blob: 1f26eba245d10b624ecdbab392ed7ef30f0d163d [file] [log] [blame]
/*
* Copyright (C) 2008 Maarten Maathuis.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial
* portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <acpi/button.h>
#include <linux/pm_runtime.h>
#include <drm/drmP.h>
#include <drm/drm_edid.h>
#include <drm/drm_crtc_helper.h>
#include "nouveau_reg.h"
#include "nouveau_drm.h"
#include "dispnv04/hw.h"
#include "nouveau_acpi.h"
#include "nouveau_display.h"
#include "nouveau_connector.h"
#include "nouveau_encoder.h"
#include "nouveau_crtc.h"
#include <nvif/event.h>
MODULE_PARM_DESC(tv_disable, "Disable TV-out detection");
int nouveau_tv_disable = 0;
module_param_named(tv_disable, nouveau_tv_disable, int, 0400);
MODULE_PARM_DESC(ignorelid, "Ignore ACPI lid status");
int nouveau_ignorelid = 0;
module_param_named(ignorelid, nouveau_ignorelid, int, 0400);
MODULE_PARM_DESC(duallink, "Allow dual-link TMDS (default: enabled)");
int nouveau_duallink = 1;
module_param_named(duallink, nouveau_duallink, int, 0400);
struct nouveau_encoder *
find_encoder(struct drm_connector *connector, int type)
{
struct drm_device *dev = connector->dev;
struct nouveau_encoder *nv_encoder;
struct drm_encoder *enc;
int i, id;
for (i = 0; i < DRM_CONNECTOR_MAX_ENCODER; i++) {
id = connector->encoder_ids[i];
if (!id)
break;
enc = drm_encoder_find(dev, id);
if (!enc)
continue;
nv_encoder = nouveau_encoder(enc);
if (type == DCB_OUTPUT_ANY ||
(nv_encoder->dcb && nv_encoder->dcb->type == type))
return nv_encoder;
}
return NULL;
}
struct nouveau_connector *
nouveau_encoder_connector_get(struct nouveau_encoder *encoder)
{
struct drm_device *dev = to_drm_encoder(encoder)->dev;
struct drm_connector *drm_connector;
list_for_each_entry(drm_connector, &dev->mode_config.connector_list, head) {
if (drm_connector->encoder == to_drm_encoder(encoder))
return nouveau_connector(drm_connector);
}
return NULL;
}
static void
nouveau_connector_destroy(struct drm_connector *connector)
{
struct nouveau_connector *nv_connector = nouveau_connector(connector);
nvif_notify_fini(&nv_connector->hpd);
kfree(nv_connector->edid);
drm_connector_unregister(connector);
drm_connector_cleanup(connector);
if (nv_connector->aux.transfer)
drm_dp_aux_unregister(&nv_connector->aux);
kfree(connector);
}
static struct nouveau_encoder *
nouveau_connector_ddc_detect(struct drm_connector *connector)
{
struct drm_device *dev = connector->dev;
struct nouveau_connector *nv_connector = nouveau_connector(connector);
struct nouveau_drm *drm = nouveau_drm(dev);
struct nvkm_gpio *gpio = nvxx_gpio(&drm->device);
struct nouveau_encoder *nv_encoder;
struct drm_encoder *encoder;
int i, panel = -ENODEV;
/* eDP panels need powering on by us (if the VBIOS doesn't default it
* to on) before doing any AUX channel transactions. LVDS panel power
* is handled by the SOR itself, and not required for LVDS DDC.
*/
if (nv_connector->type == DCB_CONNECTOR_eDP) {
panel = gpio->get(gpio, 0, DCB_GPIO_PANEL_POWER, 0xff);
if (panel == 0) {
gpio->set(gpio, 0, DCB_GPIO_PANEL_POWER, 0xff, 1);
msleep(300);
}
}
for (i = 0; nv_encoder = NULL, i < DRM_CONNECTOR_MAX_ENCODER; i++) {
int id = connector->encoder_ids[i];
if (id == 0)
break;
encoder = drm_encoder_find(dev, id);
if (!encoder)
continue;
nv_encoder = nouveau_encoder(encoder);
if (nv_encoder->dcb->type == DCB_OUTPUT_DP) {
int ret = nouveau_dp_detect(nv_encoder);
if (ret == 0)
break;
} else
if (nv_encoder->i2c) {
if (nv_probe_i2c(nv_encoder->i2c, 0x50))
break;
}
}
/* eDP panel not detected, restore panel power GPIO to previous
* state to avoid confusing the SOR for other output types.
