| /* |
| * edac_mc kernel module |
| * (C) 2005, 2006 Linux Networx (http://lnxi.com) |
| * This file may be distributed under the terms of the |
| * GNU General Public License. |
| * |
| * Written by Thayne Harbaugh |
| * Based on work by Dan Hollis <goemon at anime dot net> and others. |
| * http://www.anime.net/~goemon/linux-ecc/ |
| * |
| * Modified by Dave Peterson and Doug Thompson |
| * |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/proc_fs.h> |
| #include <linux/kernel.h> |
| #include <linux/types.h> |
| #include <linux/smp.h> |
| #include <linux/init.h> |
| #include <linux/sysctl.h> |
| #include <linux/highmem.h> |
| #include <linux/timer.h> |
| #include <linux/slab.h> |
| #include <linux/jiffies.h> |
| #include <linux/spinlock.h> |
| #include <linux/list.h> |
| #include <linux/ctype.h> |
| #include <linux/edac.h> |
| #include <linux/bitops.h> |
| #include <linux/uaccess.h> |
| #include <asm/page.h> |
| #include "edac_mc.h" |
| #include "edac_module.h" |
| #include <ras/ras_event.h> |
| |
| #ifdef CONFIG_EDAC_ATOMIC_SCRUB |
| #include <asm/edac.h> |
| #else |
| #define edac_atomic_scrub(va, size) do { } while (0) |
| #endif |
| |
| /* lock to memory controller's control array */ |
| static DEFINE_MUTEX(mem_ctls_mutex); |
| static LIST_HEAD(mc_devices); |
| |
| /* |
| * Used to lock EDAC MC to just one module, avoiding two drivers e. g. |
| * apei/ghes and i7core_edac to be used at the same time. |
| */ |
| static void const *edac_mc_owner; |
| |
| static struct bus_type mc_bus[EDAC_MAX_MCS]; |
| |
| unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf, |
| unsigned len) |
| { |
| struct mem_ctl_info *mci = dimm->mci; |
| int i, n, count = 0; |
| char *p = buf; |
| |
| for (i = 0; i < mci->n_layers; i++) { |
| n = snprintf(p, len, "%s %d ", |
| edac_layer_name[mci->layers[i].type], |
| dimm->location[i]); |
| p += n; |
| len -= n; |
| count += n; |
| if (!len) |
| break; |
| } |
| |
| return count; |
| } |
| |
| #ifdef CONFIG_EDAC_DEBUG |
| |
| static void edac_mc_dump_channel(struct rank_info *chan) |
| { |
| edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx); |
| edac_dbg(4, " channel = %p\n", chan); |
| edac_dbg(4, " channel->csrow = %p\n", chan->csrow); |
| edac_dbg(4, " channel->dimm = %p\n", chan->dimm); |
| } |
| |
| static void edac_mc_dump_dimm(struct dimm_info *dimm, int number) |
| { |
| char location[80]; |
| |
| edac_dimm_info_location(dimm, location, sizeof(location)); |
| |
| edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n", |
| dimm->mci->csbased ? "rank" : "dimm", |
| number, location, dimm->csrow, dimm->cschannel); |
| edac_dbg(4, " dimm = %p\n", dimm); |
| edac_dbg(4, " dimm->label = '%s'\n", dimm->label); |
| edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages); |
| edac_dbg(4, " dimm->grain = %d\n", dimm->grain); |
| edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages); |
| } |
| |
| static void edac_mc_dump_csrow(struct csrow_info *csrow) |
| { |
| edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx); |
| edac_dbg(4, " csrow = %p\n", csrow); |
| edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page); |
| edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page); |
| edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask); |
| edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels); |
| edac_dbg(4, " csrow->channels = %p\n", csrow->channels); |
| edac_dbg(4, " csrow->mci = %p\n", csrow->mci); |
| } |
| |
| static void edac_mc_dump_mci(struct mem_ctl_info *mci) |
| { |
| edac_dbg(3, "\tmci = %p\n", mci); |
| edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap); |
| edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap); |
| edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap); |
| edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check); |
| edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n", |
| mci->nr_csrows, mci->csrows); |
| edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n", |
| mci->tot_dimms, mci->dimms); |
| edac_dbg(3, "\tdev = %p\n", mci->pdev); |
| edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n", |
| mci->mod_name, mci->ctl_name); |
| edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info); |
