| /* |
| * fs/f2fs/checkpoint.c |
| * |
| * Copyright (c) 2012 Samsung Electronics Co., Ltd. |
| * http://www.samsung.com/ |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| #include <linux/fs.h> |
| #include <linux/bio.h> |
| #include <linux/mpage.h> |
| #include <linux/writeback.h> |
| #include <linux/blkdev.h> |
| #include <linux/f2fs_fs.h> |
| #include <linux/pagevec.h> |
| #include <linux/swap.h> |
| |
| #include "f2fs.h" |
| #include "node.h" |
| #include "segment.h" |
| #include "trace.h" |
| #include <trace/events/f2fs.h> |
| |
| static struct kmem_cache *ino_entry_slab; |
| struct kmem_cache *inode_entry_slab; |
| |
| void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io) |
| { |
| set_ckpt_flags(sbi, CP_ERROR_FLAG); |
| sbi->sb->s_flags |= MS_RDONLY; |
| if (!end_io) |
| f2fs_flush_merged_bios(sbi); |
| } |
| |
| /* |
| * We guarantee no failure on the returned page. |
| */ |
| struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) |
| { |
| struct address_space *mapping = META_MAPPING(sbi); |
| struct page *page = NULL; |
| repeat: |
| page = f2fs_grab_cache_page(mapping, index, false); |
| if (!page) { |
| cond_resched(); |
| goto repeat; |
| } |
| f2fs_wait_on_page_writeback(page, META, true); |
| if (!PageUptodate(page)) |
| SetPageUptodate(page); |
| return page; |
| } |
| |
| /* |
| * We guarantee no failure on the returned page. |
| */ |
| static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index, |
| bool is_meta) |
| { |
| struct address_space *mapping = META_MAPPING(sbi); |
| struct page *page; |
| struct f2fs_io_info fio = { |
| .sbi = sbi, |
| .type = META, |
| .op = REQ_OP_READ, |
| .op_flags = REQ_META | REQ_PRIO, |
| .old_blkaddr = index, |
| .new_blkaddr = index, |
| .encrypted_page = NULL, |
| }; |
| |
| if (unlikely(!is_meta)) |
| fio.op_flags &= ~REQ_META; |
| repeat: |
| page = f2fs_grab_cache_page(mapping, index, false); |
| if (!page) { |
| cond_resched(); |
| goto repeat; |
| } |
| if (PageUptodate(page)) |
| goto out; |
| |
| fio.page = page; |
| |
| if (f2fs_submit_page_bio(&fio)) { |
| f2fs_put_page(page, 1); |
| goto repeat; |
| } |
| |
| lock_page(page); |
| if (unlikely(page->mapping != mapping)) { |
| f2fs_put_page(page, 1); |
| goto repeat; |
| } |
| |
| /* |
| * if there is any IO error when accessing device, make our filesystem |
| * readonly and make sure do not write checkpoint with non-uptodate |
| * meta page. |
| */ |
| if (unlikely(!PageUptodate(page))) |
| f2fs_stop_checkpoint(sbi, false); |
| out: |
| return page; |
| } |
| |
| struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) |
| { |
| return __get_meta_page(sbi, index, true); |
| } |
| |
| /* for POR only */ |
| struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index) |
| { |
| return __get_meta_page(sbi, index, false); |
| } |
| |
| bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type) |
| { |
| switch (type) { |
| case META_NAT: |
| break; |
| case META_SIT: |
| if (unlikely(blkaddr >= SIT_BLK_CNT(sbi))) |
| return false; |
| break; |
| case META_SSA: |
| if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) || |
| blkaddr < SM_I(sbi)->ssa_blkaddr)) |
| return false; |
| break; |
| case META_CP: |
| if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr || |
| blkaddr < __start_cp_addr(sbi))) |
| return false; |
| break; |
| case META_POR: |
| if (unlikely(blkaddr >= MAX_BLKADDR(sbi) || |
| blkaddr < MAIN_BLKADDR(sbi))) |
| return false; |
| break; |
| default: |
| BUG(); |
| } |
| |
| return true; |
| } |
| |
| /* |
| * Readahead CP/NAT/SIT/SSA pages |
| */ |
| int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, |
| int type, bool sync) |
| { |
| struct page *page; |
| block_t blkno = start; |
| struct f2fs_io_info fio = { |
| .sbi = sbi, |
| .type = META, |
| .op = REQ_OP_READ, |
| .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD, |
| .encrypted_page = NULL, |
| }; |
| struct blk_plug plug; |
| |
| if (unlikely(type == META_POR)) |
| fio.op_flags &= ~REQ_META; |
| |
| blk_start_plug(&plug); |
| for (; nrpages-- > 0; blkno++) { |
| |
| if (!is_valid_blkaddr(sbi, blkno, type)) |
| goto out; |
| |
| switch (type) { |
| case META_NAT: |
| if (unlikely(blkno >= |
| NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid))) |
| blkno = 0; |
| /* get nat block addr */ |
| fio.new_blkaddr = current_nat_addr(sbi, |
| blkno * NAT_ENTRY_PER_BLOCK); |
| break; |
| case META_SIT: |
| /* get sit block addr */ |
| fio.new_blkaddr = current_sit_addr(sbi, |
| blkno * SIT_ENTRY_PER_BLOCK); |
| break; |
