| /****************************************************************************** |
| * |
| * (C)Copyright 1998,1999 SysKonnect, |
| * a business unit of Schneider & Koch & Co. Datensysteme GmbH. |
| * |
| * See the file "skfddi.c" for further information. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * The information in this file is provided "AS IS" without warranty. |
| * |
| ******************************************************************************/ |
| |
| /* |
| * FBI board dependent Driver for SMT and LLC |
| */ |
| |
| #include "h/types.h" |
| #include "h/fddi.h" |
| #include "h/smc.h" |
| #include "h/supern_2.h" |
| #include "h/skfbiinc.h" |
| |
| #ifndef lint |
| static const char ID_sccs[] = "@(#)drvfbi.c 1.63 99/02/11 (C) SK " ; |
| #endif |
| |
| /* |
| * PCM active state |
| */ |
| #define PC8_ACTIVE 8 |
| |
| #define LED_Y_ON 0x11 /* Used for ring up/down indication */ |
| #define LED_Y_OFF 0x10 |
| |
| |
| #define MS2BCLK(x) ((x)*12500L) |
| |
| /* |
| * valid configuration values are: |
| */ |
| #ifdef ISA |
| const int opt_ints[] = {8, 3, 4, 5, 9, 10, 11, 12, 15} ; |
| const int opt_iops[] = {8, |
| 0x100, 0x120, 0x180, 0x1a0, 0x220, 0x240, 0x320, 0x340}; |
| const int opt_dmas[] = {4, 3, 5, 6, 7} ; |
| const int opt_eproms[] = {15, 0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce, |
| 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc} ; |
| #endif |
| #ifdef EISA |
| const int opt_ints[] = {5, 9, 10, 11} ; |
| const int opt_dmas[] = {0, 5, 6, 7} ; |
| const int opt_eproms[] = {0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce, |
| 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc} ; |
| #endif |
| |
| #ifdef MCA |
| int opt_ints[] = {3, 11, 10, 9} ; /* FM1 */ |
| int opt_eproms[] = {0, 0xc4, 0xc8, 0xcc, 0xd0, 0xd4, 0xd8, 0xdc} ; |
| #endif /* MCA */ |
| |
| /* |
| * xPOS_ID:xxxx |
| * | \ / |
| * | \/ |
| * | --------------------- the patched POS_ID of the Adapter |
| * | xxxx = (Vendor ID low byte, |
| * | Vendor ID high byte, |
| * | Device ID low byte, |
| * | Device ID high byte) |
| * +------------------------------ the patched oem_id must be |
| * 'S' for SK or 'I' for IBM |
| * this is a short id for the driver. |
| */ |
| #ifndef MULT_OEM |
| #ifndef OEM_CONCEPT |
| #ifndef MCA |
| const u_char oem_id[] = "xPOS_ID:xxxx" ; |
| #else |
| const u_char oem_id[] = "xPOSID1:xxxx" ; /* FM1 card id. */ |
| #endif |
| #else /* OEM_CONCEPT */ |
| #ifndef MCA |
| const u_char oem_id[] = OEM_ID ; |
| #else |
| const u_char oem_id[] = OEM_ID1 ; /* FM1 card id. */ |
| #endif /* MCA */ |
| #endif /* OEM_CONCEPT */ |
| #define ID_BYTE0 8 |
| #define OEMID(smc,i) oem_id[ID_BYTE0 + i] |
| #else /* MULT_OEM */ |
| const struct s_oem_ids oem_ids[] = { |
| #include "oemids.h" |
| {0} |
| }; |
| #define OEMID(smc,i) smc->hw.oem_id->oi_id[i] |
| #endif /* MULT_OEM */ |
| |
| /* Prototypes of external functions */ |
| #ifdef AIX |
| extern int AIX_vpdReadByte() ; |
| #endif |
| |
| |
| /* Prototypes of local functions. */ |
| void smt_stop_watchdog(struct s_smc *smc); |
| |
| #ifdef MCA |
| static int read_card_id() ; |
| static void DisableSlotAccess() ; |
| static void EnableSlotAccess() ; |
| #ifdef AIX |
| extern int attach_POS_addr() ; |
| extern int detach_POS_addr() ; |
| extern u_char read_POS() ; |
| extern void write_POS() ; |
| extern int AIX_vpdReadByte() ; |
| #else |
| #define read_POS(smc,a1,a2) ((u_char) inp(a1)) |
| #define write_POS(smc,a1,a2,a3) outp((a1),(a3)) |
| #endif |
| #endif /* MCA */ |
| |
| |
| /* |
| * FDDI card reset |
| */ |
| static void card_start(struct s_smc *smc) |
| { |
| int i ; |
| #ifdef PCI |
| u_char rev_id ; |
| u_short word; |
| #endif |
| |
| smt_stop_watchdog(smc) ; |
| |
| #ifdef ISA |
| outpw(CSR_A,0) ; /* reset for all chips */ |
| for (i = 10 ; i ; i--) /* delay for PLC's */ |
| (void)inpw(ISR_A) ; |
| OUT_82c54_TIMER(3,COUNT(2) | RW_OP(3) | TMODE(2)) ; |
| /* counter 2, mode 2 */ |
| OUT_82c54_TIMER(2,97) ; /* LSB */ |
| OUT_82c54_TIMER(2,0) ; /* MSB ( 15.6 us ) */ |
| outpw(CSR_A,CS_CRESET) ; |
| #endif |
| #ifdef EISA |
| outpw(CSR_A,0) ; /* reset for all chips */ |
| for (i = 10 ; i ; i--) /* delay for PLC's */ |
| (void)inpw(ISR_A) ; |
| outpw(CSR_A,CS_CRESET) ; |
| smc->hw.led = (2<<6) ; |
| outpw(CSR_A,CS_CRESET | smc->hw.led) ; |
| #endif |
| #ifdef MCA |
| outp(ADDR(CARD_DIS),0) ; /* reset for all chips */ |
| for (i = 10 ; i ; i--) /* delay for PLC's */ |
| (void)inpw(ISR_A) ; |
| outp(ADDR(CARD_EN),0) ; |
| /* first I/O after reset must not be a access to FORMAC or PLC */ |
| |
| /* |
| * bus timeout (MCA) |
| */ |
| OUT_82c54_TIMER(3,COUNT(2) | RW_OP(3) | TMODE(3)) ; |
| /* counter 2, mode 3 */ |
| OUT_82c54_TIMER(2,(2*24)) ; /* 3.9 us * 2 square wave */ |
| OUT_82c54_TIMER(2,0) ; /* MSB */ |