| } |
| |
| #endif /* CONFIG_EDAC_DEBUG */ |
| |
| const char * const edac_mem_types[] = { |
| [MEM_EMPTY] = "Empty csrow", |
| [MEM_RESERVED] = "Reserved csrow type", |
| [MEM_UNKNOWN] = "Unknown csrow type", |
| [MEM_FPM] = "Fast page mode RAM", |
| [MEM_EDO] = "Extended data out RAM", |
| [MEM_BEDO] = "Burst Extended data out RAM", |
| [MEM_SDR] = "Single data rate SDRAM", |
| [MEM_RDR] = "Registered single data rate SDRAM", |
| [MEM_DDR] = "Double data rate SDRAM", |
| [MEM_RDDR] = "Registered Double data rate SDRAM", |
| [MEM_RMBS] = "Rambus DRAM", |
| [MEM_DDR2] = "Unbuffered DDR2 RAM", |
| [MEM_FB_DDR2] = "Fully buffered DDR2", |
| [MEM_RDDR2] = "Registered DDR2 RAM", |
| [MEM_XDR] = "Rambus XDR", |
| [MEM_DDR3] = "Unbuffered DDR3 RAM", |
| [MEM_RDDR3] = "Registered DDR3 RAM", |
| [MEM_LRDDR3] = "Load-Reduced DDR3 RAM", |
| [MEM_DDR4] = "Unbuffered DDR4 RAM", |
| [MEM_RDDR4] = "Registered DDR4 RAM", |
| }; |
| EXPORT_SYMBOL_GPL(edac_mem_types); |
| |
| /** |
| * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation |
| * @p: pointer to a pointer with the memory offset to be used. At |
| * return, this will be incremented to point to the next offset |
| * @size: Size of the data structure to be reserved |
| * @n_elems: Number of elements that should be reserved |
| * |
| * If 'size' is a constant, the compiler will optimize this whole function |
| * down to either a no-op or the addition of a constant to the value of '*p'. |
| * |
| * The 'p' pointer is absolutely needed to keep the proper advancing |
| * further in memory to the proper offsets when allocating the struct along |
| * with its embedded structs, as edac_device_alloc_ctl_info() does it |
| * above, for example. |
| * |
| * At return, the pointer 'p' will be incremented to be used on a next call |
| * to this function. |
| */ |
| void *edac_align_ptr(void **p, unsigned size, int n_elems) |
| { |
| unsigned align, r; |
| void *ptr = *p; |
| |
| *p += size * n_elems; |
| |
| /* |
| * 'p' can possibly be an unaligned item X such that sizeof(X) is |
| * 'size'. Adjust 'p' so that its alignment is at least as |
| * stringent as what the compiler would provide for X and return |
| * the aligned result. |
| * Here we assume that the alignment of a "long long" is the most |
| * stringent alignment that the compiler will ever provide by default. |
| * As far as I know, this is a reasonable assumption. |
| */ |
| if (size > sizeof(long)) |
| align = sizeof(long long); |
| else if (size > sizeof(int)) |
| align = sizeof(long); |
| else if (size > sizeof(short)) |
| align = sizeof(int); |
| else if (size > sizeof(char)) |
| align = sizeof(short); |
| else |
| return (char *)ptr; |
| |
| r = (unsigned long)p % align; |
| |
| if (r == 0) |
| return (char *)ptr; |
| |
| *p += align - r; |
| |
| return (void *)(((unsigned long)ptr) + align - r); |
| } |
| |
| static void _edac_mc_free(struct mem_ctl_info *mci) |
| { |
| int i, chn, row; |
| struct csrow_info *csr; |
| const unsigned int tot_dimms = mci->tot_dimms; |
| const unsigned int tot_channels = mci->num_cschannel; |
| const unsigned int tot_csrows = mci->nr_csrows; |
| |
| if (mci->dimms) { |
| for (i = 0; i < tot_dimms; i++) |
| kfree(mci->dimms[i]); |
| kfree(mci->dimms); |
| } |
| if (mci->csrows) { |
| for (row = 0; row < tot_csrows; row++) { |
| csr = mci->csrows[row]; |
| if (csr) { |
| if (csr->channels) { |
| for (chn = 0; chn < tot_channels; chn++) |
| kfree(csr->channels[chn]); |
| kfree(csr->channels); |
| } |
| kfree(csr); |
| } |
| } |
| kfree(mci->csrows); |
| } |
| kfree(mci); |
| } |
| |
| struct mem_ctl_info *edac_mc_alloc(unsigned mc_num, |
| unsigned n_layers, |
| struct edac_mc_layer *layers, |
| unsigned sz_pvt) |
| { |
| struct mem_ctl_info *mci; |
| struct edac_mc_layer *layer; |
| struct csrow_info *csr; |
| struct rank_info *chan; |
| struct dimm_info *dimm; |
| u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS]; |
| unsigned pos[EDAC_MAX_LAYERS]; |
| unsigned size, tot_dimms = 1, count = 1; |
| unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0; |
| void *pvt, *p, *ptr = NULL; |
| int i, j, row, chn, n, len, off; |
| bool per_rank = false; |
| |
| BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0); |
| /* |
| * Calculate the total amount of dimms and csrows/cschannels while |
| * in the old API emulation mode |
| */ |
| for (i = 0; i < n_layers; i++) { |
| tot_dimms *= layers[i].size; |
| if (layers[i].is_virt_csrow) |
| tot_csrows *= layers[i].size; |
| else |
| tot_channels *= layers[i].size; |
| |
| if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT) |
| per_rank = true; |
| } |
| |
| /* Figure out the offsets of the various items from the start of an mc |
| * structure. We want the alignment of each item to be at least as |
| * stringent as what the compiler would provide if we could simply |
| * hardcode everything into a single struct. |
| */ |
| mci = edac_align_ptr(&ptr, sizeof(*mci), 1); |
| layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers); |
| for (i = 0; i < n_layers; i++) { |
| count *= layers[i].size; |
| edac_dbg(4, "errcount layer %d size %d\n", i, count); |
| ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count); |
| ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count); |
| tot_errcount += 2 * count; |
| } |
| |
| edac_dbg(4, "allocating %d error counters\n", tot_errcount); |
| pvt = edac_align_ptr(&ptr, sz_pvt, 1); |
| size = ((unsigned long)pvt) + sz_pvt; |
| |
| edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n", |
| size, |
| tot_dimms, |
| per_rank ? "ranks" : "dimms", |
| tot_csrows * tot_channels); |
| |
| mci = kzalloc(size, GFP_KERNEL); |
| if (mci == NULL) |
| return NULL; |
| |
| /* Adjust pointers so they point within the memory we just allocated |
| * rather than an imaginary chunk of memory located at address 0. |
| */ |
| layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer)); |
| for (i = 0; i < n_layers; i++) { |
| mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i])); |
| mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i])); |
| } |
| pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL; |
| |
| /* setup index and various internal pointers */ |
| mci->mc_idx = mc_num; |
| mci->tot_dimms = tot_dimms; |
| mci->pvt_info = pvt; |
| mci->n_layers = n_layers; |
| mci->layers = layer; |
| memcpy(mci->layers, layers, sizeof(*layer) * n_layers); |
| mci->nr_csrows = tot_csrows; |
| mci->num_cschannel = tot_channels; |
| mci->csbased = per_rank; |
| |
| /* |
| * Alocate and fill the csrow/channels structs |
| */ |
| mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL); |
| if (!mci->csrows) |
| goto error; |
| for (row = 0; row < tot_csrows; row++) { |
| csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL); |
| if (!csr) |
| goto error; |
| mci->csrows[row] = csr; |
| csr->csrow_idx = row; |
| csr->mci = mci; |
| csr->nr_channels = tot_channels; |
| csr->channels = kcalloc(tot_channels, sizeof(*csr->channels), |
| GFP_KERNEL); |
| if (!csr->channels) |
| goto error; |
| |
| for (chn = 0; chn < tot_channels; chn++) { |
| chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL); |
| if (!chan) |
| goto error; |
| csr->channels[chn] = chan; |
| chan->chan_idx = chn; |
| chan->csrow = csr; |
| } |
| } |
| |
| /* |
| * Allocate and fill the dimm structs |
| */ |
| mci->dimms = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL); |
| if (!mci->dimms) |
| goto error; |
| |
| memset(&pos, 0, sizeof(pos)); |
| row = 0; |
| chn = 0; |
| for (i = 0; i < tot_dimms; i++) { |
| chan = mci->csrows[row]->channels[chn]; |
| off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]); |
| if (off < 0 || off >= tot_dimms) { |
| edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n"); |
| goto error; |
| } |
| |
| dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL); |
| if (!dimm) |
| goto error; |
| mci->dimms[off] = dimm; |
| dimm->mci = mci; |
| |
| /* |
| * Copy DIMM location and initialize it. |
| */ |
| len = sizeof(dimm->label); |
| p = dimm->label; |
| n = snprintf(p, len, "mc#%u", mc_num); |
| p += n; |
| len -= n; |
| for (j = 0; j < n_layers; j++) { |
| n = snprintf(p, len, "%s#%u", |
| edac_layer_name[layers[j].type], |
| pos[j]); |
| p += n; |
| len -= n; |
| dimm->location[j] = pos[j]; |
| |
| if (len <= 0) |
| break; |
| } |
| |
| /* Link it to the csrows old API data */ |