| case META_SSA: |
| case META_CP: |
| case META_POR: |
| fio.new_blkaddr = blkno; |
| break; |
| default: |
| BUG(); |
| } |
| |
| page = f2fs_grab_cache_page(META_MAPPING(sbi), |
| fio.new_blkaddr, false); |
| if (!page) |
| continue; |
| if (PageUptodate(page)) { |
| f2fs_put_page(page, 1); |
| continue; |
| } |
| |
| fio.page = page; |
| fio.old_blkaddr = fio.new_blkaddr; |
| f2fs_submit_page_mbio(&fio); |
| f2fs_put_page(page, 0); |
| } |
| out: |
| f2fs_submit_merged_bio(sbi, META, READ); |
| blk_finish_plug(&plug); |
| return blkno - start; |
| } |
| |
| void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index) |
| { |
| struct page *page; |
| bool readahead = false; |
| |
| page = find_get_page(META_MAPPING(sbi), index); |
| if (!page || !PageUptodate(page)) |
| readahead = true; |
| f2fs_put_page(page, 0); |
| |
| if (readahead) |
| ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true); |
| } |
| |
| static int f2fs_write_meta_page(struct page *page, |
| struct writeback_control *wbc) |
| { |
| struct f2fs_sb_info *sbi = F2FS_P_SB(page); |
| |
| trace_f2fs_writepage(page, META); |
| |
| if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) |
| goto redirty_out; |
| if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0)) |
| goto redirty_out; |
| if (unlikely(f2fs_cp_error(sbi))) |
| goto redirty_out; |
| |
| write_meta_page(sbi, page); |
| dec_page_count(sbi, F2FS_DIRTY_META); |
| |
| if (wbc->for_reclaim) |
| f2fs_submit_merged_bio_cond(sbi, page->mapping->host, |
| 0, page->index, META, WRITE); |
| |
| unlock_page(page); |
| |
| if (unlikely(f2fs_cp_error(sbi))) |
| f2fs_submit_merged_bio(sbi, META, WRITE); |
| |
| return 0; |
| |
| redirty_out: |
| redirty_page_for_writepage(wbc, page); |
| return AOP_WRITEPAGE_ACTIVATE; |
| } |
| |
| static int f2fs_write_meta_pages(struct address_space *mapping, |
| struct writeback_control *wbc) |
| { |
| struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); |
| long diff, written; |
| |
| /* collect a number of dirty meta pages and write together */ |
| if (wbc->for_kupdate || |
| get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META)) |
| goto skip_write; |
| |
| trace_f2fs_writepages(mapping->host, wbc, META); |
| |
| /* if mounting is failed, skip writing node pages */ |
| mutex_lock(&sbi->cp_mutex); |
| diff = nr_pages_to_write(sbi, META, wbc); |
| written = sync_meta_pages(sbi, META, wbc->nr_to_write); |
| mutex_unlock(&sbi->cp_mutex); |
| wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff); |
| return 0; |
| |
| skip_write: |
| wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META); |
| trace_f2fs_writepages(mapping->host, wbc, META); |
| return 0; |
| } |
| |
| long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, |
| long nr_to_write) |
| { |
| struct address_space *mapping = META_MAPPING(sbi); |
| pgoff_t index = 0, end = ULONG_MAX, prev = ULONG_MAX; |
| struct pagevec pvec; |
| long nwritten = 0; |
| struct writeback_control wbc = { |
| .for_reclaim = 0, |
| }; |
| struct blk_plug plug; |
| |
| pagevec_init(&pvec, 0); |
| |
| blk_start_plug(&plug); |
| |
| while (index <= end) { |
| int i, nr_pages; |
| nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, |
| PAGECACHE_TAG_DIRTY, |
| min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); |
| if (unlikely(nr_pages == 0)) |
| break; |
| |
| for (i = 0; i < nr_pages; i++) { |
| struct page *page = pvec.pages[i]; |
| |
| if (prev == ULONG_MAX) |
| prev = page->index - 1; |
| if (nr_to_write != LONG_MAX && page->index != prev + 1) { |
| pagevec_release(&pvec); |
| goto stop; |
| } |
| |
| lock_page(page); |
| |
| if (unlikely(page->mapping != mapping)) { |
| continue_unlock: |
| unlock_page(page); |
| continue; |
| } |
| if (!PageDirty(page)) { |
| /* someone wrote it for us */ |
| goto continue_unlock; |
| } |
| |
| f2fs_wait_on_page_writeback(page, META, true); |
| |
| BUG_ON(PageWriteback(page)); |
| if (!clear_page_dirty_for_io(page)) |
| goto continue_unlock; |
| |
| if (mapping->a_ops->writepage(page, &wbc)) { |
| unlock_page(page); |
| break; |
| } |
| nwritten++; |
| prev = page->index; |
| if (unlikely(nwritten >= nr_to_write)) |
| break; |
| } |
| pagevec_release(&pvec); |
| cond_resched(); |
| } |
| stop: |
| if (nwritten) |
| f2fs_submit_merged_bio(sbi, type, WRITE); |
| |
| blk_finish_plug(&plug); |
| |
| return nwritten; |
| } |
| |
| static int f2fs_set_meta_page_dirty(struct page *page) |
| { |
| trace_f2fs_set_page_dirty(page, META); |
| |
| if (!PageUptodate(page)) |
| SetPageUptodate(page); |
