blob: 47d3efff6805b9787d4be1721cd8cb790818e10f [file] [log] [blame]
/* -----------------------------------------------------------------------
*
* Copyright 2011 Intel Corporation; author Matt Fleming
*
* This file is part of the Linux kernel, and is made available under
* the terms of the GNU General Public License version 2.
*
* ----------------------------------------------------------------------- */
#include <linux/efi.h>
#include <linux/pci.h>
#include <asm/efi.h>
#include <asm/e820/types.h>
#include <asm/setup.h>
#include <asm/desc.h>
#include "../string.h"
#include "eboot.h"
static efi_system_table_t *sys_table;
static struct efi_config *efi_early;
__pure const struct efi_config *__efi_early(void)
{
return efi_early;
}
#define BOOT_SERVICES(bits) \
static void setup_boot_services##bits(struct efi_config *c) \
{ \
efi_system_table_##bits##_t *table; \
\
table = (typeof(table))sys_table; \
\
c->runtime_services = table->runtime; \
c->boot_services = table->boottime; \
c->text_output = table->con_out; \
}
BOOT_SERVICES(32);
BOOT_SERVICES(64);
static inline efi_status_t __open_volume32(void *__image, void **__fh)
{
efi_file_io_interface_t *io;
efi_loaded_image_32_t *image = __image;
efi_file_handle_32_t *fh;
efi_guid_t fs_proto = EFI_FILE_SYSTEM_GUID;
efi_status_t status;
void *handle = (void *)(unsigned long)image->device_handle;
unsigned long func;
status = efi_call_early(handle_protocol, handle,
&fs_proto, (void **)&io);
if (status != EFI_SUCCESS) {
efi_printk(sys_table, "Failed to handle fs_proto\n");
return status;
}
func = (unsigned long)io->open_volume;
status = efi_early->call(func, io, &fh);
if (status != EFI_SUCCESS)
efi_printk(sys_table, "Failed to open volume\n");
*__fh = fh;
return status;
}
static inline efi_status_t __open_volume64(void *__image, void **__fh)
{
efi_file_io_interface_t *io;
efi_loaded_image_64_t *image = __image;
efi_file_handle_64_t *fh;
efi_guid_t fs_proto = EFI_FILE_SYSTEM_GUID;
efi_status_t status;
void *handle = (void *)(unsigned long)image->device_handle;
unsigned long func;
status = efi_call_early(handle_protocol, handle,
&fs_proto, (void **)&io);
if (status != EFI_SUCCESS) {
efi_printk(sys_table, "Failed to handle fs_proto\n");
return status;
}
func = (unsigned long)io->open_volume;
status = efi_early->call(func, io, &fh);
if (status != EFI_SUCCESS)
efi_printk(sys_table, "Failed to open volume\n");
*__fh = fh;
return status;
}
efi_status_t
efi_open_volume(efi_system_table_t *sys_table, void *__image, void **__fh)
{
if (efi_early->is64)
return __open_volume64(__image, __fh);
return __open_volume32(__image, __fh);
}
void efi_char16_printk(efi_system_table_t *table, efi_char16_t *str)
{
efi_call_proto(efi_simple_text_output_protocol, output_string,
efi_early->text_output, str);
}
static efi_status_t
__setup_efi_pci32(efi_pci_io_protocol_32 *pci, struct pci_setup_rom **__rom)
{
struct pci_setup_rom *rom = NULL;
efi_status_t status;
unsigned long size;
uint64_t attributes;
status = efi_early->call(pci->attributes, pci,
EfiPciIoAttributeOperationGet, 0, 0,
&attributes);
if (status != EFI_SUCCESS)
return status;
if (!pci->romimage || !pci->romsize)
return EFI_INVALID_PARAMETER;
size = pci->romsize + sizeof(*rom);
status = efi_call_early(allocate_pool, EFI_LOADER_DATA, size, &rom);
if (status != EFI_SUCCESS) {
efi_printk(sys_table, "Failed to alloc mem for rom\n");
return status;
}
memset(rom, 0, sizeof(*rom));
rom->data.type = SETUP_PCI;
rom->data.len = size - sizeof(struct setup_data);
rom->data.next = 0;
rom->pcilen = pci->romsize;
*__rom = rom;
status = efi_early->call(pci->pci.read, pci, EfiPciIoWidthUint16,
PCI_VENDOR_ID, 1, &(rom->vendor));
if (status != EFI_SUCCESS) {
efi_printk(sys_table, "Failed to read rom->vendor\n");
goto free_struct;
}
status = efi_early->call(pci->pci.read, pci, EfiPciIoWidthUint16,
