| /* |
| * Low-level SPU handling |
| * |
| * (C) Copyright IBM Deutschland Entwicklung GmbH 2005 |
| * |
| * Author: Arnd Bergmann <arndb@de.ibm.com> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2, or (at your option) |
| * any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| */ |
| |
| #undef DEBUG |
| |
| #include <linux/interrupt.h> |
| #include <linux/list.h> |
| #include <linux/init.h> |
| #include <linux/ptrace.h> |
| #include <linux/slab.h> |
| #include <linux/wait.h> |
| #include <linux/mm.h> |
| #include <linux/io.h> |
| #include <linux/mutex.h> |
| #include <linux/linux_logo.h> |
| #include <linux/syscore_ops.h> |
| #include <asm/spu.h> |
| #include <asm/spu_priv1.h> |
| #include <asm/spu_csa.h> |
| #include <asm/xmon.h> |
| #include <asm/prom.h> |
| #include <asm/kexec.h> |
| |
| const struct spu_management_ops *spu_management_ops; |
| EXPORT_SYMBOL_GPL(spu_management_ops); |
| |
| const struct spu_priv1_ops *spu_priv1_ops; |
| EXPORT_SYMBOL_GPL(spu_priv1_ops); |
| |
| struct cbe_spu_info cbe_spu_info[MAX_NUMNODES]; |
| EXPORT_SYMBOL_GPL(cbe_spu_info); |
| |
| /* |
| * The spufs fault-handling code needs to call force_sig_info to raise signals |
| * on DMA errors. Export it here to avoid general kernel-wide access to this |
| * function |
| */ |
| EXPORT_SYMBOL_GPL(force_sig_info); |
| |
| /* |
| * Protects cbe_spu_info and spu->number. |
| */ |
| static DEFINE_SPINLOCK(spu_lock); |
| |
| /* |
| * List of all spus in the system. |
| * |
| * This list is iterated by callers from irq context and callers that |
| * want to sleep. Thus modifications need to be done with both |
| * spu_full_list_lock and spu_full_list_mutex held, while iterating |
| * through it requires either of these locks. |
| * |
| * In addition spu_full_list_lock protects all assignments to |
| * spu->mm. |
| */ |
| static LIST_HEAD(spu_full_list); |
| static DEFINE_SPINLOCK(spu_full_list_lock); |
| static DEFINE_MUTEX(spu_full_list_mutex); |
| |
| void spu_invalidate_slbs(struct spu *spu) |
| { |
| struct spu_priv2 __iomem *priv2 = spu->priv2; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&spu->register_lock, flags); |
| if (spu_mfc_sr1_get(spu) & MFC_STATE1_RELOCATE_MASK) |
| out_be64(&priv2->slb_invalidate_all_W, 0UL); |
| spin_unlock_irqrestore(&spu->register_lock, flags); |
| } |
| EXPORT_SYMBOL_GPL(spu_invalidate_slbs); |
| |
| /* This is called by the MM core when a segment size is changed, to |
| * request a flush of all the SPEs using a given mm |
| */ |
| void spu_flush_all_slbs(struct mm_struct *mm) |
| { |
| struct spu *spu; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&spu_full_list_lock, flags); |
| list_for_each_entry(spu, &spu_full_list, full_list) { |
| if (spu->mm == mm) |
| spu_invalidate_slbs(spu); |
| } |
| spin_unlock_irqrestore(&spu_full_list_lock, flags); |
| } |
| |
| /* The hack below stinks... try to do something better one of |
| * these days... Does it even work properly with NR_CPUS == 1 ? |
| */ |
| static inline void mm_needs_global_tlbie(struct mm_struct *mm) |