| |
| /* POS 102 indicated an activ Check Line or Buss Error monitoring */ |
| if (inpw(CSA_A) & (POS_EN_CHKINT | POS_EN_BUS_ERR)) { |
| outp(ADDR(IRQ_CHCK_EN),0) ; |
| } |
| |
| if (!((i = inpw(CSR_A)) & CS_SAS)) { |
| if (!(i & CS_BYSTAT)) { |
| outp(ADDR(BYPASS(STAT_INS)),0) ;/* insert station */ |
| } |
| } |
| outpw(LEDR_A,LED_1) ; /* yellow */ |
| #endif /* MCA */ |
| #ifdef PCI |
| /* |
| * make sure no transfer activity is pending |
| */ |
| outpw(FM_A(FM_MDREG1),FM_MINIT) ; |
| outp(ADDR(B0_CTRL), CTRL_HPI_SET) ; |
| hwt_wait_time(smc,hwt_quick_read(smc),MS2BCLK(10)) ; |
| /* |
| * now reset everything |
| */ |
| outp(ADDR(B0_CTRL),CTRL_RST_SET) ; /* reset for all chips */ |
| i = (int) inp(ADDR(B0_CTRL)) ; /* do dummy read */ |
| SK_UNUSED(i) ; /* Make LINT happy. */ |
| outp(ADDR(B0_CTRL), CTRL_RST_CLR) ; |
| |
| /* |
| * Reset all bits in the PCI STATUS register |
| */ |
| outp(ADDR(B0_TST_CTRL), TST_CFG_WRITE_ON) ; /* enable for writes */ |
| word = inpw(PCI_C(PCI_STATUS)) ; |
| outpw(PCI_C(PCI_STATUS), word | PCI_ERRBITS) ; |
| outp(ADDR(B0_TST_CTRL), TST_CFG_WRITE_OFF) ; /* disable writes */ |
| |
| /* |
| * Release the reset of all the State machines |
| * Release Master_Reset |
| * Release HPI_SM_Reset |
| */ |
| outp(ADDR(B0_CTRL), CTRL_MRST_CLR|CTRL_HPI_CLR) ; |
| |
| /* |
| * determine the adapter type |
| * Note: Do it here, because some drivers may call card_start() once |
| * at very first before any other initialization functions is |
| * executed. |
| */ |
| rev_id = inp(PCI_C(PCI_REV_ID)) ; |
| if ((rev_id & 0xf0) == SK_ML_ID_1 || (rev_id & 0xf0) == SK_ML_ID_2) { |
| smc->hw.hw_is_64bit = TRUE ; |
| } else { |
| smc->hw.hw_is_64bit = FALSE ; |
| } |
| |
| /* |
| * Watermark initialization |
| */ |
| if (!smc->hw.hw_is_64bit) { |
| outpd(ADDR(B4_R1_F), RX_WATERMARK) ; |
| outpd(ADDR(B5_XA_F), TX_WATERMARK) ; |
| outpd(ADDR(B5_XS_F), TX_WATERMARK) ; |
| } |
| |
| outp(ADDR(B0_CTRL),CTRL_RST_CLR) ; /* clear the reset chips */ |
| outp(ADDR(B0_LED),LED_GA_OFF|LED_MY_ON|LED_GB_OFF) ; /* ye LED on */ |
| |
| /* init the timer value for the watch dog 2,5 minutes */ |
| outpd(ADDR(B2_WDOG_INI),0x6FC23AC0) ; |
| |
| /* initialize the ISR mask */ |
| smc->hw.is_imask = ISR_MASK ; |
| smc->hw.hw_state = STOPPED ; |
| #endif |
| GET_PAGE(0) ; /* necessary for BOOT */ |
| } |
| |
| void card_stop(struct s_smc *smc) |
| { |
| smt_stop_watchdog(smc) ; |
| smc->hw.mac_ring_is_up = 0 ; /* ring down */ |
| #ifdef ISA |
| outpw(CSR_A,0) ; /* reset for all chips */ |
| #endif |
| #ifdef EISA |
| outpw(CSR_A,0) ; /* reset for all chips */ |
| #endif |
| #ifdef MCA |
| outp(ADDR(CARD_DIS),0) ; /* reset for all chips */ |
| #endif |
| #ifdef PCI |
| /* |
| * make sure no transfer activity is pending |
| */ |
| outpw(FM_A(FM_MDREG1),FM_MINIT) ; |
| outp(ADDR(B0_CTRL), CTRL_HPI_SET) ; |
| hwt_wait_time(smc,hwt_quick_read(smc),MS2BCLK(10)) ; |
| /* |
| * now reset everything |
| */ |
| outp(ADDR(B0_CTRL),CTRL_RST_SET) ; /* reset for all chips */ |
| outp(ADDR(B0_CTRL),CTRL_RST_CLR) ; /* reset for all chips */ |
| outp(ADDR(B0_LED),LED_GA_OFF|LED_MY_OFF|LED_GB_OFF) ; /* all LEDs off */ |
| smc->hw.hw_state = STOPPED ; |
| #endif |
| } |
| /*--------------------------- ISR handling ----------------------------------*/ |
| |
| void mac1_irq(struct s_smc *smc, u_short stu, u_short stl) |
| { |
| int restart_tx = 0 ; |
| again: |
| #ifndef PCI |
| #ifndef ISA |
| /* |
| * FORMAC+ bug modified the queue pointer if many read/write accesses happens!? |
| */ |
| if (stl & (FM_SPCEPDS | /* parit/coding err. syn.q.*/ |
| FM_SPCEPDA0 | /* parit/coding err. a.q.0 */ |
| FM_SPCEPDA1 | /* parit/coding err. a.q.1 */ |
| FM_SPCEPDA2)) { /* parit/coding err. a.q.2 */ |
| SMT_PANIC(smc,SMT_E0132, SMT_E0132_MSG) ; |
| } |
| if (stl & (FM_STBURS | /* tx buffer underrun syn.q.*/ |
| FM_STBURA0 | /* tx buffer underrun a.q.0 */ |
| FM_STBURA1 | /* tx buffer underrun a.q.1 */ |
| FM_STBURA2)) { /* tx buffer underrun a.q.2 */ |
| SMT_PANIC(smc,SMT_E0133, SMT_E0133_MSG) ; |
| } |
| #endif |
| if ( (stu & (FM_SXMTABT | /* transmit abort */ |
| #ifdef SYNC |
| FM_STXABRS | /* syn. tx abort */ |
| #endif /* SYNC */ |
| FM_STXABRA0)) || /* asyn. tx abort */ |
| (stl & (FM_SQLCKS | /* lock for syn. q. */ |
| FM_SQLCKA0)) ) { /* lock for asyn. q. */ |
| formac_tx_restart(smc) ; /* init tx */ |
| restart_tx = 1 ; |
| stu = inpw(FM_A(FM_ST1U)) ; |
| stl = inpw(FM_A(FM_ST1L)) ; |
| stu &= ~ (FM_STECFRMA0 | FM_STEFRMA0 | FM_STEFRMS) ; |
| if (stu || stl) |
| goto again ; |
| } |
| |
| #ifndef SYNC |
| if (stu & (FM_STECFRMA0 | /* end of chain asyn tx */ |
| FM_STEFRMA0)) { /* end of frame asyn tx */ |
| /* free tx_queue */ |
| smc->hw.n_a_send = 0 ; |
| if (++smc->hw.fp.tx_free < smc->hw.fp.tx_max) { |
| start_next_send(smc); |
