| /* |
| * EDAC driver for Intel(R) Xeon(R) Skylake processors |
| * Copyright (c) 2016, Intel Corporation. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms and conditions of the GNU General Public License, |
| * version 2, as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/pci.h> |
| #include <linux/pci_ids.h> |
| #include <linux/slab.h> |
| #include <linux/delay.h> |
| #include <linux/edac.h> |
| #include <linux/mmzone.h> |
| #include <linux/smp.h> |
| #include <linux/bitmap.h> |
| #include <linux/math64.h> |
| #include <linux/mod_devicetable.h> |
| #include <asm/cpu_device_id.h> |
| #include <asm/intel-family.h> |
| #include <asm/processor.h> |
| #include <asm/mce.h> |
| |
| #include "edac_module.h" |
| |
| #define SKX_REVISION " Ver: 1.0 " |
| |
| /* |
| * Debug macros |
| */ |
| #define skx_printk(level, fmt, arg...) \ |
| edac_printk(level, "skx", fmt, ##arg) |
| |
| #define skx_mc_printk(mci, level, fmt, arg...) \ |
| edac_mc_chipset_printk(mci, level, "skx", fmt, ##arg) |
| |
| /* |
| * Get a bit field at register value <v>, from bit <lo> to bit <hi> |
| */ |
| #define GET_BITFIELD(v, lo, hi) \ |
| (((v) & GENMASK_ULL((hi), (lo))) >> (lo)) |
| |
| static LIST_HEAD(skx_edac_list); |
| |
| static u64 skx_tolm, skx_tohm; |
| |
| #define NUM_IMC 2 /* memory controllers per socket */ |
| #define NUM_CHANNELS 3 /* channels per memory controller */ |
| #define NUM_DIMMS 2 /* Max DIMMS per channel */ |
| |
| #define MASK26 0x3FFFFFF /* Mask for 2^26 */ |
| #define MASK29 0x1FFFFFFF /* Mask for 2^29 */ |
| |
| /* |
| * Each cpu socket contains some pci devices that provide global |
| * information, and also some that are local to each of the two |
| * memory controllers on the die. |
| */ |
| struct skx_dev { |
| struct list_head list; |
| u8 bus[4]; |
| struct pci_dev *sad_all; |
| struct pci_dev *util_all; |
| u32 mcroute; |
| struct skx_imc { |
| struct mem_ctl_info *mci; |
| u8 mc; /* system wide mc# */ |
| u8 lmc; /* socket relative mc# */ |
| u8 src_id, node_id; |
| struct skx_channel { |
| struct pci_dev *cdev; |
| struct skx_dimm { |
| u8 close_pg; |
| u8 bank_xor_enable; |
| u8 fine_grain_bank; |
| u8 rowbits; |
| u8 colbits; |
| } dimms[NUM_DIMMS]; |
| } chan[NUM_CHANNELS]; |
| } imc[NUM_IMC]; |
| }; |
| static int skx_num_sockets; |
| |
| struct skx_pvt { |
| struct skx_imc *imc; |
| }; |
| |
| struct decoded_addr { |
| struct skx_dev *dev; |
| u64 addr; |
| int socket; |
| int imc; |
| int channel; |
| u64 chan_addr; |
| int sktways; |
| int chanways; |
| int dimm; |
| int rank; |
| int channel_rank; |
| u64 rank_address; |
| int row; |
| int column; |
| int bank_address; |
| int bank_group; |
| }; |
| |
| static struct skx_dev *get_skx_dev(u8 bus, u8 idx) |
| { |
| struct skx_dev *d; |
| |
| list_for_each_entry(d, &skx_edac_list, list) { |
| if (d->bus[idx] == bus) |
| return d; |
| } |
| |
| return NULL; |
| } |
| |
| enum munittype { |
| CHAN0, CHAN1, CHAN2, SAD_ALL, UTIL_ALL, SAD |
| }; |
| |
| struct munit { |
| u16 did; |
| u16 devfn[NUM_IMC]; |
| u8 busidx; |
| u8 per_socket; |
| enum munittype mtype; |
| }; |
| |
| /* |
| * List of PCI device ids that we need together with some device |
| * number and function numbers to tell which memory controller the |
| * device belongs to. |
| */ |
| static const struct munit skx_all_munits[] = { |
| { 0x2054, { }, 1, 1, SAD_ALL }, |
| { 0x2055, { }, 1, 1, UTIL_ALL }, |
| { 0x2040, { PCI_DEVFN(10, 0), PCI_DEVFN(12, 0) }, 2, 2, CHAN0 }, |
| { 0x2044, { PCI_DEVFN(10, 4), PCI_DEVFN(12, 4) }, 2, 2, CHAN1 }, |
| { 0x2048, { PCI_DEVFN(11, 0), PCI_DEVFN(13, 0) }, 2, 2, CHAN2 }, |
| { 0x208e, { }, 1, 0, SAD }, |
| { } |
| }; |
| |
| /* |
| * We use the per-socket device 0x2016 to count how many sockets are present, |
| * and to detemine which PCI buses are associated with each socket. Allocate |