| { |
| int nr = (NR_CPUS > 1) ? NR_CPUS : NR_CPUS + 1; |
| |
| /* Global TLBIE broadcast required with SPEs. */ |
| bitmap_fill(cpumask_bits(mm_cpumask(mm)), nr); |
| } |
| |
| void spu_associate_mm(struct spu *spu, struct mm_struct *mm) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&spu_full_list_lock, flags); |
| spu->mm = mm; |
| spin_unlock_irqrestore(&spu_full_list_lock, flags); |
| if (mm) |
| mm_needs_global_tlbie(mm); |
| } |
| EXPORT_SYMBOL_GPL(spu_associate_mm); |
| |
| int spu_64k_pages_available(void) |
| { |
| return mmu_psize_defs[MMU_PAGE_64K].shift != 0; |
| } |
| EXPORT_SYMBOL_GPL(spu_64k_pages_available); |
| |
| static void spu_restart_dma(struct spu *spu) |
| { |
| struct spu_priv2 __iomem *priv2 = spu->priv2; |
| |
| if (!test_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags)) |
| out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESTART_DMA_COMMAND); |
| else { |
| set_bit(SPU_CONTEXT_FAULT_PENDING, &spu->flags); |
| mb(); |
| } |
| } |
| |
| static inline void spu_load_slb(struct spu *spu, int slbe, struct copro_slb *slb) |
| { |
| struct spu_priv2 __iomem *priv2 = spu->priv2; |
| |
| pr_debug("%s: adding SLB[%d] 0x%016llx 0x%016llx\n", |
| __func__, slbe, slb->vsid, slb->esid); |
| |
| out_be64(&priv2->slb_index_W, slbe); |
| /* set invalid before writing vsid */ |
| out_be64(&priv2->slb_esid_RW, 0); |
| /* now it's safe to write the vsid */ |
| out_be64(&priv2->slb_vsid_RW, slb->vsid); |
| /* setting the new esid makes the entry valid again */ |
| out_be64(&priv2->slb_esid_RW, slb->esid); |
| } |
| |
| static int __spu_trap_data_seg(struct spu *spu, unsigned long ea) |
| { |
| struct copro_slb slb; |
| int ret; |
| |
| ret = copro_calculate_slb(spu->mm, ea, &slb); |
| if (ret) |
| return ret; |
| |
| spu_load_slb(spu, spu->slb_replace, &slb); |
| |
| spu->slb_replace++; |
| if (spu->slb_replace >= 8) |
| spu->slb_replace = 0; |
| |
| spu_restart_dma(spu); |
| spu->stats.slb_flt++; |
| return 0; |
| } |
| |
| extern int hash_page(unsigned long ea, unsigned long access, |
| unsigned long trap, unsigned long dsisr); //XXX |
| static int __spu_trap_data_map(struct spu *spu, unsigned long ea, u64 dsisr) |
| { |
| int ret; |
| |
| pr_debug("%s, %llx, %lx\n", __func__, dsisr, ea); |
| |
| /* |
| * Handle kernel space hash faults immediately. User hash |
| * faults need to be deferred to process context. |
| */ |
| if ((dsisr & MFC_DSISR_PTE_NOT_FOUND) && |
| (REGION_ID(ea) != USER_REGION_ID)) { |
| |
| spin_unlock(&spu->register_lock); |
| ret = hash_page(ea, _PAGE_PRESENT | _PAGE_READ, 0x300, dsisr); |
| spin_lock(&spu->register_lock); |
| |
| if (!ret) { |
| spu_restart_dma(spu); |
| return 0; |
| } |
| } |
| |
| spu->class_1_dar = ea; |
| spu->class_1_dsisr = dsisr; |
| |
| spu->stop_callback(spu, 1); |
| |
| spu->class_1_dar = 0; |
| spu->class_1_dsisr = 0; |
| |
| return 0; |
| } |
| |
| static void __spu_kernel_slb(void *addr, struct copro_slb *slb) |
| { |
| unsigned long ea = (unsigned long)addr; |
| u64 llp; |
| |
| if (REGION_ID(ea) == KERNEL_REGION_ID) |