| } |
| restart_tx = 1 ; |
| } |
| #else /* SYNC */ |
| if (stu & (FM_STEFRMA0 | /* end of asyn tx */ |
| FM_STEFRMS)) { /* end of sync tx */ |
| restart_tx = 1 ; |
| } |
| #endif /* SYNC */ |
| if (restart_tx) |
| llc_restart_tx(smc) ; |
| } |
| #else /* PCI */ |
| |
| /* |
| * parity error: note encoding error is not possible in tag mode |
| */ |
| if (stl & (FM_SPCEPDS | /* parity err. syn.q.*/ |
| FM_SPCEPDA0 | /* parity err. a.q.0 */ |
| FM_SPCEPDA1)) { /* parity err. a.q.1 */ |
| SMT_PANIC(smc,SMT_E0134, SMT_E0134_MSG) ; |
| } |
| /* |
| * buffer underrun: can only occur if a tx threshold is specified |
| */ |
| if (stl & (FM_STBURS | /* tx buffer underrun syn.q.*/ |
| FM_STBURA0 | /* tx buffer underrun a.q.0 */ |
| FM_STBURA1)) { /* tx buffer underrun a.q.2 */ |
| SMT_PANIC(smc,SMT_E0133, SMT_E0133_MSG) ; |
| } |
| |
| if ( (stu & (FM_SXMTABT | /* transmit abort */ |
| FM_STXABRS | /* syn. tx abort */ |
| FM_STXABRA0)) || /* asyn. tx abort */ |
| (stl & (FM_SQLCKS | /* lock for syn. q. */ |
| FM_SQLCKA0)) ) { /* lock for asyn. q. */ |
| formac_tx_restart(smc) ; /* init tx */ |
| restart_tx = 1 ; |
| stu = inpw(FM_A(FM_ST1U)) ; |
| stl = inpw(FM_A(FM_ST1L)) ; |
| stu &= ~ (FM_STECFRMA0 | FM_STEFRMA0 | FM_STEFRMS) ; |
| if (stu || stl) |
| goto again ; |
| } |
| |
| if (stu & (FM_STEFRMA0 | /* end of asyn tx */ |
| FM_STEFRMS)) { /* end of sync tx */ |
| restart_tx = 1 ; |
| } |
| |
| if (restart_tx) |
| llc_restart_tx(smc) ; |
| } |
| #endif /* PCI */ |
| /* |
| * interrupt source= plc1 |
| * this function is called in nwfbisr.asm |
| */ |
| void plc1_irq(struct s_smc *smc) |
| { |
| u_short st = inpw(PLC(PB,PL_INTR_EVENT)) ; |
| |
| #if (defined(ISA) || defined(EISA)) |
| /* reset PLC Int. bits */ |
| outpw(PLC1_I,inpw(PLC1_I)) ; |
| #endif |
| plc_irq(smc,PB,st) ; |
| } |
| |
| /* |
| * interrupt source= plc2 |
| * this function is called in nwfbisr.asm |
| */ |
| void plc2_irq(struct s_smc *smc) |
| { |
| u_short st = inpw(PLC(PA,PL_INTR_EVENT)) ; |
| |
| #if (defined(ISA) || defined(EISA)) |
| /* reset PLC Int. bits */ |
| outpw(PLC2_I,inpw(PLC2_I)) ; |
| #endif |
| plc_irq(smc,PA,st) ; |
| } |
| |
| |
| /* |
| * interrupt source= timer |
| */ |
| void timer_irq(struct s_smc *smc) |
| { |
| hwt_restart(smc); |
| smc->hw.t_stop = smc->hw.t_start; |
| smt_timer_done(smc) ; |
| } |
| |
| /* |
| * return S-port (PA or PB) |
| */ |
| int pcm_get_s_port(struct s_smc *smc) |
| { |
| SK_UNUSED(smc) ; |
| return(PS) ; |
| } |
| |
| /* |
| * Station Label = "FDDI-XYZ" where |
| * |
| * X = connector type |
| * Y = PMD type |
| * Z = port type |
| */ |
| #define STATION_LABEL_CONNECTOR_OFFSET 5 |
| #define STATION_LABEL_PMD_OFFSET 6 |
| #define STATION_LABEL_PORT_OFFSET 7 |
| |
| void read_address(struct s_smc *smc, u_char *mac_addr) |
| { |
| char ConnectorType ; |
| char PmdType ; |
| int i ; |
| |
| extern const u_char canonical[256] ; |
| |
| #if (defined(ISA) || defined(MCA)) |
| for (i = 0; i < 4 ;i++) { /* read mac address from board */ |
| smc->hw.fddi_phys_addr.a[i] = |
| canonical[(inpw(PR_A(i+SA_MAC))&0xff)] ; |
| } |
| for (i = 4; i < 6; i++) { |
| smc->hw.fddi_phys_addr.a[i] = |
| canonical[(inpw(PR_A(i+SA_MAC+PRA_OFF))&0xff)] ; |
| } |
| #endif |
| #ifdef EISA |
| /* |
| * Note: We get trouble on an Alpha machine if we make a inpw() |
| * instead of inp() |
| */ |
| for (i = 0; i < 4 ;i++) { /* read mac address from board */ |
| smc->hw.fddi_phys_addr.a[i] = |
| canonical[inp(PR_A(i+SA_MAC))] ; |
| } |
| for (i = 4; i < 6; i++) { |
| smc->hw.fddi_phys_addr.a[i] = |
| canonical[inp(PR_A(i+SA_MAC+PRA_OFF))] ; |
| } |
| #endif |
| #ifdef PCI |
| for (i = 0; i < 6; i++) { /* read mac address from board */ |
| smc->hw.fddi_phys_addr.a[i] = |
| canonical[inp(ADDR(B2_MAC_0+i))] ; |
| } |
| #endif |
| #ifndef PCI |
| ConnectorType = inpw(PR_A(SA_PMD_TYPE)) & 0xff ; |
| PmdType = inpw(PR_A(SA_PMD_TYPE+1)) & 0xff ; |
| #else |
| ConnectorType = inp(ADDR(B2_CONN_TYP)) ; |
| PmdType = inp(ADDR(B2_PMD_TYP)) ; |
| #endif |
| |
| smc->y[PA].pmd_type[PMD_SK_CONN] = |
| smc->y[PB].pmd_type[PMD_SK_CONN] = ConnectorType ; |
| smc->y[PA].pmd_type[PMD_SK_PMD ] = |
| smc->y[PB].pmd_type[PMD_SK_PMD ] = PmdType ; |
| |
| if (mac_addr) { |
| for (i = 0; i < 6 ;i++) { |
| smc->hw.fddi_canon_addr.a[i] = mac_addr[i] ; |
| smc->hw.fddi_home_addr.a[i] = canonical[mac_addr[i]] ; |
| } |
| return ; |
| } |
| smc->hw.fddi_home_addr = smc->hw.fddi_phys_addr ; |
| |
| for (i = 0; i < 6 ;i++) { |
| smc->hw.fddi_canon_addr.a[i] = |
| canonical[smc->hw.fddi_phys_addr.a[i]] ; |
| } |
| } |
| |
| /* |
| * FDDI card soft reset |
| */ |
| void init_board(struct s_smc *smc, u_char *mac_addr) |
| { |
| card_start(smc) ; |
| read_address(smc,mac_addr) ; |
| |
| #ifndef PCI |
| if (inpw(CSR_A) & CS_SAS) |
| #else |