| * and build the full list of all the skx_dev structures that we need here. |
| */ |
| static int get_all_bus_mappings(void) |
| { |
| struct pci_dev *pdev, *prev; |
| struct skx_dev *d; |
| u32 reg; |
| int ndev = 0; |
| |
| prev = NULL; |
| for (;;) { |
| pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x2016, prev); |
| if (!pdev) |
| break; |
| ndev++; |
| d = kzalloc(sizeof(*d), GFP_KERNEL); |
| if (!d) { |
| pci_dev_put(pdev); |
| return -ENOMEM; |
| } |
| pci_read_config_dword(pdev, 0xCC, ®); |
| d->bus[0] = GET_BITFIELD(reg, 0, 7); |
| d->bus[1] = GET_BITFIELD(reg, 8, 15); |
| d->bus[2] = GET_BITFIELD(reg, 16, 23); |
| d->bus[3] = GET_BITFIELD(reg, 24, 31); |
| edac_dbg(2, "busses: %x, %x, %x, %x\n", |
| d->bus[0], d->bus[1], d->bus[2], d->bus[3]); |
| list_add_tail(&d->list, &skx_edac_list); |
| skx_num_sockets++; |
| prev = pdev; |
| } |
| |
| return ndev; |
| } |
| |
| static int get_all_munits(const struct munit *m) |
| { |
| struct pci_dev *pdev, *prev; |
| struct skx_dev *d; |
| u32 reg; |
| int i = 0, ndev = 0; |
| |
| prev = NULL; |
| for (;;) { |
| pdev = pci_get_device(PCI_VENDOR_ID_INTEL, m->did, prev); |
| if (!pdev) |
| break; |
| ndev++; |
| if (m->per_socket == NUM_IMC) { |
| for (i = 0; i < NUM_IMC; i++) |
| if (m->devfn[i] == pdev->devfn) |
| break; |
| if (i == NUM_IMC) |
| goto fail; |
| } |
| d = get_skx_dev(pdev->bus->number, m->busidx); |
| if (!d) |
| goto fail; |
| |
| /* Be sure that the device is enabled */ |
| if (unlikely(pci_enable_device(pdev) < 0)) { |
| skx_printk(KERN_ERR, |
| "Couldn't enable %04x:%04x\n", PCI_VENDOR_ID_INTEL, m->did); |
| goto fail; |
| } |
| |
| switch (m->mtype) { |
| case CHAN0: case CHAN1: case CHAN2: |
| pci_dev_get(pdev); |
| d->imc[i].chan[m->mtype].cdev = pdev; |
| break; |
| case SAD_ALL: |
| pci_dev_get(pdev); |
| d->sad_all = pdev; |
| break; |
| case UTIL_ALL: |
| pci_dev_get(pdev); |
| d->util_all = pdev; |
| break; |
| case SAD: |
| /* |
| * one of these devices per core, including cores |
| * that don't exist on this SKU. Ignore any that |
| * read a route table of zero, make sure all the |
| * non-zero values match. |
| */ |
| pci_read_config_dword(pdev, 0xB4, ®); |
| if (reg != 0) { |
| if (d->mcroute == 0) |
| d->mcroute = reg; |
| else if (d->mcroute != reg) { |
| skx_printk(KERN_ERR, |
| "mcroute mismatch\n"); |
| goto fail; |
| } |
| } |
| ndev--; |
| break; |
| } |
| |
| prev = pdev; |
| } |
| |
| return ndev; |
| fail: |
| pci_dev_put(pdev); |
| return -ENODEV; |
| } |
| |
| static const struct x86_cpu_id skx_cpuids[] = { |
| { X86_VENDOR_INTEL, 6, INTEL_FAM6_SKYLAKE_X, 0, 0 }, |
| { } |
| }; |
| MODULE_DEVICE_TABLE(x86cpu, skx_cpuids); |
| |
| static u8 get_src_id(struct skx_dev *d) |
| { |
| u32 reg; |
| |
| pci_read_config_dword(d->util_all, 0xF0, ®); |
| |
| return GET_BITFIELD(reg, 12, 14); |
| } |
| |
| static u8 skx_get_node_id(struct skx_dev *d) |
| { |
| u32 reg; |
| |
| pci_read_config_dword(d->util_all, 0xF4, ®); |
| |
| return GET_BITFIELD(reg, 0, 2); |
| } |
| |
| static int get_dimm_attr(u32 reg, int lobit, int hibit, int add, int minval, |
| int maxval, char *name) |
| { |
| u32 val = GET_BITFIELD(reg, lobit, hibit); |
| |
| if (val < minval || val > maxval) { |
| edac_dbg(2, "bad %s = %d (raw=%x)\n", name, val, reg); |
| return -EINVAL; |
| } |
| return val + add; |
| } |
| |
| #define IS_DIMM_PRESENT(mtr) GET_BITFIELD((mtr), 15, 15) |
| |
| #define numrank(reg) get_dimm_attr((reg), 12, 13, 0, 1, 2, "ranks") |
| #define numrow(reg) get_dimm_attr((reg), 2, 4, 12, 1, 6, "rows") |
| #define numcol(reg) get_dimm_attr((reg), 0, 1, 10, 0, 2, "cols") |
| |
| static int get_width(u32 mtr) |
| { |
| switch (GET_BITFIELD(mtr, 8, 9)) { |
| case 0: |
| return DEV_X4; |
| case 1: |
| return DEV_X8; |
| case 2: |
| return DEV_X16; |
| } |
| return DEV_UNKNOWN; |
| } |
| |
| static int skx_get_hi_lo(void) |
| { |
| struct pci_dev *pdev; |