PCI_DEVICE_ID, 1, &(rom->devid));
if (status != EFI_SUCCESS) {
efi_printk(sys_table, "Failed to read rom->devid\n");
goto free_struct;
}
status = efi_early->call(pci->get_location, pci, &(rom->segment),
&(rom->bus), &(rom->device), &(rom->function));
if (status != EFI_SUCCESS)
goto free_struct;
memcpy(rom->romdata, pci->romimage, pci->romsize);
return status;
free_struct:
efi_call_early(free_pool, rom);
return status;
}
static void
setup_efi_pci32(struct boot_params *params, void **pci_handle,
unsigned long size)
{
efi_pci_io_protocol_32 *pci = NULL;
efi_guid_t pci_proto = EFI_PCI_IO_PROTOCOL_GUID;
u32 *handles = (u32 *)(unsigned long)pci_handle;
efi_status_t status;
unsigned long nr_pci;
struct setup_data *data;
int i;
data = (struct setup_data *)(unsigned long)params->hdr.setup_data;
while (data && data->next)
data = (struct setup_data *)(unsigned long)data->next;
nr_pci = size / sizeof(u32);
for (i = 0; i < nr_pci; i++) {
struct pci_setup_rom *rom = NULL;
u32 h = handles[i];
status = efi_call_early(handle_protocol, h,
&pci_proto, (void **)&pci);
if (status != EFI_SUCCESS)
continue;
if (!pci)
continue;
status = __setup_efi_pci32(pci, &rom);
if (status != EFI_SUCCESS)
continue;
if (data)
data->next = (unsigned long)rom;
else
params->hdr.setup_data = (unsigned long)rom;
data = (struct setup_data *)rom;
}
}
static efi_status_t
__setup_efi_pci64(efi_pci_io_protocol_64 *pci, struct pci_setup_rom **__rom)
{
struct pci_setup_rom *rom;
efi_status_t status;
unsigned long size;
uint64_t attributes;
status = efi_early->call(pci->attributes, pci,
EfiPciIoAttributeOperationGet, 0,
&attributes);
if (status != EFI_SUCCESS)
return status;
if (!pci->romimage || !pci->romsize)
return EFI_INVALID_PARAMETER;
size = pci->romsize + sizeof(*rom);
status = efi_call_early(allocate_pool, EFI_LOADER_DATA, size, &rom);
if (status != EFI_SUCCESS) {
efi_printk(sys_table, "Failed to alloc mem for rom\n");
return status;
}
rom->data.type = SETUP_PCI;
rom->data.len = size - sizeof(struct setup_data);
rom->data.next = 0;
rom->pcilen = pci->romsize;
*__rom = rom;
status = efi_early->call(pci->pci.read, pci, EfiPciIoWidthUint16,
PCI_VENDOR_ID, 1, &(rom->vendor));
if (status != EFI_SUCCESS) {
efi_printk(sys_table, "Failed to read rom->vendor\n");
goto free_struct;
}
status = efi_early->call(pci->pci.read, pci, EfiPciIoWidthUint16,
PCI_DEVICE_ID, 1, &(rom->devid));
if (status != EFI_SUCCESS) {
efi_printk(sys_table, "Failed to read rom->devid\n");
goto free_struct;
}
status = efi_early->call(pci->get_location, pci, &(rom->segment),
&(rom->bus), &(rom->device), &(rom->function));
if (status != EFI_SUCCESS)
goto free_struct;
memcpy(rom->romdata, pci->romimage, pci->romsize);
return status;
free_struct:
efi_call_early(free_pool, rom);
return status;
}
static void
setup_efi_pci64(struct boot_params *params, void **pci_handle,
unsigned long size)
{
efi_pci_io_protocol_64 *pci = NULL;
efi_guid_t pci_proto = EFI_PCI_IO_PROTOCOL_GUID;
u64 *handles = (u64 *)(unsigned long)pci_handle;
efi_status_t status;
unsigned long nr_pci;
struct setup_data *data;
int i;
data = (struct setup_data *)(unsigned long)params->hdr.setup_data;
while (data && data->next)
data = (struct setup_data *)(unsigned long)data->next;
nr_pci = size / sizeof(u64);
for (i = 0; i < nr_pci; i++) {
struct pci_setup_rom *rom = NULL;
u64 h = handles[i];
status = efi_call_early(handle_protocol, h,
&pci_proto, (void **)&pci);
if (status != EFI_SUCCESS)
continue;
if (!pci)
continue;
status = __setup_efi_pci64(pci, &rom);
if (status != EFI_SUCCESS)
continue;
if (data)
data->next = (unsigned long)rom;
else
params->hdr.setup_data = (unsigned long)rom;
data = (struct setup_data *)rom;
}
}
/*
* There's no way to return an informative status from this function,
* because any analysis (and printing of error messages) needs to be
* done directly at the EFI function call-site.