*/
if (!nv_encoder && panel == 0)
gpio->set(gpio, 0, DCB_GPIO_PANEL_POWER, 0xff, panel);
return nv_encoder;
}
static struct nouveau_encoder *
nouveau_connector_of_detect(struct drm_connector *connector)
{
#ifdef __powerpc__
struct drm_device *dev = connector->dev;
struct nouveau_connector *nv_connector = nouveau_connector(connector);
struct nouveau_encoder *nv_encoder;
struct device_node *cn, *dn = pci_device_to_OF_node(dev->pdev);
if (!dn ||
!((nv_encoder = find_encoder(connector, DCB_OUTPUT_TMDS)) ||
(nv_encoder = find_encoder(connector, DCB_OUTPUT_ANALOG))))
return NULL;
for_each_child_of_node(dn, cn) {
const char *name = of_get_property(cn, "name", NULL);
const void *edid = of_get_property(cn, "EDID", NULL);
int idx = name ? name[strlen(name) - 1] - 'A' : 0;
if (nv_encoder->dcb->i2c_index == idx && edid) {
nv_connector->edid =
kmemdup(edid, EDID_LENGTH, GFP_KERNEL);
of_node_put(cn);
return nv_encoder;
}
}
#endif
return NULL;
}
static void
nouveau_connector_set_encoder(struct drm_connector *connector,
struct nouveau_encoder *nv_encoder)
{
struct nouveau_connector *nv_connector = nouveau_connector(connector);
struct nouveau_drm *drm = nouveau_drm(connector->dev);
struct drm_device *dev = connector->dev;
if (nv_connector->detected_encoder == nv_encoder)
return;
nv_connector->detected_encoder = nv_encoder;
if (drm->device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
connector->interlace_allowed = true;
connector->doublescan_allowed = true;
} else
if (nv_encoder->dcb->type == DCB_OUTPUT_LVDS ||
nv_encoder->dcb->type == DCB_OUTPUT_TMDS) {
connector->doublescan_allowed = false;
connector->interlace_allowed = false;
} else {
connector->doublescan_allowed = true;
if (drm->device.info.family == NV_DEVICE_INFO_V0_KELVIN ||
(drm->device.info.family == NV_DEVICE_INFO_V0_CELSIUS &&
(dev->pdev->device & 0x0ff0) != 0x0100 &&
(dev->pdev->device & 0x0ff0) != 0x0150))
/* HW is broken */
connector->interlace_allowed = false;
else
connector->interlace_allowed = true;
}
if (nv_connector->type == DCB_CONNECTOR_DVI_I) {
drm_object_property_set_value(&connector->base,
dev->mode_config.dvi_i_subconnector_property,
nv_encoder->dcb->type == DCB_OUTPUT_TMDS ?
DRM_MODE_SUBCONNECTOR_DVID :
DRM_MODE_SUBCONNECTOR_DVIA);
}
}
static enum drm_connector_status
nouveau_connector_detect(struct drm_connector *connector, bool force)
{
struct drm_device *dev = connector->dev;
struct nouveau_drm *drm = nouveau_drm(dev);
struct nouveau_connector *nv_connector = nouveau_connector(connector);
struct nouveau_encoder *nv_encoder = NULL;
struct nouveau_encoder *nv_partner;
struct nvkm_i2c_port *i2c;
int type;
int ret;
enum drm_connector_status conn_status = connector_status_disconnected;
/* Cleanup the previous EDID block. */
if (nv_connector->edid) {
drm_mode_connector_update_edid_property(connector, NULL);
kfree(nv_connector->edid);
nv_connector->edid = NULL;
}
ret = pm_runtime_get_sync(connector->dev->dev);
if (ret < 0 && ret != -EACCES)
return conn_status;
nv_encoder = nouveau_connector_ddc_detect(connector);
if (nv_encoder && (i2c = nv_encoder->i2c) != NULL) {
nv_connector->edid = drm_get_edid(connector, &i2c->adapter);
drm_mode_connector_update_edid_property(connector,
nv_connector->edid);
if (!nv_connector->edid) {
NV_ERROR(drm, "DDC responded, but no EDID for %s\n",
connector->name);
goto detect_analog;
}
/* Override encoder type for DVI-I based on whether EDID
* says the display is digital or analog, both use the
* same i2c channel so the value returned from ddc_detect
* isn't necessarily correct.
*/
nv_partner = NULL;
if (nv_encoder->dcb->type == DCB_OUTPUT_TMDS)
nv_partner = find_encoder(connector, DCB_OUTPUT_ANALOG);
if (nv_encoder->dcb->type == DCB_OUTPUT_ANALOG)
nv_partner = find_encoder(connector, DCB_OUTPUT_TMDS);
if (nv_partner && ((nv_encoder->dcb->type == DCB_OUTPUT_ANALOG &&
nv_partner->dcb->type == DCB_OUTPUT_TMDS) ||
(nv_encoder->dcb->type == DCB_OUTPUT_TMDS &&
nv_partner->dcb->type == DCB_OUTPUT_ANALOG))) {
if (nv_connector->edid->input & DRM_EDID_INPUT_DIGITAL)
type = DCB_OUTPUT_TMDS;
else
type = DCB_OUTPUT_ANALOG;
nv_encoder = find_encoder(connector, type);
}
nouveau_connector_set_encoder(connector, nv_encoder);
conn_status = connector_status_connected;
goto out;
}
nv_encoder = nouveau_connector_of_detect(connector);
if (nv_encoder) {
nouveau_connector_set_encoder(connector, nv_encoder);
conn_status = connector_status_connected;
goto out;
}
detect_analog:
nv_encoder = find_encoder(connector, DCB_OUTPUT_ANALOG);
if (!nv_encoder && !nouveau_tv_disable)
nv_encoder = find_encoder(connector, DCB_OUTPUT_TV);
if (nv_encoder && force) {
struct drm_encoder *encoder = to_drm_encoder(nv_encoder);
const struct drm_encoder_helper_funcs *helper =
encoder->helper_private;
if (helper->detect(encoder, connector) ==
connector_status_connected) {
nouveau_connector_set_encoder(connector, nv_encoder);
conn_status = connector_status_connected;
goto out;
}
}
out:
pm_runtime_mark_last_busy(connector->dev->dev);
pm_runtime_put_autosuspend(connector->dev->dev);
return conn_status;
}
static enum drm_connector_status
nouveau_connector_detect_lvds(struct drm_connector *connector, bool force)
{
struct drm_device *dev = connector->dev;
struct nouveau_drm *drm = nouveau_drm(dev);
struct nouveau_connector *nv_connector = nouveau_connector(connector);
struct nouveau_encoder *nv_encoder = NULL;
enum drm_connector_status status = connector_status_disconnected;
/* Cleanup the previous EDID block. */
if (nv_connector->edid) {
drm_mode_connector_update_edid_property(connector, NULL);
kfree(nv_connector->edid);
nv_connector->edid = NULL;
}
nv_encoder = find_encoder(connector, DCB_OUTPUT_LVDS);
if (!nv_encoder)
return connector_status_disconnected;
/* Try retrieving EDID via DDC */
if (!drm->vbios.fp_no_ddc) {
status = nouveau_connector_detect(connector, force);
if (status == connector_status_connected)
goto out;
}
/* On some laptops (Sony, i'm looking at you) there appears to
* be no direct way of accessing the panel's EDID. The only
* option available to us appears to be to ask ACPI for help..