| if (!(inp(ADDR(B0_DAS)) & DAS_AVAIL)) |
| #endif |
| smc->s.sas = SMT_SAS ; /* Single att. station */ |
| else |
| smc->s.sas = SMT_DAS ; /* Dual att. station */ |
| |
| #ifndef PCI |
| if (inpw(CSR_A) & CS_BYSTAT) |
| #else |
| if (!(inp(ADDR(B0_DAS)) & DAS_BYP_ST)) |
| #endif |
| smc->mib.fddiSMTBypassPresent = 0 ; |
| /* without opt. bypass */ |
| else |
| smc->mib.fddiSMTBypassPresent = 1 ; |
| /* with opt. bypass */ |
| } |
| |
| /* |
| * insert or deinsert optical bypass (called by ECM) |
| */ |
| void sm_pm_bypass_req(struct s_smc *smc, int mode) |
| { |
| #if (defined(ISA) || defined(EISA)) |
| int csra_v ; |
| #endif |
| |
| DB_ECMN(1,"ECM : sm_pm_bypass_req(%s)\n",(mode == BP_INSERT) ? |
| "BP_INSERT" : "BP_DEINSERT",0) ; |
| |
| if (smc->s.sas != SMT_DAS) |
| return ; |
| |
| #if (defined(ISA) || defined(EISA)) |
| |
| csra_v = inpw(CSR_A) & ~CS_BYPASS ; |
| #ifdef EISA |
| csra_v |= smc->hw.led ; |
| #endif |
| |
| switch(mode) { |
| case BP_INSERT : |
| outpw(CSR_A,csra_v | CS_BYPASS) ; |
| break ; |
| case BP_DEINSERT : |
| outpw(CSR_A,csra_v) ; |
| break ; |
| } |
| #endif /* ISA / EISA */ |
| #ifdef MCA |
| switch(mode) { |
| case BP_INSERT : |
| outp(ADDR(BYPASS(STAT_INS)),0) ;/* insert station */ |
| break ; |
| case BP_DEINSERT : |
| outp(ADDR(BYPASS(STAT_BYP)),0) ; /* bypass station */ |
| break ; |
| } |
| #endif |
| #ifdef PCI |
| switch(mode) { |
| case BP_INSERT : |
| outp(ADDR(B0_DAS),DAS_BYP_INS) ; /* insert station */ |
| break ; |
| case BP_DEINSERT : |
| outp(ADDR(B0_DAS),DAS_BYP_RMV) ; /* bypass station */ |
| break ; |
| } |
| #endif |
| } |
| |
| /* |
| * check if bypass connected |
| */ |
| int sm_pm_bypass_present(struct s_smc *smc) |
| { |
| #ifndef PCI |
| return( (inpw(CSR_A) & CS_BYSTAT) ? FALSE : TRUE ) ; |
| #else |
| return( (inp(ADDR(B0_DAS)) & DAS_BYP_ST) ? TRUE: FALSE) ; |
| #endif |
| } |
| |
| void plc_clear_irq(struct s_smc *smc, int p) |
| { |
| SK_UNUSED(p) ; |
| |
| #if (defined(ISA) || defined(EISA)) |
| switch (p) { |
| case PA : |
| /* reset PLC Int. bits */ |
| outpw(PLC2_I,inpw(PLC2_I)) ; |
| break ; |
| case PB : |
| /* reset PLC Int. bits */ |
| outpw(PLC1_I,inpw(PLC1_I)) ; |
| break ; |
| } |
| #else |
| SK_UNUSED(smc) ; |
| #endif |
| } |
| |
| |
| /* |
| * led_indication called by rmt_indication() and |
| * pcm_state_change() |
| * |
| * Input: |
| * smc: SMT context |
| * led_event: |
| * 0 Only switch green LEDs according to their respective PCM state |
| * LED_Y_OFF just switch yellow LED off |
| * LED_Y_ON just switch yello LED on |
| */ |
| void led_indication(struct s_smc *smc, int led_event) |
| { |
| /* use smc->hw.mac_ring_is_up == TRUE |
| * as indication for Ring Operational |
| */ |
| u_short led_state ; |
| struct s_phy *phy ; |
| struct fddi_mib_p *mib_a ; |
| struct fddi_mib_p *mib_b ; |
| |
| phy = &smc->y[PA] ; |
| mib_a = phy->mib ; |
| phy = &smc->y[PB] ; |
| mib_b = phy->mib ; |
| |
| #ifdef EISA |
| /* Ring up = yellow led OFF*/ |
| if (led_event == LED_Y_ON) { |
| smc->hw.led |= CS_LED_1 ; |
| } |
| else if (led_event == LED_Y_OFF) { |
| smc->hw.led &= ~CS_LED_1 ; |
| } |
| else { |
| /* Link at Port A or B = green led ON */ |
| if (mib_a->fddiPORTPCMState == PC8_ACTIVE || |
| mib_b->fddiPORTPCMState == PC8_ACTIVE) { |
| smc->hw.led |= CS_LED_0 ; |
| } |
| else { |
| smc->hw.led &= ~CS_LED_0 ; |
| } |
| } |
| #endif |
| #ifdef MCA |
| led_state = inpw(LEDR_A) ; |
| |
| /* Ring up = yellow led OFF*/ |
| if (led_event == LED_Y_ON) { |
| led_state |= LED_1 ; |
| } |
| else if (led_event == LED_Y_OFF) { |
| led_state &= ~LED_1 ; |
| } |
| else { |
| led_state &= ~(LED_2|LED_0) ; |
| |
| /* Link at Port A = green led A ON */ |
| if (mib_a->fddiPORTPCMState == PC8_ACTIVE) { |
| led_state |= LED_2 ; |
| } |
| |
| /* Link at Port B/S = green led B ON */ |
| if (mib_b->fddiPORTPCMState == PC8_ACTIVE) { |
| led_state |= LED_0 ; |
| } |
| } |
| |
| outpw(LEDR_A, led_state) ; |
| #endif /* MCA */ |
| #ifdef PCI |
| led_state = 0 ; |
| |
| /* Ring up = yellow led OFF*/ |
| if (led_event == LED_Y_ON) { |
| led_state |= LED_MY_ON ; |
| } |
| else if (led_event == LED_Y_OFF) { |
| led_state |= LED_MY_OFF ; |
| } |
| else { /* PCM state changed */ |
| /* Link at Port A/S = green led A ON */ |
| if (mib_a->fddiPORTPCMState == PC8_ACTIVE) { |
| led_state |= LED_GA_ON ; |
| } |
| else { |
| led_state |= LED_GA_OFF ; |
| } |
| |
| /* Link at Port B = green led B ON */ |
| if (mib_b->fddiPORTPCMState == PC8_ACTIVE) { |
| led_state |= LED_GB_ON ; |
| } |
| else { |
| led_state |= LED_GB_OFF ; |
| } |
| } |
| |
| outp(ADDR(B0_LED), led_state) ; |
| #endif /* PCI */ |
| |
| } |
| |
| |
| void pcm_state_change(struct s_smc *smc, int plc, int p_state) |
| { |
| /* |
| * the current implementation of pcm_state_change() in the driver |