*
* For example, EFI_INVALID_PARAMETER could indicate a bug or maybe we
* just didn't find any PCI devices, but there's no way to tell outside
* the context of the call.
*/
static void setup_efi_pci(struct boot_params *params)
{
efi_status_t status;
void **pci_handle = NULL;
efi_guid_t pci_proto = EFI_PCI_IO_PROTOCOL_GUID;
unsigned long size = 0;
status = efi_call_early(locate_handle,
EFI_LOCATE_BY_PROTOCOL,
&pci_proto, NULL, &size, pci_handle);
if (status == EFI_BUFFER_TOO_SMALL) {
status = efi_call_early(allocate_pool,
EFI_LOADER_DATA,
size, (void **)&pci_handle);
if (status != EFI_SUCCESS) {
efi_printk(sys_table, "Failed to alloc mem for pci_handle\n");
return;
}
status = efi_call_early(locate_handle,
EFI_LOCATE_BY_PROTOCOL, &pci_proto,
NULL, &size, pci_handle);
}
if (status != EFI_SUCCESS)
goto free_handle;
if (efi_early->is64)
setup_efi_pci64(params, pci_handle, size);
else
setup_efi_pci32(params, pci_handle, size);
free_handle:
efi_call_early(free_pool, pci_handle);
}
static void retrieve_apple_device_properties(struct boot_params *boot_params)
{
efi_guid_t guid = APPLE_PROPERTIES_PROTOCOL_GUID;
struct setup_data *data, *new;
efi_status_t status;
u32 size = 0;
void *p;
status = efi_call_early(locate_protocol, &guid, NULL, &p);
if (status != EFI_SUCCESS)
return;
if (efi_table_attr(apple_properties_protocol, version, p) != 0x10000) {
efi_printk(sys_table, "Unsupported properties proto version\n");
return;
}
efi_call_proto(apple_properties_protocol, get_all, p, NULL, &size);
if (!size)
return;
do {
status = efi_call_early(allocate_pool, EFI_LOADER_DATA,
size + sizeof(struct setup_data), &new);
if (status != EFI_SUCCESS) {
efi_printk(sys_table,
"Failed to alloc mem for properties\n");
return;
}
status = efi_call_proto(apple_properties_protocol, get_all, p,
new->data, &size);
if (status == EFI_BUFFER_TOO_SMALL)
efi_call_early(free_pool, new);
} while (status == EFI_BUFFER_TOO_SMALL);
new->type = SETUP_APPLE_PROPERTIES;
new->len = size;
new->next = 0;
data = (struct setup_data *)(unsigned long)boot_params->hdr.setup_data;
if (!data)
boot_params->hdr.setup_data = (unsigned long)new;
else {
while (data->next)
data = (struct setup_data *)(unsigned long)data->next;
data->next = (unsigned long)new;
}
}
static const efi_char16_t apple[] = L"Apple";
static void setup_quirks(struct boot_params *boot_params)
{
efi_char16_t *fw_vendor = (efi_char16_t *)(unsigned long)
efi_table_attr(efi_system_table, fw_vendor, sys_table);
if (!memcmp(fw_vendor, apple, sizeof(apple))) {
if (IS_ENABLED(CONFIG_APPLE_PROPERTIES))
retrieve_apple_device_properties(boot_params);
}
}
static efi_status_t
setup_uga32(void **uga_handle, unsigned long size, u32 *width, u32 *height)
{
struct efi_uga_draw_protocol *uga = NULL, *first_uga;
efi_guid_t uga_proto = EFI_UGA_PROTOCOL_GUID;
unsigned long nr_ugas;
u32 *handles = (u32 *)uga_handle;
efi_status_t status = EFI_INVALID_PARAMETER;
int i;
first_uga = NULL;
nr_ugas = size / sizeof(u32);
for (i = 0; i < nr_ugas; i++) {
efi_guid_t pciio_proto = EFI_PCI_IO_PROTOCOL_GUID;
u32 w, h, depth, refresh;
void *pciio;
u32 handle = handles[i];
status = efi_call_early(handle_protocol, handle,
&uga_proto, (void **)&uga);
if (status != EFI_SUCCESS)
continue;
efi_call_early(handle_protocol, handle, &pciio_proto, &pciio);
status = efi_early->call((unsigned long)uga->get_mode, uga,
&w, &h, &depth, &refresh);
if (status == EFI_SUCCESS && (!first_uga || pciio)) {
*width = w;
*height = h;
/*
* Once we've found a UGA supporting PCIIO,
* don't bother looking any further.