| chan->dimm = dimm; |
| dimm->csrow = row; |
| dimm->cschannel = chn; |
| |
| /* Increment csrow location */ |
| if (layers[0].is_virt_csrow) { |
| chn++; |
| if (chn == tot_channels) { |
| chn = 0; |
| row++; |
| } |
| } else { |
| row++; |
| if (row == tot_csrows) { |
| row = 0; |
| chn++; |
| } |
| } |
| |
| /* Increment dimm location */ |
| for (j = n_layers - 1; j >= 0; j--) { |
| pos[j]++; |
| if (pos[j] < layers[j].size) |
| break; |
| pos[j] = 0; |
| } |
| } |
| |
| mci->op_state = OP_ALLOC; |
| |
| return mci; |
| |
| error: |
| _edac_mc_free(mci); |
| |
| return NULL; |
| } |
| EXPORT_SYMBOL_GPL(edac_mc_alloc); |
| |
| void edac_mc_free(struct mem_ctl_info *mci) |
| { |
| edac_dbg(1, "\n"); |
| |
| /* If we're not yet registered with sysfs free only what was allocated |
| * in edac_mc_alloc(). |
| */ |
| if (!device_is_registered(&mci->dev)) { |
| _edac_mc_free(mci); |
| return; |
| } |
| |
| /* the mci instance is freed here, when the sysfs object is dropped */ |
| edac_unregister_sysfs(mci); |
| } |
| EXPORT_SYMBOL_GPL(edac_mc_free); |
| |
| bool edac_has_mcs(void) |
| { |
| bool ret; |
| |
| mutex_lock(&mem_ctls_mutex); |
| |
| ret = list_empty(&mc_devices); |
| |
| mutex_unlock(&mem_ctls_mutex); |
| |
| return !ret; |
| } |
| EXPORT_SYMBOL_GPL(edac_has_mcs); |
| |
| /* Caller must hold mem_ctls_mutex */ |
| static struct mem_ctl_info *__find_mci_by_dev(struct device *dev) |
| { |
| struct mem_ctl_info *mci; |
| struct list_head *item; |
| |
| edac_dbg(3, "\n"); |
| |
| list_for_each(item, &mc_devices) { |
| mci = list_entry(item, struct mem_ctl_info, link); |
| |
| if (mci->pdev == dev) |
| return mci; |
| } |
| |
| return NULL; |
| } |
| |
| /** |
| * find_mci_by_dev |
| * |
| * scan list of controllers looking for the one that manages |
| * the 'dev' device |
| * @dev: pointer to a struct device related with the MCI |
| */ |
| struct mem_ctl_info *find_mci_by_dev(struct device *dev) |
| { |
| struct mem_ctl_info *ret; |
| |
| mutex_lock(&mem_ctls_mutex); |
| ret = __find_mci_by_dev(dev); |
| mutex_unlock(&mem_ctls_mutex); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(find_mci_by_dev); |
| |
| /* |
| * handler for EDAC to check if NMI type handler has asserted interrupt |
| */ |
| static int edac_mc_assert_error_check_and_clear(void) |
| { |
| int old_state; |
| |
| if (edac_op_state == EDAC_OPSTATE_POLL) |
| return 1; |
| |
| old_state = edac_err_assert; |
| edac_err_assert = 0; |
| |
| return old_state; |
| } |
| |
| /* |
| * edac_mc_workq_function |
| * performs the operation scheduled by a workq request |
| */ |
| static void edac_mc_workq_function(struct work_struct *work_req) |
| { |
| struct delayed_work *d_work = to_delayed_work(work_req); |
| struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work); |
| |
| mutex_lock(&mem_ctls_mutex); |
| |
| if (mci->op_state != OP_RUNNING_POLL) { |
| mutex_unlock(&mem_ctls_mutex); |
| return; |
| } |
| |
| if (edac_mc_assert_error_check_and_clear()) |
| mci->edac_check(mci); |
| |
| mutex_unlock(&mem_ctls_mutex); |
| |
| /* Queue ourselves again. */ |
| edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec())); |
| } |
| |
| /* |
| * edac_mc_reset_delay_period(unsigned long value) |
| * |
| * user space has updated our poll period value, need to |
| * reset our workq delays |
| */ |
| void edac_mc_reset_delay_period(unsigned long value) |
| { |
| struct mem_ctl_info *mci; |
| struct list_head *item; |
| |
| mutex_lock(&mem_ctls_mutex); |
| |
| list_for_each(item, &mc_devices) { |
| mci = list_entry(item, struct mem_ctl_info, link); |
| |
| if (mci->op_state == OP_RUNNING_POLL) |
| edac_mod_work(&mci->work, value); |
| } |
| mutex_unlock(&mem_ctls_mutex); |
| } |
| |
| |
| |
| /* Return 0 on success, 1 on failure. |
| * Before calling this function, caller must |
| * assign a unique value to mci->mc_idx. |
| * |
| * locking model: |
| * |
| * called with the mem_ctls_mutex lock held |
| */ |
| static int add_mc_to_global_list(struct mem_ctl_info *mci) |
| { |
| struct list_head *item, *insert_before; |
| struct mem_ctl_info *p; |
| |
| insert_before = &mc_devices; |
| |
| p = __find_mci_by_dev(mci->pdev); |
| if (unlikely(p != NULL)) |
| goto fail0; |
