blob: 1a1f5f98f05b842012fc14fb292bcff770e8b5f0 [file] [log] [blame]
/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Ben Widawsky <ben@bwidawsk.net>
* Michel Thierry <michel.thierry@intel.com>
* Thomas Daniel <thomas.daniel@intel.com>
* Oscar Mateo <oscar.mateo@intel.com>
*
*/
/*
* GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
* These expanded contexts enable a number of new abilities, especially
* "Execlists" (also implemented in this file).
*
* Execlists are the new method by which, on gen8+ hardware, workloads are
* submitted for execution (as opposed to the legacy, ringbuffer-based, method).
*/
#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_ALIGN 4096
#define RING_ELSP(ring) ((ring)->mmio_base+0x230)
#define RING_CONTEXT_CONTROL(ring) ((ring)->mmio_base+0x244)
#define CTX_LRI_HEADER_0 0x01
#define CTX_CONTEXT_CONTROL 0x02
#define CTX_RING_HEAD 0x04
#define CTX_RING_TAIL 0x06
#define CTX_RING_BUFFER_START 0x08
#define CTX_RING_BUFFER_CONTROL 0x0a
#define CTX_BB_HEAD_U 0x0c
#define CTX_BB_HEAD_L 0x0e
#define CTX_BB_STATE 0x10
#define CTX_SECOND_BB_HEAD_U 0x12
#define CTX_SECOND_BB_HEAD_L 0x14
#define CTX_SECOND_BB_STATE 0x16
#define CTX_BB_PER_CTX_PTR 0x18
#define CTX_RCS_INDIRECT_CTX 0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
#define CTX_LRI_HEADER_1 0x21
#define CTX_CTX_TIMESTAMP 0x22
#define CTX_PDP3_UDW 0x24
#define CTX_PDP3_LDW 0x26
#define CTX_PDP2_UDW 0x28
#define CTX_PDP2_LDW 0x2a
#define CTX_PDP1_UDW 0x2c
#define CTX_PDP1_LDW 0x2e
#define CTX_PDP0_UDW 0x30
#define CTX_PDP0_LDW 0x32
#define CTX_LRI_HEADER_2 0x41
#define CTX_R_PWR_CLK_STATE 0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
{
WARN_ON(i915.enable_ppgtt == -1);
if (enable_execlists == 0)
return 0;
if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev))
return 1;
return 0;
}
int intel_execlists_submission(struct drm_device *dev, struct drm_file *file,
struct intel_engine_cs *ring,
struct intel_context *ctx,
struct drm_i915_gem_execbuffer2 *args,
struct list_head *vmas,
struct drm_i915_gem_object *batch_obj,
u64 exec_start, u32 flags)
{
/* TODO */
return 0;
}
void intel_logical_ring_stop(struct intel_engine_cs *ring)
{
/* TODO */
}
static int gen8_init_common_ring(struct intel_engine_cs *ring)
{
struct drm_device *dev = ring->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
I915_WRITE(RING_MODE_GEN7(ring),
_MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
_MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
POSTING_READ(RING_MODE_GEN7(ring));
DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
return 0;
}
static int gen8_init_render_ring(struct intel_engine_cs *ring)
{
struct drm_device *dev = ring->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
ret = gen8_init_common_ring(ring);
if (ret)
return ret;
/* We need to disable the AsyncFlip performance optimisations in order
* to use MI_WAIT_FOR_EVENT within the CS. It should already be
* programmed to '1' on all products.
