| /* |
| * linux/arch/m32r/mm/fault.c |
| * |
| * Copyright (c) 2001, 2002 Hitoshi Yamamoto, and H. Kondo |
| * Copyright (c) 2004 Naoto Sugai, NIIBE Yutaka |
| * |
| * Some code taken from i386 version. |
| * Copyright (C) 1995 Linus Torvalds |
| */ |
| |
| #include <linux/signal.h> |
| #include <linux/sched.h> |
| #include <linux/kernel.h> |
| #include <linux/errno.h> |
| #include <linux/string.h> |
| #include <linux/types.h> |
| #include <linux/ptrace.h> |
| #include <linux/mman.h> |
| #include <linux/mm.h> |
| #include <linux/smp.h> |
| #include <linux/interrupt.h> |
| #include <linux/init.h> |
| #include <linux/tty.h> |
| #include <linux/vt_kern.h> /* For unblank_screen() */ |
| #include <linux/highmem.h> |
| #include <linux/module.h> |
| |
| #include <asm/m32r.h> |
| #include <asm/system.h> |
| #include <asm/uaccess.h> |
| #include <asm/hardirq.h> |
| #include <asm/mmu_context.h> |
| #include <asm/tlbflush.h> |
| |
| extern void die(const char *, struct pt_regs *, long); |
| |
| #ifndef CONFIG_SMP |
| asmlinkage unsigned int tlb_entry_i_dat; |
| asmlinkage unsigned int tlb_entry_d_dat; |
| #define tlb_entry_i tlb_entry_i_dat |
| #define tlb_entry_d tlb_entry_d_dat |
| #else |
| unsigned int tlb_entry_i_dat[NR_CPUS]; |
| unsigned int tlb_entry_d_dat[NR_CPUS]; |
| #define tlb_entry_i tlb_entry_i_dat[smp_processor_id()] |
| #define tlb_entry_d tlb_entry_d_dat[smp_processor_id()] |
| #endif |
| |
| extern void init_tlb(void); |
| |
| /*======================================================================* |
| * do_page_fault() |
| *======================================================================* |
| * This routine handles page faults. It determines the address, |
| * and the problem, and then passes it off to one of the appropriate |
| * routines. |
| * |
| * ARGUMENT: |
| * regs : M32R SP reg. |
| * error_code : See below |
| * address : M32R MMU MDEVA reg. (Operand ACE) |
| * : M32R BPC reg. (Instruction ACE) |
| * |
| * error_code : |
| * bit 0 == 0 means no page found, 1 means protection fault |
| * bit 1 == 0 means read, 1 means write |
| * bit 2 == 0 means kernel, 1 means user-mode |
| * bit 3 == 0 means data, 1 means instruction |
| *======================================================================*/ |
| #define ACE_PROTECTION 1 |
| #define ACE_WRITE 2 |
| #define ACE_USERMODE 4 |
| #define ACE_INSTRUCTION 8 |
| |
| asmlinkage void do_page_fault(struct pt_regs *regs, unsigned long error_code, |
| unsigned long address) |
| { |
| struct task_struct *tsk; |
| struct mm_struct *mm; |
| struct vm_area_struct * vma; |
| unsigned long page, addr; |
| int write; |
| int fault; |
| siginfo_t info; |
| |
| /* |
| * If BPSW IE bit enable --> set PSW IE bit |
| */ |
| if (regs->psw & M32R_PSW_BIE) |
| local_irq_enable(); |
| |
| tsk = current; |
| |
| info.si_code = SEGV_MAPERR; |
| |
| /* |
| * We fault-in kernel-space virtual memory on-demand. The |
| * 'reference' page table is init_mm.pgd. |
| * |
| * NOTE! We MUST NOT take any locks for this case. We may |
| * be in an interrupt or a critical region, and should |
| * only copy the information from the master page table, |
| * nothing more. |
| * |
| * This verifies that the fault happens in kernel space |