| u32 reg; |
| |
| pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x2034, NULL); |
| if (!pdev) { |
| edac_dbg(0, "Can't get tolm/tohm\n"); |
| return -ENODEV; |
| } |
| |
| pci_read_config_dword(pdev, 0xD0, ®); |
| skx_tolm = reg; |
| pci_read_config_dword(pdev, 0xD4, ®); |
| skx_tohm = reg; |
| pci_read_config_dword(pdev, 0xD8, ®); |
| skx_tohm |= (u64)reg << 32; |
| |
| pci_dev_put(pdev); |
| edac_dbg(2, "tolm=%llx tohm=%llx\n", skx_tolm, skx_tohm); |
| |
| return 0; |
| } |
| |
| static int get_dimm_info(u32 mtr, u32 amap, struct dimm_info *dimm, |
| struct skx_imc *imc, int chan, int dimmno) |
| { |
| int banks = 16, ranks, rows, cols, npages; |
| u64 size; |
| |
| if (!IS_DIMM_PRESENT(mtr)) |
| return 0; |
| ranks = numrank(mtr); |
| rows = numrow(mtr); |
| cols = numcol(mtr); |
| |
| /* |
| * Compute size in 8-byte (2^3) words, then shift to MiB (2^20) |
| */ |
| size = ((1ull << (rows + cols + ranks)) * banks) >> (20 - 3); |
| npages = MiB_TO_PAGES(size); |
| |
| edac_dbg(0, "mc#%d: channel %d, dimm %d, %lld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n", |
| imc->mc, chan, dimmno, size, npages, |
| banks, ranks, rows, cols); |
| |
| imc->chan[chan].dimms[dimmno].close_pg = GET_BITFIELD(mtr, 0, 0); |
| imc->chan[chan].dimms[dimmno].bank_xor_enable = GET_BITFIELD(mtr, 9, 9); |
| imc->chan[chan].dimms[dimmno].fine_grain_bank = GET_BITFIELD(amap, 0, 0); |
| imc->chan[chan].dimms[dimmno].rowbits = rows; |
| imc->chan[chan].dimms[dimmno].colbits = cols; |
| |
| dimm->nr_pages = npages; |
| dimm->grain = 32; |
| dimm->dtype = get_width(mtr); |
| dimm->mtype = MEM_DDR4; |
| dimm->edac_mode = EDAC_SECDED; /* likely better than this */ |
| snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u", |
| imc->src_id, imc->lmc, chan, dimmno); |
| |
| return 1; |
| } |
| |
| #define SKX_GET_MTMTR(dev, reg) \ |
| pci_read_config_dword((dev), 0x87c, ®) |
| |
| static bool skx_check_ecc(struct pci_dev *pdev) |
| { |
| u32 mtmtr; |
| |
| SKX_GET_MTMTR(pdev, mtmtr); |
| |
| return !!GET_BITFIELD(mtmtr, 2, 2); |
| } |
| |
| static int skx_get_dimm_config(struct mem_ctl_info *mci) |
| { |
| struct skx_pvt *pvt = mci->pvt_info; |
| struct skx_imc *imc = pvt->imc; |
| struct dimm_info *dimm; |
| int i, j; |
| u32 mtr, amap; |
| int ndimms; |
| |
| for (i = 0; i < NUM_CHANNELS; i++) { |
| ndimms = 0; |
| pci_read_config_dword(imc->chan[i].cdev, 0x8C, &amap); |
| for (j = 0; j < NUM_DIMMS; j++) { |
| dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, |
| mci->n_layers, i, j, 0); |
| pci_read_config_dword(imc->chan[i].cdev, |
| 0x80 + 4*j, &mtr); |
| ndimms += get_dimm_info(mtr, amap, dimm, imc, i, j); |
| } |
| if (ndimms && !skx_check_ecc(imc->chan[0].cdev)) { |
| skx_printk(KERN_ERR, "ECC is disabled on imc %d\n", imc->mc); |
| return -ENODEV; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void skx_unregister_mci(struct skx_imc *imc) |
| { |
| struct mem_ctl_info *mci = imc->mci; |
| |
| if (!mci) |
| return; |
| |
| edac_dbg(0, "MC%d: mci = %p\n", imc->mc, mci); |
| |
| /* Remove MC sysfs nodes */ |
| edac_mc_del_mc(mci->pdev); |
| |
| edac_dbg(1, "%s: free mci struct\n", mci->ctl_name); |
| kfree(mci->ctl_name); |
| edac_mc_free(mci); |
| } |
| |
| static int skx_register_mci(struct skx_imc *imc) |
| { |
| struct mem_ctl_info *mci; |
| struct edac_mc_layer layers[2]; |
| struct pci_dev *pdev = imc->chan[0].cdev; |
| struct skx_pvt *pvt; |
| int rc; |
| |
| /* allocate a new MC control structure */ |
| layers[0].type = EDAC_MC_LAYER_CHANNEL; |
| layers[0].size = NUM_CHANNELS; |
| layers[0].is_virt_csrow = false; |
| layers[1].type = EDAC_MC_LAYER_SLOT; |
| layers[1].size = NUM_DIMMS; |
| layers[1].is_virt_csrow = true; |
| mci = edac_mc_alloc(imc->mc, ARRAY_SIZE(layers), layers, |
| sizeof(struct skx_pvt)); |
| |
| if (unlikely(!mci)) |
| return -ENOMEM; |
| |