*/
if (pciio)
break;
first_uga = uga;
}
}
return status;
}
static efi_status_t
setup_uga64(void **uga_handle, unsigned long size, u32 *width, u32 *height)
{
struct efi_uga_draw_protocol *uga = NULL, *first_uga;
efi_guid_t uga_proto = EFI_UGA_PROTOCOL_GUID;
unsigned long nr_ugas;
u64 *handles = (u64 *)uga_handle;
efi_status_t status = EFI_INVALID_PARAMETER;
int i;
first_uga = NULL;
nr_ugas = size / sizeof(u64);
for (i = 0; i < nr_ugas; i++) {
efi_guid_t pciio_proto = EFI_PCI_IO_PROTOCOL_GUID;
u32 w, h, depth, refresh;
void *pciio;
u64 handle = handles[i];
status = efi_call_early(handle_protocol, handle,
&uga_proto, (void **)&uga);
if (status != EFI_SUCCESS)
continue;
efi_call_early(handle_protocol, handle, &pciio_proto, &pciio);
status = efi_early->call((unsigned long)uga->get_mode, uga,
&w, &h, &depth, &refresh);
if (status == EFI_SUCCESS && (!first_uga || pciio)) {
*width = w;
*height = h;
/*
* Once we've found a UGA supporting PCIIO,
* don't bother looking any further.
*/
if (pciio)
break;
first_uga = uga;
}
}
return status;
}
/*
* See if we have Universal Graphics Adapter (UGA) protocol
*/
static efi_status_t setup_uga(struct screen_info *si, efi_guid_t *uga_proto,
unsigned long size)
{
efi_status_t status;
u32 width, height;
void **uga_handle = NULL;
status = efi_call_early(allocate_pool, EFI_LOADER_DATA,
size, (void **)&uga_handle);
if (status != EFI_SUCCESS)
return status;
status = efi_call_early(locate_handle,
EFI_LOCATE_BY_PROTOCOL,
uga_proto, NULL, &size, uga_handle);
if (status != EFI_SUCCESS)
goto free_handle;
height = 0;
width = 0;
if (efi_early->is64)
status = setup_uga64(uga_handle, size, &width, &height);
else
status = setup_uga32(uga_handle, size, &width, &height);
if (!width && !height)
goto free_handle;
/* EFI framebuffer */
si->orig_video_isVGA = VIDEO_TYPE_EFI;
si->lfb_depth = 32;
si->lfb_width = width;
si->lfb_height = height;
si->red_size = 8;
si->red_pos = 16;
si->green_size = 8;
si->green_pos = 8;
si->blue_size = 8;
si->blue_pos = 0;
si->rsvd_size = 8;
si->rsvd_pos = 24;
free_handle:
efi_call_early(free_pool, uga_handle);
return status;
}
void setup_graphics(struct boot_params *boot_params)
{
efi_guid_t graphics_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID;
struct screen_info *si;
efi_guid_t uga_proto = EFI_UGA_PROTOCOL_GUID;
efi_status_t status;
unsigned long size;
void **gop_handle = NULL;
void **uga_handle = NULL;
si = &boot_params->screen_info;
memset(si, 0, sizeof(*si));
size = 0;
status = efi_call_early(locate_handle,
EFI_LOCATE_BY_PROTOCOL,
&graphics_proto, NULL, &size, gop_handle);
if (status == EFI_BUFFER_TOO_SMALL)
status = efi_setup_gop(NULL, si, &graphics_proto, size);
if (status != EFI_SUCCESS) {
size = 0;
status = efi_call_early(locate_handle,
EFI_LOCATE_BY_PROTOCOL,
&uga_proto, NULL, &size, uga_handle);
if (status == EFI_BUFFER_TOO_SMALL)
setup_uga(si, &uga_proto, size);
}
}
/*
* Because the x86 boot code expects to be passed a boot_params we
* need to create one ourselves (usually the bootloader would create
* one for us).