*
* It's important this check's before trying straps, one of the
* said manufacturer's laptops are configured in such a way
* the nouveau decides an entry in the VBIOS FP mode table is
* valid - it's not (rh#613284)
*/
if (nv_encoder->dcb->lvdsconf.use_acpi_for_edid) {
if ((nv_connector->edid = nouveau_acpi_edid(dev, connector))) {
status = connector_status_connected;
goto out;
}
}
/* If no EDID found above, and the VBIOS indicates a hardcoded
* modeline is avalilable for the panel, set it as the panel's
* native mode and exit.
*/
if (nouveau_bios_fp_mode(dev, NULL) && (drm->vbios.fp_no_ddc ||
nv_encoder->dcb->lvdsconf.use_straps_for_mode)) {
status = connector_status_connected;
goto out;
}
/* Still nothing, some VBIOS images have a hardcoded EDID block
* stored for the panel stored in them.
*/
if (!drm->vbios.fp_no_ddc) {
struct edid *edid =
(struct edid *)nouveau_bios_embedded_edid(dev);
if (edid) {
nv_connector->edid =
kmemdup(edid, EDID_LENGTH, GFP_KERNEL);
if (nv_connector->edid)
status = connector_status_connected;
}
}
out:
#if defined(CONFIG_ACPI_BUTTON) || \
(defined(CONFIG_ACPI_BUTTON_MODULE) && defined(MODULE))
if (status == connector_status_connected &&
!nouveau_ignorelid && !acpi_lid_open())
status = connector_status_unknown;
#endif
drm_mode_connector_update_edid_property(connector, nv_connector->edid);
nouveau_connector_set_encoder(connector, nv_encoder);
return status;
}
static void
nouveau_connector_force(struct drm_connector *connector)
{
struct nouveau_drm *drm = nouveau_drm(connector->dev);
struct nouveau_connector *nv_connector = nouveau_connector(connector);
struct nouveau_encoder *nv_encoder;
int type;
if (nv_connector->type == DCB_CONNECTOR_DVI_I) {
if (connector->force == DRM_FORCE_ON_DIGITAL)
type = DCB_OUTPUT_TMDS;
else
type = DCB_OUTPUT_ANALOG;
} else
type = DCB_OUTPUT_ANY;
nv_encoder = find_encoder(connector, type);
if (!nv_encoder) {
NV_ERROR(drm, "can't find encoder to force %s on!\n",
connector->name);
connector->status = connector_status_disconnected;
return;
}
nouveau_connector_set_encoder(connector, nv_encoder);
}
static int
nouveau_connector_set_property(struct drm_connector *connector,
struct drm_property *property, uint64_t value)
{
struct nouveau_display *disp = nouveau_display(connector->dev);
struct nouveau_connector *nv_connector = nouveau_connector(connector);
struct nouveau_encoder *nv_encoder = nv_connector->detected_encoder;
struct drm_encoder *encoder = to_drm_encoder(nv_encoder);
struct drm_device *dev = connector->dev;
struct nouveau_crtc *nv_crtc;
int ret;
nv_crtc = NULL;
if (connector->encoder && connector->encoder->crtc)
nv_crtc = nouveau_crtc(connector->encoder->crtc);
/* Scaling mode */
if (property == dev->mode_config.scaling_mode_property) {
bool modeset = false;
switch (value) {
case DRM_MODE_SCALE_NONE:
/* We allow 'None' for EDID modes, even on a fixed
* panel (some exist with support for lower refresh
* rates, which people might want to use for power
* saving purposes).
*
* Non-EDID modes will force the use of GPU scaling
* to the native mode regardless of this setting.
*/
switch (nv_connector->type) {
case DCB_CONNECTOR_LVDS:
case DCB_CONNECTOR_LVDS_SPWG:
case DCB_CONNECTOR_eDP:
/* ... except prior to G80, where the code
* doesn't support such things.