| edac_dbg(0, "MC#%d: mci = %p\n", imc->mc, mci); |
| |
| /* Associate skx_dev and mci for future usage */ |
| imc->mci = mci; |
| pvt = mci->pvt_info; |
| pvt->imc = imc; |
| |
| mci->ctl_name = kasprintf(GFP_KERNEL, "Skylake Socket#%d IMC#%d", |
| imc->node_id, imc->lmc); |
| mci->mtype_cap = MEM_FLAG_DDR4; |
| mci->edac_ctl_cap = EDAC_FLAG_NONE; |
| mci->edac_cap = EDAC_FLAG_NONE; |
| mci->mod_name = "skx_edac.c"; |
| mci->dev_name = pci_name(imc->chan[0].cdev); |
| mci->mod_ver = SKX_REVISION; |
| mci->ctl_page_to_phys = NULL; |
| |
| rc = skx_get_dimm_config(mci); |
| if (rc < 0) |
| goto fail; |
| |
| /* record ptr to the generic device */ |
| mci->pdev = &pdev->dev; |
| |
| /* add this new MC control structure to EDAC's list of MCs */ |
| if (unlikely(edac_mc_add_mc(mci))) { |
| edac_dbg(0, "MC: failed edac_mc_add_mc()\n"); |
| rc = -EINVAL; |
| goto fail; |
| } |
| |
| return 0; |
| |
| fail: |
| kfree(mci->ctl_name); |
| edac_mc_free(mci); |
| imc->mci = NULL; |
| return rc; |
| } |
| |
| #define SKX_MAX_SAD 24 |
| |
| #define SKX_GET_SAD(d, i, reg) \ |
| pci_read_config_dword((d)->sad_all, 0x60 + 8 * (i), ®) |
| #define SKX_GET_ILV(d, i, reg) \ |
| pci_read_config_dword((d)->sad_all, 0x64 + 8 * (i), ®) |
| |
| #define SKX_SAD_MOD3MODE(sad) GET_BITFIELD((sad), 30, 31) |
| #define SKX_SAD_MOD3(sad) GET_BITFIELD((sad), 27, 27) |
| #define SKX_SAD_LIMIT(sad) (((u64)GET_BITFIELD((sad), 7, 26) << 26) | MASK26) |
| #define SKX_SAD_MOD3ASMOD2(sad) GET_BITFIELD((sad), 5, 6) |
| #define SKX_SAD_ATTR(sad) GET_BITFIELD((sad), 3, 4) |
| #define SKX_SAD_INTERLEAVE(sad) GET_BITFIELD((sad), 1, 2) |
| #define SKX_SAD_ENABLE(sad) GET_BITFIELD((sad), 0, 0) |
| |
| #define SKX_ILV_REMOTE(tgt) (((tgt) & 8) == 0) |
| #define SKX_ILV_TARGET(tgt) ((tgt) & 7) |
| |
| static bool skx_sad_decode(struct decoded_addr *res) |
| { |
| struct skx_dev *d = list_first_entry(&skx_edac_list, typeof(*d), list); |
| u64 addr = res->addr; |
| int i, idx, tgt, lchan, shift; |
| u32 sad, ilv; |
| u64 limit, prev_limit; |
| int remote = 0; |
| |
| /* Simple sanity check for I/O space or out of range */ |
| if (addr >= skx_tohm || (addr >= skx_tolm && addr < BIT_ULL(32))) { |
| edac_dbg(0, "Address %llx out of range\n", addr); |
| return false; |
| } |
| |
| restart: |
| prev_limit = 0; |
| for (i = 0; i < SKX_MAX_SAD; i++) { |
| SKX_GET_SAD(d, i, sad); |
| limit = SKX_SAD_LIMIT(sad); |
| if (SKX_SAD_ENABLE(sad)) { |
| if (addr >= prev_limit && addr <= limit) |
| goto sad_found; |
| } |
| prev_limit = limit + 1; |
| } |
| edac_dbg(0, "No SAD entry for %llx\n", addr); |
| return false; |
| |
| sad_found: |
| SKX_GET_ILV(d, i, ilv); |
| |
| switch (SKX_SAD_INTERLEAVE(sad)) { |
| case 0: |
| idx = GET_BITFIELD(addr, 6, 8); |
| break; |
| case 1: |
| idx = GET_BITFIELD(addr, 8, 10); |
| break; |
| case 2: |
| idx = GET_BITFIELD(addr, 12, 14); |
| break; |
| case 3: |
| idx = GET_BITFIELD(addr, 30, 32); |
| break; |
| } |
| |
| tgt = GET_BITFIELD(ilv, 4 * idx, 4 * idx + 3); |
| |
| /* If point to another node, find it and start over */ |
| if (SKX_ILV_REMOTE(tgt)) { |
| if (remote) { |
| edac_dbg(0, "Double remote!\n"); |
| return false; |
| } |
| remote = 1; |
| list_for_each_entry(d, &skx_edac_list, list) { |
| if (d->imc[0].src_id == SKX_ILV_TARGET(tgt)) |
| goto restart; |
| } |
| edac_dbg(0, "Can't find node %d\n", SKX_ILV_TARGET(tgt)); |
| return false; |
| } |
| |
| if (SKX_SAD_MOD3(sad) == 0) |
| lchan = SKX_ILV_TARGET(tgt); |
| else { |
| switch (SKX_SAD_MOD3MODE(sad)) { |
| case 0: |
| shift = 6; |
| break; |
| case 1: |
| shift = 8; |
| break; |
| case 2: |
| shift = 12; |
| break; |
| default: |
| edac_dbg(0, "illegal mod3mode\n"); |
| return false; |
| } |
| switch (SKX_SAD_MOD3ASMOD2(sad)) { |
| case 0: |
| lchan = (addr >> shift) % 3; |
| break; |
| case 1: |
| lchan = (addr >> shift) % 2; |
| break; |
| case 2: |