*
* The caller is responsible for filling out ->code32_start in the
* returned boot_params.
*/
struct boot_params *make_boot_params(struct efi_config *c)
{
struct boot_params *boot_params;
struct apm_bios_info *bi;
struct setup_header *hdr;
efi_loaded_image_t *image;
void *options, *handle;
efi_guid_t proto = LOADED_IMAGE_PROTOCOL_GUID;
int options_size = 0;
efi_status_t status;
char *cmdline_ptr;
u16 *s2;
u8 *s1;
int i;
unsigned long ramdisk_addr;
unsigned long ramdisk_size;
efi_early = c;
sys_table = (efi_system_table_t *)(unsigned long)efi_early->table;
handle = (void *)(unsigned long)efi_early->image_handle;
/* Check if we were booted by the EFI firmware */
if (sys_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
return NULL;
if (efi_early->is64)
setup_boot_services64(efi_early);
else
setup_boot_services32(efi_early);
status = efi_call_early(handle_protocol, handle,
&proto, (void *)&image);
if (status != EFI_SUCCESS) {
efi_printk(sys_table, "Failed to get handle for LOADED_IMAGE_PROTOCOL\n");
return NULL;
}
status = efi_low_alloc(sys_table, 0x4000, 1,
(unsigned long *)&boot_params);
if (status != EFI_SUCCESS) {
efi_printk(sys_table, "Failed to alloc lowmem for boot params\n");
return NULL;
}
memset(boot_params, 0x0, 0x4000);
hdr = &boot_params->hdr;
bi = &boot_params->apm_bios_info;
/* Copy the second sector to boot_params */
memcpy(&hdr->jump, image->image_base + 512, 512);
/*
* Fill out some of the header fields ourselves because the
* EFI firmware loader doesn't load the first sector.
*/
hdr->root_flags = 1;
hdr->vid_mode = 0xffff;
hdr->boot_flag = 0xAA55;
hdr->type_of_loader = 0x21;
/* Convert unicode cmdline to ascii */
cmdline_ptr = efi_convert_cmdline(sys_table, image, &options_size);
if (!cmdline_ptr)
goto fail;
hdr->cmd_line_ptr = (unsigned long)cmdline_ptr;
/* Fill in upper bits of command line address, NOP on 32 bit */
boot_params->ext_cmd_line_ptr = (u64)(unsigned long)cmdline_ptr >> 32;
hdr->ramdisk_image = 0;
hdr->ramdisk_size = 0;
/* Clear APM BIOS info */
memset(bi, 0, sizeof(*bi));
status = efi_parse_options(cmdline_ptr);
if (status != EFI_SUCCESS)
goto fail2;
status = handle_cmdline_files(sys_table, image,
(char *)(unsigned long)hdr->cmd_line_ptr,
"initrd=", hdr->initrd_addr_max,
&ramdisk_addr, &ramdisk_size);
if (status != EFI_SUCCESS &&
hdr->xloadflags & XLF_CAN_BE_LOADED_ABOVE_4G) {
efi_printk(sys_table, "Trying to load files to higher address\n");
status = handle_cmdline_files(sys_table, image,
(char *)(unsigned long)hdr->cmd_line_ptr,
"initrd=", -1UL,
&ramdisk_addr, &ramdisk_size);
}
if (status != EFI_SUCCESS)
goto fail2;
hdr->ramdisk_image = ramdisk_addr & 0xffffffff;
hdr->ramdisk_size = ramdisk_size & 0xffffffff;
boot_params->ext_ramdisk_image = (u64)ramdisk_addr >> 32;
boot_params->ext_ramdisk_size = (u64)ramdisk_size >> 32;
return boot_params;
fail2:
efi_free(sys_table, options_size, hdr->cmd_line_ptr);
fail:
efi_free(sys_table, 0x4000, (unsigned long)boot_params);
return NULL;
}
static void add_e820ext(struct boot_params *params,