*/
if (disp->disp.oclass < NV50_DISP)
return -EINVAL;
break;
default:
break;
}
break;
case DRM_MODE_SCALE_FULLSCREEN:
case DRM_MODE_SCALE_CENTER:
case DRM_MODE_SCALE_ASPECT:
break;
default:
return -EINVAL;
}
/* Changing between GPU and panel scaling requires a full
* modeset
*/
if ((nv_connector->scaling_mode == DRM_MODE_SCALE_NONE) ||
(value == DRM_MODE_SCALE_NONE))
modeset = true;
nv_connector->scaling_mode = value;
if (!nv_crtc)
return 0;
if (modeset || !nv_crtc->set_scale) {
ret = drm_crtc_helper_set_mode(&nv_crtc->base,
&nv_crtc->base.mode,
nv_crtc->base.x,
nv_crtc->base.y, NULL);
if (!ret)
return -EINVAL;
} else {
ret = nv_crtc->set_scale(nv_crtc, true);
if (ret)
return ret;
}
return 0;
}
/* Underscan */
if (property == disp->underscan_property) {
if (nv_connector->underscan != value) {
nv_connector->underscan = value;
if (!nv_crtc || !nv_crtc->set_scale)
return 0;
return nv_crtc->set_scale(nv_crtc, true);
}
return 0;
}
if (property == disp->underscan_hborder_property) {
if (nv_connector->underscan_hborder != value) {
nv_connector->underscan_hborder = value;
if (!nv_crtc || !nv_crtc->set_scale)
return 0;
return nv_crtc->set_scale(nv_crtc, true);
}
return 0;
}
if (property == disp->underscan_vborder_property) {
if (nv_connector->underscan_vborder != value) {
nv_connector->underscan_vborder = value;
if (!nv_crtc || !nv_crtc->set_scale)
return 0;
return nv_crtc->set_scale(nv_crtc, true);
}
return 0;
}
/* Dithering */
if (property == disp->dithering_mode) {
nv_connector->dithering_mode = value;
if (!nv_crtc || !nv_crtc->set_dither)
return 0;
return nv_crtc->set_dither(nv_crtc, true);
}
if (property == disp->dithering_depth) {
nv_connector->dithering_depth = value;
if (!nv_crtc || !nv_crtc->set_dither)
return 0;
return nv_crtc->set_dither(nv_crtc, true);
}
if (nv_crtc && nv_crtc->set_color_vibrance) {
/* Hue */
if (property == disp->vibrant_hue_property) {
nv_crtc->vibrant_hue = value - 90;
return nv_crtc->set_color_vibrance(nv_crtc, true);
}
/* Saturation */
if (property == disp->color_vibrance_property) {
nv_crtc->color_vibrance = value - 100;
return nv_crtc->set_color_vibrance(nv_crtc, true);
}
}
if (nv_encoder && nv_encoder->dcb->type == DCB_OUTPUT_TV)
return get_slave_funcs(encoder)->set_property(
encoder, connector, property, value);
return -EINVAL;
}
static struct drm_display_mode *
nouveau_connector_native_mode(struct drm_connector *connector)
{
const struct drm_connector_helper_funcs *helper = connector->helper_private;
struct nouveau_drm *drm = nouveau_drm(connector->dev);
struct nouveau_connector *nv_connector = nouveau_connector(connector);
struct drm_device *dev = connector->dev;
struct drm_display_mode *mode, *largest = NULL;
int high_w = 0, high_h = 0, high_v = 0;
list_for_each_entry(mode, &nv_connector->base.probed_modes, head) {
mode->vrefresh = drm_mode_vrefresh(mode);
if (helper->mode_valid(connector, mode) != MODE_OK ||
(mode->flags & DRM_MODE_FLAG_INTERLACE))
continue;
/* Use preferred mode if there is one.. */
if (mode->type & DRM_MODE_TYPE_PREFERRED) {
NV_DEBUG(drm, "native mode from preferred\n");
return drm_mode_duplicate(dev, mode);
}
/* Otherwise, take the resolution with the largest width, then
* height, then vertical refresh
*/
if (mode->hdisplay < high_w)
continue;
if (mode->hdisplay == high_w && mode->vdisplay < high_h)
continue;
if (mode->hdisplay == high_w && mode->vdisplay == high_h &&
mode->vrefresh < high_v)
continue;
high_w = mode->hdisplay;
high_h = mode->vdisplay;
high_v = mode->vrefresh;
largest = mode;
}
NV_DEBUG(drm, "native mode from largest: %dx%d@%d\n",
high_w, high_h, high_v);
return largest ? drm_mode_duplicate(dev, largest) : NULL;
}
struct moderec {
int hdisplay;
int vdisplay;
};
static struct moderec scaler_modes[] = {
{ 1920, 1200 },
{ 1920, 1080 },
{ 1680, 1050 },
{ 1600, 1200 },
{ 1400, 1050 },
{ 1280, 1024 },
{ 1280, 960 },
{ 1152, 864 },
{ 1024, 768 },
{ 800, 600 },
{ 720, 400 },
{ 640, 480 },
