| /* |
| * Copyright (c) International Business Machines Corp., 2006 |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See |
| * the GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| * |
| * Author: Artem Bityutskiy (Битюцкий Артём) |
| */ |
| |
| /* |
| * The UBI Eraseblock Association (EBA) sub-system. |
| * |
| * This sub-system is responsible for I/O to/from logical eraseblock. |
| * |
| * Although in this implementation the EBA table is fully kept and managed in |
| * RAM, which assumes poor scalability, it might be (partially) maintained on |
| * flash in future implementations. |
| * |
| * The EBA sub-system implements per-logical eraseblock locking. Before |
| * accessing a logical eraseblock it is locked for reading or writing. The |
| * per-logical eraseblock locking is implemented by means of the lock tree. The |
| * lock tree is an RB-tree which refers all the currently locked logical |
| * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects. |
| * They are indexed by (@vol_id, @lnum) pairs. |
| * |
| * EBA also maintains the global sequence counter which is incremented each |
| * time a logical eraseblock is mapped to a physical eraseblock and it is |
| * stored in the volume identifier header. This means that each VID header has |
| * a unique sequence number. The sequence number is only increased an we assume |
| * 64 bits is enough to never overflow. |
| */ |
| |
| #include <linux/slab.h> |
| #include <linux/crc32.h> |
| #include <linux/err.h> |
| #include "ubi.h" |
| |
| /* Number of physical eraseblocks reserved for atomic LEB change operation */ |
| #define EBA_RESERVED_PEBS 1 |
| |
| /** |
| * struct ubi_eba_entry - structure encoding a single LEB -> PEB association |
| * @pnum: the physical eraseblock number attached to the LEB |
| * |
| * This structure is encoding a LEB -> PEB association. Note that the LEB |
| * number is not stored here, because it is the index used to access the |
| * entries table. |
| */ |
| struct ubi_eba_entry { |
| int pnum; |
| }; |
| |
| /** |
| * struct ubi_eba_table - LEB -> PEB association information |
| * @entries: the LEB to PEB mapping (one entry per LEB). |
| * |
| * This structure is private to the EBA logic and should be kept here. |
| * It is encoding the LEB to PEB association table, and is subject to |
| * changes. |
| */ |
| struct ubi_eba_table { |
| struct ubi_eba_entry *entries; |
| }; |
| |
| /** |
| * next_sqnum - get next sequence number. |
| * @ubi: UBI device description object |
| * |
| * This function returns next sequence number to use, which is just the current |
| * global sequence counter value. It also increases the global sequence |
| * counter. |
| */ |
| unsigned long long ubi_next_sqnum(struct ubi_device *ubi) |
| { |
| unsigned long long sqnum; |
| |
| spin_lock(&ubi->ltree_lock); |
| sqnum = ubi->global_sqnum++; |
| spin_unlock(&ubi->ltree_lock); |
| |
| return sqnum; |
| } |
| |
| /** |
| * ubi_get_compat - get compatibility flags of a volume. |
| * @ubi: UBI device description object |
| * @vol_id: volume ID |
| * |
| * This function returns compatibility flags for an internal volume. User |
| * volumes have no compatibility flags, so %0 is returned. |
| */ |
| static int ubi_get_compat(const struct ubi_device *ubi, int vol_id) |
| { |
| if (vol_id == UBI_LAYOUT_VOLUME_ID) |
| return UBI_LAYOUT_VOLUME_COMPAT; |
| return 0; |
| } |
| |
| /** |
| * ubi_eba_get_ldesc - get information about a LEB |
| * @vol: volume description object |
| * @lnum: logical eraseblock number |
| * @ldesc: the LEB descriptor to fill |
| * |
| * Used to query information about a specific LEB. |
| * It is currently only returning the physical position of the LEB, but will be |
| * extended to provide more information. |
| */ |
| void ubi_eba_get_ldesc(struct ubi_volume *vol, int lnum, |
| struct ubi_eba_leb_desc *ldesc) |
| { |
| ldesc->lnum = lnum; |
| ldesc->pnum = vol->eba_tbl->entries[lnum].pnum; |
| } |
| |
| /** |
| * ubi_eba_create_table - allocate a new EBA table and initialize it with all |
| * LEBs unmapped |
| * @vol: volume containing the EBA table to copy |
| * @nentries: number of entries in the table |
| * |
| * Allocate a new EBA table and initialize it with all LEBs unmapped. |
| * Returns a valid pointer if it succeed, an ERR_PTR() otherwise. |
| */ |
| struct ubi_eba_table *ubi_eba_create_table(struct ubi_volume *vol, |
| int nentries) |
| { |
| struct ubi_eba_table *tbl; |
| int err = -ENOMEM; |
| int i; |
| |
| tbl = kzalloc(sizeof(*tbl), GFP_KERNEL); |
| if (!tbl) |
| return ERR_PTR(-ENOMEM); |
| |
| tbl->entries = kmalloc_array(nentries, sizeof(*tbl->entries), |
| GFP_KERNEL); |
| if (!tbl->entries) |
| goto err; |
| |
| for (i = 0; i < nentries; i++) |
| tbl->entries[i].pnum = UBI_LEB_UNMAPPED; |
| |
| return tbl; |
| |
| err: |
| kfree(tbl->entries); |
| kfree(tbl); |
| |
| return ERR_PTR(err); |
| } |
| |
| /** |
| * ubi_eba_destroy_table - destroy an EBA table |
| * @tbl: the table to destroy |
| * |
| * Destroy an EBA table. |
| */ |
| void ubi_eba_destroy_table(struct ubi_eba_table *tbl) |
| { |
| if (!tbl) |
| return; |
| |
| kfree(tbl->entries); |
| kfree(tbl); |
| } |
| |
| /** |
| * ubi_eba_copy_table - copy the EBA table attached to vol into another table |
| * @vol: volume containing the EBA table to copy |
| * @dst: destination |
| * @nentries: number of entries to copy |
| * |
| * Copy the EBA table stored in vol into the one pointed by dst. |
| */ |
| void ubi_eba_copy_table(struct ubi_volume *vol, struct ubi_eba_table *dst, |
| int nentries) |
| { |
| struct ubi_eba_table *src; |
| int i; |
| |
| ubi_assert(dst && vol && vol->eba_tbl); |
| |
| src = vol->eba_tbl; |
| |
| for (i = 0; i < nentries; i++) |
| dst->entries[i].pnum = src->entries[i].pnum; |
| } |
| |
| /** |
| * ubi_eba_replace_table - assign a new EBA table to a volume |
| * @vol: volume containing the EBA table to copy |
| * @tbl: new EBA table |
| * |
| * Assign a new EBA table to the volume and release the old one. |
| */ |