| if (!PageDirty(page)) { |
| f2fs_set_page_dirty_nobuffers(page); |
| inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META); |
| SetPagePrivate(page); |
| f2fs_trace_pid(page); |
| return 1; |
| } |
| return 0; |
| } |
| |
| const struct address_space_operations f2fs_meta_aops = { |
| .writepage = f2fs_write_meta_page, |
| .writepages = f2fs_write_meta_pages, |
| .set_page_dirty = f2fs_set_meta_page_dirty, |
| .invalidatepage = f2fs_invalidate_page, |
| .releasepage = f2fs_release_page, |
| #ifdef CONFIG_MIGRATION |
| .migratepage = f2fs_migrate_page, |
| #endif |
| }; |
| |
| static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) |
| { |
| struct inode_management *im = &sbi->im[type]; |
| struct ino_entry *e, *tmp; |
| |
| tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS); |
| retry: |
| radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); |
| |
| spin_lock(&im->ino_lock); |
| e = radix_tree_lookup(&im->ino_root, ino); |
| if (!e) { |
| e = tmp; |
| if (radix_tree_insert(&im->ino_root, ino, e)) { |
| spin_unlock(&im->ino_lock); |
| radix_tree_preload_end(); |
| goto retry; |
| } |
| memset(e, 0, sizeof(struct ino_entry)); |
| e->ino = ino; |
| |
| list_add_tail(&e->list, &im->ino_list); |
| if (type != ORPHAN_INO) |
| im->ino_num++; |
| } |
| spin_unlock(&im->ino_lock); |
| radix_tree_preload_end(); |
| |
| if (e != tmp) |
| kmem_cache_free(ino_entry_slab, tmp); |
| } |
| |
| static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) |
| { |
| struct inode_management *im = &sbi->im[type]; |
| struct ino_entry *e; |
| |
| spin_lock(&im->ino_lock); |
| e = radix_tree_lookup(&im->ino_root, ino); |
| if (e) { |
| list_del(&e->list); |
| radix_tree_delete(&im->ino_root, ino); |
| im->ino_num--; |
| spin_unlock(&im->ino_lock); |
| kmem_cache_free(ino_entry_slab, e); |
| return; |
| } |
| spin_unlock(&im->ino_lock); |
| } |
| |
| void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) |
| { |
| /* add new dirty ino entry into list */ |
| __add_ino_entry(sbi, ino, type); |
| } |
| |
| void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type) |
| { |
| /* remove dirty ino entry from list */ |
| __remove_ino_entry(sbi, ino, type); |
| } |
| |
| /* mode should be APPEND_INO or UPDATE_INO */ |
| bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode) |
| { |
| struct inode_management *im = &sbi->im[mode]; |
| struct ino_entry *e; |
| |
| spin_lock(&im->ino_lock); |
| e = radix_tree_lookup(&im->ino_root, ino); |
| spin_unlock(&im->ino_lock); |
| return e ? true : false; |
| } |
| |
| void release_ino_entry(struct f2fs_sb_info *sbi, bool all) |
| { |
| struct ino_entry *e, *tmp; |
| int i; |
| |
| for (i = all ? ORPHAN_INO: APPEND_INO; i <= UPDATE_INO; i++) { |
| struct inode_management *im = &sbi->im[i]; |
| |
| spin_lock(&im->ino_lock); |
| list_for_each_entry_safe(e, tmp, &im->ino_list, list) { |
| list_del(&e->list); |
| radix_tree_delete(&im->ino_root, e->ino); |
| kmem_cache_free(ino_entry_slab, e); |
| im->ino_num--; |
| } |
| spin_unlock(&im->ino_lock); |
| } |
| } |
| |
| int acquire_orphan_inode(struct f2fs_sb_info *sbi) |
| { |
| struct inode_management *im = &sbi->im[ORPHAN_INO]; |
| int err = 0; |
| |
| spin_lock(&im->ino_lock); |
| |
| #ifdef CONFIG_F2FS_FAULT_INJECTION |
| if (time_to_inject(sbi, FAULT_ORPHAN)) { |
| spin_unlock(&im->ino_lock); |
| return -ENOSPC; |
| } |
| #endif |
| if (unlikely(im->ino_num >= sbi->max_orphans)) |
| err = -ENOSPC; |
| else |
| im->ino_num++; |
| spin_unlock(&im->ino_lock); |
| |
| return err; |
| } |
| |
| void release_orphan_inode(struct f2fs_sb_info *sbi) |
| { |
| struct inode_management *im = &sbi->im[ORPHAN_INO]; |
| |
| spin_lock(&im->ino_lock); |
| f2fs_bug_on(sbi, im->ino_num == 0); |
| im->ino_num--; |
| spin_unlock(&im->ino_lock); |
| } |
| |
| void add_orphan_inode(struct inode *inode) |
| { |
| /* add new orphan ino entry into list */ |
| __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, ORPHAN_INO); |
| update_inode_page(inode); |
| } |
| |
| void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) |
| { |
| /* remove orphan entry from orphan list */ |
| __remove_ino_entry(sbi, ino, ORPHAN_INO); |
| } |
| |
| static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) |
| { |
| struct inode *inode; |
| struct node_info ni; |
| int err = acquire_orphan_inode(sbi); |
| |
| if (err) { |
| set_sbi_flag(sbi, SBI_NEED_FSCK); |
| f2fs_msg(sbi->sb, KERN_WARNING, |
| "%s: orphan failed (ino=%x), run fsck to fix.", |
| __func__, ino); |
| return err; |
| } |
| |