*
* WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
*/
I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
ret = intel_init_pipe_control(ring);
if (ret)
return ret;
I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
return ret;
}
void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
{
if (!intel_ring_initialized(ring))
return;
/* TODO: make sure the ring is stopped */
ring->preallocated_lazy_request = NULL;
ring->outstanding_lazy_seqno = 0;
if (ring->cleanup)
ring->cleanup(ring);
i915_cmd_parser_fini_ring(ring);
if (ring->status_page.obj) {
kunmap(sg_page(ring->status_page.obj->pages->sgl));
ring->status_page.obj = NULL;
}
}
static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
{
int ret;
struct intel_context *dctx = ring->default_context;
struct drm_i915_gem_object *dctx_obj;
/* Intentionally left blank. */
ring->buffer = NULL;
ring->dev = dev;
INIT_LIST_HEAD(&ring->active_list);
INIT_LIST_HEAD(&ring->request_list);
init_waitqueue_head(&ring->irq_queue);
ret = intel_lr_context_deferred_create(dctx, ring);
if (ret)
return ret;
/* The status page is offset 0 from the context object in LRCs. */
dctx_obj = dctx->engine[ring->id].state;
ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj);
ring->status_page.page_addr = kmap(sg_page(dctx_obj->pages->sgl));
if (ring->status_page.page_addr == NULL)
return -ENOMEM;
ring->status_page.obj = dctx_obj;
ret = i915_cmd_parser_init_ring(ring);
if (ret)
return ret;
if (ring->init) {
ret = ring->init(ring);
if (ret)
return ret;
}
return 0;
}
static int logical_render_ring_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring = &dev_priv->ring[RCS];
ring->name = "render ring";
ring->id = RCS;
ring->mmio_base = RENDER_RING_BASE;
ring->irq_enable_mask =
GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
ring->init = gen8_init_render_ring;
ring->cleanup = intel_fini_pipe_control;
return logical_ring_init(dev, ring);
}
static int logical_bsd_ring_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring = &dev_priv->ring[VCS];
ring->name = "bsd ring";
ring->id = VCS;
ring->mmio_base = GEN6_BSD_RING_BASE;
ring->irq_enable_mask =
GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
ring->init = gen8_init_common_ring;
return logical_ring_init(dev, ring);
}
static int logical_bsd2_ring_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
ring->name = "bds2 ring";
ring->id = VCS2;
ring->mmio_base = GEN8_BSD2_RING_BASE;
ring->irq_enable_mask =
GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
ring->init = gen8_init_common_ring;
return logical_ring_init(dev, ring);
}
static int logical_blt_ring_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring = &dev_priv->ring[BCS];
ring->name = "blitter ring";
ring->id = BCS;
ring->mmio_base = BLT_RING_BASE;
ring->irq_enable_mask =
GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
ring->init = gen8_init_common_ring;
return logical_ring_init(dev, ring);
}
static int logical_vebox_ring_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *ring = &dev_priv->ring[VECS];
ring->name = "video enhancement ring";
ring->id = VECS;
ring->mmio_base = VEBOX_RING_BASE;
ring->irq_enable_mask =
GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
ring->init = gen8_init_common_ring;
return logical_ring_init(dev, ring);
}
int intel_logical_rings_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
ret = logical_render_ring_init(dev);
if (ret)
return ret;
if (HAS_BSD(dev)) {
ret = logical_bsd_ring_init(dev);
if (ret)
goto cleanup_render_ring;
}
if (HAS_BLT(dev)) {
ret = logical_blt_ring_init(dev);
if (ret)
goto cleanup_bsd_ring;
}
if (HAS_VEBOX(dev)) {
ret = logical_vebox_ring_init(dev);
if (ret)
goto cleanup_blt_ring;
}
if (HAS_BSD2(dev)) {
ret = logical_bsd2_ring_init(dev);
if (ret)
goto cleanup_vebox_ring;
}
ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
if (ret)
goto cleanup_bsd2_ring;
return 0;
cleanup_bsd2_ring:
intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
cleanup_vebox_ring:
intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
cleanup_blt_ring:
intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
cleanup_bsd_ring:
intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
cleanup_render_ring:
intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
return ret;
}
static int
populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
{
struct drm_i915_gem_object *ring_obj = ringbuf->obj;
struct i915_hw_ppgtt *ppgtt = ctx_to_ppgtt(ctx);
struct page *page;
uint32_t *reg_state;
int ret;
ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
if (ret) {
DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
return ret;
}
ret = i915_gem_object_get_pages(ctx_obj);
if (ret) {
DRM_DEBUG_DRIVER("Could not get object pages\n");
return ret;
}
i915_gem_object_pin_pages(ctx_obj);
/* The second page of the context object contains some fields which must
* be set up prior to the first execution. */
page = i915_gem_object_get_page(ctx_obj, 1);
reg_state = kmap_atomic(page);
/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