| void ubi_eba_replace_table(struct ubi_volume *vol, struct ubi_eba_table *tbl) |
| { |
| ubi_eba_destroy_table(vol->eba_tbl); |
| vol->eba_tbl = tbl; |
| } |
| |
| /** |
| * ltree_lookup - look up the lock tree. |
| * @ubi: UBI device description object |
| * @vol_id: volume ID |
| * @lnum: logical eraseblock number |
| * |
| * This function returns a pointer to the corresponding &struct ubi_ltree_entry |
| * object if the logical eraseblock is locked and %NULL if it is not. |
| * @ubi->ltree_lock has to be locked. |
| */ |
| static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id, |
| int lnum) |
| { |
| struct rb_node *p; |
| |
| p = ubi->ltree.rb_node; |
| while (p) { |
| struct ubi_ltree_entry *le; |
| |
| le = rb_entry(p, struct ubi_ltree_entry, rb); |
| |
| if (vol_id < le->vol_id) |
| p = p->rb_left; |
| else if (vol_id > le->vol_id) |
| p = p->rb_right; |
| else { |
| if (lnum < le->lnum) |
| p = p->rb_left; |
| else if (lnum > le->lnum) |
| p = p->rb_right; |
| else |
| return le; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| /** |
| * ltree_add_entry - add new entry to the lock tree. |
| * @ubi: UBI device description object |
| * @vol_id: volume ID |
| * @lnum: logical eraseblock number |
| * |
| * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the |
| * lock tree. If such entry is already there, its usage counter is increased. |
| * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation |
| * failed. |
| */ |
| static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi, |
| int vol_id, int lnum) |
| { |
| struct ubi_ltree_entry *le, *le1, *le_free; |
| |
| le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS); |
| if (!le) |
| return ERR_PTR(-ENOMEM); |
| |
| le->users = 0; |
| init_rwsem(&le->mutex); |
| le->vol_id = vol_id; |
| le->lnum = lnum; |
| |
| spin_lock(&ubi->ltree_lock); |
| le1 = ltree_lookup(ubi, vol_id, lnum); |
| |
| if (le1) { |
| /* |
| * This logical eraseblock is already locked. The newly |
| * allocated lock entry is not needed. |
| */ |
| le_free = le; |
| le = le1; |
| } else { |
| struct rb_node **p, *parent = NULL; |
| |
| /* |
| * No lock entry, add the newly allocated one to the |
| * @ubi->ltree RB-tree. |
| */ |
| le_free = NULL; |
| |
| p = &ubi->ltree.rb_node; |
| while (*p) { |
| parent = *p; |
| le1 = rb_entry(parent, struct ubi_ltree_entry, rb); |
| |
| if (vol_id < le1->vol_id) |
| p = &(*p)->rb_left; |
| else if (vol_id > le1->vol_id) |
| p = &(*p)->rb_right; |
| else { |
| ubi_assert(lnum != le1->lnum); |
| if (lnum < le1->lnum) |
| p = &(*p)->rb_left; |
| else |
| p = &(*p)->rb_right; |
| } |
| } |
| |
| rb_link_node(&le->rb, parent, p); |
| rb_insert_color(&le->rb, &ubi->ltree); |
| } |
| le->users += 1; |
| spin_unlock(&ubi->ltree_lock); |
| |
| kfree(le_free); |
| return le; |
| } |
| |
| /** |
| * leb_read_lock - lock logical eraseblock for reading. |
| * @ubi: UBI device description object |
| * @vol_id: volume ID |
| * @lnum: logical eraseblock number |
| * |
| * This function locks a logical eraseblock for reading. Returns zero in case |
| * of success and a negative error code in case of failure. |
| */ |
| static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum) |
| { |
| struct ubi_ltree_entry *le; |
| |
| le = ltree_add_entry(ubi, vol_id, lnum); |
| if (IS_ERR(le)) |
| return PTR_ERR(le); |
| down_read(&le->mutex); |
| return 0; |
| } |
| |
| /** |
| * leb_read_unlock - unlock logical eraseblock. |
| * @ubi: UBI device description object |
| * @vol_id: volume ID |
| * @lnum: logical eraseblock number |
| */ |
| static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum) |
| { |
| struct ubi_ltree_entry *le; |
| |
| spin_lock(&ubi->ltree_lock); |
| le = ltree_lookup(ubi, vol_id, lnum); |
| le->users -= 1; |
| ubi_assert(le->users >= 0); |
| up_read(&le->mutex); |
| if (le->users == 0) { |
| rb_erase(&le->rb, &ubi->ltree); |
| kfree(le); |
| } |
| spin_unlock(&ubi->ltree_lock); |
| } |
| |
| /** |
| * leb_write_lock - lock logical eraseblock for writing. |
| * @ubi: UBI device description object |
| * @vol_id: volume ID |
| * @lnum: logical eraseblock number |
| * |
| * This function locks a logical eraseblock for writing. Returns zero in case |
| * of success and a negative error code in case of failure. |
| */ |
| static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum) |
| { |
| struct ubi_ltree_entry *le; |
| |
| le = ltree_add_entry(ubi, vol_id, lnum); |
| if (IS_ERR(le)) |
| return PTR_ERR(le); |
| down_write(&le->mutex); |
| return 0; |
| } |
| |
| /** |
| * leb_write_lock - lock logical eraseblock for writing. |
| * @ubi: UBI device description object |
| * @vol_id: volume ID |
| * @lnum: logical eraseblock number |
| * |
| * This function locks a logical eraseblock for writing if there is no |
| * contention and does nothing if there is contention. Returns %0 in case of |
| * success, %1 in case of contention, and and a negative error code in case of |
| * failure. |
| */ |
| static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum) |
| { |
| struct ubi_ltree_entry *le; |
| |
| le = ltree_add_entry(ubi, vol_id, lnum); |
| if (IS_ERR(le)) |
| return PTR_ERR(le); |
| if (down_write_trylock(&le->mutex)) |
| return 0; |
| |
| /* Contention, cancel */ |
| spin_lock(&ubi->ltree_lock); |
| le->users -= 1; |
| ubi_assert(le->users >= 0); |
| if (le->users == 0) { |
| rb_erase(&le->rb, &ubi->ltree); |
| kfree(le); |
| } |
| spin_unlock(&ubi->ltree_lock); |
| |
| return 1; |
| } |
| |
| /** |
| * leb_write_unlock - unlock logical eraseblock. |
| * @ubi: UBI device description object |
| * @vol_id: volume ID |
| * @lnum: logical eraseblock number |
| */ |
| static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum) |
| { |
| struct ubi_ltree_entry *le; |
| |
| spin_lock(&ubi->ltree_lock); |
| le = ltree_lookup(ubi, vol_id, lnum); |
| le->users -= 1; |
| ubi_assert(le->users >= 0); |
| up_write(&le->mutex); |
| if (le->users == 0) { |
| rb_erase(&le->rb, &ubi->ltree); |
| kfree(le); |
| } |
| spin_unlock(&ubi->ltree_lock); |