| __add_ino_entry(sbi, ino, ORPHAN_INO); |
| |
| inode = f2fs_iget_retry(sbi->sb, ino); |
| if (IS_ERR(inode)) { |
| /* |
| * there should be a bug that we can't find the entry |
| * to orphan inode. |
| */ |
| f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT); |
| return PTR_ERR(inode); |
| } |
| |
| clear_nlink(inode); |
| |
| /* truncate all the data during iput */ |
| iput(inode); |
| |
| get_node_info(sbi, ino, &ni); |
| |
| /* ENOMEM was fully retried in f2fs_evict_inode. */ |
| if (ni.blk_addr != NULL_ADDR) { |
| set_sbi_flag(sbi, SBI_NEED_FSCK); |
| f2fs_msg(sbi->sb, KERN_WARNING, |
| "%s: orphan failed (ino=%x), run fsck to fix.", |
| __func__, ino); |
| return -EIO; |
| } |
| __remove_ino_entry(sbi, ino, ORPHAN_INO); |
| return 0; |
| } |
| |
| int recover_orphan_inodes(struct f2fs_sb_info *sbi) |
| { |
| block_t start_blk, orphan_blocks, i, j; |
| int err; |
| |
| if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG)) |
| return 0; |
| |
| start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi); |
| orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi); |
| |
| ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true); |
| |
| for (i = 0; i < orphan_blocks; i++) { |
| struct page *page = get_meta_page(sbi, start_blk + i); |
| struct f2fs_orphan_block *orphan_blk; |
| |
| orphan_blk = (struct f2fs_orphan_block *)page_address(page); |
| for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { |
| nid_t ino = le32_to_cpu(orphan_blk->ino[j]); |
| err = recover_orphan_inode(sbi, ino); |
| if (err) { |
| f2fs_put_page(page, 1); |
| return err; |
| } |
| } |
| f2fs_put_page(page, 1); |
| } |
| /* clear Orphan Flag */ |
| clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG); |
| return 0; |
| } |
| |
| static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) |
| { |
| struct list_head *head; |
| struct f2fs_orphan_block *orphan_blk = NULL; |
| unsigned int nentries = 0; |
| unsigned short index = 1; |
| unsigned short orphan_blocks; |
| struct page *page = NULL; |
| struct ino_entry *orphan = NULL; |
| struct inode_management *im = &sbi->im[ORPHAN_INO]; |
| |
| orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num); |
| |
| /* |
| * we don't need to do spin_lock(&im->ino_lock) here, since all the |
| * orphan inode operations are covered under f2fs_lock_op(). |
| * And, spin_lock should be avoided due to page operations below. |
| */ |
| head = &im->ino_list; |
| |
| /* loop for each orphan inode entry and write them in Jornal block */ |
| list_for_each_entry(orphan, head, list) { |
| if (!page) { |
| page = grab_meta_page(sbi, start_blk++); |
| orphan_blk = |
| (struct f2fs_orphan_block *)page_address(page); |
| memset(orphan_blk, 0, sizeof(*orphan_blk)); |
| } |
| |
| orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); |
| |
| if (nentries == F2FS_ORPHANS_PER_BLOCK) { |
| /* |
| * an orphan block is full of 1020 entries, |
| * then we need to flush current orphan blocks |
| * and bring another one in memory |
| */ |
| orphan_blk->blk_addr = cpu_to_le16(index); |
| orphan_blk->blk_count = cpu_to_le16(orphan_blocks); |
| orphan_blk->entry_count = cpu_to_le32(nentries); |
| set_page_dirty(page); |
| f2fs_put_page(page, 1); |
| index++; |
| nentries = 0; |
| page = NULL; |
| } |
| } |
| |
| if (page) { |
| orphan_blk->blk_addr = cpu_to_le16(index); |
| orphan_blk->blk_count = cpu_to_le16(orphan_blocks); |
| orphan_blk->entry_count = cpu_to_le32(nentries); |
| set_page_dirty(page); |
| f2fs_put_page(page, 1); |
| } |
| } |
| |
| static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr, |
| struct f2fs_checkpoint **cp_block, struct page **cp_page, |
| unsigned long long *version) |
| { |
| unsigned long blk_size = sbi->blocksize; |
| size_t crc_offset = 0; |
| __u32 crc = 0; |
| |
| *cp_page = get_meta_page(sbi, cp_addr); |
| *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page); |
| |
| crc_offset = le32_to_cpu((*cp_block)->checksum_offset); |
| if (crc_offset >= blk_size) { |
| f2fs_msg(sbi->sb, KERN_WARNING, |
| "invalid crc_offset: %zu", crc_offset); |
| return -EINVAL; |
| } |
| |
| crc = le32_to_cpu(*((__le32 *)((unsigned char *)*cp_block |
| + crc_offset))); |
| if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) { |
| f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value"); |
| return -EINVAL; |
| } |
| |
| *version = cur_cp_version(*cp_block); |
| return 0; |
| } |
| |
| static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, |
| block_t cp_addr, unsigned long long *version) |
| { |