* commands followed by (reg, value) pairs. The values we are setting here are
* only for the first context restore: on a subsequent save, the GPU will
* recreate this batchbuffer with new values (including all the missing
* MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
if (ring->id == RCS)
reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
else
reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
reg_state[CTX_CONTEXT_CONTROL+1] =
_MASKED_BIT_ENABLE((1<<3) | MI_RESTORE_INHIBIT);
reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
reg_state[CTX_RING_HEAD+1] = 0;
reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
reg_state[CTX_RING_TAIL+1] = 0;
reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
reg_state[CTX_RING_BUFFER_CONTROL+1] =
((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
reg_state[CTX_BB_HEAD_U+1] = 0;
reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
reg_state[CTX_BB_HEAD_L+1] = 0;
reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
reg_state[CTX_BB_STATE+1] = (1<<5);
reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
reg_state[CTX_SECOND_BB_STATE+1] = 0;
if (ring->id == RCS) {
/* TODO: according to BSpec, the register state context
* for CHV does not have these. OTOH, these registers do
* exist in CHV. I'm waiting for a clarification */
reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
}
reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
reg_state[CTX_CTX_TIMESTAMP+1] = 0;
reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
reg_state[CTX_PDP3_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[3]);
reg_state[CTX_PDP3_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[3]);
reg_state[CTX_PDP2_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[2]);
reg_state[CTX_PDP2_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[2]);
reg_state[CTX_PDP1_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[1]);
reg_state[CTX_PDP1_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[1]);
reg_state[CTX_PDP0_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[0]);
reg_state[CTX_PDP0_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[0]);
if (ring->id == RCS) {
reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
reg_state[CTX_R_PWR_CLK_STATE] = 0x20c8;
reg_state[CTX_R_PWR_CLK_STATE+1] = 0;
}
kunmap_atomic(reg_state);
ctx_obj->dirty = 1;
set_page_dirty(page);
i915_gem_object_unpin_pages(ctx_obj);
return 0;
}
void intel_lr_context_free(struct intel_context *ctx)
{
int i;
for (i = 0; i < I915_NUM_RINGS; i++) {
struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
if (ctx_obj) {
intel_destroy_ringbuffer_obj(ringbuf);
kfree(ringbuf);
i915_gem_object_ggtt_unpin(ctx_obj);
drm_gem_object_unreference(&ctx_obj->base);
}
}
}
static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
{
int ret = 0;
WARN_ON(INTEL_INFO(ring->dev)->gen != 8);
switch (ring->id) {
case RCS:
ret = GEN8_LR_CONTEXT_RENDER_SIZE;
break;
case VCS:
case BCS:
case VECS:
case VCS2:
ret = GEN8_LR_CONTEXT_OTHER_SIZE;
break;
}
return ret;
}
int intel_lr_context_deferred_create(struct intel_context *ctx,
struct intel_engine_cs *ring)
{
struct drm_device *dev = ring->dev;
struct drm_i915_gem_object *ctx_obj;
uint32_t context_size;
struct intel_ringbuffer *ringbuf;
int ret;
WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
if (ctx->engine[ring->id].state)
return 0;
context_size = round_up(get_lr_context_size(ring), 4096);
ctx_obj = i915_gem_alloc_context_obj(dev, context_size);
if (IS_ERR(ctx_obj)) {
ret = PTR_ERR(ctx_obj);
DRM_DEBUG_DRIVER("Alloc LRC backing obj failed: %d\n", ret);
return ret;
}
ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
if (ret) {
DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n", ret);
drm_gem_object_unreference(&ctx_obj->base);
return ret;
}
ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
if (!ringbuf) {
DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
ring->name);
i915_gem_object_ggtt_unpin(ctx_obj);
drm_gem_object_unreference(&ctx_obj->base);
ret = -ENOMEM;
return ret;
}
ringbuf->ring = ring;
ringbuf->size = 32 * PAGE_SIZE;
ringbuf->effective_size = ringbuf->size;
ringbuf->head = 0;
ringbuf->tail = 0;
ringbuf->space = ringbuf->size;
ringbuf->last_retired_head = -1;
/* TODO: For now we put this in the mappable region so that we can reuse
* the existing ringbuffer code which ioremaps it. When we start
* creating many contexts, this will no longer work and we must switch
* to a kmapish interface.
*/
ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
if (ret) {
DRM_DEBUG_DRIVER("Failed to allocate ringbuffer obj %s: %d\n",
ring->name, ret);
goto error;
}
ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
if (ret) {
DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
intel_destroy_ringbuffer_obj(ringbuf);
goto error;
}
ctx->engine[ring->id].ringbuf = ringbuf;
ctx->engine[ring->id].state = ctx_obj;
return 0;
error:
kfree(ringbuf);
i915_gem_object_ggtt_unpin(ctx_obj);
drm_gem_object_unreference(&ctx_obj->base);
return ret;
}