| } |
| |
| /** |
| * ubi_eba_is_mapped - check if a LEB is mapped. |
| * @vol: volume description object |
| * @lnum: logical eraseblock number |
| * |
| * This function returns true if the LEB is mapped, false otherwise. |
| */ |
| bool ubi_eba_is_mapped(struct ubi_volume *vol, int lnum) |
| { |
| return vol->eba_tbl->entries[lnum].pnum >= 0; |
| } |
| |
| /** |
| * ubi_eba_unmap_leb - un-map logical eraseblock. |
| * @ubi: UBI device description object |
| * @vol: volume description object |
| * @lnum: logical eraseblock number |
| * |
| * This function un-maps logical eraseblock @lnum and schedules corresponding |
| * physical eraseblock for erasure. Returns zero in case of success and a |
| * negative error code in case of failure. |
| */ |
| int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol, |
| int lnum) |
| { |
| int err, pnum, vol_id = vol->vol_id; |
| |
| if (ubi->ro_mode) |
| return -EROFS; |
| |
| err = leb_write_lock(ubi, vol_id, lnum); |
| if (err) |
| return err; |
| |
| pnum = vol->eba_tbl->entries[lnum].pnum; |
| if (pnum < 0) |
| /* This logical eraseblock is already unmapped */ |
| goto out_unlock; |
| |
| dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum); |
| |
| down_read(&ubi->fm_eba_sem); |
| vol->eba_tbl->entries[lnum].pnum = UBI_LEB_UNMAPPED; |
| up_read(&ubi->fm_eba_sem); |
| err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 0); |
| |
| out_unlock: |
| leb_write_unlock(ubi, vol_id, lnum); |
| return err; |
| } |
| |
| /** |
| * ubi_eba_read_leb - read data. |
| * @ubi: UBI device description object |
| * @vol: volume description object |
| * @lnum: logical eraseblock number |
| * @buf: buffer to store the read data |
| * @offset: offset from where to read |
| * @len: how many bytes to read |
| * @check: data CRC check flag |
| * |
| * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF |
| * bytes. The @check flag only makes sense for static volumes and forces |
| * eraseblock data CRC checking. |
| * |
| * In case of success this function returns zero. In case of a static volume, |
| * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be |
| * returned for any volume type if an ECC error was detected by the MTD device |
| * driver. Other negative error cored may be returned in case of other errors. |
| */ |
| int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum, |
| void *buf, int offset, int len, int check) |
| { |
| int err, pnum, scrub = 0, vol_id = vol->vol_id; |
| struct ubi_vid_io_buf *vidb; |
| struct ubi_vid_hdr *vid_hdr; |
| uint32_t uninitialized_var(crc); |
| |
| err = leb_read_lock(ubi, vol_id, lnum); |
| if (err) |
| return err; |
| |
| pnum = vol->eba_tbl->entries[lnum].pnum; |
| if (pnum < 0) { |
| /* |
| * The logical eraseblock is not mapped, fill the whole buffer |
| * with 0xFF bytes. The exception is static volumes for which |
| * it is an error to read unmapped logical eraseblocks. |
| */ |
| dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)", |
| len, offset, vol_id, lnum); |
| leb_read_unlock(ubi, vol_id, lnum); |
| ubi_assert(vol->vol_type != UBI_STATIC_VOLUME); |
| memset(buf, 0xFF, len); |
| return 0; |
| } |
| |
| dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d", |
| len, offset, vol_id, lnum, pnum); |
| |
| if (vol->vol_type == UBI_DYNAMIC_VOLUME) |
| check = 0; |
| |
| retry: |
| if (check) { |
| vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); |
| if (!vidb) { |
| err = -ENOMEM; |
| goto out_unlock; |
| } |
| |
| vid_hdr = ubi_get_vid_hdr(vidb); |
| |
| err = ubi_io_read_vid_hdr(ubi, pnum, vidb, 1); |
| if (err && err != UBI_IO_BITFLIPS) { |
| if (err > 0) { |
| /* |
| * The header is either absent or corrupted. |
| * The former case means there is a bug - |
| * switch to read-only mode just in case. |
| * The latter case means a real corruption - we |
| * may try to recover data. FIXME: but this is |
| * not implemented. |
| */ |
| if (err == UBI_IO_BAD_HDR_EBADMSG || |
| err == UBI_IO_BAD_HDR) { |
| ubi_warn(ubi, "corrupted VID header at PEB %d, LEB %d:%d", |
| pnum, vol_id, lnum); |
| err = -EBADMSG; |
| } else { |
| /* |
| * Ending up here in the non-Fastmap case |
| * is a clear bug as the VID header had to |
| * be present at scan time to have it referenced. |
| * With fastmap the story is more complicated. |
| * Fastmap has the mapping info without the need |
| * of a full scan. So the LEB could have been |
| * unmapped, Fastmap cannot know this and keeps |
| * the LEB referenced. |
| * This is valid and works as the layer above UBI |
| * has to do bookkeeping about used/referenced |
| * LEBs in any case. |
| */ |
| if (ubi->fast_attach) { |
| err = -EBADMSG; |
| } else { |
| err = -EINVAL; |
| ubi_ro_mode(ubi); |
| } |
| } |
| } |
| goto out_free; |
| } else if (err == UBI_IO_BITFLIPS) |
| scrub = 1; |
| |
| ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs)); |
| ubi_assert(len == be32_to_cpu(vid_hdr->data_size)); |
| |
| crc = be32_to_cpu(vid_hdr->data_crc); |
| ubi_free_vid_buf(vidb); |
| } |
| |
| err = ubi_io_read_data(ubi, buf, pnum, offset, len); |
| if (err) { |
| if (err == UBI_IO_BITFLIPS) |
| scrub = 1; |
| else if (mtd_is_eccerr(err)) { |
| if (vol->vol_type == UBI_DYNAMIC_VOLUME) |
| goto out_unlock; |
| scrub = 1; |
| if (!check) { |
| ubi_msg(ubi, "force data checking"); |
| check = 1; |
| goto retry; |
| } |
| } else |
| goto out_unlock; |
| } |
| |
| if (check) { |
| uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len); |
| if (crc1 != crc) { |
| ubi_warn(ubi, "CRC error: calculated %#08x, must be %#08x", |
| crc1, crc); |
| err = -EBADMSG; |
| goto out_unlock; |
| } |
| } |
| |
| if (scrub) |
| err = ubi_wl_scrub_peb(ubi, pnum); |
| |
| leb_read_unlock(ubi, vol_id, lnum); |
| return err; |
| |
| out_free: |
| ubi_free_vid_buf(vidb); |
| out_unlock: |
| leb_read_unlock(ubi, vol_id, lnum); |
| return err; |
| } |
| |
| /** |
| * ubi_eba_read_leb_sg - read data into a scatter gather list. |
| * @ubi: UBI device description object |
| * @vol: volume description object |