| |
| list_for_each(item, &mc_devices) { |
| p = list_entry(item, struct mem_ctl_info, link); |
| |
| if (p->mc_idx >= mci->mc_idx) { |
| if (unlikely(p->mc_idx == mci->mc_idx)) |
| goto fail1; |
| |
| insert_before = item; |
| break; |
| } |
| } |
| |
| list_add_tail_rcu(&mci->link, insert_before); |
| atomic_inc(&edac_handlers); |
| return 0; |
| |
| fail0: |
| edac_printk(KERN_WARNING, EDAC_MC, |
| "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev), |
| edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx); |
| return 1; |
| |
| fail1: |
| edac_printk(KERN_WARNING, EDAC_MC, |
| "bug in low-level driver: attempt to assign\n" |
| " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__); |
| return 1; |
| } |
| |
| static int del_mc_from_global_list(struct mem_ctl_info *mci) |
| { |
| int handlers = atomic_dec_return(&edac_handlers); |
| list_del_rcu(&mci->link); |
| |
| /* these are for safe removal of devices from global list while |
| * NMI handlers may be traversing list |
| */ |
| synchronize_rcu(); |
| INIT_LIST_HEAD(&mci->link); |
| |
| return handlers; |
| } |
| |
| struct mem_ctl_info *edac_mc_find(int idx) |
| { |
| struct mem_ctl_info *mci = NULL; |
| struct list_head *item; |
| |
| mutex_lock(&mem_ctls_mutex); |
| |
| list_for_each(item, &mc_devices) { |
| mci = list_entry(item, struct mem_ctl_info, link); |
| |
| if (mci->mc_idx >= idx) { |
| if (mci->mc_idx == idx) { |
| goto unlock; |
| } |
| break; |
| } |
| } |
| |
| unlock: |
| mutex_unlock(&mem_ctls_mutex); |
| return mci; |
| } |
| EXPORT_SYMBOL(edac_mc_find); |
| |
| |
| /* FIXME - should a warning be printed if no error detection? correction? */ |
| int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci, |
| const struct attribute_group **groups) |
| { |
| int ret = -EINVAL; |
| edac_dbg(0, "\n"); |
| |
| if (mci->mc_idx >= EDAC_MAX_MCS) { |
| pr_warn_once("Too many memory controllers: %d\n", mci->mc_idx); |
| return -ENODEV; |
| } |
| |
| #ifdef CONFIG_EDAC_DEBUG |
| if (edac_debug_level >= 3) |
| edac_mc_dump_mci(mci); |
| |
| if (edac_debug_level >= 4) { |
| int i; |
| |
| for (i = 0; i < mci->nr_csrows; i++) { |
| struct csrow_info *csrow = mci->csrows[i]; |
| u32 nr_pages = 0; |
| int j; |
| |
| for (j = 0; j < csrow->nr_channels; j++) |
| nr_pages += csrow->channels[j]->dimm->nr_pages; |
| if (!nr_pages) |
| continue; |
| edac_mc_dump_csrow(csrow); |
| for (j = 0; j < csrow->nr_channels; j++) |
| if (csrow->channels[j]->dimm->nr_pages) |
| edac_mc_dump_channel(csrow->channels[j]); |
| } |
| for (i = 0; i < mci->tot_dimms; i++) |
| if (mci->dimms[i]->nr_pages) |
| edac_mc_dump_dimm(mci->dimms[i], i); |
| } |
| #endif |
| mutex_lock(&mem_ctls_mutex); |
| |
| if (edac_mc_owner && edac_mc_owner != mci->mod_name) { |
| ret = -EPERM; |
| goto fail0; |
| } |
| |
| if (add_mc_to_global_list(mci)) |
| goto fail0; |
| |
| /* set load time so that error rate can be tracked */ |
| mci->start_time = jiffies; |
| |
| mci->bus = &mc_bus[mci->mc_idx]; |
| |
| if (edac_create_sysfs_mci_device(mci, groups)) { |
| edac_mc_printk(mci, KERN_WARNING, |
| "failed to create sysfs device\n"); |
| goto fail1; |
| } |
| |
| if (mci->edac_check) { |
| mci->op_state = OP_RUNNING_POLL; |
| |
| INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function); |
| edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec())); |
| |
| } else { |
| mci->op_state = OP_RUNNING_INTERRUPT; |
| } |
| |
| /* Report action taken */ |
| edac_mc_printk(mci, KERN_INFO, |
| "Giving out device to module %s controller %s: DEV %s (%s)\n", |
| mci->mod_name, mci->ctl_name, mci->dev_name, |
| edac_op_state_to_string(mci->op_state)); |
| |
| edac_mc_owner = mci->mod_name; |
| |
| mutex_unlock(&mem_ctls_mutex); |
| return 0; |
| |
| fail1: |
| del_mc_from_global_list(mci); |
| |
| fail0: |
| mutex_unlock(&mem_ctls_mutex); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups); |
| |
| struct mem_ctl_info *edac_mc_del_mc(struct device *dev) |
| { |
| struct mem_ctl_info *mci; |
| |
| edac_dbg(0, "\n"); |
| |
| mutex_lock(&mem_ctls_mutex); |
| |
| /* find the requested mci struct in the global list */ |
| mci = __find_mci_by_dev(dev); |
| if (mci == NULL) { |