| lchan = (addr >> shift) % 2; |
| lchan = (lchan << 1) | ~lchan; |
| break; |
| case 3: |
| lchan = ((addr >> shift) % 2) << 1; |
| break; |
| } |
| lchan = (lchan << 1) | (SKX_ILV_TARGET(tgt) & 1); |
| } |
| |
| res->dev = d; |
| res->socket = d->imc[0].src_id; |
| res->imc = GET_BITFIELD(d->mcroute, lchan * 3, lchan * 3 + 2); |
| res->channel = GET_BITFIELD(d->mcroute, lchan * 2 + 18, lchan * 2 + 19); |
| |
| edac_dbg(2, "%llx: socket=%d imc=%d channel=%d\n", |
| res->addr, res->socket, res->imc, res->channel); |
| return true; |
| } |
| |
| #define SKX_MAX_TAD 8 |
| |
| #define SKX_GET_TADBASE(d, mc, i, reg) \ |
| pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x850 + 4 * (i), ®) |
| #define SKX_GET_TADWAYNESS(d, mc, i, reg) \ |
| pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x880 + 4 * (i), ®) |
| #define SKX_GET_TADCHNILVOFFSET(d, mc, ch, i, reg) \ |
| pci_read_config_dword((d)->imc[mc].chan[ch].cdev, 0x90 + 4 * (i), ®) |
| |
| #define SKX_TAD_BASE(b) ((u64)GET_BITFIELD((b), 12, 31) << 26) |
| #define SKX_TAD_SKT_GRAN(b) GET_BITFIELD((b), 4, 5) |
| #define SKX_TAD_CHN_GRAN(b) GET_BITFIELD((b), 6, 7) |
| #define SKX_TAD_LIMIT(b) (((u64)GET_BITFIELD((b), 12, 31) << 26) | MASK26) |
| #define SKX_TAD_OFFSET(b) ((u64)GET_BITFIELD((b), 4, 23) << 26) |
| #define SKX_TAD_SKTWAYS(b) (1 << GET_BITFIELD((b), 10, 11)) |
| #define SKX_TAD_CHNWAYS(b) (GET_BITFIELD((b), 8, 9) + 1) |
| |
| /* which bit used for both socket and channel interleave */ |
| static int skx_granularity[] = { 6, 8, 12, 30 }; |
| |
| static u64 skx_do_interleave(u64 addr, int shift, int ways, u64 lowbits) |
| { |
| addr >>= shift; |
| addr /= ways; |
| addr <<= shift; |
| |
| return addr | (lowbits & ((1ull << shift) - 1)); |
| } |
| |
| static bool skx_tad_decode(struct decoded_addr *res) |
| { |
| int i; |
| u32 base, wayness, chnilvoffset; |
| int skt_interleave_bit, chn_interleave_bit; |
| u64 channel_addr; |
| |
| for (i = 0; i < SKX_MAX_TAD; i++) { |
| SKX_GET_TADBASE(res->dev, res->imc, i, base); |
| SKX_GET_TADWAYNESS(res->dev, res->imc, i, wayness); |
| if (SKX_TAD_BASE(base) <= res->addr && res->addr <= SKX_TAD_LIMIT(wayness)) |
| goto tad_found; |
| } |
| edac_dbg(0, "No TAD entry for %llx\n", res->addr); |
| return false; |
| |
| tad_found: |
| res->sktways = SKX_TAD_SKTWAYS(wayness); |
| res->chanways = SKX_TAD_CHNWAYS(wayness); |
| skt_interleave_bit = skx_granularity[SKX_TAD_SKT_GRAN(base)]; |
| chn_interleave_bit = skx_granularity[SKX_TAD_CHN_GRAN(base)]; |
| |
| SKX_GET_TADCHNILVOFFSET(res->dev, res->imc, res->channel, i, chnilvoffset); |
| channel_addr = res->addr - SKX_TAD_OFFSET(chnilvoffset); |
| |
| if (res->chanways == 3 && skt_interleave_bit > chn_interleave_bit) { |
| /* Must handle channel first, then socket */ |
| channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit, |
| res->chanways, channel_addr); |
| channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit, |
| res->sktways, channel_addr); |
| } else { |
| /* Handle socket then channel. Preserve low bits from original address */ |
| channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit, |
| res->sktways, res->addr); |
| channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit, |
| res->chanways, res->addr); |
| } |
| |
| res->chan_addr = channel_addr; |
| |
| edac_dbg(2, "%llx: chan_addr=%llx sktways=%d chanways=%d\n", |
| res->addr, res->chan_addr, res->sktways, res->chanways); |
| return true; |
| } |
| |
| #define SKX_MAX_RIR 4 |
| |
| #define SKX_GET_RIRWAYNESS(d, mc, ch, i, reg) \ |
| pci_read_config_dword((d)->imc[mc].chan[ch].cdev, \ |
| 0x108 + 4 * (i), ®) |
| #define SKX_GET_RIRILV(d, mc, ch, idx, i, reg) \ |
| pci_read_config_dword((d)->imc[mc].chan[ch].cdev, \ |
| 0x120 + 16 * idx + 4 * (i), ®) |
| |
| #define SKX_RIR_VALID(b) GET_BITFIELD((b), 31, 31) |
| #define SKX_RIR_LIMIT(b) (((u64)GET_BITFIELD((b), 1, 11) << 29) | MASK29) |