| * @lnum: logical eraseblock number |
| * @sgl: UBI scatter gather list to store the read data |
| * @offset: offset from where to read |
| * @len: how many bytes to read |
| * @check: data CRC check flag |
| * |
| * This function works exactly like ubi_eba_read_leb(). But instead of |
| * storing the read data into a buffer it writes to an UBI scatter gather |
| * list. |
| */ |
| int ubi_eba_read_leb_sg(struct ubi_device *ubi, struct ubi_volume *vol, |
| struct ubi_sgl *sgl, int lnum, int offset, int len, |
| int check) |
| { |
| int to_read; |
| int ret; |
| struct scatterlist *sg; |
| |
| for (;;) { |
| ubi_assert(sgl->list_pos < UBI_MAX_SG_COUNT); |
| sg = &sgl->sg[sgl->list_pos]; |
| if (len < sg->length - sgl->page_pos) |
| to_read = len; |
| else |
| to_read = sg->length - sgl->page_pos; |
| |
| ret = ubi_eba_read_leb(ubi, vol, lnum, |
| sg_virt(sg) + sgl->page_pos, offset, |
| to_read, check); |
| if (ret < 0) |
| return ret; |
| |
| offset += to_read; |
| len -= to_read; |
| if (!len) { |
| sgl->page_pos += to_read; |
| if (sgl->page_pos == sg->length) { |
| sgl->list_pos++; |
| sgl->page_pos = 0; |
| } |
| |
| break; |
| } |
| |
| sgl->list_pos++; |
| sgl->page_pos = 0; |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * try_recover_peb - try to recover from write failure. |
| * @vol: volume description object |
| * @pnum: the physical eraseblock to recover |
| * @lnum: logical eraseblock number |
| * @buf: data which was not written because of the write failure |
| * @offset: offset of the failed write |
| * @len: how many bytes should have been written |
| * @vidb: VID buffer |
| * @retry: whether the caller should retry in case of failure |
| * |
| * This function is called in case of a write failure and moves all good data |
| * from the potentially bad physical eraseblock to a good physical eraseblock. |
| * This function also writes the data which was not written due to the failure. |
| * Returns 0 in case of success, and a negative error code in case of failure. |
| * In case of failure, the %retry parameter is set to false if this is a fatal |
| * error (retrying won't help), and true otherwise. |
| */ |
| static int try_recover_peb(struct ubi_volume *vol, int pnum, int lnum, |
| const void *buf, int offset, int len, |
| struct ubi_vid_io_buf *vidb, bool *retry) |
| { |
| struct ubi_device *ubi = vol->ubi; |
| struct ubi_vid_hdr *vid_hdr; |
| int new_pnum, err, vol_id = vol->vol_id, data_size; |
| uint32_t crc; |
| |
| *retry = false; |
| |
| new_pnum = ubi_wl_get_peb(ubi); |
| if (new_pnum < 0) { |
| err = new_pnum; |
| goto out_put; |
| } |
| |
| ubi_msg(ubi, "recover PEB %d, move data to PEB %d", |
| pnum, new_pnum); |
| |
| err = ubi_io_read_vid_hdr(ubi, pnum, vidb, 1); |
| if (err && err != UBI_IO_BITFLIPS) { |
| if (err > 0) |
| err = -EIO; |
| goto out_put; |
| } |
| |
| ubi_assert(vid_hdr->vol_type == UBI_VID_DYNAMIC); |
| |
| mutex_lock(&ubi->buf_mutex); |
| memset(ubi->peb_buf + offset, 0xFF, len); |
| |
| /* Read everything before the area where the write failure happened */ |
| if (offset > 0) { |
| err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, offset); |
| if (err && err != UBI_IO_BITFLIPS) |
| goto out_unlock; |
| } |
| |
| *retry = true; |
| |
| memcpy(ubi->peb_buf + offset, buf, len); |
| |
| data_size = offset + len; |
| crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size); |
| vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); |
| vid_hdr->copy_flag = 1; |
| vid_hdr->data_size = cpu_to_be32(data_size); |
| vid_hdr->data_crc = cpu_to_be32(crc); |
| err = ubi_io_write_vid_hdr(ubi, new_pnum, vidb); |
| if (err) |
| goto out_unlock; |
| |
| err = ubi_io_write_data(ubi, ubi->peb_buf, new_pnum, 0, data_size); |
| |
| out_unlock: |
| mutex_unlock(&ubi->buf_mutex); |
| |
| if (!err) |
| vol->eba_tbl->entries[lnum].pnum = new_pnum; |
| |
| out_put: |
| up_read(&ubi->fm_eba_sem); |
| |
| if (!err) { |
| ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1); |
| ubi_msg(ubi, "data was successfully recovered"); |
| } else if (new_pnum >= 0) { |
| /* |
| * Bad luck? This physical eraseblock is bad too? Crud. Let's |
| * try to get another one. |
| */ |
| ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1); |
| ubi_warn(ubi, "failed to write to PEB %d", new_pnum); |
| } |
| |
| return err; |
| } |
| |
| /** |
| * recover_peb - recover from write failure. |
| * @ubi: UBI device description object |
| * @pnum: the physical eraseblock to recover |
| * @vol_id: volume ID |
| * @lnum: logical eraseblock number |
| * @buf: data which was not written because of the write failure |
| * @offset: offset of the failed write |
| * @len: how many bytes should have been written |
| * |
| * This function is called in case of a write failure and moves all good data |
| * from the potentially bad physical eraseblock to a good physical eraseblock. |
| * This function also writes the data which was not written due to the failure. |
| * Returns 0 in case of success, and a negative error code in case of failure. |
| * This function tries %UBI_IO_RETRIES before giving up. |
| */ |
| static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum, |
| const void *buf, int offset, int len) |
| { |
| int err, idx = vol_id2idx(ubi, vol_id), tries; |
| struct ubi_volume *vol = ubi->volumes[idx]; |
| struct ubi_vid_io_buf *vidb; |
| |
| vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); |
| if (!vidb) |
| return -ENOMEM; |
| |
| for (tries = 0; tries <= UBI_IO_RETRIES; tries++) { |
| bool retry; |
| |
| err = try_recover_peb(vol, pnum, lnum, buf, offset, len, vidb, |
| &retry); |
| if (!err || !retry) |
| break; |
| |
| ubi_msg(ubi, "try again"); |
| } |
| |
| ubi_free_vid_buf(vidb); |
| |
| return err; |
| } |
| |
| /** |
| * try_write_vid_and_data - try to write VID header and data to a new PEB. |
| * @vol: volume description object |
| * @lnum: logical eraseblock number |
| * @vidb: the VID buffer to write |
| * @buf: buffer containing the data |