| * parts must be renamed to drv_pcm_state_change() which will be called |
| * now after led_indication. |
| */ |
| DRV_PCM_STATE_CHANGE(smc,plc,p_state) ; |
| |
| led_indication(smc,0) ; |
| } |
| |
| |
| void rmt_indication(struct s_smc *smc, int i) |
| { |
| /* Call a driver special function if defined */ |
| DRV_RMT_INDICATION(smc,i) ; |
| |
| led_indication(smc, i ? LED_Y_OFF : LED_Y_ON) ; |
| } |
| |
| |
| /* |
| * llc_recover_tx called by init_tx (fplus.c) |
| */ |
| void llc_recover_tx(struct s_smc *smc) |
| { |
| #ifdef LOAD_GEN |
| extern int load_gen_flag ; |
| |
| load_gen_flag = 0 ; |
| #endif |
| #ifndef SYNC |
| smc->hw.n_a_send= 0 ; |
| #else |
| SK_UNUSED(smc) ; |
| #endif |
| } |
| |
| /*--------------------------- DMA init ----------------------------*/ |
| #ifdef ISA |
| |
| /* |
| * init DMA |
| */ |
| void init_dma(struct s_smc *smc, int dma) |
| { |
| SK_UNUSED(smc) ; |
| |
| /* |
| * set cascade mode, |
| * clear mask bit (enable DMA cannal) |
| */ |
| if (dma > 3) { |
| outp(0xd6,(dma & 0x03) | 0xc0) ; |
| outp(0xd4, dma & 0x03) ; |
| } |
| else { |
| outp(0x0b,(dma & 0x03) | 0xc0) ; |
| outp(0x0a,dma & 0x03) ; |
| } |
| } |
| |
| /* |
| * disable DMA |
| */ |
| void dis_dma(struct s_smc *smc, int dma) |
| { |
| SK_UNUSED(smc) ; |
| |
| /* |
| * set mask bit (disable DMA cannal) |
| */ |
| if (dma > 3) { |
| outp(0xd4,(dma & 0x03) | 0x04) ; |
| } |
| else { |
| outp(0x0a,(dma & 0x03) | 0x04) ; |
| } |
| } |
| |
| #endif /* ISA */ |
| |
| #ifdef EISA |
| |
| /*arrays with io addresses of dma controller length and address registers*/ |
| static const int cntr[8] = { 0x001,0x003,0x005,0x007,0,0x0c6,0x0ca,0x0ce } ; |
| static const int base[8] = { 0x000,0x002,0x004,0x006,0,0x0c4,0x0c8,0x0cc } ; |
| static const int page[8] = { 0x087,0x083,0x081,0x082,0,0x08b,0x089,0x08a } ; |
| |
| void init_dma(struct s_smc *smc, int dma) |
| { |
| /* |
| * extended mode register |
| * 32 bit IO |
| * type c |
| * TC output |
| * disable stop |
| */ |
| |
| /* mode read (write) demand */ |
| smc->hw.dma_rmode = (dma & 3) | 0x08 | 0x0 ; |
| smc->hw.dma_wmode = (dma & 3) | 0x04 | 0x0 ; |
| |
| /* 32 bit IO's, burst DMA mode (type "C") */ |
| smc->hw.dma_emode = (dma & 3) | 0x08 | 0x30 ; |
| |
| outp((dma < 4) ? 0x40b : 0x4d6,smc->hw.dma_emode) ; |
| |
| /* disable chaining */ |
| outp((dma < 4) ? 0x40a : 0x4d4,(dma&3)) ; |
| |
| /*load dma controller addresses for fast access during set dma*/ |
| smc->hw.dma_base_word_count = cntr[smc->hw.dma]; |
| smc->hw.dma_base_address = base[smc->hw.dma]; |
| smc->hw.dma_base_address_page = page[smc->hw.dma]; |
| |
| } |
| |
| void dis_dma(struct s_smc *smc, int dma) |
| { |
| SK_UNUSED(smc) ; |
| |
| outp((dma < 4) ? 0x0a : 0xd4,(dma&3)|4) ;/* mask bit */ |
| } |
| #endif /* EISA */ |
| |
| #ifdef MCA |
| void init_dma(struct s_smc *smc, int dma) |
| { |
| SK_UNUSED(smc) ; |
| SK_UNUSED(dma) ; |
| } |
| |
| void dis_dma(struct s_smc *smc, int dma) |
| { |
| SK_UNUSED(smc) ; |
| SK_UNUSED(dma) ; |
| } |
| #endif |
| |
| #ifdef PCI |
| void init_dma(struct s_smc *smc, int dma) |
| { |
| SK_UNUSED(smc) ; |
| SK_UNUSED(dma) ; |
| } |
| |
| void dis_dma(struct s_smc *smc, int dma) |
| { |
| SK_UNUSED(smc) ; |
| SK_UNUSED(dma) ; |
| } |
| #endif |
| |
| #ifdef MULT_OEM |
| static int is_equal_num(char comp1[], char comp2[], int num) |
| { |
| int i ; |
| |
| for (i = 0 ; i < num ; i++) { |
| if (comp1[i] != comp2[i]) |
| return (0) ; |
| } |
| return (1) ; |
| } /* is_equal_num */ |
| |
| |
| /* |
| * set the OEM ID defaults, and test the contents of the OEM data base |
| * The default OEM is the first ACTIVE entry in the OEM data base |
| * |
| * returns: 0 success |
| * 1 error in data base |
| * 2 data base empty |
| * 3 no active entry |
| */ |
| int set_oi_id_def(struct s_smc *smc) |
| { |
| int sel_id ; |
| int i ; |
| int act_entries ; |
| |
| i = 0 ; |
| sel_id = -1 ; |
| act_entries = FALSE ; |
| smc->hw.oem_id = 0 ; |
| smc->hw.oem_min_status = OI_STAT_ACTIVE ; |
| |
| /* check OEM data base */ |
| while (oem_ids[i].oi_status) { |
| switch (oem_ids[i].oi_status) { |
| case OI_STAT_ACTIVE: |
| act_entries = TRUE ; /* we have active IDs */ |
| if (sel_id == -1) |
| sel_id = i ; /* save the first active ID */ |
| case OI_STAT_VALID: |
| case OI_STAT_PRESENT: |
| i++ ; |
| break ; /* entry ok */ |
| default: |
| return (1) ; /* invalid oi_status */ |
| } |
| } |
| |
| if (i == 0) |
| return (2) ; |
| if (!act_entries) |
| return (3) ; |
| |
| /* ok, we have a valid OEM data base with an active entry */ |
| smc->hw.oem_id = (struct s_oem_ids *) &oem_ids[sel_id] ; |
| return (0) ; |
| } |
| #endif /* MULT_OEM */ |
| |
| |
| #ifdef MCA |
| /************************ |
| * |
| * BEGIN_MANUAL_ENTRY() |
| * |
| * exist_board |
| * |