| * (error_code & ACE_USERMODE) == 0, and that the fault was not a |
| * protection error (error_code & ACE_PROTECTION) == 0. |
| */ |
| if (address >= TASK_SIZE && !(error_code & ACE_USERMODE)) |
| goto vmalloc_fault; |
| |
| mm = tsk->mm; |
| |
| /* |
| * If we're in an interrupt or have no user context or are running in an |
| * atomic region then we must not take the fault.. |
| */ |
| if (in_atomic() || !mm) |
| goto bad_area_nosemaphore; |
| |
| /* When running in the kernel we expect faults to occur only to |
| * addresses in user space. All other faults represent errors in the |
| * kernel and should generate an OOPS. Unfortunatly, in the case of an |
| * erroneous fault occurring in a code path which already holds mmap_sem |
| * we will deadlock attempting to validate the fault against the |
| * address space. Luckily the kernel only validly references user |
| * space from well defined areas of code, which are listed in the |
| * exceptions table. |
| * |
| * As the vast majority of faults will be valid we will only perform |
| * the source reference check when there is a possibilty of a deadlock. |
| * Attempt to lock the address space, if we cannot we then validate the |
| * source. If this is invalid we can skip the address space check, |
| * thus avoiding the deadlock. |
| */ |
| if (!down_read_trylock(&mm->mmap_sem)) { |
| if ((error_code & ACE_USERMODE) == 0 && |
| !search_exception_tables(regs->psw)) |
| goto bad_area_nosemaphore; |
| down_read(&mm->mmap_sem); |
| } |
| |
| vma = find_vma(mm, address); |
| if (!vma) |
| goto bad_area; |
| if (vma->vm_start <= address) |
| goto good_area; |
| if (!(vma->vm_flags & VM_GROWSDOWN)) |
| goto bad_area; |
| |
| if (error_code & ACE_USERMODE) { |
| /* |
| * accessing the stack below "spu" is always a bug. |
| * The "+ 4" is there due to the push instruction |
| * doing pre-decrement on the stack and that |
| * doesn't show up until later.. |
| */ |
| if (address + 4 < regs->spu) |
| goto bad_area; |
| } |
| |
| if (expand_stack(vma, address)) |
| goto bad_area; |
| /* |
| * Ok, we have a good vm_area for this memory access, so |
| * we can handle it.. |
| */ |
| good_area: |
| info.si_code = SEGV_ACCERR; |
| write = 0; |
| switch (error_code & (ACE_WRITE|ACE_PROTECTION)) { |
| default: /* 3: write, present */ |
| /* fall through */ |
| case ACE_WRITE: /* write, not present */ |
| if (!(vma->vm_flags & VM_WRITE)) |
| goto bad_area; |
| write++; |
| break; |
| case ACE_PROTECTION: /* read, present */ |
| case 0: /* read, not present */ |
| if (!(vma->vm_flags & (VM_READ | VM_EXEC))) |
| goto bad_area; |
| } |
| |
| /* |
| * For instruction access exception, check if the area is executable |
| */ |
| if ((error_code & ACE_INSTRUCTION) && !(vma->vm_flags & VM_EXEC)) |
| goto bad_area; |
| |
| survive: |
| /* |
| * If for any reason at all we couldn't handle the fault, |
| * make sure we exit gracefully rather than endlessly redo |
| * the fault. |
| */ |
| addr = (address & PAGE_MASK); |
| set_thread_fault_code(error_code); |
| fault = handle_mm_fault(mm, vma, addr, write ? FAULT_FLAG_WRITE : 0); |
| if (unlikely(fault & VM_FAULT_ERROR)) { |
| if (fault & VM_FAULT_OOM) |
| goto out_of_memory; |
| else if (fault & VM_FAULT_SIGBUS) |