| * @offset: where to start writing data |
| * @len: how many bytes should be written |
| * |
| * This function tries to write VID header and data belonging to logical |
| * eraseblock @lnum of volume @vol to a new physical eraseblock. Returns zero |
| * in case of success and a negative error code in case of failure. |
| * In case of error, it is possible that something was still written to the |
| * flash media, but may be some garbage. |
| */ |
| static int try_write_vid_and_data(struct ubi_volume *vol, int lnum, |
| struct ubi_vid_io_buf *vidb, const void *buf, |
| int offset, int len) |
| { |
| struct ubi_device *ubi = vol->ubi; |
| int pnum, opnum, err, vol_id = vol->vol_id; |
| |
| pnum = ubi_wl_get_peb(ubi); |
| if (pnum < 0) { |
| err = pnum; |
| goto out_put; |
| } |
| |
| opnum = vol->eba_tbl->entries[lnum].pnum; |
| |
| dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d", |
| len, offset, vol_id, lnum, pnum); |
| |
| err = ubi_io_write_vid_hdr(ubi, pnum, vidb); |
| if (err) { |
| ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d", |
| vol_id, lnum, pnum); |
| goto out_put; |
| } |
| |
| if (len) { |
| err = ubi_io_write_data(ubi, buf, pnum, offset, len); |
| if (err) { |
| ubi_warn(ubi, |
| "failed to write %d bytes at offset %d of LEB %d:%d, PEB %d", |
| len, offset, vol_id, lnum, pnum); |
| goto out_put; |
| } |
| } |
| |
| vol->eba_tbl->entries[lnum].pnum = pnum; |
| |
| out_put: |
| up_read(&ubi->fm_eba_sem); |
| |
| if (err && pnum >= 0) |
| err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1); |
| else if (!err && opnum >= 0) |
| err = ubi_wl_put_peb(ubi, vol_id, lnum, opnum, 0); |
| |
| return err; |
| } |
| |
| /** |
| * ubi_eba_write_leb - write data to dynamic volume. |
| * @ubi: UBI device description object |
| * @vol: volume description object |
| * @lnum: logical eraseblock number |
| * @buf: the data to write |
| * @offset: offset within the logical eraseblock where to write |
| * @len: how many bytes to write |
| * |
| * This function writes data to logical eraseblock @lnum of a dynamic volume |
| * @vol. Returns zero in case of success and a negative error code in case |
| * of failure. In case of error, it is possible that something was still |
| * written to the flash media, but may be some garbage. |
| * This function retries %UBI_IO_RETRIES times before giving up. |
| */ |
| int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum, |
| const void *buf, int offset, int len) |
| { |
| int err, pnum, tries, vol_id = vol->vol_id; |
| struct ubi_vid_io_buf *vidb; |
| struct ubi_vid_hdr *vid_hdr; |
| |
| if (ubi->ro_mode) |
| return -EROFS; |
| |
| err = leb_write_lock(ubi, vol_id, lnum); |
| if (err) |
| return err; |
| |
| pnum = vol->eba_tbl->entries[lnum].pnum; |
| if (pnum >= 0) { |
| dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d", |
| len, offset, vol_id, lnum, pnum); |
| |
| err = ubi_io_write_data(ubi, buf, pnum, offset, len); |
| if (err) { |
| ubi_warn(ubi, "failed to write data to PEB %d", pnum); |
| if (err == -EIO && ubi->bad_allowed) |
| err = recover_peb(ubi, pnum, vol_id, lnum, buf, |
| offset, len); |
| } |
| |
| goto out; |
| } |
| |
| /* |
| * The logical eraseblock is not mapped. We have to get a free physical |
| * eraseblock and write the volume identifier header there first. |
| */ |
| vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); |
| if (!vidb) { |
| leb_write_unlock(ubi, vol_id, lnum); |
| return -ENOMEM; |
| } |
| |
| vid_hdr = ubi_get_vid_hdr(vidb); |
| |
| vid_hdr->vol_type = UBI_VID_DYNAMIC; |
| vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); |
| vid_hdr->vol_id = cpu_to_be32(vol_id); |
| vid_hdr->lnum = cpu_to_be32(lnum); |
| vid_hdr->compat = ubi_get_compat(ubi, vol_id); |
| vid_hdr->data_pad = cpu_to_be32(vol->data_pad); |
| |
| for (tries = 0; tries <= UBI_IO_RETRIES; tries++) { |
| err = try_write_vid_and_data(vol, lnum, vidb, buf, offset, len); |
| if (err != -EIO || !ubi->bad_allowed) |
| break; |
| |
| /* |
| * Fortunately, this is the first write operation to this |
| * physical eraseblock, so just put it and request a new one. |
| * We assume that if this physical eraseblock went bad, the |
| * erase code will handle that. |
| */ |
| vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); |
| ubi_msg(ubi, "try another PEB"); |
| } |
| |
| ubi_free_vid_buf(vidb); |
| |
| out: |
| if (err) |
| ubi_ro_mode(ubi); |
| |
| leb_write_unlock(ubi, vol_id, lnum); |
| |
| return err; |
| } |
| |
| /** |
| * ubi_eba_write_leb_st - write data to static volume. |
| * @ubi: UBI device description object |
| * @vol: volume description object |
| * @lnum: logical eraseblock number |
| * @buf: data to write |
| * @len: how many bytes to write |
| * @used_ebs: how many logical eraseblocks will this volume contain |
| * |
| * This function writes data to logical eraseblock @lnum of static volume |
| * @vol. The @used_ebs argument should contain total number of logical |
| * eraseblock in this static volume. |
| * |
| * When writing to the last logical eraseblock, the @len argument doesn't have |
| * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent |
| * to the real data size, although the @buf buffer has to contain the |
| * alignment. In all other cases, @len has to be aligned. |
| * |
| * It is prohibited to write more than once to logical eraseblocks of static |
| * volumes. This function returns zero in case of success and a negative error |
| * code in case of failure. |
| */ |
| int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol, |
| int lnum, const void *buf, int len, int used_ebs) |
| { |
| int err, tries, data_size = len, vol_id = vol->vol_id; |
| struct ubi_vid_io_buf *vidb; |
| struct ubi_vid_hdr *vid_hdr; |
| uint32_t crc; |
| |
| if (ubi->ro_mode) |
| return -EROFS; |
| |
| if (lnum == used_ebs - 1) |
| /* If this is the last LEB @len may be unaligned */ |
| len = ALIGN(data_size, ubi->min_io_size); |
| else |
| ubi_assert(!(len & (ubi->min_io_size - 1))); |
| |
| vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); |