| llp = mmu_psize_defs[mmu_linear_psize].sllp; |
| else |
| llp = mmu_psize_defs[mmu_virtual_psize].sllp; |
| |
| slb->vsid = (get_kernel_vsid(ea, MMU_SEGSIZE_256M) << SLB_VSID_SHIFT) | |
| SLB_VSID_KERNEL | llp; |
| slb->esid = (ea & ESID_MASK) | SLB_ESID_V; |
| } |
| |
| /** |
| * Given an array of @nr_slbs SLB entries, @slbs, return non-zero if the |
| * address @new_addr is present. |
| */ |
| static inline int __slb_present(struct copro_slb *slbs, int nr_slbs, |
| void *new_addr) |
| { |
| unsigned long ea = (unsigned long)new_addr; |
| int i; |
| |
| for (i = 0; i < nr_slbs; i++) |
| if (!((slbs[i].esid ^ ea) & ESID_MASK)) |
| return 1; |
| |
| return 0; |
| } |
| |
| /** |
| * Setup the SPU kernel SLBs, in preparation for a context save/restore. We |
| * need to map both the context save area, and the save/restore code. |
| * |
| * Because the lscsa and code may cross segment boundaries, we check to see |
| * if mappings are required for the start and end of each range. We currently |
| * assume that the mappings are smaller that one segment - if not, something |
| * is seriously wrong. |
| */ |
| void spu_setup_kernel_slbs(struct spu *spu, struct spu_lscsa *lscsa, |
| void *code, int code_size) |
| { |
| struct copro_slb slbs[4]; |
| int i, nr_slbs = 0; |
| /* start and end addresses of both mappings */ |
| void *addrs[] = { |
| lscsa, (void *)lscsa + sizeof(*lscsa) - 1, |
| code, code + code_size - 1 |
| }; |
| |
| /* check the set of addresses, and create a new entry in the slbs array |
| * if there isn't already a SLB for that address */ |
| for (i = 0; i < ARRAY_SIZE(addrs); i++) { |
| if (__slb_present(slbs, nr_slbs, addrs[i])) |
| continue; |
| |
| __spu_kernel_slb(addrs[i], &slbs[nr_slbs]); |
| nr_slbs++; |
| } |
| |
| spin_lock_irq(&spu->register_lock); |
| /* Add the set of SLBs */ |
| for (i = 0; i < nr_slbs; i++) |
| spu_load_slb(spu, i, &slbs[i]); |
| spin_unlock_irq(&spu->register_lock); |
| } |
| EXPORT_SYMBOL_GPL(spu_setup_kernel_slbs); |
| |
| static irqreturn_t |
| spu_irq_class_0(int irq, void *data) |
| { |
| struct spu *spu; |
| unsigned long stat, mask; |
| |
| spu = data; |
| |
| spin_lock(&spu->register_lock); |
| mask = spu_int_mask_get(spu, 0); |
| stat = spu_int_stat_get(spu, 0) & mask; |
| |
| spu->class_0_pending |= stat; |
| spu->class_0_dar = spu_mfc_dar_get(spu); |
| spu->stop_callback(spu, 0); |
| spu->class_0_pending = 0; |
| spu->class_0_dar = 0; |
| |
| spu_int_stat_clear(spu, 0, stat); |
| spin_unlock(&spu->register_lock); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t |
| spu_irq_class_1(int irq, void *data) |
| { |
| struct spu *spu; |
| unsigned long stat, mask, dar, dsisr; |
| |
| spu = data; |
| |
| /* atomically read & clear class1 status. */ |
| spin_lock(&spu->register_lock); |
| mask = spu_int_mask_get(spu, 1); |
| stat = spu_int_stat_get(spu, 1) & mask; |
| dar = spu_mfc_dar_get(spu); |
| dsisr = spu_mfc_dsisr_get(spu); |
| if (stat & CLASS1_STORAGE_FAULT_INTR) |
| spu_mfc_dsisr_set(spu, 0ul); |