| #define SKX_RIR_WAYS(b) (1 << GET_BITFIELD((b), 28, 29)) |
| #define SKX_RIR_CHAN_RANK(b) GET_BITFIELD((b), 16, 19) |
| #define SKX_RIR_OFFSET(b) ((u64)(GET_BITFIELD((b), 2, 15) << 26)) |
| |
| static bool skx_rir_decode(struct decoded_addr *res) |
| { |
| int i, idx, chan_rank; |
| int shift; |
| u32 rirway, rirlv; |
| u64 rank_addr, prev_limit = 0, limit; |
| |
| if (res->dev->imc[res->imc].chan[res->channel].dimms[0].close_pg) |
| shift = 6; |
| else |
| shift = 13; |
| |
| for (i = 0; i < SKX_MAX_RIR; i++) { |
| SKX_GET_RIRWAYNESS(res->dev, res->imc, res->channel, i, rirway); |
| limit = SKX_RIR_LIMIT(rirway); |
| if (SKX_RIR_VALID(rirway)) { |
| if (prev_limit <= res->chan_addr && |
| res->chan_addr <= limit) |
| goto rir_found; |
| } |
| prev_limit = limit; |
| } |
| edac_dbg(0, "No RIR entry for %llx\n", res->addr); |
| return false; |
| |
| rir_found: |
| rank_addr = res->chan_addr >> shift; |
| rank_addr /= SKX_RIR_WAYS(rirway); |
| rank_addr <<= shift; |
| rank_addr |= res->chan_addr & GENMASK_ULL(shift - 1, 0); |
| |
| res->rank_address = rank_addr; |
| idx = (res->chan_addr >> shift) % SKX_RIR_WAYS(rirway); |
| |
| SKX_GET_RIRILV(res->dev, res->imc, res->channel, idx, i, rirlv); |
| res->rank_address = rank_addr - SKX_RIR_OFFSET(rirlv); |
| chan_rank = SKX_RIR_CHAN_RANK(rirlv); |
| res->channel_rank = chan_rank; |
| res->dimm = chan_rank / 4; |
| res->rank = chan_rank % 4; |
| |
| edac_dbg(2, "%llx: dimm=%d rank=%d chan_rank=%d rank_addr=%llx\n", |
| res->addr, res->dimm, res->rank, |
| res->channel_rank, res->rank_address); |
| return true; |
| } |
| |
| static u8 skx_close_row[] = { |
| 15, 16, 17, 18, 20, 21, 22, 28, 10, 11, 12, 13, 29, 30, 31, 32, 33 |
| }; |
| static u8 skx_close_column[] = { |
| 3, 4, 5, 14, 19, 23, 24, 25, 26, 27 |
| }; |
| static u8 skx_open_row[] = { |
| 14, 15, 16, 20, 28, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33 |
| }; |
| static u8 skx_open_column[] = { |
| 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 |
| }; |
| static u8 skx_open_fine_column[] = { |
| 3, 4, 5, 7, 8, 9, 10, 11, 12, 13 |
| }; |
| |
| static int skx_bits(u64 addr, int nbits, u8 *bits) |
| { |
| int i, res = 0; |
| |
| for (i = 0; i < nbits; i++) |
| res |= ((addr >> bits[i]) & 1) << i; |
| return res; |
| } |
| |
| static int skx_bank_bits(u64 addr, int b0, int b1, int do_xor, int x0, int x1) |
| { |
| int ret = GET_BITFIELD(addr, b0, b0) | (GET_BITFIELD(addr, b1, b1) << 1); |
| |
| if (do_xor) |
| ret ^= GET_BITFIELD(addr, x0, x0) | (GET_BITFIELD(addr, x1, x1) << 1); |
| |
| return ret; |
| } |
| |
| static bool skx_mad_decode(struct decoded_addr *r) |
| { |
| struct skx_dimm *dimm = &r->dev->imc[r->imc].chan[r->channel].dimms[r->dimm]; |
| int bg0 = dimm->fine_grain_bank ? 6 : 13; |
| |
| if (dimm->close_pg) { |
| r->row = skx_bits(r->rank_address, dimm->rowbits, skx_close_row); |
| r->column = skx_bits(r->rank_address, dimm->colbits, skx_close_column); |
| r->column |= 0x400; /* C10 is autoprecharge, always set */ |
| r->bank_address = skx_bank_bits(r->rank_address, 8, 9, dimm->bank_xor_enable, 22, 28); |
| r->bank_group = skx_bank_bits(r->rank_address, 6, 7, dimm->bank_xor_enable, 20, 21); |
| } else { |
| r->row = skx_bits(r->rank_address, dimm->rowbits, skx_open_row); |
| if (dimm->fine_grain_bank) |
| r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_fine_column); |
| else |
| r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_column); |
| r->bank_address = skx_bank_bits(r->rank_address, 18, 19, dimm->bank_xor_enable, 22, 23); |
| r->bank_group = skx_bank_bits(r->rank_address, bg0, 17, dimm->bank_xor_enable, 20, 21); |
| } |
| r->row &= (1u << dimm->rowbits) - 1; |
| |
| edac_dbg(2, "%llx: row=%x col=%x bank_addr=%d bank_group=%d\n", |
| r->addr, r->row, r->column, r->bank_address, |
| r->bank_group); |
| return true; |
| } |