| * Check if an MCA board is present in the specified slot. |
| * |
| * int exist_board( |
| * struct s_smc *smc, |
| * int slot) ; |
| * In |
| * smc - A pointer to the SMT Context struct. |
| * |
| * slot - The number of the slot to inspect. |
| * Out |
| * 0 = No adapter present. |
| * 1 = Found FM1 adapter. |
| * |
| * Pseudo |
| * Read MCA ID |
| * for all valid OEM_IDs |
| * compare with ID read |
| * if equal, return 1 |
| * return(0 |
| * |
| * Note |
| * The smc pointer must be valid now. |
| * |
| * END_MANUAL_ENTRY() |
| * |
| ************************/ |
| #define LONG_CARD_ID(lo, hi) ((((hi) & 0xff) << 8) | ((lo) & 0xff)) |
| int exist_board(struct s_smc *smc, int slot) |
| { |
| #ifdef MULT_OEM |
| SK_LOC_DECL(u_char,id[2]) ; |
| int idi ; |
| #endif /* MULT_OEM */ |
| |
| /* No longer valid. */ |
| if (smc == NULL) |
| return(0) ; |
| |
| #ifndef MULT_OEM |
| if (read_card_id(smc, slot) |
| == LONG_CARD_ID(OEMID(smc,0), OEMID(smc,1))) |
| return (1) ; /* Found FM adapter. */ |
| |
| #else /* MULT_OEM */ |
| idi = read_card_id(smc, slot) ; |
| id[0] = idi & 0xff ; |
| id[1] = idi >> 8 ; |
| |
| smc->hw.oem_id = (struct s_oem_ids *) &oem_ids[0] ; |
| for (; smc->hw.oem_id->oi_status != OI_STAT_LAST; smc->hw.oem_id++) { |
| if (smc->hw.oem_id->oi_status < smc->hw.oem_min_status) |
| continue ; |
| |
| if (is_equal_num(&id[0],&OEMID(smc,0),2)) |
| return (1) ; |
| } |
| #endif /* MULT_OEM */ |
| return (0) ; /* No adapter found. */ |
| } |
| |
| /************************ |
| * |
| * read_card_id |
| * |
| * Read the MCA card id from the specified slot. |
| * In |
| * smc - A pointer to the SMT Context struct. |
| * CAVEAT: This pointer may be NULL and *must not* be used within this |
| * function. It's only purpose is for drivers that need some information |
| * for the inp() and outp() macros. |
| * |
| * slot - The number of the slot for which the card id is returned. |
| * Out |
| * Returns the card id read from the specified slot. If an illegal slot |
| * number is specified, the function returns zero. |
| * |
| ************************/ |
| static int read_card_id(struct s_smc *smc, int slot) |
| /* struct s_smc *smc ; Do not use. */ |
| { |
| int card_id ; |
| |
| SK_UNUSED(smc) ; /* Make LINT happy. */ |
| if ((slot < 1) || (slot > 15)) /* max 16 slots, 0 = motherboard */ |
| return (0) ; /* Illegal slot number specified. */ |
| |
| EnableSlotAccess(smc, slot) ; |
| |
| card_id = ((read_POS(smc,POS_ID_HIGH,slot - 1) & 0xff) << 8) | |
| (read_POS(smc,POS_ID_LOW,slot - 1) & 0xff) ; |
| |
| DisableSlotAccess(smc) ; |
| |
| return (card_id) ; |
| } |
| |
| /************************ |
| * |
| * BEGIN_MANUAL_ENTRY() |
| * |
| * get_board_para |
| * |
| * Get adapter configuration information. Fill all board specific |
| * parameters within the 'smc' structure. |
| * |
| * int get_board_para( |
| * struct s_smc *smc, |
| * int slot) ; |
| * In |
| * smc - A pointer to the SMT Context struct, to which this function will |
| * write some adapter configuration data. |
| * |
| * slot - The number of the slot, in which the adapter is installed. |
| * Out |
| * 0 = No adapter present. |
| * 1 = Ok. |
| * 2 = Adapter present, but card enable bit not set. |
| * |
| * END_MANUAL_ENTRY() |
| * |
| ************************/ |
| int get_board_para(struct s_smc *smc, int slot) |
| { |
| int val ; |
| int i ; |
| |
| /* Check if adapter present & get type of adapter. */ |
| switch (exist_board(smc, slot)) { |
| case 0: /* Adapter not present. */ |
| return (0) ; |
| case 1: /* FM Rev. 1 */ |
| smc->hw.rev = FM1_REV ; |
| smc->hw.VFullRead = 0x0a ; |
| smc->hw.VFullWrite = 0x05 ; |
| smc->hw.DmaWriteExtraBytes = 8 ; /* 2 extra words. */ |
| break ; |
| } |
| smc->hw.slot = slot ; |
| |
| EnableSlotAccess(smc, slot) ; |
| |
| if (!(read_POS(smc,POS_102, slot - 1) & POS_CARD_EN)) { |
| DisableSlotAccess(smc) ; |
| return (2) ; /* Card enable bit not set. */ |
| } |
| |
| val = read_POS(smc,POS_104, slot - 1) ; /* I/O, IRQ */ |
| |
| #ifndef MEM_MAPPED_IO /* is defined by the operating system */ |
| i = val & POS_IOSEL ; /* I/O base addr. (0x0200 .. 0xfe00) */ |
| smc->hw.iop = (i + 1) * 0x0400 - 0x200 ; |
| #endif |
| i = ((val & POS_IRQSEL) >> 6) & 0x03 ; /* IRQ <0, 1> */ |
| smc->hw.irq = opt_ints[i] ; |
| |
| /* FPROM base addr. */ |
| i = ((read_POS(smc,POS_103, slot - 1) & POS_MSEL) >> 4) & 0x07 ; |
| smc->hw.eprom = opt_eproms[i] ; |
| |
| DisableSlotAccess(smc) ; |
| |
| /* before this, the smc->hw.iop must be set !!! */ |
| smc->hw.slot_32 = inpw(CSF_A) & SLOT_32 ; |
| |
| return (1) ; |
| } |
| |
| /* Enable access to specified MCA slot. */ |
| static void EnableSlotAccess(struct s_smc *smc, int slot) |
| { |
| SK_UNUSED(slot) ; |
| |
| #ifndef AIX |
| SK_UNUSED(smc) ; |
| |
| /* System mode. */ |