| spu_int_stat_clear(spu, 1, stat); |
| |
| pr_debug("%s: %lx %lx %lx %lx\n", __func__, mask, stat, |
| dar, dsisr); |
| |
| if (stat & CLASS1_SEGMENT_FAULT_INTR) |
| __spu_trap_data_seg(spu, dar); |
| |
| if (stat & CLASS1_STORAGE_FAULT_INTR) |
| __spu_trap_data_map(spu, dar, dsisr); |
| |
| if (stat & CLASS1_LS_COMPARE_SUSPEND_ON_GET_INTR) |
| ; |
| |
| if (stat & CLASS1_LS_COMPARE_SUSPEND_ON_PUT_INTR) |
| ; |
| |
| spu->class_1_dsisr = 0; |
| spu->class_1_dar = 0; |
| |
| spin_unlock(&spu->register_lock); |
| |
| return stat ? IRQ_HANDLED : IRQ_NONE; |
| } |
| |
| static irqreturn_t |
| spu_irq_class_2(int irq, void *data) |
| { |
| struct spu *spu; |
| unsigned long stat; |
| unsigned long mask; |
| const int mailbox_intrs = |
| CLASS2_MAILBOX_THRESHOLD_INTR | CLASS2_MAILBOX_INTR; |
| |
| spu = data; |
| spin_lock(&spu->register_lock); |
| stat = spu_int_stat_get(spu, 2); |
| mask = spu_int_mask_get(spu, 2); |
| /* ignore interrupts we're not waiting for */ |
| stat &= mask; |
| /* mailbox interrupts are level triggered. mask them now before |
| * acknowledging */ |
| if (stat & mailbox_intrs) |
| spu_int_mask_and(spu, 2, ~(stat & mailbox_intrs)); |
| /* acknowledge all interrupts before the callbacks */ |
| spu_int_stat_clear(spu, 2, stat); |
| |
| pr_debug("class 2 interrupt %d, %lx, %lx\n", irq, stat, mask); |
| |
| if (stat & CLASS2_MAILBOX_INTR) |
| spu->ibox_callback(spu); |
| |
| if (stat & CLASS2_SPU_STOP_INTR) |
| spu->stop_callback(spu, 2); |
| |
| if (stat & CLASS2_SPU_HALT_INTR) |
| spu->stop_callback(spu, 2); |
| |
| if (stat & CLASS2_SPU_DMA_TAG_GROUP_COMPLETE_INTR) |
| spu->mfc_callback(spu); |
| |
| if (stat & CLASS2_MAILBOX_THRESHOLD_INTR) |
| spu->wbox_callback(spu); |
| |
| spu->stats.class2_intr++; |
| |
| spin_unlock(&spu->register_lock); |
| |
| return stat ? IRQ_HANDLED : IRQ_NONE; |
| } |
| |
| static int spu_request_irqs(struct spu *spu) |
| { |
| int ret = 0; |
| |
| if (spu->irqs[0] != NO_IRQ) { |
| snprintf(spu->irq_c0, sizeof (spu->irq_c0), "spe%02d.0", |
| spu->number); |
| ret = request_irq(spu->irqs[0], spu_irq_class_0, |
| 0, spu->irq_c0, spu); |
| if (ret) |
| goto bail0; |
| } |
| if (spu->irqs[1] != NO_IRQ) { |
| snprintf(spu->irq_c1, sizeof (spu->irq_c1), "spe%02d.1", |
| spu->number); |
| ret = request_irq(spu->irqs[1], spu_irq_class_1, |
| 0, spu->irq_c1, spu); |
| if (ret) |
| goto bail1; |
| } |
| if (spu->irqs[2] != NO_IRQ) { |
| snprintf(spu->irq_c2, sizeof (spu->irq_c2), "spe%02d.2", |
| spu->number); |
| ret = request_irq(spu->irqs[2], spu_irq_class_2, |
| 0, spu->irq_c2, spu); |
| if (ret) |
| goto bail2; |
| } |
| return 0; |
| |
| bail2: |
| if (spu->irqs[1] != NO_IRQ) |
| free_irq(spu->irqs[1], spu); |
| bail1: |
| if (spu->irqs[0] != NO_IRQ) |
| free_irq(spu->irqs[0], spu); |
| bail0: |
| return ret; |
| } |
| |
| static void spu_free_irqs(struct spu *spu) |
| { |
| if (spu->irqs[0] != NO_IRQ) |
| free_irq(spu->irqs[0], spu); |
| if (spu->irqs[1] != NO_IRQ) |
| free_irq(spu->irqs[1], spu); |
| if (spu->irqs[2] != NO_IRQ) |
| free_irq(spu->irqs[2], spu); |
