ |
| rtlpriv->btcoexist.reg_bt_sco = 0; |
| } |
| |
| void rtl8723be_bt_hw_init(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| |
| if (rtlpriv->cfg->ops->get_btc_status()) |
| rtlpriv->btcoexist.btc_ops->btc_init_hw_config(rtlpriv); |
| |
| } |
| |
| void rtl8723be_suspend(struct ieee80211_hw *hw) |
| { |
| } |
| |
| void rtl8723be_resume(struct ieee80211_hw *hw) |
| { |
| } |