| outp(POS_SYS_SETUP, POS_SYSTEM) ; |
| |
| /* Select slot. */ |
| outp(POS_CHANNEL_POS, POS_CHANNEL_BIT | (slot-1)) ; |
| #else |
| attach_POS_addr (smc) ; |
| #endif |
| } |
| |
| /* Disable access to MCA slot formerly enabled via EnableSlotAccess(). */ |
| static void DisableSlotAccess(struct s_smc *smc) |
| { |
| #ifndef AIX |
| SK_UNUSED(smc) ; |
| |
| outp(POS_CHANNEL_POS, 0) ; |
| #else |
| detach_POS_addr (smc) ; |
| #endif |
| } |
| #endif /* MCA */ |
| |
| #ifdef EISA |
| #ifndef MEM_MAPPED_IO |
| #define SADDR(slot) (((slot)<<12)&0xf000) |
| #else /* MEM_MAPPED_IO */ |
| #define SADDR(slot) (smc->hw.iop) |
| #endif /* MEM_MAPPED_IO */ |
| |
| /************************ |
| * |
| * BEGIN_MANUAL_ENTRY() |
| * |
| * exist_board |
| * |
| * Check if an EISA board is present in the specified slot. |
| * |
| * int exist_board( |
| * struct s_smc *smc, |
| * int slot) ; |
| * In |
| * smc - A pointer to the SMT Context struct. |
| * |
| * slot - The number of the slot to inspect. |
| * Out |
| * 0 = No adapter present. |
| * 1 = Found adapter. |
| * |
| * Pseudo |
| * Read EISA ID |
| * for all valid OEM_IDs |
| * compare with ID read |
| * if equal, return 1 |
| * return(0 |
| * |
| * Note |
| * The smc pointer must be valid now. |
| * |
| ************************/ |
| int exist_board(struct s_smc *smc, int slot) |
| { |
| int i ; |
| #ifdef MULT_OEM |
| SK_LOC_DECL(u_char,id[4]) ; |
| #endif /* MULT_OEM */ |
| |
| /* No longer valid. */ |
| if (smc == NULL) |
| return(0); |
| |
| SK_UNUSED(slot) ; |
| |
| #ifndef MULT_OEM |
| for (i = 0 ; i < 4 ; i++) { |
| if (inp(SADDR(slot)+PRA(i)) != OEMID(smc,i)) |
| return(0) ; |
| } |
| return(1) ; |
| #else /* MULT_OEM */ |
| for (i = 0 ; i < 4 ; i++) |
| id[i] = inp(SADDR(slot)+PRA(i)) ; |
| |
| smc->hw.oem_id = (struct s_oem_ids *) &oem_ids[0] ; |
| |
| for (; smc->hw.oem_id->oi_status != OI_STAT_LAST; smc->hw.oem_id++) { |
| if (smc->hw.oem_id->oi_status < smc->hw.oem_min_status) |
| continue ; |
| |
| if (is_equal_num(&id[0],&OEMID(smc,0),4)) |
| return (1) ; |
| } |
| return (0) ; /* No adapter found. */ |
| #endif /* MULT_OEM */ |
| } |
| |
| |
| int get_board_para(struct s_smc *smc, int slot) |
| { |
| int i ; |
| |
| if (!exist_board(smc,slot)) |
| return(0) ; |
| |
| smc->hw.slot = slot ; |
| #ifndef MEM_MAPPED_IO /* if defined by the operating system */ |
| smc->hw.iop = SADDR(slot) ; |
| #endif |
| |
| if (!(inp(C0_A(0))&CFG_CARD_EN)) { |
| return(2) ; /* CFG_CARD_EN bit not set! */ |
| } |
| |
| smc->hw.irq = opt_ints[(inp(C1_A(0)) & CFG_IRQ_SEL)] ; |
| smc->hw.dma = opt_dmas[((inp(C1_A(0)) & CFG_DRQ_SEL)>>3)] ; |
| |
| if ((i = inp(C2_A(0)) & CFG_EPROM_SEL) != 0x0f) |
| smc->hw.eprom = opt_eproms[i] ; |
| else |
| smc->hw.eprom = 0 ; |
| |
| smc->hw.DmaWriteExtraBytes = 8 ; |
| |
| return(1) ; |
| } |
| #endif /* EISA */ |
| |
| #ifdef ISA |
| #ifndef MULT_OEM |
| const u_char sklogo[6] = SKLOGO_STR ; |
| #define SIZE_SKLOGO(smc) sizeof(sklogo) |
| #define SKLOGO(smc,i) sklogo[i] |
| #else /* MULT_OEM */ |
| #define SIZE_SKLOGO(smc) smc->hw.oem_id->oi_logo_len |
| #define SKLOGO(smc,i) smc->hw.oem_id->oi_logo[i] |
| #endif /* MULT_OEM */ |
| |
| |
| int exist_board(struct s_smc *smc, HW_PTR port) |
| { |
| int i ; |
| #ifdef MULT_OEM |
| int bytes_read ; |
| u_char board_logo[15] ; |
| SK_LOC_DECL(u_char,id[4]) ; |
| #endif /* MULT_OEM */ |
| |
| /* No longer valid. */ |
| if (smc == NULL) |
| return(0); |
| |
| SK_UNUSED(smc) ; |
| #ifndef MULT_OEM |
| for (i = SADDRL ; i < (signed) (SADDRL+SIZE_SKLOGO(smc)) ; i++) { |
| if ((u_char)inpw((PRA(i)+port)) != SKLOGO(smc,i-SADDRL)) { |
| return(0) ; |
| } |
| } |
| |
| /* check MAC address (S&K or other) */ |
| for (i = 0 ; i < 3 ; i++) { |
| if ((u_char)inpw((PRA(i)+port)) != OEMID(smc,i)) |
| return(0) ; |
| } |
| return(1) ; |
| #else /* MULT_OEM */ |
| smc->hw.oem_id = (struct s_oem_ids *) &oem_ids[0] ; |
| board_logo[0] = (u_char)inpw((PRA(SADDRL)+port)) ; |
| bytes_read = 1 ; |
| |
| for (; smc->hw.oem_id->oi_status != OI_STAT_LAST; smc->hw.oem_id++) { |
| if (smc->hw.oem_id->oi_status < smc->hw.oem_min_status) |
| continue ; |
| |
| /* Test all read bytes with current OEM_entry */ |
| /* for (i=0; (i<bytes_read) && (i < SIZE_SKLOGO(smc)); i++) { */ |
| for (i = 0; i < bytes_read; i++) { |
| if (board_logo[i] != SKLOGO(smc,i)) |
| break ; |
| } |
| |
| /* If mismatch, switch to next OEM entry */ |
| if ((board_logo[i] != SKLOGO(smc,i)) && (i < bytes_read)) |
| continue ; |
| |
| --i ; |
| while (bytes_read < SIZE_SKLOGO(smc)) { |
| // inpw next byte SK_Logo |
| i++ ; |
| board_logo[i] = (u_char)inpw((PRA(SADDRL+i)+port)) ; |
| bytes_read++ ; |
| if (board_logo[i] != SKLOGO(smc,i)) |
| break ; |
| } |
| |
| for (i = 0 ; i < 3 ; i++) |
| id[i] = (u_char)inpw((PRA(i)+port)) ; |
| |