| } |
| |
| void spu_init_channels(struct spu *spu) |
| { |
| static const struct { |
| unsigned channel; |
| unsigned count; |
| } zero_list[] = { |
| { 0x00, 1, }, { 0x01, 1, }, { 0x03, 1, }, { 0x04, 1, }, |
| { 0x18, 1, }, { 0x19, 1, }, { 0x1b, 1, }, { 0x1d, 1, }, |
| }, count_list[] = { |
| { 0x00, 0, }, { 0x03, 0, }, { 0x04, 0, }, { 0x15, 16, }, |
| { 0x17, 1, }, { 0x18, 0, }, { 0x19, 0, }, { 0x1b, 0, }, |
| { 0x1c, 1, }, { 0x1d, 0, }, { 0x1e, 1, }, |
| }; |
| struct spu_priv2 __iomem *priv2; |
| int i; |
| |
| priv2 = spu->priv2; |
| |
| /* initialize all channel data to zero */ |
| for (i = 0; i < ARRAY_SIZE(zero_list); i++) { |
| int count; |
| |
| out_be64(&priv2->spu_chnlcntptr_RW, zero_list[i].channel); |
| for (count = 0; count < zero_list[i].count; count++) |
| out_be64(&priv2->spu_chnldata_RW, 0); |
| } |
| |
| /* initialize channel counts to meaningful values */ |
| for (i = 0; i < ARRAY_SIZE(count_list); i++) { |
| out_be64(&priv2->spu_chnlcntptr_RW, count_list[i].channel); |
| out_be64(&priv2->spu_chnlcnt_RW, count_list[i].count); |
| } |
| } |
| EXPORT_SYMBOL_GPL(spu_init_channels); |
| |
| static struct bus_type spu_subsys = { |
| .name = "spu", |
| .dev_name = "spu", |
| }; |
| |
| int spu_add_dev_attr(struct device_attribute *attr) |
| { |
| struct spu *spu; |
| |
| mutex_lock(&spu_full_list_mutex); |
| list_for_each_entry(spu, &spu_full_list, full_list) |
| device_create_file(&spu->dev, attr); |
| mutex_unlock(&spu_full_list_mutex); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(spu_add_dev_attr); |
| |
| int spu_add_dev_attr_group(struct attribute_group *attrs) |
| { |
| struct spu *spu; |
| int rc = 0; |
| |
| mutex_lock(&spu_full_list_mutex); |
| list_for_each_entry(spu, &spu_full_list, full_list) { |
| rc = sysfs_create_group(&spu->dev.kobj, attrs); |
| |
| /* we're in trouble here, but try unwinding anyway */ |
| if (rc) { |
| printk(KERN_ERR "%s: can't create sysfs group '%s'\n", |
| __func__, attrs->name); |
| |
| list_for_each_entry_continue_reverse(spu, |
| &spu_full_list, full_list) |
| sysfs_remove_group(&spu->dev.kobj, attrs); |
| break; |
| } |
| } |
| |
| mutex_unlock(&spu_full_list_mutex); |
| |
| return rc; |
| } |
| EXPORT_SYMBOL_GPL(spu_add_dev_attr_group); |
| |
| |
| void spu_remove_dev_attr(struct device_attribute *attr) |
| { |
| struct spu *spu; |
| |
| mutex_lock(&spu_full_list_mutex); |
| list_for_each_entry(spu, &spu_full_list, full_list) |
| device_remove_file(&spu->dev, attr); |
| mutex_unlock(&spu_full_list_mutex); |
| } |
| EXPORT_SYMBOL_GPL(spu_remove_dev_attr); |
| |
| void spu_remove_dev_attr_group(struct attribute_group *attrs) |
| { |
| struct spu *spu; |
| |
| mutex_lock(&spu_full_list_mutex); |
| list_for_each_entry(spu, &spu_full_list, full_list) |
| sysfs_remove_group(&spu->dev.kobj, attrs); |
| mutex_unlock(&spu_full_list_mutex); |
| } |
| EXPORT_SYMBOL_GPL(spu_remove_dev_attr_group); |
| |
| static int spu_create_dev(struct spu *spu) |
| { |
| int ret; |
| |
| spu->dev.id = spu->number; |
| spu->dev.bus = &spu_subsys; |