| goto do_sigbus; |
| BUG(); |
| } |
| if (fault & VM_FAULT_MAJOR) |
| tsk->maj_flt++; |
| else |
| tsk->min_flt++; |
| set_thread_fault_code(0); |
| up_read(&mm->mmap_sem); |
| return; |
| |
| /* |
| * Something tried to access memory that isn't in our memory map.. |
| * Fix it, but check if it's kernel or user first.. |
| */ |
| bad_area: |
| up_read(&mm->mmap_sem); |
| |
| bad_area_nosemaphore: |
| /* User mode accesses just cause a SIGSEGV */ |
| if (error_code & ACE_USERMODE) { |
| tsk->thread.address = address; |
| tsk->thread.error_code = error_code | (address >= TASK_SIZE); |
| tsk->thread.trap_no = 14; |
| info.si_signo = SIGSEGV; |
| info.si_errno = 0; |
| /* info.si_code has been set above */ |
| info.si_addr = (void __user *)address; |
| force_sig_info(SIGSEGV, &info, tsk); |
| return; |
| } |
| |
| no_context: |
| /* Are we prepared to handle this kernel fault? */ |
| if (fixup_exception(regs)) |
| return; |
| |
| /* |
| * Oops. The kernel tried to access some bad page. We'll have to |
| * terminate things with extreme prejudice. |
| */ |
| |
| bust_spinlocks(1); |
| |
| if (address < PAGE_SIZE) |
| printk(KERN_ALERT "Unable to handle kernel NULL pointer dereference"); |
| else |
| printk(KERN_ALERT "Unable to handle kernel paging request"); |
| printk(" at virtual address %08lx\n",address); |
| printk(KERN_ALERT " printing bpc:\n"); |
| printk("%08lx\n", regs->bpc); |
| page = *(unsigned long *)MPTB; |
| page = ((unsigned long *) page)[address >> PGDIR_SHIFT]; |
| printk(KERN_ALERT "*pde = %08lx\n", page); |
| if (page & _PAGE_PRESENT) { |
| page &= PAGE_MASK; |
| address &= 0x003ff000; |
| page = ((unsigned long *) __va(page))[address >> PAGE_SHIFT]; |
| printk(KERN_ALERT "*pte = %08lx\n", page); |
| } |
| die("Oops", regs, error_code); |
| bust_spinlocks(0); |
| do_exit(SIGKILL); |
| |
| /* |
| * We ran out of memory, or some other thing happened to us that made |
| * us unable to handle the page fault gracefully. |
| */ |
| out_of_memory: |
| up_read(&mm->mmap_sem); |
| if (is_global_init(tsk)) { |
| yield(); |
| down_read(&mm->mmap_sem); |
| goto survive; |
| } |
| printk("VM: killing process %s\n", tsk->comm); |
| if (error_code & ACE_USERMODE) |
| do_group_exit(SIGKILL); |
| goto no_context; |
| |
| do_sigbus: |
| up_read(&mm->mmap_sem); |
| |
| /* Kernel mode? Handle exception or die */ |
| if (!(error_code & ACE_USERMODE)) |
| goto no_context; |
| |
| tsk->thread.address = address; |
| tsk->thread.error_code = error_code; |
| tsk->thread.trap_no = 14; |
| info.si_signo = SIGBUS; |
| info.si_errno = 0; |
| info.si_code = BUS_ADRERR; |
| info.si_addr = (void __user *)address; |
| force_sig_info(SIGBUS, &info, tsk); |
| return; |
| |
| vmalloc_fault: |
| { |
| /* |
| * Synchronize this task's top level page-table |
| * with the 'reference' page table. |
| * |
| * Do _not_ use "tsk" here. We might be inside |
| * an interrupt in the middle of a task switch.. |
| */ |
| int offset = pgd_index(address); |
| pgd_t *pgd, *pgd_k; |
| pmd_t *pmd, *pmd_k; |
| pte_t *pte_k; |
| |
| pgd = (pgd_t *)*(unsigned long *)MPTB; |
| pgd = offset + (pgd_t *)pgd; |
| pgd_k = init_mm.pgd + offset; |
| |
| if (!pgd_present(*pgd_k)) |
| goto no_context; |
| |