| struct page *cp_page_1 = NULL, *cp_page_2 = NULL; |
| struct f2fs_checkpoint *cp_block = NULL; |
| unsigned long long cur_version = 0, pre_version = 0; |
| int err; |
| |
| err = get_checkpoint_version(sbi, cp_addr, &cp_block, |
| &cp_page_1, version); |
| if (err) |
| goto invalid_cp1; |
| pre_version = *version; |
| |
| cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1; |
| err = get_checkpoint_version(sbi, cp_addr, &cp_block, |
| &cp_page_2, version); |
| if (err) |
| goto invalid_cp2; |
| cur_version = *version; |
| |
| if (cur_version == pre_version) { |
| *version = cur_version; |
| f2fs_put_page(cp_page_2, 1); |
| return cp_page_1; |
| } |
| invalid_cp2: |
| f2fs_put_page(cp_page_2, 1); |
| invalid_cp1: |
| f2fs_put_page(cp_page_1, 1); |
| return NULL; |
| } |
| |
| int get_valid_checkpoint(struct f2fs_sb_info *sbi) |
| { |
| struct f2fs_checkpoint *cp_block; |
| struct f2fs_super_block *fsb = sbi->raw_super; |
| struct page *cp1, *cp2, *cur_page; |
| unsigned long blk_size = sbi->blocksize; |
| unsigned long long cp1_version = 0, cp2_version = 0; |
| unsigned long long cp_start_blk_no; |
| unsigned int cp_blks = 1 + __cp_payload(sbi); |
| block_t cp_blk_no; |
| int i; |
| |
| sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL); |
| if (!sbi->ckpt) |
| return -ENOMEM; |
| /* |
| * Finding out valid cp block involves read both |
| * sets( cp pack1 and cp pack 2) |
| */ |
| cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); |
| cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); |
| |
| /* The second checkpoint pack should start at the next segment */ |
| cp_start_blk_no += ((unsigned long long)1) << |
| le32_to_cpu(fsb->log_blocks_per_seg); |
| cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); |
| |
| if (cp1 && cp2) { |
| if (ver_after(cp2_version, cp1_version)) |
| cur_page = cp2; |
| else |
| cur_page = cp1; |
| } else if (cp1) { |
| cur_page = cp1; |
| } else if (cp2) { |
| cur_page = cp2; |
| } else { |
| goto fail_no_cp; |
| } |
| |
| cp_block = (struct f2fs_checkpoint *)page_address(cur_page); |
| memcpy(sbi->ckpt, cp_block, blk_size); |
| |
| /* Sanity checking of checkpoint */ |
| if (sanity_check_ckpt(sbi)) |
| goto free_fail_no_cp; |
| |
| if (cur_page == cp1) |
| sbi->cur_cp_pack = 1; |
| else |
| sbi->cur_cp_pack = 2; |
| |
| if (cp_blks <= 1) |
| goto done; |
| |
| cp_blk_no = le32_to_cpu(fsb->cp_blkaddr); |
| if (cur_page == cp2) |
| cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg); |
| |
| for (i = 1; i < cp_blks; i++) { |
| void *sit_bitmap_ptr; |
| unsigned char *ckpt = (unsigned char *)sbi->ckpt; |
| |
| cur_page = get_meta_page(sbi, cp_blk_no + i); |
| sit_bitmap_ptr = page_address(cur_page); |
| memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size); |
| f2fs_put_page(cur_page, 1); |
| } |
| done: |
| f2fs_put_page(cp1, 1); |
| f2fs_put_page(cp2, 1); |
| return 0; |
| |
| free_fail_no_cp: |
| f2fs_put_page(cp1, 1); |
| f2fs_put_page(cp2, 1); |
| fail_no_cp: |
| kfree(sbi->ckpt); |
| return -EINVAL; |
| } |
| |
| static void __add_dirty_inode(struct inode *inode, enum inode_type type) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; |
| |
| if (is_inode_flag_set(inode, flag)) |
| return; |
| |
| set_inode_flag(inode, flag); |
| list_add_tail(&F2FS_I(inode)->dirty_list, &sbi->inode_list[type]); |
| stat_inc_dirty_inode(sbi, type); |
| } |
| |
| static void __remove_dirty_inode(struct inode *inode, enum inode_type type) |
| { |
| int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE; |
| |
| if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag)) |
| return; |
| |
| list_del_init(&F2FS_I(inode)->dirty_list); |
| clear_inode_flag(inode, flag); |
| stat_dec_dirty_inode(F2FS_I_SB(inode), type); |
| } |
| |
| void update_dirty_page(struct inode *inode, struct page *page) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; |
| |
| if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && |
| !S_ISLNK(inode->i_mode)) |
| return; |
| |
| spin_lock(&sbi->inode_lock[type]); |
| if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH)) |
| __add_dirty_inode(inode, type); |
| inode_inc_dirty_pages(inode); |
| spin_unlock(&sbi->inode_lock[type]); |
| |
| SetPagePrivate(page); |
| f2fs_trace_pid(page); |
| } |
| |
| void remove_dirty_inode(struct inode *inode) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE; |
| |
| if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && |
| !S_ISLNK(inode->i_mode)) |
| return; |
| |
| if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH)) |
| return; |
| |