| |
| static bool skx_decode(struct decoded_addr *res) |
| { |
| |
| return skx_sad_decode(res) && skx_tad_decode(res) && |
| skx_rir_decode(res) && skx_mad_decode(res); |
| } |
| |
| #ifdef CONFIG_EDAC_DEBUG |
| /* |
| * Debug feature. Make /sys/kernel/debug/skx_edac_test/addr. |
| * Write an address to this file to exercise the address decode |
| * logic in this driver. |
| */ |
| static struct dentry *skx_test; |
| static u64 skx_fake_addr; |
| |
| static int debugfs_u64_set(void *data, u64 val) |
| { |
| struct decoded_addr res; |
| |
| res.addr = val; |
| skx_decode(&res); |
| |
| return 0; |
| } |
| |
| DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n"); |
| |
| static struct dentry *mydebugfs_create(const char *name, umode_t mode, |
| struct dentry *parent, u64 *value) |
| { |
| return debugfs_create_file(name, mode, parent, value, &fops_u64_wo); |
| } |
| |
| static void setup_skx_debug(void) |
| { |
| skx_test = debugfs_create_dir("skx_edac_test", NULL); |
| mydebugfs_create("addr", S_IWUSR, skx_test, &skx_fake_addr); |
| } |
| |
| static void teardown_skx_debug(void) |
| { |
| debugfs_remove_recursive(skx_test); |
| } |
| #else |
| static void setup_skx_debug(void) |
| { |
| } |
| |
| static void teardown_skx_debug(void) |
| { |
| } |
| #endif /*CONFIG_EDAC_DEBUG*/ |
| |
| static void skx_mce_output_error(struct mem_ctl_info *mci, |
| const struct mce *m, |
| struct decoded_addr *res) |
| { |
| enum hw_event_mc_err_type tp_event; |
| char *type, *optype, msg[256]; |
| bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0); |
| bool overflow = GET_BITFIELD(m->status, 62, 62); |
| bool uncorrected_error = GET_BITFIELD(m->status, 61, 61); |
| bool recoverable; |
| u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52); |
| u32 mscod = GET_BITFIELD(m->status, 16, 31); |
| u32 errcode = GET_BITFIELD(m->status, 0, 15); |
| u32 optypenum = GET_BITFIELD(m->status, 4, 6); |
| |
| recoverable = GET_BITFIELD(m->status, 56, 56); |
| |
| if (uncorrected_error) { |
| if (ripv) { |
| type = "FATAL"; |
| tp_event = HW_EVENT_ERR_FATAL; |
| } else { |
| type = "NON_FATAL"; |
| tp_event = HW_EVENT_ERR_UNCORRECTED; |
| } |
| } else { |
| type = "CORRECTED"; |
| tp_event = HW_EVENT_ERR_CORRECTED; |
| } |
| |
| /* |
| * According with Table 15-9 of the Intel Architecture spec vol 3A, |
| * memory errors should fit in this mask: |
| * 000f 0000 1mmm cccc (binary) |
| * where: |
| * f = Correction Report Filtering Bit. If 1, subsequent errors |
| * won't be shown |
| * mmm = error type |
| * cccc = channel |
| * If the mask doesn't match, report an error to the parsing logic |
| */ |
| if (!((errcode & 0xef80) == 0x80)) { |
| optype = "Can't parse: it is not a mem"; |
| } else { |
| switch (optypenum) { |
| case 0: |
| optype = "generic undef request error"; |
| break; |
| case 1: |
| optype = "memory read error"; |
| break; |
| case 2: |
| optype = "memory write error"; |
| break; |
| case 3: |
| optype = "addr/cmd error"; |
| break; |
| case 4: |
| optype = "memory scrubbing error"; |
| break; |
| default: |
| optype = "reserved"; |
| break; |
| } |
| } |
| |
| snprintf(msg, sizeof(msg), |
| "%s%s err_code:%04x:%04x socket:%d imc:%d rank:%d bg:%d ba:%d row:%x col:%x", |
| overflow ? " OVERFLOW" : "", |
| (uncorrected_error && recoverable) ? " recoverable" : "", |
| mscod, errcode, |
| res->socket, res->imc, res->rank, |
| res->bank_group, res->bank_address, res->row, res->column); |
| |
| edac_dbg(0, "%s\n", msg); |
| |
| /* Call the helper to output message */ |
| edac_mc_handle_error(tp_event, mci, core_err_cnt, |
| m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0, |
| res->channel, res->dimm, -1, |
| optype, msg); |
| } |
| |
| static int skx_mce_check_error(struct notifier_block *nb, unsigned long val, |
| void *data) |
| { |
| struct mce *mce = (struct mce *)data; |