struct setup_data *e820ext, u32 nr_entries)
{
struct setup_data *data;
efi_status_t status;
unsigned long size;
e820ext->type = SETUP_E820_EXT;
e820ext->len = nr_entries * sizeof(struct boot_e820_entry);
e820ext->next = 0;
data = (struct setup_data *)(unsigned long)params->hdr.setup_data;
while (data && data->next)
data = (struct setup_data *)(unsigned long)data->next;
if (data)
data->next = (unsigned long)e820ext;
else
params->hdr.setup_data = (unsigned long)e820ext;
}
static efi_status_t setup_e820(struct boot_params *params,
struct setup_data *e820ext, u32 e820ext_size)
{
struct boot_e820_entry *entry = params->e820_table;
struct efi_info *efi = &params->efi_info;
struct boot_e820_entry *prev = NULL;
u32 nr_entries;
u32 nr_desc;
int i;
nr_entries = 0;
nr_desc = efi->efi_memmap_size / efi->efi_memdesc_size;
for (i = 0; i < nr_desc; i++) {
efi_memory_desc_t *d;
unsigned int e820_type = 0;
unsigned long m = efi->efi_memmap;
#ifdef CONFIG_X86_64
m |= (u64)efi->efi_memmap_hi << 32;
#endif
d = efi_early_memdesc_ptr(m, efi->efi_memdesc_size, i);
switch (d->type) {
case EFI_RESERVED_TYPE:
case EFI_RUNTIME_SERVICES_CODE:
case EFI_RUNTIME_SERVICES_DATA:
case EFI_MEMORY_MAPPED_IO:
case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
case EFI_PAL_CODE:
e820_type = E820_TYPE_RESERVED;
break;
case EFI_UNUSABLE_MEMORY:
e820_type = E820_TYPE_UNUSABLE;
break;
case EFI_ACPI_RECLAIM_MEMORY:
e820_type = E820_TYPE_ACPI;
break;
case EFI_LOADER_CODE:
case EFI_LOADER_DATA:
case EFI_BOOT_SERVICES_CODE:
case EFI_BOOT_SERVICES_DATA:
case EFI_CONVENTIONAL_MEMORY:
e820_type = E820_TYPE_RAM;
break;
case EFI_ACPI_MEMORY_NVS:
e820_type = E820_TYPE_NVS;
break;
case EFI_PERSISTENT_MEMORY:
e820_type = E820_TYPE_PMEM;
break;
default:
continue;
}
/* Merge adjacent mappings */
if (prev && prev->type == e820_type &&
(prev->addr + prev->size) == d->phys_addr) {
prev->size += d->num_pages << 12;
continue;
}
if (nr_entries == ARRAY_SIZE(params->e820_table)) {
u32 need = (nr_desc - i) * sizeof(struct e820_entry) +
sizeof(struct setup_data);
if (!e820ext || e820ext_size < need)
return EFI_BUFFER_TOO_SMALL;
/* boot_params map full, switch to e820 extended */
entry = (struct boot_e820_entry *)e820ext->data;
}
entry->addr = d->phys_addr;
entry->size = d->num_pages << PAGE_SHIFT;
entry->type = e820_type;
prev = entry++;
nr_entries++;
}
if (nr_entries > ARRAY_SIZE(params->e820_table)) {
u32 nr_e820ext = nr_entries - ARRAY_SIZE(params->e820_table);
add_e820ext(params, e820ext, nr_e820ext);
nr_entries -= nr_e820ext;
}
params->e820_entries = (u8)nr_entries;
return EFI_SUCCESS;
}
static efi_status_t alloc_e820ext(u32 nr_desc, struct setup_data **e820ext,
u32 *e820ext_size)
{
efi_status_t status;
unsigned long size;
size = sizeof(struct setup_data) +
sizeof(struct e820_entry) * nr_desc;
if (*e820ext) {
efi_call_early(free_pool, *e820ext);
*e820ext = NULL;
*e820ext_size = 0;
}
status = efi_call_early(allocate_pool, EFI_LOADER_DATA,
size, (void **)e820ext);
if (status == EFI_SUCCESS)
*e820ext_size = size;
return status;
}
struct exit_boot_struct {