| spin_lock(&sbi->inode_lock[type]); |
| __remove_dirty_inode(inode, type); |
| spin_unlock(&sbi->inode_lock[type]); |
| } |
| |
| int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type) |
| { |
| struct list_head *head; |
| struct inode *inode; |
| struct f2fs_inode_info *fi; |
| bool is_dir = (type == DIR_INODE); |
| |
| trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir, |
| get_pages(sbi, is_dir ? |
| F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); |
| retry: |
| if (unlikely(f2fs_cp_error(sbi))) |
| return -EIO; |
| |
| spin_lock(&sbi->inode_lock[type]); |
| |
| head = &sbi->inode_list[type]; |
| if (list_empty(head)) { |
| spin_unlock(&sbi->inode_lock[type]); |
| trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir, |
| get_pages(sbi, is_dir ? |
| F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA)); |
| return 0; |
| } |
| fi = list_first_entry(head, struct f2fs_inode_info, dirty_list); |
| inode = igrab(&fi->vfs_inode); |
| spin_unlock(&sbi->inode_lock[type]); |
| if (inode) { |
| filemap_fdatawrite(inode->i_mapping); |
| iput(inode); |
| } else { |
| /* |
| * We should submit bio, since it exists several |
| * wribacking dentry pages in the freeing inode. |
| */ |
| f2fs_submit_merged_bio(sbi, DATA, WRITE); |
| cond_resched(); |
| } |
| goto retry; |
| } |
| |
| int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi) |
| { |
| struct list_head *head = &sbi->inode_list[DIRTY_META]; |
| struct inode *inode; |
| struct f2fs_inode_info *fi; |
| s64 total = get_pages(sbi, F2FS_DIRTY_IMETA); |
| |
| while (total--) { |
| if (unlikely(f2fs_cp_error(sbi))) |
| return -EIO; |
| |
| spin_lock(&sbi->inode_lock[DIRTY_META]); |
| if (list_empty(head)) { |
| spin_unlock(&sbi->inode_lock[DIRTY_META]); |
| return 0; |
| } |
| fi = list_first_entry(head, struct f2fs_inode_info, |
| gdirty_list); |
| inode = igrab(&fi->vfs_inode); |
| spin_unlock(&sbi->inode_lock[DIRTY_META]); |
| if (inode) { |
| sync_inode_metadata(inode, 0); |
| |
| /* it's on eviction */ |
| if (is_inode_flag_set(inode, FI_DIRTY_INODE)) |
| update_inode_page(inode); |
| iput(inode); |
| } |
| }; |
| return 0; |
| } |
| |
| /* |
| * Freeze all the FS-operations for checkpoint. |
| */ |
| static int block_operations(struct f2fs_sb_info *sbi) |
| { |
| struct writeback_control wbc = { |
| .sync_mode = WB_SYNC_ALL, |
| .nr_to_write = LONG_MAX, |
| .for_reclaim = 0, |
| }; |
| struct blk_plug plug; |
| int err = 0; |
| |
| blk_start_plug(&plug); |
| |
| retry_flush_dents: |
| f2fs_lock_all(sbi); |
| /* write all the dirty dentry pages */ |
| if (get_pages(sbi, F2FS_DIRTY_DENTS)) { |
| f2fs_unlock_all(sbi); |
| err = sync_dirty_inodes(sbi, DIR_INODE); |
| if (err) |
| goto out; |
| goto retry_flush_dents; |
| } |
| |
| if (get_pages(sbi, F2FS_DIRTY_IMETA)) { |
| f2fs_unlock_all(sbi); |
| err = f2fs_sync_inode_meta(sbi); |
| if (err) |
| goto out; |
| goto retry_flush_dents; |
| } |
| |
| /* |
| * POR: we should ensure that there are no dirty node pages |
| * until finishing nat/sit flush. |
| */ |
| retry_flush_nodes: |
| down_write(&sbi->node_write); |
| |
| if (get_pages(sbi, F2FS_DIRTY_NODES)) { |
| up_write(&sbi->node_write); |
| err = sync_node_pages(sbi, &wbc); |
| if (err) { |
| f2fs_unlock_all(sbi); |
| goto out; |
| } |
| goto retry_flush_nodes; |
| } |
| out: |
| blk_finish_plug(&plug); |
| return err; |
| } |
| |
| static void unblock_operations(struct f2fs_sb_info *sbi) |
| { |
| up_write(&sbi->node_write); |
| f2fs_unlock_all(sbi); |
| } |
| |
| static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi) |
| { |
| DEFINE_WAIT(wait); |
| |
| for (;;) { |
| prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE); |
| |
| if (!get_pages(sbi, F2FS_WB_CP_DATA)) |
| break; |
| |
| io_schedule_timeout(5*HZ); |
| } |
| finish_wait(&sbi->cp_wait, &wait); |
| } |
| |
| static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc) |
| { |
| unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num; |
| struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); |
| |
| spin_lock(&sbi->cp_lock); |
| |
| if (cpc->reason == CP_UMOUNT) |
| __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); |
| else |
| __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); |
| |
| if (cpc->reason == CP_FASTBOOT) |
| __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); |
| else |
| __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG); |
| |
| if (orphan_num) |
| __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); |
| else |
| __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); |