{ 640, 400 },
{ 640, 350 },
{}
};
static int
nouveau_connector_scaler_modes_add(struct drm_connector *connector)
{
struct nouveau_connector *nv_connector = nouveau_connector(connector);
struct drm_display_mode *native = nv_connector->native_mode, *m;
struct drm_device *dev = connector->dev;
struct moderec *mode = &scaler_modes[0];
int modes = 0;
if (!native)
return 0;
while (mode->hdisplay) {
if (mode->hdisplay <= native->hdisplay &&
mode->vdisplay <= native->vdisplay &&
(mode->hdisplay != native->hdisplay ||
mode->vdisplay != native->vdisplay)) {
m = drm_cvt_mode(dev, mode->hdisplay, mode->vdisplay,
drm_mode_vrefresh(native), false,
false, false);
if (!m)
continue;
drm_mode_probed_add(connector, m);
modes++;
}
mode++;
}
return modes;
}
static void
nouveau_connector_detect_depth(struct drm_connector *connector)
{
struct nouveau_drm *drm = nouveau_drm(connector->dev);
struct nouveau_connector *nv_connector = nouveau_connector(connector);
struct nouveau_encoder *nv_encoder = nv_connector->detected_encoder;
struct nvbios *bios = &drm->vbios;
struct drm_display_mode *mode = nv_connector->native_mode;
bool duallink;
/* if the edid is feeling nice enough to provide this info, use it */
if (nv_connector->edid && connector->display_info.bpc)
return;
/* EDID 1.4 is *supposed* to be supported on eDP, but, Apple... */
if (nv_connector->type == DCB_CONNECTOR_eDP) {
connector->display_info.bpc = 6;
return;
}
/* we're out of options unless we're LVDS, default to 8bpc */
if (nv_encoder->dcb->type != DCB_OUTPUT_LVDS) {
connector->display_info.bpc = 8;
return;
}
connector->display_info.bpc = 6;
/* LVDS: panel straps */
if (bios->fp_no_ddc) {
if (bios->fp.if_is_24bit)
connector->display_info.bpc = 8;
return;
}
/* LVDS: DDC panel, need to first determine the number of links to
* know which if_is_24bit flag to check...
*/
if (nv_connector->edid &&
nv_connector->type == DCB_CONNECTOR_LVDS_SPWG)
duallink = ((u8 *)nv_connector->edid)[121] == 2;
else
duallink = mode->clock >= bios->fp.duallink_transition_clk;
if ((!duallink && (bios->fp.strapless_is_24bit & 1)) ||
( duallink && (bios->fp.strapless_is_24bit & 2)))
connector->display_info.bpc = 8;
}
static int
nouveau_connector_get_modes(struct drm_connector *connector)
{
struct drm_device *dev = connector->dev;
struct nouveau_drm *drm = nouveau_drm(dev);
struct nouveau_connector *nv_connector = nouveau_connector(connector);
struct nouveau_encoder *nv_encoder = nv_connector->detected_encoder;
struct drm_encoder *encoder = to_drm_encoder(nv_encoder);
int ret = 0;
/* destroy the native mode, the attached monitor could have changed.
*/
if (nv_connector->native_mode) {
drm_mode_destroy(dev, nv_connector->native_mode);
nv_connector->native_mode = NULL;
}
if (nv_connector->edid)
ret = drm_add_edid_modes(connector, nv_connector->edid);
else
if (nv_encoder->dcb->type == DCB_OUTPUT_LVDS &&
(nv_encoder->dcb->lvdsconf.use_straps_for_mode ||
drm->vbios.fp_no_ddc) && nouveau_bios_fp_mode(dev, NULL)) {
struct drm_display_mode mode;
nouveau_bios_fp_mode(dev, &mode);
nv_connector->native_mode = drm_mode_duplicate(dev, &mode);
}
/* Determine display colour depth for everything except LVDS now,
* DP requires this before mode_valid() is called.
*/
if (connector->connector_type != DRM_MODE_CONNECTOR_LVDS)
nouveau_connector_detect_depth(connector);
/* Find the native mode if this is a digital panel, if we didn't
* find any modes through DDC previously add the native mode to
* the list of modes.
*/
if (!nv_connector->native_mode)
nv_connector->native_mode =
nouveau_connector_native_mode(connector);
if (ret == 0 && nv_connector->native_mode) {
struct drm_display_mode *mode;
mode = drm_mode_duplicate(dev, nv_connector->native_mode);
drm_mode_probed_add(connector, mode);
ret = 1;
}
/* Determine LVDS colour depth, must happen after determining
* "native" mode as some VBIOS tables require us to use the
* pixel clock as part of the lookup...