struct boot_params *boot_params;
struct efi_info *efi;
struct setup_data *e820ext;
__u32 e820ext_size;
bool is64;
};
static efi_status_t exit_boot_func(efi_system_table_t *sys_table_arg,
struct efi_boot_memmap *map,
void *priv)
{
static bool first = true;
const char *signature;
__u32 nr_desc;
efi_status_t status;
struct exit_boot_struct *p = priv;
if (first) {
nr_desc = *map->buff_size / *map->desc_size;
if (nr_desc > ARRAY_SIZE(p->boot_params->e820_table)) {
u32 nr_e820ext = nr_desc -
ARRAY_SIZE(p->boot_params->e820_table);
status = alloc_e820ext(nr_e820ext, &p->e820ext,
&p->e820ext_size);
if (status != EFI_SUCCESS)
return status;
}
first = false;
}
signature = p->is64 ? EFI64_LOADER_SIGNATURE : EFI32_LOADER_SIGNATURE;
memcpy(&p->efi->efi_loader_signature, signature, sizeof(__u32));
p->efi->efi_systab = (unsigned long)sys_table_arg;
p->efi->efi_memdesc_size = *map->desc_size;
p->efi->efi_memdesc_version = *map->desc_ver;
p->efi->efi_memmap = (unsigned long)*map->map;
p->efi->efi_memmap_size = *map->map_size;
#ifdef CONFIG_X86_64
p->efi->efi_systab_hi = (unsigned long)sys_table_arg >> 32;
p->efi->efi_memmap_hi = (unsigned long)*map->map >> 32;
#endif
return EFI_SUCCESS;
}
static efi_status_t exit_boot(struct boot_params *boot_params,
void *handle, bool is64)
{
unsigned long map_sz, key, desc_size, buff_size;
efi_memory_desc_t *mem_map;
struct setup_data *e820ext;
__u32 e820ext_size;
efi_status_t status;
__u32 desc_version;
struct efi_boot_memmap map;
struct exit_boot_struct priv;
map.map = &mem_map;
map.map_size = &map_sz;
map.desc_size = &desc_size;
map.desc_ver = &desc_version;
map.key_ptr = &key;
map.buff_size = &buff_size;
priv.boot_params = boot_params;
priv.efi = &boot_params->efi_info;
priv.e820ext = NULL;
priv.e820ext_size = 0;
priv.is64 = is64;
/* Might as well exit boot services now */
status = efi_exit_boot_services(sys_table, handle, &map, &priv,
exit_boot_func);
if (status != EFI_SUCCESS)
return status;
e820ext = priv.e820ext;
e820ext_size = priv.e820ext_size;
/* Historic? */
boot_params->alt_mem_k = 32 * 1024;
status = setup_e820(boot_params, e820ext, e820ext_size);
if (status != EFI_SUCCESS)
return status;
return EFI_SUCCESS;
}
/*
* On success we return a pointer to a boot_params structure, and NULL
* on failure.
*/
struct boot_params *efi_main(struct efi_config *c,
struct boot_params *boot_params)
{
struct desc_ptr *gdt = NULL;
efi_loaded_image_t *image;
struct setup_header *hdr = &boot_params->hdr;
efi_status_t status;
struct desc_struct *desc;
void *handle;
efi_system_table_t *_table;
bool is64;
efi_early = c;
_table = (efi_system_table_t *)(unsigned long)efi_early->table;
handle = (void *)(unsigned long)efi_early->image_handle;
is64 = efi_early->is64;
sys_table = _table;
/* Check if we were booted by the EFI firmware */
if (sys_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
goto fail;
if (is64)
setup_boot_services64(efi_early);
else
setup_boot_services32(efi_early);
/*
* If the boot loader gave us a value for secure_boot then we use that,
* otherwise we ask the BIOS.