| |
| if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) |
| __set_ckpt_flags(ckpt, CP_FSCK_FLAG); |
| |
| /* set this flag to activate crc|cp_ver for recovery */ |
| __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG); |
| |
| spin_unlock(&sbi->cp_lock); |
| } |
| |
| static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) |
| { |
| struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); |
| struct f2fs_nm_info *nm_i = NM_I(sbi); |
| unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num; |
| nid_t last_nid = nm_i->next_scan_nid; |
| block_t start_blk; |
| unsigned int data_sum_blocks, orphan_blocks; |
| __u32 crc32 = 0; |
| int i; |
| int cp_payload_blks = __cp_payload(sbi); |
| struct super_block *sb = sbi->sb; |
| struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); |
| u64 kbytes_written; |
| |
| /* Flush all the NAT/SIT pages */ |
| while (get_pages(sbi, F2FS_DIRTY_META)) { |
| sync_meta_pages(sbi, META, LONG_MAX); |
| if (unlikely(f2fs_cp_error(sbi))) |
| return -EIO; |
| } |
| |
| next_free_nid(sbi, &last_nid); |
| |
| /* |
| * modify checkpoint |
| * version number is already updated |
| */ |
| ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi)); |
| ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); |
| ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); |
| for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { |
| ckpt->cur_node_segno[i] = |
| cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE)); |
| ckpt->cur_node_blkoff[i] = |
| cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE)); |
| ckpt->alloc_type[i + CURSEG_HOT_NODE] = |
| curseg_alloc_type(sbi, i + CURSEG_HOT_NODE); |
| } |
| for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { |
| ckpt->cur_data_segno[i] = |
| cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA)); |
| ckpt->cur_data_blkoff[i] = |
| cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA)); |
| ckpt->alloc_type[i + CURSEG_HOT_DATA] = |
| curseg_alloc_type(sbi, i + CURSEG_HOT_DATA); |
| } |
| |
| ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); |
| ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); |
| ckpt->next_free_nid = cpu_to_le32(last_nid); |
| |
| /* 2 cp + n data seg summary + orphan inode blocks */ |
| data_sum_blocks = npages_for_summary_flush(sbi, false); |
| spin_lock(&sbi->cp_lock); |
| if (data_sum_blocks < NR_CURSEG_DATA_TYPE) |
| __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); |
| else |
| __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); |
| spin_unlock(&sbi->cp_lock); |
| |
| orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num); |
| ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks + |
| orphan_blocks); |
| |
| if (__remain_node_summaries(cpc->reason)) |
| ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+ |
| cp_payload_blks + data_sum_blocks + |
| orphan_blocks + NR_CURSEG_NODE_TYPE); |
| else |
| ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS + |
| cp_payload_blks + data_sum_blocks + |
| orphan_blocks); |
| |
| /* update ckpt flag for checkpoint */ |
| update_ckpt_flags(sbi, cpc); |
| |
| /* update SIT/NAT bitmap */ |
| get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); |
| get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); |
| |
| crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset)); |
| *((__le32 *)((unsigned char *)ckpt + |
| le32_to_cpu(ckpt->checksum_offset))) |
| = cpu_to_le32(crc32); |
| |
| start_blk = __start_cp_next_addr(sbi); |
| |
| /* need to wait for end_io results */ |
| wait_on_all_pages_writeback(sbi); |
| if (unlikely(f2fs_cp_error(sbi))) |
| return -EIO; |
| |
| /* write out checkpoint buffer at block 0 */ |
| update_meta_page(sbi, ckpt, start_blk++); |
| |
| for (i = 1; i < 1 + cp_payload_blks; i++) |
| update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE, |
| start_blk++); |
| |
| if (orphan_num) { |
| write_orphan_inodes(sbi, start_blk); |
| start_blk += orphan_blocks; |
| } |
| |
| write_data_summaries(sbi, start_blk); |
| start_blk += data_sum_blocks; |
| |
| /* Record write statistics in the hot node summary */ |
| kbytes_written = sbi->kbytes_written; |
| if (sb->s_bdev->bd_part) |
| kbytes_written += BD_PART_WRITTEN(sbi); |
| |
| seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written); |
| |
| if (__remain_node_summaries(cpc->reason)) { |
| write_node_summaries(sbi, start_blk); |
| start_blk += NR_CURSEG_NODE_TYPE; |
| } |
| |
| /* writeout checkpoint block */ |
| update_meta_page(sbi, ckpt, start_blk); |