| mutex_unlock(&mem_ctls_mutex); |
| return NULL; |
| } |
| |
| /* mark MCI offline: */ |
| mci->op_state = OP_OFFLINE; |
| |
| if (!del_mc_from_global_list(mci)) |
| edac_mc_owner = NULL; |
| |
| mutex_unlock(&mem_ctls_mutex); |
| |
| if (mci->edac_check) |
| edac_stop_work(&mci->work); |
| |
| /* remove from sysfs */ |
| edac_remove_sysfs_mci_device(mci); |
| |
| edac_printk(KERN_INFO, EDAC_MC, |
| "Removed device %d for %s %s: DEV %s\n", mci->mc_idx, |
| mci->mod_name, mci->ctl_name, edac_dev_name(mci)); |
| |
| return mci; |
| } |
| EXPORT_SYMBOL_GPL(edac_mc_del_mc); |
| |
| static void edac_mc_scrub_block(unsigned long page, unsigned long offset, |
| u32 size) |
| { |
| struct page *pg; |
| void *virt_addr; |
| unsigned long flags = 0; |
| |
| edac_dbg(3, "\n"); |
| |
| /* ECC error page was not in our memory. Ignore it. */ |
| if (!pfn_valid(page)) |
| return; |
| |
| /* Find the actual page structure then map it and fix */ |
| pg = pfn_to_page(page); |
| |
| if (PageHighMem(pg)) |
| local_irq_save(flags); |
| |
| virt_addr = kmap_atomic(pg); |
| |
| /* Perform architecture specific atomic scrub operation */ |
| edac_atomic_scrub(virt_addr + offset, size); |
| |
| /* Unmap and complete */ |
| kunmap_atomic(virt_addr); |
| |
| if (PageHighMem(pg)) |
| local_irq_restore(flags); |
| } |
| |
| /* FIXME - should return -1 */ |
| int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page) |
| { |
| struct csrow_info **csrows = mci->csrows; |
| int row, i, j, n; |
| |
| edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page); |
| row = -1; |
| |
| for (i = 0; i < mci->nr_csrows; i++) { |
| struct csrow_info *csrow = csrows[i]; |
| n = 0; |
| for (j = 0; j < csrow->nr_channels; j++) { |
| struct dimm_info *dimm = csrow->channels[j]->dimm; |
| n += dimm->nr_pages; |
| } |
| if (n == 0) |
| continue; |
| |
| edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n", |
| mci->mc_idx, |
| csrow->first_page, page, csrow->last_page, |
| csrow->page_mask); |
| |
| if ((page >= csrow->first_page) && |
| (page <= csrow->last_page) && |
| ((page & csrow->page_mask) == |
| (csrow->first_page & csrow->page_mask))) { |
| row = i; |
| break; |
| } |
| } |
| |
| if (row == -1) |
| edac_mc_printk(mci, KERN_ERR, |
| "could not look up page error address %lx\n", |
| (unsigned long)page); |
| |
| return row; |
| } |
| EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page); |
| |
| const char *edac_layer_name[] = { |
| [EDAC_MC_LAYER_BRANCH] = "branch", |
| [EDAC_MC_LAYER_CHANNEL] = "channel", |
| [EDAC_MC_LAYER_SLOT] = "slot", |
| [EDAC_MC_LAYER_CHIP_SELECT] = "csrow", |
| [EDAC_MC_LAYER_ALL_MEM] = "memory", |
| }; |
| EXPORT_SYMBOL_GPL(edac_layer_name); |
| |
| static void edac_inc_ce_error(struct mem_ctl_info *mci, |
| bool enable_per_layer_report, |
| const int pos[EDAC_MAX_LAYERS], |
| const u16 count) |
| { |
| int i, index = 0; |
| |
| mci->ce_mc += count; |
| |
| if (!enable_per_layer_report) { |
| mci->ce_noinfo_count += count; |
| return; |
| } |
| |
| for (i = 0; i < mci->n_layers; i++) { |
| if (pos[i] < 0) |
| break; |
| index += pos[i]; |
| mci->ce_per_layer[i][index] += count; |
| |
| if (i < mci->n_layers - 1) |
| index *= mci->layers[i + 1].size; |
| } |
| } |
| |
| static void edac_inc_ue_error(struct mem_ctl_info *mci, |
| bool enable_per_layer_report, |
| const int pos[EDAC_MAX_LAYERS], |
| const u16 count) |
| { |
| int i, index = 0; |
| |
| mci->ue_mc += count; |
| |
| if (!enable_per_layer_report) { |
| mci->ue_noinfo_count += count; |
| return; |
| } |
| |
| for (i = 0; i < mci->n_layers; i++) { |
| if (pos[i] < 0) |
| break; |
| index += pos[i]; |
| mci->ue_per_layer[i][index] += count; |
| |
| if (i < mci->n_layers - 1) |
| index *= mci->layers[i + 1].size; |
| } |
| } |
| |
| static void edac_ce_error(struct mem_ctl_info *mci, |
| const u16 error_count, |
| const int pos[EDAC_MAX_LAYERS], |
| const char *msg, |
| const char *location, |
| const char *label, |
| const char *detail, |
| const char *other_detail, |
| const bool enable_per_layer_report, |
| const unsigned long page_frame_number, |
| const unsigned long offset_in_page, |
| long grain) |
| { |
| unsigned long remapped_page; |
| char *msg_aux = ""; |
| |
| if (*msg) |