| if (!vidb) |
| return -ENOMEM; |
| |
| vid_hdr = ubi_get_vid_hdr(vidb); |
| |
| err = leb_write_lock(ubi, vol_id, lnum); |
| if (err) |
| goto out; |
| |
| vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); |
| vid_hdr->vol_id = cpu_to_be32(vol_id); |
| vid_hdr->lnum = cpu_to_be32(lnum); |
| vid_hdr->compat = ubi_get_compat(ubi, vol_id); |
| vid_hdr->data_pad = cpu_to_be32(vol->data_pad); |
| |
| crc = crc32(UBI_CRC32_INIT, buf, data_size); |
| vid_hdr->vol_type = UBI_VID_STATIC; |
| vid_hdr->data_size = cpu_to_be32(data_size); |
| vid_hdr->used_ebs = cpu_to_be32(used_ebs); |
| vid_hdr->data_crc = cpu_to_be32(crc); |
| |
| ubi_assert(vol->eba_tbl->entries[lnum].pnum < 0); |
| |
| for (tries = 0; tries <= UBI_IO_RETRIES; tries++) { |
| err = try_write_vid_and_data(vol, lnum, vidb, buf, 0, len); |
| if (err != -EIO || !ubi->bad_allowed) |
| break; |
| |
| vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); |
| ubi_msg(ubi, "try another PEB"); |
| } |
| |
| if (err) |
| ubi_ro_mode(ubi); |
| |
| leb_write_unlock(ubi, vol_id, lnum); |
| |
| out: |
| ubi_free_vid_buf(vidb); |
| |
| return err; |
| } |
| |
| /* |
| * ubi_eba_atomic_leb_change - change logical eraseblock atomically. |
| * @ubi: UBI device description object |
| * @vol: volume description object |
| * @lnum: logical eraseblock number |
| * @buf: data to write |
| * @len: how many bytes to write |
| * |
| * This function changes the contents of a logical eraseblock atomically. @buf |
| * has to contain new logical eraseblock data, and @len - the length of the |
| * data, which has to be aligned. This function guarantees that in case of an |
| * unclean reboot the old contents is preserved. Returns zero in case of |
| * success and a negative error code in case of failure. |
| * |
| * UBI reserves one LEB for the "atomic LEB change" operation, so only one |
| * LEB change may be done at a time. This is ensured by @ubi->alc_mutex. |
| */ |
| int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol, |
| int lnum, const void *buf, int len) |
| { |
| int err, tries, vol_id = vol->vol_id; |
| struct ubi_vid_io_buf *vidb; |
| struct ubi_vid_hdr *vid_hdr; |
| uint32_t crc; |
| |
| if (ubi->ro_mode) |
| return -EROFS; |
| |
| if (len == 0) { |
| /* |
| * Special case when data length is zero. In this case the LEB |
| * has to be unmapped and mapped somewhere else. |
| */ |
| err = ubi_eba_unmap_leb(ubi, vol, lnum); |
| if (err) |
| return err; |
| return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0); |
| } |
| |
| vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); |
| if (!vidb) |
| return -ENOMEM; |
| |
| vid_hdr = ubi_get_vid_hdr(vidb); |
| |
| mutex_lock(&ubi->alc_mutex); |
| err = leb_write_lock(ubi, vol_id, lnum); |
| if (err) |
| goto out_mutex; |
| |
| vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); |
| vid_hdr->vol_id = cpu_to_be32(vol_id); |
| vid_hdr->lnum = cpu_to_be32(lnum); |
| vid_hdr->compat = ubi_get_compat(ubi, vol_id); |
| vid_hdr->data_pad = cpu_to_be32(vol->data_pad); |
| |
| crc = crc32(UBI_CRC32_INIT, buf, len); |
| vid_hdr->vol_type = UBI_VID_DYNAMIC; |
| vid_hdr->data_size = cpu_to_be32(len); |
| vid_hdr->copy_flag = 1; |
| vid_hdr->data_crc = cpu_to_be32(crc); |
| |
| dbg_eba("change LEB %d:%d", vol_id, lnum); |
| |
| for (tries = 0; tries <= UBI_IO_RETRIES; tries++) { |
| err = try_write_vid_and_data(vol, lnum, vidb, buf, 0, len); |
| if (err != -EIO || !ubi->bad_allowed) |
| break; |
| |
| vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); |
| ubi_msg(ubi, "try another PEB"); |
| } |
| |
| /* |
| * This flash device does not admit of bad eraseblocks or |
| * something nasty and unexpected happened. Switch to read-only |
| * mode just in case. |
| */ |
| if (err) |
| ubi_ro_mode(ubi); |
| |
| leb_write_unlock(ubi, vol_id, lnum); |
| |
| out_mutex: |
| mutex_unlock(&ubi->alc_mutex); |
| ubi_free_vid_buf(vidb); |
| return err; |
| } |
| |
| /** |
| * is_error_sane - check whether a read error is sane. |
| * @err: code of the error happened during reading |
| * |
| * This is a helper function for 'ubi_eba_copy_leb()' which is called when we |
| * cannot read data from the target PEB (an error @err happened). If the error |
| * code is sane, then we treat this error as non-fatal. Otherwise the error is |
| * fatal and UBI will be switched to R/O mode later. |
| * |
| * The idea is that we try not to switch to R/O mode if the read error is |
| * something which suggests there was a real read problem. E.g., %-EIO. Or a |
| * memory allocation failed (-%ENOMEM). Otherwise, it is safer to switch to R/O |
| * mode, simply because we do not know what happened at the MTD level, and we |
| * cannot handle this. E.g., the underlying driver may have become crazy, and |
| * it is safer to switch to R/O mode to preserve the data. |
| * |
| * And bear in mind, this is about reading from the target PEB, i.e. the PEB |
| * which we have just written. |
| */ |
| static int is_error_sane(int err) |
| { |
| if (err == -EIO || err == -ENOMEM || err == UBI_IO_BAD_HDR || |
| err == UBI_IO_BAD_HDR_EBADMSG || err == -ETIMEDOUT) |
| return 0; |
| return 1; |
| } |
| |
| /** |
| * ubi_eba_copy_leb - copy logical eraseblock. |
| * @ubi: UBI device description object |
| * @from: physical eraseblock number from where to copy |
| * @to: physical eraseblock number where to copy |
| * @vid_hdr: VID header of the @from physical eraseblock |
| * |
| * This function copies logical eraseblock from physical eraseblock @from to |
| * physical eraseblock @to. The @vid_hdr buffer may be changed by this |
| * function. Returns: |
| * o %0 in case of success; |
| * o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_TARGET_BITFLIPS, etc; |
| * o a negative error code in case of failure. |
| */ |
| int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to, |
| struct ubi_vid_io_buf *vidb) |
| { |
| int err, vol_id, lnum, data_size, aldata_size, idx; |
| struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb); |