*/
if (connector->connector_type == DRM_MODE_CONNECTOR_LVDS)
nouveau_connector_detect_depth(connector);
if (nv_encoder->dcb->type == DCB_OUTPUT_TV)
ret = get_slave_funcs(encoder)->get_modes(encoder, connector);
if (nv_connector->type == DCB_CONNECTOR_LVDS ||
nv_connector->type == DCB_CONNECTOR_LVDS_SPWG ||
nv_connector->type == DCB_CONNECTOR_eDP)
ret += nouveau_connector_scaler_modes_add(connector);
return ret;
}
static unsigned
get_tmds_link_bandwidth(struct drm_connector *connector)
{
struct nouveau_connector *nv_connector = nouveau_connector(connector);
struct nouveau_drm *drm = nouveau_drm(connector->dev);
struct dcb_output *dcb = nv_connector->detected_encoder->dcb;
if (dcb->location != DCB_LOC_ON_CHIP ||
drm->device.info.chipset >= 0x46)
return 165000;
else if (drm->device.info.chipset >= 0x40)
return 155000;
else if (drm->device.info.chipset >= 0x18)
return 135000;
else
return 112000;
}
static int
nouveau_connector_mode_valid(struct drm_connector *connector,
struct drm_display_mode *mode)
{
struct nouveau_connector *nv_connector = nouveau_connector(connector);
struct nouveau_encoder *nv_encoder = nv_connector->detected_encoder;
struct drm_encoder *encoder = to_drm_encoder(nv_encoder);
unsigned min_clock = 25000, max_clock = min_clock;
unsigned clock = mode->clock;
switch (nv_encoder->dcb->type) {
case DCB_OUTPUT_LVDS:
if (nv_connector->native_mode &&
(mode->hdisplay > nv_connector->native_mode->hdisplay ||
mode->vdisplay > nv_connector->native_mode->vdisplay))
return MODE_PANEL;
min_clock = 0;
max_clock = 400000;
break;
case DCB_OUTPUT_TMDS:
max_clock = get_tmds_link_bandwidth(connector);
if (nouveau_duallink && nv_encoder->dcb->duallink_possible)
max_clock *= 2;
break;
case DCB_OUTPUT_ANALOG:
max_clock = nv_encoder->dcb->crtconf.maxfreq;
if (!max_clock)
max_clock = 350000;
break;
case DCB_OUTPUT_TV:
return get_slave_funcs(encoder)->mode_valid(encoder, mode);
case DCB_OUTPUT_DP:
max_clock = nv_encoder->dp.link_nr;
max_clock *= nv_encoder->dp.link_bw;
clock = clock * (connector->display_info.bpc * 3) / 10;
break;
default:
BUG_ON(1);
return MODE_BAD;
}
if (clock < min_clock)
return MODE_CLOCK_LOW;
if (clock > max_clock)
return MODE_CLOCK_HIGH;
return MODE_OK;
}
static struct drm_encoder *
nouveau_connector_best_encoder(struct drm_connector *connector)
{
struct nouveau_connector *nv_connector = nouveau_connector(connector);
if (nv_connector->detected_encoder)
return to_drm_encoder(nv_connector->detected_encoder);
return NULL;
}
static const struct drm_connector_helper_funcs
nouveau_connector_helper_funcs = {
.get_modes = nouveau_connector_get_modes,
.mode_valid = nouveau_connector_mode_valid,
.best_encoder = nouveau_connector_best_encoder,
};
static const struct drm_connector_funcs
nouveau_connector_funcs = {
.dpms = drm_helper_connector_dpms,
.save = NULL,
.restore = NULL,
.detect = nouveau_connector_detect,
.destroy = nouveau_connector_destroy,
.fill_modes = drm_helper_probe_single_connector_modes,
.set_property = nouveau_connector_set_property,
.force = nouveau_connector_force
};
static const struct drm_connector_funcs
nouveau_connector_funcs_lvds = {
.dpms = drm_helper_connector_dpms,
.save = NULL,
.restore = NULL,
.detect = nouveau_connector_detect_lvds,
.destroy = nouveau_connector_destroy,
.fill_modes = drm_helper_probe_single_connector_modes,
.set_property = nouveau_connector_set_property,
.force = nouveau_connector_force
};
static int
nouveau_connector_dp_dpms(struct drm_connector *connector, int mode)
{
struct nouveau_encoder *nv_encoder = NULL;
if (connector->encoder)
nv_encoder = nouveau_encoder(connector->encoder);
if (nv_encoder && nv_encoder->dcb &&
nv_encoder->dcb->type == DCB_OUTPUT_DP) {
if (mode == DRM_MODE_DPMS_ON) {
u8 data = DP_SET_POWER_D0;
nv_wraux(nv_encoder->i2c, DP_SET_POWER, &data, 1);
usleep_range(1000, 2000);
} else {
u8 data = DP_SET_POWER_D3;
nv_wraux(nv_encoder->i2c, DP_SET_POWER, &data, 1);
}
}
return drm_helper_connector_dpms(connector, mode);
}
static const struct drm_connector_funcs
nouveau_connector_funcs_dp = {
.dpms = nouveau_connector_dp_dpms,
.save = NULL,
.restore = NULL,
.detect = nouveau_connector_detect,
.destroy = nouveau_connector_destroy,
.fill_modes = drm_helper_probe_single_connector_modes,
.set_property = nouveau_connector_set_property,
.force = nouveau_connector_force