| msg_aux = " "; |
| |
| if (edac_mc_get_log_ce()) { |
| if (other_detail && *other_detail) |
| edac_mc_printk(mci, KERN_WARNING, |
| "%d CE %s%son %s (%s %s - %s)\n", |
| error_count, msg, msg_aux, label, |
| location, detail, other_detail); |
| else |
| edac_mc_printk(mci, KERN_WARNING, |
| "%d CE %s%son %s (%s %s)\n", |
| error_count, msg, msg_aux, label, |
| location, detail); |
| } |
| edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count); |
| |
| if (mci->scrub_mode == SCRUB_SW_SRC) { |
| /* |
| * Some memory controllers (called MCs below) can remap |
| * memory so that it is still available at a different |
| * address when PCI devices map into memory. |
| * MC's that can't do this, lose the memory where PCI |
| * devices are mapped. This mapping is MC-dependent |
| * and so we call back into the MC driver for it to |
| * map the MC page to a physical (CPU) page which can |
| * then be mapped to a virtual page - which can then |
| * be scrubbed. |
| */ |
| remapped_page = mci->ctl_page_to_phys ? |
| mci->ctl_page_to_phys(mci, page_frame_number) : |
| page_frame_number; |
| |
| edac_mc_scrub_block(remapped_page, |
| offset_in_page, grain); |
| } |
| } |
| |
| static void edac_ue_error(struct mem_ctl_info *mci, |
| const u16 error_count, |
| const int pos[EDAC_MAX_LAYERS], |
| const char *msg, |
| const char *location, |
| const char *label, |
| const char *detail, |
| const char *other_detail, |
| const bool enable_per_layer_report) |
| { |
| char *msg_aux = ""; |
| |
| if (*msg) |
| msg_aux = " "; |
| |
| if (edac_mc_get_log_ue()) { |
| if (other_detail && *other_detail) |
| edac_mc_printk(mci, KERN_WARNING, |
| "%d UE %s%son %s (%s %s - %s)\n", |
| error_count, msg, msg_aux, label, |
| location, detail, other_detail); |
| else |
| edac_mc_printk(mci, KERN_WARNING, |
| "%d UE %s%son %s (%s %s)\n", |
| error_count, msg, msg_aux, label, |
| location, detail); |
| } |
| |
| if (edac_mc_get_panic_on_ue()) { |
| if (other_detail && *other_detail) |
| panic("UE %s%son %s (%s%s - %s)\n", |
| msg, msg_aux, label, location, detail, other_detail); |
| else |
| panic("UE %s%son %s (%s%s)\n", |
| msg, msg_aux, label, location, detail); |
| } |
| |
| edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count); |
| } |
| |
| void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type, |
| struct mem_ctl_info *mci, |
| struct edac_raw_error_desc *e) |
| { |
| char detail[80]; |
| int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer }; |
| |
| /* Memory type dependent details about the error */ |
| if (type == HW_EVENT_ERR_CORRECTED) { |
| snprintf(detail, sizeof(detail), |
| "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx", |
| e->page_frame_number, e->offset_in_page, |
| e->grain, e->syndrome); |
| edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label, |
| detail, e->other_detail, e->enable_per_layer_report, |
| e->page_frame_number, e->offset_in_page, e->grain); |
| } else { |
| snprintf(detail, sizeof(detail), |
| "page:0x%lx offset:0x%lx grain:%ld", |
| e->page_frame_number, e->offset_in_page, e->grain); |
| |
| edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label, |
| detail, e->other_detail, e->enable_per_layer_report); |
| } |
| |
| |
| } |
| EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error); |
| |
| void edac_mc_handle_error(const enum hw_event_mc_err_type type, |
| struct mem_ctl_info *mci, |
| const u16 error_count, |
| const unsigned long page_frame_number, |
| const unsigned long offset_in_page, |
| const unsigned long syndrome, |
| const int top_layer, |
| const int mid_layer, |
| const int low_layer, |
| const char *msg, |
| const char *other_detail) |
| { |
| char *p; |
| int row = -1, chan = -1; |
| int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer }; |
| int i, n_labels = 0; |
| u8 grain_bits; |
| struct edac_raw_error_desc *e = &mci->error_desc; |
| |
| edac_dbg(3, "MC%d\n", mci->mc_idx); |
| |
| /* Fills the error report buffer */ |
| memset(e, 0, sizeof (*e)); |
| e->error_count = error_count; |
| e->top_layer = top_layer; |
| e->mid_layer = mid_layer; |
| e->low_layer = low_layer; |
| e->page_frame_number = page_frame_number; |