| struct ubi_volume *vol; |
| uint32_t crc; |
| |
| ubi_assert(rwsem_is_locked(&ubi->fm_eba_sem)); |
| |
| vol_id = be32_to_cpu(vid_hdr->vol_id); |
| lnum = be32_to_cpu(vid_hdr->lnum); |
| |
| dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to); |
| |
| if (vid_hdr->vol_type == UBI_VID_STATIC) { |
| data_size = be32_to_cpu(vid_hdr->data_size); |
| aldata_size = ALIGN(data_size, ubi->min_io_size); |
| } else |
| data_size = aldata_size = |
| ubi->leb_size - be32_to_cpu(vid_hdr->data_pad); |
| |
| idx = vol_id2idx(ubi, vol_id); |
| spin_lock(&ubi->volumes_lock); |
| /* |
| * Note, we may race with volume deletion, which means that the volume |
| * this logical eraseblock belongs to might be being deleted. Since the |
| * volume deletion un-maps all the volume's logical eraseblocks, it will |
| * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish. |
| */ |
| vol = ubi->volumes[idx]; |
| spin_unlock(&ubi->volumes_lock); |
| if (!vol) { |
| /* No need to do further work, cancel */ |
| dbg_wl("volume %d is being removed, cancel", vol_id); |
| return MOVE_CANCEL_RACE; |
| } |
| |
| /* |
| * We do not want anybody to write to this logical eraseblock while we |
| * are moving it, so lock it. |
| * |
| * Note, we are using non-waiting locking here, because we cannot sleep |
| * on the LEB, since it may cause deadlocks. Indeed, imagine a task is |
| * unmapping the LEB which is mapped to the PEB we are going to move |
| * (@from). This task locks the LEB and goes sleep in the |
| * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are |
| * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the |
| * LEB is already locked, we just do not move it and return |
| * %MOVE_RETRY. Note, we do not return %MOVE_CANCEL_RACE here because |
| * we do not know the reasons of the contention - it may be just a |
| * normal I/O on this LEB, so we want to re-try. |
| */ |
| err = leb_write_trylock(ubi, vol_id, lnum); |
| if (err) { |
| dbg_wl("contention on LEB %d:%d, cancel", vol_id, lnum); |
| return MOVE_RETRY; |
| } |
| |
| /* |
| * The LEB might have been put meanwhile, and the task which put it is |
| * probably waiting on @ubi->move_mutex. No need to continue the work, |
| * cancel it. |
| */ |
| if (vol->eba_tbl->entries[lnum].pnum != from) { |
| dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to PEB %d, cancel", |
| vol_id, lnum, from, vol->eba_tbl->entries[lnum].pnum); |
| err = MOVE_CANCEL_RACE; |
| goto out_unlock_leb; |
| } |
| |
| /* |
| * OK, now the LEB is locked and we can safely start moving it. Since |
| * this function utilizes the @ubi->peb_buf buffer which is shared |
| * with some other functions - we lock the buffer by taking the |
| * @ubi->buf_mutex. |
| */ |
| mutex_lock(&ubi->buf_mutex); |
| dbg_wl("read %d bytes of data", aldata_size); |
| err = ubi_io_read_data(ubi, ubi->peb_buf, from, 0, aldata_size); |
| if (err && err != UBI_IO_BITFLIPS) { |
| ubi_warn(ubi, "error %d while reading data from PEB %d", |
| err, from); |
| err = MOVE_SOURCE_RD_ERR; |
| goto out_unlock_buf; |
| } |
| |
| /* |
| * Now we have got to calculate how much data we have to copy. In |
| * case of a static volume it is fairly easy - the VID header contains |
| * the data size. In case of a dynamic volume it is more difficult - we |
| * have to read the contents, cut 0xFF bytes from the end and copy only |
| * the first part. We must do this to avoid writing 0xFF bytes as it |
| * may have some side-effects. And not only this. It is important not |
| * to include those 0xFFs to CRC because later the they may be filled |
| * by data. |
| */ |
| if (vid_hdr->vol_type == UBI_VID_DYNAMIC) |
| aldata_size = data_size = |
| ubi_calc_data_len(ubi, ubi->peb_buf, data_size); |
| |
| cond_resched(); |
| crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size); |
| cond_resched(); |
| |
| /* |
| * It may turn out to be that the whole @from physical eraseblock |
| * contains only 0xFF bytes. Then we have to only write the VID header |
| * and do not write any data. This also means we should not set |
| * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc. |
| */ |
| if (data_size > 0) { |
| vid_hdr->copy_flag = 1; |
| vid_hdr->data_size = cpu_to_be32(data_size); |
| vid_hdr->data_crc = cpu_to_be32(crc); |
| } |
| vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); |
| |
| err = ubi_io_write_vid_hdr(ubi, to, vidb); |
| if (err) { |
| if (err == -EIO) |
| err = MOVE_TARGET_WR_ERR; |
| goto out_unlock_buf; |
| } |
| |
| cond_resched(); |
| |
| /* Read the VID header back and check if it was written correctly */ |
| err = ubi_io_read_vid_hdr(ubi, to, vidb, 1); |
| if (err) { |
| if (err != UBI_IO_BITFLIPS) { |
| ubi_warn(ubi, "error %d while reading VID header back from PEB %d", |
| err, to); |
| if (is_error_sane(err)) |
| err = MOVE_TARGET_RD_ERR; |
| } else |
| err = MOVE_TARGET_BITFLIPS; |
| goto out_unlock_buf; |
| } |
| |
| if (data_size > 0) { |
| err = ubi_io_write_data(ubi, ubi->peb_buf, to, 0, aldata_size); |
| if (err) { |
| if (err == -EIO) |
| err = MOVE_TARGET_WR_ERR; |
| goto out_unlock_buf; |
| } |
| |
| cond_resched(); |
| } |
| |
| ubi_assert(vol->eba_tbl->entries[lnum].pnum == from); |
| vol->eba_tbl->entries[lnum].pnum = to; |
| |
| out_unlock_buf: |
| mutex_unlock(&ubi->buf_mutex); |
| out_unlock_leb: |
| leb_write_unlock(ubi, vol_id, lnum); |
| return err; |
| } |
| |
| /** |
| * print_rsvd_warning - warn about not having enough reserved PEBs. |
| * @ubi: UBI device description object |
| * |
| * This is a helper function for 'ubi_eba_init()' which is called when UBI |
| * cannot reserve enough PEBs for bad block handling. This function makes a |
| * decision whether we have to print a warning or not. The algorithm is as |
| * follows: |
| * o if this is a new UBI image, then just print the warning |
| * o if this is an UBI image which has already been used for some time, print |
| * a warning only if we can reserve less than 10% of the expected amount of |
| * the reserved PEB. |
| * |