| /* |
| * set_pgd(pgd, *pgd_k); here would be useless on PAE |
| * and redundant with the set_pmd() on non-PAE. |
| */ |
| |
| pmd = pmd_offset(pgd, address); |
| pmd_k = pmd_offset(pgd_k, address); |
| if (!pmd_present(*pmd_k)) |
| goto no_context; |
| set_pmd(pmd, *pmd_k); |
| |
| pte_k = pte_offset_kernel(pmd_k, address); |
| if (!pte_present(*pte_k)) |
| goto no_context; |
| |
| addr = (address & PAGE_MASK); |
| set_thread_fault_code(error_code); |
| update_mmu_cache(NULL, addr, pte_k); |
| set_thread_fault_code(0); |
| return; |
| } |
| } |
| |
| /*======================================================================* |
| * update_mmu_cache() |
| *======================================================================*/ |
| #define TLB_MASK (NR_TLB_ENTRIES - 1) |
| #define ITLB_END (unsigned long *)(ITLB_BASE + (NR_TLB_ENTRIES * 8)) |
| #define DTLB_END (unsigned long *)(DTLB_BASE + (NR_TLB_ENTRIES * 8)) |
| void update_mmu_cache(struct vm_area_struct *vma, unsigned long vaddr, |
| pte_t *ptep) |
| { |
| volatile unsigned long *entry1, *entry2; |
| unsigned long pte_data, flags; |
| unsigned int *entry_dat; |
| int inst = get_thread_fault_code() & ACE_INSTRUCTION; |
| int i; |
| |
| /* Ptrace may call this routine. */ |
| if (vma && current->active_mm != vma->vm_mm) |
| return; |
| |
| local_irq_save(flags); |
| |
| vaddr = (vaddr & PAGE_MASK) | get_asid(); |
| |
| pte_data = pte_val(*ptep); |
| |
| #ifdef CONFIG_CHIP_OPSP |
| entry1 = (unsigned long *)ITLB_BASE; |
| for (i = 0; i < NR_TLB_ENTRIES; i++) { |
| if (*entry1++ == vaddr) { |
| set_tlb_data(entry1, pte_data); |
| break; |
| } |
| entry1++; |
| } |
| entry2 = (unsigned long *)DTLB_BASE; |
| for (i = 0; i < NR_TLB_ENTRIES; i++) { |
| if (*entry2++ == vaddr) { |
| set_tlb_data(entry2, pte_data); |
| break; |
| } |
| entry2++; |
| } |
| #else |
| /* |
| * Update TLB entries |
| * entry1: ITLB entry address |
| * entry2: DTLB entry address |
| */ |
| __asm__ __volatile__ ( |
| "seth %0, #high(%4) \n\t" |
| "st %2, @(%5, %0) \n\t" |
| "ldi %1, #1 \n\t" |
| "st %1, @(%6, %0) \n\t" |
| "add3 r4, %0, %7 \n\t" |
| ".fillinsn \n" |
| "1: \n\t" |
| "ld %1, @(%6, %0) \n\t" |
| "bnez %1, 1b \n\t" |
| "ld %0, @r4+ \n\t" |
| "ld %1, @r4 \n\t" |
| "st %3, @+%0 \n\t" |
| "st %3, @+%1 \n\t" |
| : "=&r" (entry1), "=&r" (entry2) |
| : "r" (vaddr), "r" (pte_data), "i" (MMU_REG_BASE), |
| "i" (MSVA_offset), "i" (MTOP_offset), "i" (MIDXI_offset) |
| : "r4", "memory" |
| ); |
| #endif |
| |
| if ((!inst && entry2 >= DTLB_END) || (inst && entry1 >= ITLB_END)) |
| goto notfound; |
| |
| found: |
| local_irq_restore(flags); |
| |
| return; |
| |
| /* Valid entry not found */ |
| notfound: |
| /* |
| * Update ITLB or DTLB entry |
| * entry1: TLB entry address |
| * entry2: TLB base address |
| */ |
| if (!inst) { |
| entry2 = (unsigned long *)DTLB_BASE; |
| entry_dat = &tlb_entry_d; |
| } else { |
| entry2 = (unsigned long *)ITLB_BASE; |
| entry_dat = &tlb_entry_i; |
| } |
| entry1 = entry2 + (((*entry_dat - 1) & TLB_MASK) << 1); |
| |
| for (i = 0 ; i < NR_TLB_ENTRIES ; i++) { |
| if (!(entry1[1] & 2)) /* Valid bit check */ |
| break; |
| |
| if (entry1 != entry2) |
| entry1 -= 2; |
| else |
| entry1 += TLB_MASK << 1; |
| } |
| |