| e->offset_in_page = offset_in_page; |
| e->syndrome = syndrome; |
| e->msg = msg; |
| e->other_detail = other_detail; |
| |
| /* |
| * Check if the event report is consistent and if the memory |
| * location is known. If it is known, enable_per_layer_report will be |
| * true, the DIMM(s) label info will be filled and the per-layer |
| * error counters will be incremented. |
| */ |
| for (i = 0; i < mci->n_layers; i++) { |
| if (pos[i] >= (int)mci->layers[i].size) { |
| |
| edac_mc_printk(mci, KERN_ERR, |
| "INTERNAL ERROR: %s value is out of range (%d >= %d)\n", |
| edac_layer_name[mci->layers[i].type], |
| pos[i], mci->layers[i].size); |
| /* |
| * Instead of just returning it, let's use what's |
| * known about the error. The increment routines and |
| * the DIMM filter logic will do the right thing by |
| * pointing the likely damaged DIMMs. |
| */ |
| pos[i] = -1; |
| } |
| if (pos[i] >= 0) |
| e->enable_per_layer_report = true; |
| } |
| |
| /* |
| * Get the dimm label/grain that applies to the match criteria. |
| * As the error algorithm may not be able to point to just one memory |
| * stick, the logic here will get all possible labels that could |
| * pottentially be affected by the error. |
| * On FB-DIMM memory controllers, for uncorrected errors, it is common |
| * to have only the MC channel and the MC dimm (also called "branch") |
| * but the channel is not known, as the memory is arranged in pairs, |
| * where each memory belongs to a separate channel within the same |
| * branch. |
| */ |
| p = e->label; |
| *p = '\0'; |
| |
| for (i = 0; i < mci->tot_dimms; i++) { |
| struct dimm_info *dimm = mci->dimms[i]; |
| |
| if (top_layer >= 0 && top_layer != dimm->location[0]) |
| continue; |
| if (mid_layer >= 0 && mid_layer != dimm->location[1]) |
| continue; |
| if (low_layer >= 0 && low_layer != dimm->location[2]) |
| continue; |
| |
| /* get the max grain, over the error match range */ |
| if (dimm->grain > e->grain) |
| e->grain = dimm->grain; |
| |
| /* |
| * If the error is memory-controller wide, there's no need to |
| * seek for the affected DIMMs because the whole |
| * channel/memory controller/... may be affected. |
| * Also, don't show errors for empty DIMM slots. |
| */ |
| if (e->enable_per_layer_report && dimm->nr_pages) { |
| if (n_labels >= EDAC_MAX_LABELS) { |
| e->enable_per_layer_report = false; |
| break; |
| } |
| n_labels++; |
| if (p != e->label) { |
| strcpy(p, OTHER_LABEL); |
| p += strlen(OTHER_LABEL); |
| } |
| strcpy(p, dimm->label); |
| p += strlen(p); |
| *p = '\0'; |
| |
| /* |
| * get csrow/channel of the DIMM, in order to allow |
| * incrementing the compat API counters |
| */ |
| edac_dbg(4, "%s csrows map: (%d,%d)\n", |
| mci->csbased ? "rank" : "dimm", |
| dimm->csrow, dimm->cschannel); |
| if (row == -1) |
| row = dimm->csrow; |
| else if (row >= 0 && row != dimm->csrow) |
| row = -2; |
| |
| if (chan == -1) |
| chan = dimm->cschannel; |
| else if (chan >= 0 && chan != dimm->cschannel) |
| chan = -2; |
| } |
| } |
| |
| if (!e->enable_per_layer_report) { |
| strcpy(e->label, "any memory"); |
| } else { |
| edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan); |
| if (p == e->label) |
| strcpy(e->label, "unknown memory"); |
| if (type == HW_EVENT_ERR_CORRECTED) { |
| if (row >= 0) { |
| mci->csrows[row]->ce_count += error_count; |
| if (chan >= 0) |
| mci->csrows[row]->channels[chan]->ce_count += error_count; |
| } |
| } else |
| if (row >= 0) |
| mci->csrows[row]->ue_count += error_count; |
| } |
| |
| /* Fill the RAM location data */ |
| p = e->location; |
| |
| for (i = 0; i < mci->n_layers; i++) { |
| if (pos[i] < 0) |
| continue; |
| |
| p += sprintf(p, "%s:%d ", |
| edac_layer_name[mci->layers[i].type], |
| pos[i]); |
| } |
| if (p > e->location) |
| *(p - 1) = '\0'; |
| |
| /* Report the error via the trace interface */ |
| grain_bits = fls_long(e->grain) + 1; |
| trace_mc_event(type, e->msg, e->label, e->error_count, |
| mci->mc_idx, e->top_layer, e->mid_layer, e->low_layer, |
| (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page, |
| grain_bits, e->syndrome, e->other_detail); |
| |
| edac_raw_mc_handle_error(type, mci, e); |
| } |
| EXPORT_SYMBOL_GPL(edac_mc_handle_error); |