| * The idea is that when UBI is used, PEBs become bad, and the reserved pool |
| * of PEBs becomes smaller, which is normal and we do not want to scare users |
| * with a warning every time they attach the MTD device. This was an issue |
| * reported by real users. |
| */ |
| static void print_rsvd_warning(struct ubi_device *ubi, |
| struct ubi_attach_info *ai) |
| { |
| /* |
| * The 1 << 18 (256KiB) number is picked randomly, just a reasonably |
| * large number to distinguish between newly flashed and used images. |
| */ |
| if (ai->max_sqnum > (1 << 18)) { |
| int min = ubi->beb_rsvd_level / 10; |
| |
| if (!min) |
| min = 1; |
| if (ubi->beb_rsvd_pebs > min) |
| return; |
| } |
| |
| ubi_warn(ubi, "cannot reserve enough PEBs for bad PEB handling, reserved %d, need %d", |
| ubi->beb_rsvd_pebs, ubi->beb_rsvd_level); |
| if (ubi->corr_peb_count) |
| ubi_warn(ubi, "%d PEBs are corrupted and not used", |
| ubi->corr_peb_count); |
| } |
| |
| /** |
| * self_check_eba - run a self check on the EBA table constructed by fastmap. |
| * @ubi: UBI device description object |
| * @ai_fastmap: UBI attach info object created by fastmap |
| * @ai_scan: UBI attach info object created by scanning |
| * |
| * Returns < 0 in case of an internal error, 0 otherwise. |
| * If a bad EBA table entry was found it will be printed out and |
| * ubi_assert() triggers. |
| */ |
| int self_check_eba(struct ubi_device *ubi, struct ubi_attach_info *ai_fastmap, |
| struct ubi_attach_info *ai_scan) |
| { |
| int i, j, num_volumes, ret = 0; |
| int **scan_eba, **fm_eba; |
| struct ubi_ainf_volume *av; |
| struct ubi_volume *vol; |
| struct ubi_ainf_peb *aeb; |
| struct rb_node *rb; |
| |
| num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT; |
| |
| scan_eba = kmalloc(sizeof(*scan_eba) * num_volumes, GFP_KERNEL); |
| if (!scan_eba) |
| return -ENOMEM; |
| |
| fm_eba = kmalloc(sizeof(*fm_eba) * num_volumes, GFP_KERNEL); |
| if (!fm_eba) { |
| kfree(scan_eba); |
| return -ENOMEM; |
| } |
| |
| for (i = 0; i < num_volumes; i++) { |
| vol = ubi->volumes[i]; |
| if (!vol) |
| continue; |
| |
| scan_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**scan_eba), |
| GFP_KERNEL); |
| if (!scan_eba[i]) { |
| ret = -ENOMEM; |
| goto out_free; |
| } |
| |
| fm_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**fm_eba), |
| GFP_KERNEL); |
| if (!fm_eba[i]) { |
| ret = -ENOMEM; |
| goto out_free; |
| } |
| |
| for (j = 0; j < vol->reserved_pebs; j++) |
| scan_eba[i][j] = fm_eba[i][j] = UBI_LEB_UNMAPPED; |
| |
| av = ubi_find_av(ai_scan, idx2vol_id(ubi, i)); |
| if (!av) |
| continue; |
| |
| ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) |
| scan_eba[i][aeb->lnum] = aeb->pnum; |
| |
| av = ubi_find_av(ai_fastmap, idx2vol_id(ubi, i)); |
| if (!av) |
| continue; |
| |
| ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) |
| fm_eba[i][aeb->lnum] = aeb->pnum; |
| |
| for (j = 0; j < vol->reserved_pebs; j++) { |
| if (scan_eba[i][j] != fm_eba[i][j]) { |
| if (scan_eba[i][j] == UBI_LEB_UNMAPPED || |
| fm_eba[i][j] == UBI_LEB_UNMAPPED) |
| continue; |
| |
| ubi_err(ubi, "LEB:%i:%i is PEB:%i instead of %i!", |
| vol->vol_id, j, fm_eba[i][j], |
| scan_eba[i][j]); |
| ubi_assert(0); |
| } |
| } |
| } |
| |
| out_free: |
| for (i = 0; i < num_volumes; i++) { |
| if (!ubi->volumes[i]) |
| continue; |
| |
| kfree(scan_eba[i]); |
| kfree(fm_eba[i]); |
| } |
| |
| kfree(scan_eba); |
| kfree(fm_eba); |
| return ret; |
| } |
| |
| /** |
| * ubi_eba_init - initialize the EBA sub-system using attaching information. |
| * @ubi: UBI device description object |
| * @ai: attaching information |
| * |
| * This function returns zero in case of success and a negative error code in |
| * case of failure. |
| */ |
| int ubi_eba_init(struct ubi_device *ubi, struct ubi_attach_info *ai) |
| { |
| int i, err, num_volumes; |
| struct ubi_ainf_volume *av; |
| struct ubi_volume *vol; |
| struct ubi_ainf_peb *aeb; |
| struct rb_node *rb; |
| |
| dbg_eba("initialize EBA sub-system"); |
| |
| spin_lock_init(&ubi->ltree_lock); |
| mutex_init(&ubi->alc_mutex); |
| ubi->ltree = RB_ROOT; |
| |
| ubi->global_sqnum = ai->max_sqnum + 1; |
| num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT; |
| |
| for (i = 0; i < num_volumes; i++) { |
| struct ubi_eba_table *tbl; |
| |
| vol = ubi->volumes[i]; |
| if (!vol) |
| continue; |
| |
| cond_resched(); |
| |
| tbl = ubi_eba_create_table(vol, vol->reserved_pebs); |
| if (IS_ERR(tbl)) { |
| err = PTR_ERR(tbl); |
| goto out_free; |
| } |
| |
| ubi_eba_replace_table(vol, tbl); |
| |
| av = ubi_find_av(ai, idx2vol_id(ubi, i)); |
| if (!av) |
| continue; |
| |
| ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) { |
| if (aeb->lnum >= vol->reserved_pebs) { |
| /* |
| * This may happen in case of an unclean reboot |
| * during re-size. |
| */ |
| ubi_move_aeb_to_list(av, aeb, &ai->erase); |
| } else { |
| struct ubi_eba_entry *entry; |
| |
| entry = &vol->eba_tbl->entries[aeb->lnum]; |
| entry->pnum = aeb->pnum; |
| } |
| } |
| } |
| |
| if (ubi->avail_pebs < EBA_RESERVED_PEBS) { |
| ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)", |
| ubi->avail_pebs, EBA_RESERVED_PEBS); |
| if (ubi->corr_peb_count) |
| ubi_err(ubi, "%d PEBs are corrupted and not used", |
| ubi->corr_peb_count); |
| err = -ENOSPC; |
| goto out_free; |
| } |
| ubi->avail_pebs -= EBA_RESERVED_PEBS; |
| ubi->rsvd_pebs += EBA_RESERVED_PEBS; |
| |
| if (ubi->bad_allowed) { |
| ubi_calculate_reserved(ubi); |
| |
| if (ubi->avail_pebs < ubi->beb_rsvd_level) { |
| /* No enough free physical eraseblocks */ |
| ubi->beb_rsvd_pebs = ubi->avail_pebs; |
| print_rsvd_warning(ubi, ai); |
| } else |
| ubi->beb_rsvd_pebs = ubi->beb_rsvd_level; |
| |
| ubi->avail_pebs -= ubi->beb_rsvd_pebs; |
| ubi->rsvd_pebs += ubi->beb_rsvd_pebs; |
| } |
| |
| dbg_eba("EBA sub-system is initialized"); |
| return 0; |
| |
| out_free: |
| for (i = 0; i < num_volumes; i++) { |
| if (!ubi->volumes[i]) |
| continue; |
| ubi_eba_replace_table(ubi->volumes[i], NULL); |
| } |
| return err; |
| } |