| if (i >= NR_TLB_ENTRIES) { /* Empty entry not found */ |
| entry1 = entry2 + (*entry_dat << 1); |
| *entry_dat = (*entry_dat + 1) & TLB_MASK; |
| } |
| *entry1++ = vaddr; /* Set TLB tag */ |
| set_tlb_data(entry1, pte_data); |
| |
| goto found; |
| } |
| |
| /*======================================================================* |
| * flush_tlb_page() : flushes one page |
| *======================================================================*/ |
| void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) |
| { |
| if (vma->vm_mm && mm_context(vma->vm_mm) != NO_CONTEXT) { |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| page &= PAGE_MASK; |
| page |= (mm_context(vma->vm_mm) & MMU_CONTEXT_ASID_MASK); |
| __flush_tlb_page(page); |
| local_irq_restore(flags); |
| } |
| } |
| |
| /*======================================================================* |
| * flush_tlb_range() : flushes a range of pages |
| *======================================================================*/ |
| void local_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, |
| unsigned long end) |
| { |
| struct mm_struct *mm; |
| |
| mm = vma->vm_mm; |
| if (mm_context(mm) != NO_CONTEXT) { |
| unsigned long flags; |
| int size; |
| |
| local_irq_save(flags); |
| size = (end - start + (PAGE_SIZE - 1)) >> PAGE_SHIFT; |
| if (size > (NR_TLB_ENTRIES / 4)) { /* Too many TLB to flush */ |
| mm_context(mm) = NO_CONTEXT; |
| if (mm == current->mm) |
| activate_context(mm); |
| } else { |
| unsigned long asid; |
| |
| asid = mm_context(mm) & MMU_CONTEXT_ASID_MASK; |
| start &= PAGE_MASK; |
| end += (PAGE_SIZE - 1); |
| end &= PAGE_MASK; |
| |
| start |= asid; |
| end |= asid; |
| while (start < end) { |
| __flush_tlb_page(start); |
| start += PAGE_SIZE; |
| } |
| } |
| local_irq_restore(flags); |
| } |
| } |
| |
| /*======================================================================* |
| * flush_tlb_mm() : flushes the specified mm context TLB's |
| *======================================================================*/ |
| void local_flush_tlb_mm(struct mm_struct *mm) |
| { |
| /* Invalidate all TLB of this process. */ |
| /* Instead of invalidating each TLB, we get new MMU context. */ |
| if (mm_context(mm) != NO_CONTEXT) { |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| mm_context(mm) = NO_CONTEXT; |
| if (mm == current->mm) |
| activate_context(mm); |
| local_irq_restore(flags); |
| } |
| } |
| |
| /*======================================================================* |
| * flush_tlb_all() : flushes all processes TLBs |
| *======================================================================*/ |
| void local_flush_tlb_all(void) |
| { |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| __flush_tlb_all(); |
| local_irq_restore(flags); |
| } |
| |
| /*======================================================================* |
| * init_mmu() |
| *======================================================================*/ |
| void __init init_mmu(void) |
| { |
| tlb_entry_i = 0; |
| tlb_entry_d = 0; |
| mmu_context_cache = MMU_CONTEXT_FIRST_VERSION; |
| set_asid(mmu_context_cache & MMU_CONTEXT_ASID_MASK); |
| *(volatile unsigned long *)MPTB = (unsigned long)swapper_pg_dir; |
| } |