};
static int
nouveau_connector_hotplug(struct nvif_notify *notify)
{
struct nouveau_connector *nv_connector =
container_of(notify, typeof(*nv_connector), hpd);
struct drm_connector *connector = &nv_connector->base;
struct nouveau_drm *drm = nouveau_drm(connector->dev);
const struct nvif_notify_conn_rep_v0 *rep = notify->data;
const char *name = connector->name;
if (rep->mask & NVIF_NOTIFY_CONN_V0_IRQ) {
} else {
bool plugged = (rep->mask != NVIF_NOTIFY_CONN_V0_UNPLUG);
NV_DEBUG(drm, "%splugged %s\n", plugged ? "" : "un", name);
if (plugged)
drm_helper_connector_dpms(connector, DRM_MODE_DPMS_ON);
else
drm_helper_connector_dpms(connector, DRM_MODE_DPMS_OFF);
drm_helper_hpd_irq_event(connector->dev);
}
return NVIF_NOTIFY_KEEP;
}
static ssize_t
nouveau_connector_aux_xfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
{
struct nouveau_connector *nv_connector =
container_of(aux, typeof(*nv_connector), aux);
struct nouveau_encoder *nv_encoder;
struct nvkm_i2c_port *port;
int ret;
nv_encoder = find_encoder(&nv_connector->base, DCB_OUTPUT_DP);
if (!nv_encoder || !(port = nv_encoder->i2c))
return -ENODEV;
if (WARN_ON(msg->size > 16))
return -E2BIG;
if (msg->size == 0)
return msg->size;
ret = nvkm_i2c(port)->acquire(port, 0);
if (ret)
return ret;
ret = port->func->aux(port, false, msg->request, msg->address,
msg->buffer, msg->size);
nvkm_i2c(port)->release(port);
if (ret >= 0) {
msg->reply = ret;
return msg->size;
}
return ret;
}
static int
drm_conntype_from_dcb(enum dcb_connector_type dcb)
{
switch (dcb) {
case DCB_CONNECTOR_VGA : return DRM_MODE_CONNECTOR_VGA;
case DCB_CONNECTOR_TV_0 :
case DCB_CONNECTOR_TV_1 :
case DCB_CONNECTOR_TV_3 : return DRM_MODE_CONNECTOR_TV;
case DCB_CONNECTOR_DMS59_0 :
case DCB_CONNECTOR_DMS59_1 :
case DCB_CONNECTOR_DVI_I : return DRM_MODE_CONNECTOR_DVII;
case DCB_CONNECTOR_DVI_D : return DRM_MODE_CONNECTOR_DVID;
case DCB_CONNECTOR_LVDS :
case DCB_CONNECTOR_LVDS_SPWG: return DRM_MODE_CONNECTOR_LVDS;
case DCB_CONNECTOR_DMS59_DP0:
case DCB_CONNECTOR_DMS59_DP1:
case DCB_CONNECTOR_DP : return DRM_MODE_CONNECTOR_DisplayPort;
case DCB_CONNECTOR_eDP : return DRM_MODE_CONNECTOR_eDP;
case DCB_CONNECTOR_HDMI_0 :
case DCB_CONNECTOR_HDMI_1 :
case DCB_CONNECTOR_HDMI_C : return DRM_MODE_CONNECTOR_HDMIA;
default:
break;
}
return DRM_MODE_CONNECTOR_Unknown;
}
struct drm_connector *
nouveau_connector_create(struct drm_device *dev, int index)
{
const struct drm_connector_funcs *funcs = &nouveau_connector_funcs;
struct nouveau_drm *drm = nouveau_drm(dev);
struct nouveau_display *disp = nouveau_display(dev);
struct nouveau_connector *nv_connector = NULL;
struct drm_connector *connector;
int type, ret = 0;
bool dummy;
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
nv_connector = nouveau_connector(connector);
if (nv_connector->index == index)
return connector;
}
nv_connector = kzalloc(sizeof(*nv_connector), GFP_KERNEL);
if (!nv_connector)
return ERR_PTR(-ENOMEM);
connector = &nv_connector->base;
nv_connector->index = index;
/* attempt to parse vbios connector type and hotplug gpio */
nv_connector->dcb = olddcb_conn(dev, index);
if (nv_connector->dcb) {
u32 entry = ROM16(nv_connector->dcb[0]);
if (olddcb_conntab(dev)[3] >= 4)
entry |= (u32)ROM16(nv_connector->dcb[2]) << 16;
nv_connector->type = nv_connector->dcb[0];
if (drm_conntype_from_dcb(nv_connector->type) ==
DRM_MODE_CONNECTOR_Unknown) {
NV_WARN(drm, "unknown connector type %02x\n",
nv_connector->type);
nv_connector->type = DCB_CONNECTOR_NONE;
}
/* Gigabyte NX85T */
if (nv_match_device(dev, 0x0421, 0x1458, 0x344c)) {
if (nv_connector->type == DCB_CONNECTOR_HDMI_1)
nv_connector->type = DCB_CONNECTOR_DVI_I;
}
/* Gigabyte GV-NX86T512H */
if (nv_match_device(dev, 0x0402, 0x1458, 0x3455)) {
if (nv_connector->type == DCB_CONNECTOR_HDMI_1)
nv_connector->type = DCB_CONNECTOR_DVI_I;
}
} else {
nv_connector->type = DCB_CONNECTOR_NONE;
}
/* no vbios data, or an unknown dcb connector type - attempt to
* figure out something suitable ourselves
*/
if (nv_connector->type == DCB_CONNECTOR_NONE) {
struct nouveau_drm *drm = nouveau_drm(dev);
struct dcb_table *dcbt = &drm->vbios.dcb;
u32 encoders = 0;
int i;
for (i = 0; i < dcbt->entries; i++) {
if (dcbt->entry[i].connector == nv_connector->index)
encoders |= (1 << dcbt->entry[i].type);
}