| ret = device_register(&spu->dev); |
| if (ret) { |
| printk(KERN_ERR "Can't register SPU %d with sysfs\n", |
| spu->number); |
| return ret; |
| } |
| |
| sysfs_add_device_to_node(&spu->dev, spu->node); |
| |
| return 0; |
| } |
| |
| static int __init create_spu(void *data) |
| { |
| struct spu *spu; |
| int ret; |
| static int number; |
| unsigned long flags; |
| |
| ret = -ENOMEM; |
| spu = kzalloc(sizeof (*spu), GFP_KERNEL); |
| if (!spu) |
| goto out; |
| |
| spu->alloc_state = SPU_FREE; |
| |
| spin_lock_init(&spu->register_lock); |
| spin_lock(&spu_lock); |
| spu->number = number++; |
| spin_unlock(&spu_lock); |
| |
| ret = spu_create_spu(spu, data); |
| |
| if (ret) |
| goto out_free; |
| |
| spu_mfc_sdr_setup(spu); |
| spu_mfc_sr1_set(spu, 0x33); |
| ret = spu_request_irqs(spu); |
| if (ret) |
| goto out_destroy; |
| |
| ret = spu_create_dev(spu); |
| if (ret) |
| goto out_free_irqs; |
| |
| mutex_lock(&cbe_spu_info[spu->node].list_mutex); |
| list_add(&spu->cbe_list, &cbe_spu_info[spu->node].spus); |
| cbe_spu_info[spu->node].n_spus++; |
| mutex_unlock(&cbe_spu_info[spu->node].list_mutex); |
| |
| mutex_lock(&spu_full_list_mutex); |
| spin_lock_irqsave(&spu_full_list_lock, flags); |
| list_add(&spu->full_list, &spu_full_list); |
| spin_unlock_irqrestore(&spu_full_list_lock, flags); |
| mutex_unlock(&spu_full_list_mutex); |
| |
| spu->stats.util_state = SPU_UTIL_IDLE_LOADED; |
| spu->stats.tstamp = ktime_get_ns(); |
| |
| INIT_LIST_HEAD(&spu->aff_list); |
| |
| goto out; |
| |
| out_free_irqs: |
| spu_free_irqs(spu); |
| out_destroy: |
| spu_destroy_spu(spu); |
| out_free: |
| kfree(spu); |
| out: |
| return ret; |
| } |
| |
| static const char *spu_state_names[] = { |
| "user", "system", "iowait", "idle" |
| }; |
| |
| static unsigned long long spu_acct_time(struct spu *spu, |
| enum spu_utilization_state state) |
| { |
| unsigned long long time = spu->stats.times[state]; |
| |
| /* |
| * If the spu is idle or the context is stopped, utilization |
| * statistics are not updated. Apply the time delta from the |
| * last recorded state of the spu. |
| */ |
| if (spu->stats.util_state == state) |
| time += ktime_get_ns() - spu->stats.tstamp; |
| |
| return time / NSEC_PER_MSEC; |
| } |
| |
| |
| static ssize_t spu_stat_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct spu *spu = container_of(dev, struct spu, dev); |
| |
| return sprintf(buf, "%s %llu %llu %llu %llu " |
| "%llu %llu %llu %llu %llu %llu %llu %llu\n", |
| spu_state_names[spu->stats.util_state], |
| spu_acct_time(spu, SPU_UTIL_USER), |
| spu_acct_time(spu, SPU_UTIL_SYSTEM), |
| spu_acct_time(spu, SPU_UTIL_IOWAIT), |
| spu_acct_time(spu, SPU_UTIL_IDLE_LOADED), |
| spu->stats.vol_ctx_switch, |
| spu->stats.invol_ctx_switch, |
| spu->stats.slb_flt, |
| spu->stats.hash_flt, |
| spu->stats.min_flt, |
| spu->stats.maj_flt, |
| spu->stats.class2_intr, |
| spu->stats.libassist); |
| } |
| |
| static DEVICE_ATTR(stat, 0444, spu_stat_show, NULL); |
| |
| #ifdef CONFIG_KEXEC |
| |
| struct crash_spu_info { |
| struct spu *spu; |