| if ((board_logo[i] == SKLOGO(smc,i)) |
| && (bytes_read == SIZE_SKLOGO(smc))) { |
| |
| if (is_equal_num(&id[0],&OEMID(smc,0),3)) |
| return(1); |
| } |
| } /* for */ |
| return(0) ; |
| #endif /* MULT_OEM */ |
| } |
| |
| int get_board_para(struct s_smc *smc, int slot) |
| { |
| SK_UNUSED(smc) ; |
| SK_UNUSED(slot) ; |
| return(0) ; /* for ISA not supported */ |
| } |
| #endif /* ISA */ |
| |
| #ifdef PCI |
| #ifdef USE_BIOS_FUN |
| int exist_board(struct s_smc *smc, int slot) |
| { |
| u_short dev_id ; |
| u_short ven_id ; |
| int found ; |
| int i ; |
| |
| found = FALSE ; /* make sure we returned with adatper not found*/ |
| /* if an empty oemids.h was included */ |
| |
| #ifdef MULT_OEM |
| smc->hw.oem_id = (struct s_oem_ids *) &oem_ids[0] ; |
| for (; smc->hw.oem_id->oi_status != OI_STAT_LAST; smc->hw.oem_id++) { |
| if (smc->hw.oem_id->oi_status < smc->hw.oem_min_status) |
| continue ; |
| #endif |
| ven_id = OEMID(smc,0) + (OEMID(smc,1) << 8) ; |
| dev_id = OEMID(smc,2) + (OEMID(smc,3) << 8) ; |
| for (i = 0; i < slot; i++) { |
| if (pci_find_device(i,&smc->hw.pci_handle, |
| dev_id,ven_id) != 0) { |
| |
| found = FALSE ; |
| } else { |
| found = TRUE ; |
| } |
| } |
| if (found) { |
| return(1) ; /* adapter was found */ |
| } |
| #ifdef MULT_OEM |
| } |
| #endif |
| return(0) ; /* adapter was not found */ |
| } |
| #endif /* PCI */ |
| #endif /* USE_BIOS_FUNC */ |
| |
| void driver_get_bia(struct s_smc *smc, struct fddi_addr *bia_addr) |
| { |
| int i ; |
| |
| extern const u_char canonical[256] ; |
| |
| for (i = 0 ; i < 6 ; i++) { |
| bia_addr->a[i] = canonical[smc->hw.fddi_phys_addr.a[i]] ; |
| } |
| } |
| |
| void smt_start_watchdog(struct s_smc *smc) |
| { |
| SK_UNUSED(smc) ; /* Make LINT happy. */ |
| |
| #ifndef DEBUG |
| |
| #ifdef PCI |
| if (smc->hw.wdog_used) { |
| outpw(ADDR(B2_WDOG_CRTL),TIM_START) ; /* Start timer. */ |
| } |
| #endif |
| |
| #endif /* DEBUG */ |
| } |
| |
| void smt_stop_watchdog(struct s_smc *smc) |
| { |
| SK_UNUSED(smc) ; /* Make LINT happy. */ |
| #ifndef DEBUG |
| |
| #ifdef PCI |
| if (smc->hw.wdog_used) { |
| outpw(ADDR(B2_WDOG_CRTL),TIM_STOP) ; /* Stop timer. */ |
| } |
| #endif |
| |
| #endif /* DEBUG */ |
| } |
| |
| #ifdef PCI |
| static char get_rom_byte(struct s_smc *smc, u_short addr) |
| { |
| GET_PAGE(addr) ; |
| return (READ_PROM(ADDR(B2_FDP))) ; |
| } |
| |
| /* |
| * ROM image defines |
| */ |
| #define ROM_SIG_1 0 |
| #define ROM_SIG_2 1 |
| #define PCI_DATA_1 0x18 |
| #define PCI_DATA_2 0x19 |
| |
| /* |
| * PCI data structure defines |
| */ |
| #define VPD_DATA_1 0x08 |
| #define VPD_DATA_2 0x09 |
| #define IMAGE_LEN_1 0x10 |
| #define IMAGE_LEN_2 0x11 |
| #define CODE_TYPE 0x14 |
| #define INDICATOR 0x15 |
| |
| /* |
| * BEGIN_MANUAL_ENTRY(mac_drv_vpd_read) |
| * mac_drv_vpd_read(smc,buf,size,image) |
| * |
| * function DOWNCALL (FDDIWARE) |
| * reads the VPD data of the FPROM and writes it into the |
| * buffer |
| * |
| * para buf points to the buffer for the VPD data |
| * size size of the VPD data buffer |
| * image boot image; code type of the boot image |
| * image = 0 Intel x86, PC-AT compatible |
| * 1 OPENBOOT standard for PCI |
| * 2-FF reserved |
| * |
| * returns len number of VPD data bytes read form the FPROM |
| * <0 number of read bytes |
| * >0 error: data invalid |
| * |
| * END_MANUAL_ENTRY |
| */ |
| int mac_drv_vpd_read(struct s_smc *smc, char *buf, int size, char image) |
| { |
| u_short ibase ; |
| u_short pci_base ; |
| u_short vpd ; |
| int len ; |
| |
| len = 0 ; |
| ibase = 0 ; |
| /* |
| * as long images defined |
| */ |
| while (get_rom_byte(smc,ibase+ROM_SIG_1) == 0x55 && |
| (u_char) get_rom_byte(smc,ibase+ROM_SIG_2) == 0xaa) { |
| /* |
| * get the pointer to the PCI data structure |
| */ |
| pci_base = ibase + get_rom_byte(smc,ibase+PCI_DATA_1) + |
| (get_rom_byte(smc,ibase+PCI_DATA_2) << 8) ; |
| |
| if (image == get_rom_byte(smc,pci_base+CODE_TYPE)) { |
| /* |
| * we have the right image, read the VPD data |
| */ |
| vpd = ibase + get_rom_byte(smc,pci_base+VPD_DATA_1) + |
| (get_rom_byte(smc,pci_base+VPD_DATA_2) << 8) ; |
| if (vpd == ibase) { |
| break ; /* no VPD data */ |
| } |
| for (len = 0; len < size; len++,buf++,vpd++) { |
| *buf = get_rom_byte(smc,vpd) ; |
| } |
| break ; |
| } |
| else { |
| /* |
| * try the next image |
| */ |
| if (get_rom_byte(smc,pci_base+INDICATOR) & 0x80) { |
| break ; /* this was the last image */ |
| } |
| ibase = ibase + get_rom_byte(smc,ibase+IMAGE_LEN_1) + |
| (get_rom_byte(smc,ibase+IMAGE_LEN_2) << 8) ; |
| } |
| } |
| |
| return(len) ; |
| } |
| |
| void mac_drv_pci_fix(struct s_smc *smc, u_long fix_value) |
| { |
| smc->hw.pci_fix_value = fix_value ; |
| } |
| |
| void mac_do_pci_fix(struct s_smc *smc) |
| { |
| SK_UNUSED(smc) ; |
| } |
| #endif /* PCI */ |
| |