if (encoders & (1 << DCB_OUTPUT_DP)) {
if (encoders & (1 << DCB_OUTPUT_TMDS))
nv_connector->type = DCB_CONNECTOR_DP;
else
nv_connector->type = DCB_CONNECTOR_eDP;
} else
if (encoders & (1 << DCB_OUTPUT_TMDS)) {
if (encoders & (1 << DCB_OUTPUT_ANALOG))
nv_connector->type = DCB_CONNECTOR_DVI_I;
else
nv_connector->type = DCB_CONNECTOR_DVI_D;
} else
if (encoders & (1 << DCB_OUTPUT_ANALOG)) {
nv_connector->type = DCB_CONNECTOR_VGA;
} else
if (encoders & (1 << DCB_OUTPUT_LVDS)) {
nv_connector->type = DCB_CONNECTOR_LVDS;
} else
if (encoders & (1 << DCB_OUTPUT_TV)) {
nv_connector->type = DCB_CONNECTOR_TV_0;
}
}
switch ((type = drm_conntype_from_dcb(nv_connector->type))) {
case DRM_MODE_CONNECTOR_LVDS:
ret = nouveau_bios_parse_lvds_table(dev, 0, &dummy, &dummy);
if (ret) {
NV_ERROR(drm, "Error parsing LVDS table, disabling\n");
kfree(nv_connector);
return ERR_PTR(ret);
}
funcs = &nouveau_connector_funcs_lvds;
break;
case DRM_MODE_CONNECTOR_DisplayPort:
case DRM_MODE_CONNECTOR_eDP:
nv_connector->aux.dev = dev->dev;
nv_connector->aux.transfer = nouveau_connector_aux_xfer;
ret = drm_dp_aux_register(&nv_connector->aux);
if (ret) {
NV_ERROR(drm, "failed to register aux channel\n");
kfree(nv_connector);
return ERR_PTR(ret);
}
funcs = &nouveau_connector_funcs_dp;
break;
default:
funcs = &nouveau_connector_funcs;
break;
}
/* defaults, will get overridden in detect() */
connector->interlace_allowed = false;
connector->doublescan_allowed = false;
drm_connector_init(dev, connector, funcs, type);
drm_connector_helper_add(connector, &nouveau_connector_helper_funcs);
/* Init DVI-I specific properties */
if (nv_connector->type == DCB_CONNECTOR_DVI_I)
drm_object_attach_property(&connector->base, dev->mode_config.dvi_i_subconnector_property, 0);
/* Add overscan compensation options to digital outputs */
if (disp->underscan_property &&
(type == DRM_MODE_CONNECTOR_DVID ||
type == DRM_MODE_CONNECTOR_DVII ||
type == DRM_MODE_CONNECTOR_HDMIA ||
type == DRM_MODE_CONNECTOR_DisplayPort)) {
drm_object_attach_property(&connector->base,
disp->underscan_property,
UNDERSCAN_OFF);
drm_object_attach_property(&connector->base,
disp->underscan_hborder_property,
0);
drm_object_attach_property(&connector->base,
disp->underscan_vborder_property,
0);
}
/* Add hue and saturation options */
if (disp->vibrant_hue_property)
drm_object_attach_property(&connector->base,
disp->vibrant_hue_property,
90);
if (disp->color_vibrance_property)
drm_object_attach_property(&connector->base,
disp->color_vibrance_property,
150);
/* default scaling mode */
switch (nv_connector->type) {
case DCB_CONNECTOR_LVDS:
case DCB_CONNECTOR_LVDS_SPWG:
case DCB_CONNECTOR_eDP:
/* see note in nouveau_connector_set_property() */
if (disp->disp.oclass < NV50_DISP) {
nv_connector->scaling_mode = DRM_MODE_SCALE_FULLSCREEN;
break;
}
nv_connector->scaling_mode = DRM_MODE_SCALE_NONE;
break;
default:
nv_connector->scaling_mode = DRM_MODE_SCALE_NONE;
break;
}
/* scaling mode property */
switch (nv_connector->type) {
case DCB_CONNECTOR_TV_0:
case DCB_CONNECTOR_TV_1:
case DCB_CONNECTOR_TV_3:
break;
case DCB_CONNECTOR_VGA:
if (disp->disp.oclass < NV50_DISP)
break; /* can only scale on DFPs */
/* fall-through */
default:
drm_object_attach_property(&connector->base, dev->mode_config.
scaling_mode_property,
nv_connector->scaling_mode);
break;
}
/* dithering properties */
switch (nv_connector->type) {
case DCB_CONNECTOR_TV_0:
case DCB_CONNECTOR_TV_1:
case DCB_CONNECTOR_TV_3:
case DCB_CONNECTOR_VGA:
break;
default:
if (disp->dithering_mode) {
drm_object_attach_property(&connector->base,
disp->dithering_mode,
nv_connector->
dithering_mode);
nv_connector->dithering_mode = DITHERING_MODE_AUTO;
}
if (disp->dithering_depth) {
drm_object_attach_property(&connector->base,
disp->dithering_depth,
nv_connector->
dithering_depth);
nv_connector->dithering_depth = DITHERING_DEPTH_AUTO;
}
break;
}
ret = nvif_notify_init(&disp->disp, NULL, nouveau_connector_hotplug,
true, NV04_DISP_NTFY_CONN,
&(struct nvif_notify_conn_req_v0) {
.mask = NVIF_NOTIFY_CONN_V0_ANY,
.conn = index,
},
sizeof(struct nvif_notify_conn_req_v0),
sizeof(struct nvif_notify_conn_rep_v0),
&nv_connector->hpd);
if (ret)
connector->polled = DRM_CONNECTOR_POLL_CONNECT;
else
connector->polled = DRM_CONNECTOR_POLL_HPD;
drm_connector_register(connector);
return connector;
}