| struct decoded_addr res; |
| struct mem_ctl_info *mci; |
| char *type; |
| |
| if (get_edac_report_status() == EDAC_REPORTING_DISABLED) |
| return NOTIFY_DONE; |
| |
| /* ignore unless this is memory related with an address */ |
| if ((mce->status & 0xefff) >> 7 != 1 || !(mce->status & MCI_STATUS_ADDRV)) |
| return NOTIFY_DONE; |
| |
| res.addr = mce->addr; |
| if (!skx_decode(&res)) |
| return NOTIFY_DONE; |
| mci = res.dev->imc[res.imc].mci; |
| |
| if (mce->mcgstatus & MCG_STATUS_MCIP) |
| type = "Exception"; |
| else |
| type = "Event"; |
| |
| skx_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n"); |
| |
| skx_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx " |
| "Bank %d: %016Lx\n", mce->extcpu, type, |
| mce->mcgstatus, mce->bank, mce->status); |
| skx_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc); |
| skx_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr); |
| skx_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc); |
| |
| skx_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET " |
| "%u APIC %x\n", mce->cpuvendor, mce->cpuid, |
| mce->time, mce->socketid, mce->apicid); |
| |
| skx_mce_output_error(mci, mce, &res); |
| |
| return NOTIFY_DONE; |
| } |
| |
| static struct notifier_block skx_mce_dec = { |
| .notifier_call = skx_mce_check_error, |
| .priority = MCE_PRIO_EDAC, |
| }; |
| |
| static void skx_remove(void) |
| { |
| int i, j; |
| struct skx_dev *d, *tmp; |
| |
| edac_dbg(0, "\n"); |
| |
| list_for_each_entry_safe(d, tmp, &skx_edac_list, list) { |
| list_del(&d->list); |
| for (i = 0; i < NUM_IMC; i++) { |
| skx_unregister_mci(&d->imc[i]); |
| for (j = 0; j < NUM_CHANNELS; j++) |
| pci_dev_put(d->imc[i].chan[j].cdev); |
| } |
| pci_dev_put(d->util_all); |
| pci_dev_put(d->sad_all); |
| |
| kfree(d); |
| } |
| } |
| |
| /* |
| * skx_init: |
| * make sure we are running on the correct cpu model |
| * search for all the devices we need |
| * check which DIMMs are present. |
| */ |
| static int __init skx_init(void) |
| { |
| const struct x86_cpu_id *id; |
| const struct munit *m; |
| int rc = 0, i; |
| u8 mc = 0, src_id, node_id; |
| struct skx_dev *d; |
| |
| edac_dbg(2, "\n"); |
| |
| id = x86_match_cpu(skx_cpuids); |
| if (!id) |
| return -ENODEV; |
| |
| rc = skx_get_hi_lo(); |
| if (rc) |
| return rc; |
| |
| rc = get_all_bus_mappings(); |
| if (rc < 0) |
| goto fail; |
| if (rc == 0) { |
| edac_dbg(2, "No memory controllers found\n"); |
| return -ENODEV; |
| } |
| |
| for (m = skx_all_munits; m->did; m++) { |
| rc = get_all_munits(m); |
| if (rc < 0) |
| goto fail; |
| if (rc != m->per_socket * skx_num_sockets) { |
| edac_dbg(2, "Expected %d, got %d of %x\n", |
| m->per_socket * skx_num_sockets, rc, m->did); |
| rc = -ENODEV; |
| goto fail; |
| } |
| } |
| |
| list_for_each_entry(d, &skx_edac_list, list) { |
| src_id = get_src_id(d); |
| node_id = skx_get_node_id(d); |
| edac_dbg(2, "src_id=%d node_id=%d\n", src_id, node_id); |
| for (i = 0; i < NUM_IMC; i++) { |
| d->imc[i].mc = mc++; |
| d->imc[i].lmc = i; |
| d->imc[i].src_id = src_id; |
| d->imc[i].node_id = node_id; |
| rc = skx_register_mci(&d->imc[i]); |
| if (rc < 0) |
| goto fail; |
| } |
| } |
| |
| /* Ensure that the OPSTATE is set correctly for POLL or NMI */ |
| opstate_init(); |
| |
| setup_skx_debug(); |
| |
| mce_register_decode_chain(&skx_mce_dec); |
| |
| return 0; |
| fail: |
| skx_remove(); |
| return rc; |
| } |
| |
| static void __exit skx_exit(void) |
| { |
| edac_dbg(2, "\n"); |
| mce_unregister_decode_chain(&skx_mce_dec); |
| skx_remove(); |
| teardown_skx_debug(); |
| } |
| |
| module_init(skx_init); |
| module_exit(skx_exit); |
| |
| module_param(edac_op_state, int, 0444); |
| MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); |
| |
| MODULE_LICENSE("GPL v2"); |
| MODULE_AUTHOR("Tony Luck"); |
| MODULE_DESCRIPTION("MC Driver for Intel Skylake server processors"); |