*/
if (boot_params->secure_boot == efi_secureboot_mode_unset)
boot_params->secure_boot = efi_get_secureboot(sys_table);
/* Ask the firmware to clear memory on unclean shutdown */
efi_enable_reset_attack_mitigation(sys_table);
efi_retrieve_tpm2_eventlog(sys_table);
setup_graphics(boot_params);
setup_efi_pci(boot_params);
setup_quirks(boot_params);
status = efi_call_early(allocate_pool, EFI_LOADER_DATA,
sizeof(*gdt), (void **)&gdt);
if (status != EFI_SUCCESS) {
efi_printk(sys_table, "Failed to alloc mem for gdt structure\n");
goto fail;
}
gdt->size = 0x800;
status = efi_low_alloc(sys_table, gdt->size, 8,
(unsigned long *)&gdt->address);
if (status != EFI_SUCCESS) {
efi_printk(sys_table, "Failed to alloc mem for gdt\n");
goto fail;
}
/*
* If the kernel isn't already loaded at the preferred load
* address, relocate it.
*/
if (hdr->pref_address != hdr->code32_start) {
unsigned long bzimage_addr = hdr->code32_start;
status = efi_relocate_kernel(sys_table, &bzimage_addr,
hdr->init_size, hdr->init_size,
hdr->pref_address,
hdr->kernel_alignment);
if (status != EFI_SUCCESS) {
efi_printk(sys_table, "efi_relocate_kernel() failed!\n");
goto fail;
}
hdr->pref_address = hdr->code32_start;
hdr->code32_start = bzimage_addr;
}
status = exit_boot(boot_params, handle, is64);
if (status != EFI_SUCCESS) {
efi_printk(sys_table, "exit_boot() failed!\n");
goto fail;
}
memset((char *)gdt->address, 0x0, gdt->size);
desc = (struct desc_struct *)gdt->address;
/* The first GDT is a dummy. */
desc++;
if (IS_ENABLED(CONFIG_X86_64)) {
/* __KERNEL32_CS */
desc->limit0 = 0xffff;
desc->base0 = 0x0000;
desc->base1 = 0x0000;
desc->type = SEG_TYPE_CODE | SEG_TYPE_EXEC_READ;
desc->s = DESC_TYPE_CODE_DATA;
desc->dpl = 0;
desc->p = 1;
desc->limit1 = 0xf;
desc->avl = 0;
desc->l = 0;
desc->d = SEG_OP_SIZE_32BIT;
desc->g = SEG_GRANULARITY_4KB;
desc->base2 = 0x00;
desc++;
} else {
/* Second entry is unused on 32-bit */
desc++;
}
/* __KERNEL_CS */
desc->limit0 = 0xffff;
desc->base0 = 0x0000;
desc->base1 = 0x0000;
desc->type = SEG_TYPE_CODE | SEG_TYPE_EXEC_READ;
desc->s = DESC_TYPE_CODE_DATA;
desc->dpl = 0;
desc->p = 1;
desc->limit1 = 0xf;
desc->avl = 0;
if (IS_ENABLED(CONFIG_X86_64)) {
desc->l = 1;
desc->d = 0;
} else {
desc->l = 0;
desc->d = SEG_OP_SIZE_32BIT;
}
desc->g = SEG_GRANULARITY_4KB;
desc->base2 = 0x00;
desc++;
/* __KERNEL_DS */
desc->limit0 = 0xffff;
desc->base0 = 0x0000;
desc->base1 = 0x0000;
desc->type = SEG_TYPE_DATA | SEG_TYPE_READ_WRITE;
desc->s = DESC_TYPE_CODE_DATA;
desc->dpl = 0;
desc->p = 1;
desc->limit1 = 0xf;
desc->avl = 0;
desc->l = 0;
desc->d = SEG_OP_SIZE_32BIT;
desc->g = SEG_GRANULARITY_4KB;
desc->base2 = 0x00;
desc++;
if (IS_ENABLED(CONFIG_X86_64)) {
/* Task segment value */
desc->limit0 = 0x0000;
desc->base0 = 0x0000;
desc->base1 = 0x0000;
desc->type = SEG_TYPE_TSS;
desc->s = 0;
desc->dpl = 0;
desc->p = 1;
desc->limit1 = 0x0;
desc->avl = 0;
desc->l = 0;
desc->d = 0;
desc->g = SEG_GRANULARITY_4KB;
desc->base2 = 0x00;
desc++;
}
asm volatile("cli");
asm volatile ("lgdt %0" : : "m" (*gdt));
return boot_params;
fail:
efi_printk(sys_table, "efi_main() failed!\n");
return NULL;
}