| u32 saved_spu_runcntl_RW; |
| u32 saved_spu_status_R; |
| u32 saved_spu_npc_RW; |
| u64 saved_mfc_sr1_RW; |
| u64 saved_mfc_dar; |
| u64 saved_mfc_dsisr; |
| }; |
| |
| #define CRASH_NUM_SPUS 16 /* Enough for current hardware */ |
| static struct crash_spu_info crash_spu_info[CRASH_NUM_SPUS]; |
| |
| static void crash_kexec_stop_spus(void) |
| { |
| struct spu *spu; |
| int i; |
| u64 tmp; |
| |
| for (i = 0; i < CRASH_NUM_SPUS; i++) { |
| if (!crash_spu_info[i].spu) |
| continue; |
| |
| spu = crash_spu_info[i].spu; |
| |
| crash_spu_info[i].saved_spu_runcntl_RW = |
| in_be32(&spu->problem->spu_runcntl_RW); |
| crash_spu_info[i].saved_spu_status_R = |
| in_be32(&spu->problem->spu_status_R); |
| crash_spu_info[i].saved_spu_npc_RW = |
| in_be32(&spu->problem->spu_npc_RW); |
| |
| crash_spu_info[i].saved_mfc_dar = spu_mfc_dar_get(spu); |
| crash_spu_info[i].saved_mfc_dsisr = spu_mfc_dsisr_get(spu); |
| tmp = spu_mfc_sr1_get(spu); |
| crash_spu_info[i].saved_mfc_sr1_RW = tmp; |
| |
| tmp &= ~MFC_STATE1_MASTER_RUN_CONTROL_MASK; |
| spu_mfc_sr1_set(spu, tmp); |
| |
| __delay(200); |
| } |
| } |
| |
| static void crash_register_spus(struct list_head *list) |
| { |
| struct spu *spu; |
| int ret; |
| |
| list_for_each_entry(spu, list, full_list) { |
| if (WARN_ON(spu->number >= CRASH_NUM_SPUS)) |
| continue; |
| |
| crash_spu_info[spu->number].spu = spu; |
| } |
| |
| ret = crash_shutdown_register(&crash_kexec_stop_spus); |
| if (ret) |
| printk(KERN_ERR "Could not register SPU crash handler"); |
| } |
| |
| #else |
| static inline void crash_register_spus(struct list_head *list) |
| { |
| } |
| #endif |
| |
| static void spu_shutdown(void) |
| { |
| struct spu *spu; |
| |
| mutex_lock(&spu_full_list_mutex); |
| list_for_each_entry(spu, &spu_full_list, full_list) { |
| spu_free_irqs(spu); |
| spu_destroy_spu(spu); |
| } |
| mutex_unlock(&spu_full_list_mutex); |
| } |
| |
| static struct syscore_ops spu_syscore_ops = { |
| .shutdown = spu_shutdown, |
| }; |
| |
| static int __init init_spu_base(void) |
| { |
| int i, ret = 0; |
| |
| for (i = 0; i < MAX_NUMNODES; i++) { |
| mutex_init(&cbe_spu_info[i].list_mutex); |
| INIT_LIST_HEAD(&cbe_spu_info[i].spus); |
| } |
| |
| if (!spu_management_ops) |
| goto out; |
| |
| /* create system subsystem for spus */ |
| ret = subsys_system_register(&spu_subsys, NULL); |
| if (ret) |
| goto out; |
| |
| ret = spu_enumerate_spus(create_spu); |
| |
| if (ret < 0) { |
| printk(KERN_WARNING "%s: Error initializing spus\n", |
| __func__); |
| goto out_unregister_subsys; |
| } |
| |
| if (ret > 0) |
| fb_append_extra_logo(&logo_spe_clut224, ret); |
| |
| mutex_lock(&spu_full_list_mutex); |
| xmon_register_spus(&spu_full_list); |
| crash_register_spus(&spu_full_list); |
| mutex_unlock(&spu_full_list_mutex); |
| spu_add_dev_attr(&dev_attr_stat); |
| register_syscore_ops(&spu_syscore_ops); |
| |
| spu_init_affinity(); |
| |
| return 0; |
| |
| out_unregister_subsys: |
| bus_unregister(&spu_subsys); |
| out: |
| return ret; |
| } |
| device_initcall(init_spu_base); |