| |
| /* wait for previous submitted node/meta pages writeback */ |
| wait_on_all_pages_writeback(sbi); |
| |
| if (unlikely(f2fs_cp_error(sbi))) |
| return -EIO; |
| |
| filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX); |
| filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX); |
| |
| /* update user_block_counts */ |
| sbi->last_valid_block_count = sbi->total_valid_block_count; |
| percpu_counter_set(&sbi->alloc_valid_block_count, 0); |
| |
| /* Here, we only have one bio having CP pack */ |
| sync_meta_pages(sbi, META_FLUSH, LONG_MAX); |
| |
| /* wait for previous submitted meta pages writeback */ |
| wait_on_all_pages_writeback(sbi); |
| |
| release_ino_entry(sbi, false); |
| |
| if (unlikely(f2fs_cp_error(sbi))) |
| return -EIO; |
| |
| clear_sbi_flag(sbi, SBI_IS_DIRTY); |
| clear_sbi_flag(sbi, SBI_NEED_CP); |
| __set_cp_next_pack(sbi); |
| |
| /* |
| * redirty superblock if metadata like node page or inode cache is |
| * updated during writing checkpoint. |
| */ |
| if (get_pages(sbi, F2FS_DIRTY_NODES) || |
| get_pages(sbi, F2FS_DIRTY_IMETA)) |
| set_sbi_flag(sbi, SBI_IS_DIRTY); |
| |
| f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS)); |
| |
| return 0; |
| } |
| |
| /* |
| * We guarantee that this checkpoint procedure will not fail. |
| */ |
| int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc) |
| { |
| struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); |
| unsigned long long ckpt_ver; |
| int err = 0; |
| |
| mutex_lock(&sbi->cp_mutex); |
| |
| if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) && |
| (cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC || |
| (cpc->reason == CP_DISCARD && !sbi->discard_blks))) |
| goto out; |
| if (unlikely(f2fs_cp_error(sbi))) { |
| err = -EIO; |
| goto out; |
| } |
| if (f2fs_readonly(sbi->sb)) { |
| err = -EROFS; |
| goto out; |
| } |
| |
| trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops"); |
| |
| err = block_operations(sbi); |
| if (err) |
| goto out; |
| |
| trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops"); |
| |
| f2fs_flush_merged_bios(sbi); |
| |
| /* this is the case of multiple fstrims without any changes */ |
| if (cpc->reason == CP_DISCARD) { |
| if (!exist_trim_candidates(sbi, cpc)) { |
| unblock_operations(sbi); |
| goto out; |
| } |
| |
| if (NM_I(sbi)->dirty_nat_cnt == 0 && |
| SIT_I(sbi)->dirty_sentries == 0 && |
| prefree_segments(sbi) == 0) { |
| flush_sit_entries(sbi, cpc); |
| clear_prefree_segments(sbi, cpc); |
| unblock_operations(sbi); |
| goto out; |
| } |
| } |
| |
| /* |
| * update checkpoint pack index |
| * Increase the version number so that |
| * SIT entries and seg summaries are written at correct place |
| */ |
| ckpt_ver = cur_cp_version(ckpt); |
| ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); |
| |
| /* write cached NAT/SIT entries to NAT/SIT area */ |
| flush_nat_entries(sbi); |
| flush_sit_entries(sbi, cpc); |
| |
| /* unlock all the fs_lock[] in do_checkpoint() */ |
| err = do_checkpoint(sbi, cpc); |
| if (err) |
| release_discard_addrs(sbi); |
| else |
| clear_prefree_segments(sbi, cpc); |
| |
| unblock_operations(sbi); |
| stat_inc_cp_count(sbi->stat_info); |
| |
| if (cpc->reason == CP_RECOVERY) |
| f2fs_msg(sbi->sb, KERN_NOTICE, |
| "checkpoint: version = %llx", ckpt_ver); |
| |
| /* do checkpoint periodically */ |
| f2fs_update_time(sbi, CP_TIME); |
| trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint"); |
| out: |
| mutex_unlock(&sbi->cp_mutex); |
| return err; |
| } |
| |
| void init_ino_entry_info(struct f2fs_sb_info *sbi) |
| { |
| int i; |
| |
| for (i = 0; i < MAX_INO_ENTRY; i++) { |
| struct inode_management *im = &sbi->im[i]; |
| |
| INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC); |
| spin_lock_init(&im->ino_lock); |
| INIT_LIST_HEAD(&im->ino_list); |
| im->ino_num = 0; |
| } |
| |
| sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS - |
| NR_CURSEG_TYPE - __cp_payload(sbi)) * |
| F2FS_ORPHANS_PER_BLOCK; |
| } |
| |
| int __init create_checkpoint_caches(void) |
| { |
| ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry", |
| sizeof(struct ino_entry)); |
| if (!ino_entry_slab) |
| return -ENOMEM; |
| inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry", |
| sizeof(struct inode_entry)); |
| if (!inode_entry_slab) { |
| kmem_cache_destroy(ino_entry_slab); |
| return -ENOMEM; |
| } |
| return 0; |
| } |
| |
| void destroy_checkpoint_caches(void) |
| { |
| kmem_cache_destroy(ino_entry_slab); |
| kmem_cache_destroy(inode_entry_slab); |
| } |