blob: 4be3d33ceae81b25bddbab91ea01482282571f2b [file] [log] [blame]
/*
* Marvell Wireless LAN device driver: WMM
*
* Copyright (C) 2011, Marvell International Ltd.
*
* This software file (the "File") is distributed by Marvell International
* Ltd. under the terms of the GNU General Public License Version 2, June 1991
* (the "License"). You may use, redistribute and/or modify this File in
* accordance with the terms and conditions of the License, a copy of which
* is available by writing to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA or on the
* worldwide web at http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt.
*
* THE FILE IS DISTRIBUTED AS-IS, WITHOUT WARRANTY OF ANY KIND, AND THE
* IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE
* ARE EXPRESSLY DISCLAIMED. The License provides additional details about
* this warranty disclaimer.
*/
#include "decl.h"
#include "ioctl.h"
#include "util.h"
#include "fw.h"
#include "main.h"
#include "wmm.h"
#include "11n.h"
/* Maximum value FW can accept for driver delay in packet transmission */
#define DRV_PKT_DELAY_TO_FW_MAX 512
#define WMM_QUEUED_PACKET_LOWER_LIMIT 180
#define WMM_QUEUED_PACKET_UPPER_LIMIT 200
/* Offset for TOS field in the IP header */
#define IPTOS_OFFSET 5
/* WMM information IE */
static const u8 wmm_info_ie[] = { WLAN_EID_VENDOR_SPECIFIC, 0x07,
0x00, 0x50, 0xf2, 0x02,
0x00, 0x01, 0x00
};
static const u8 wmm_aci_to_qidx_map[] = { WMM_AC_BE,
WMM_AC_BK,
WMM_AC_VI,
WMM_AC_VO
};
static u8 tos_to_tid[] = {
/* TID DSCP_P2 DSCP_P1 DSCP_P0 WMM_AC */
0x01, /* 0 1 0 AC_BK */
0x02, /* 0 0 0 AC_BK */
0x00, /* 0 0 1 AC_BE */
0x03, /* 0 1 1 AC_BE */
0x04, /* 1 0 0 AC_VI */
0x05, /* 1 0 1 AC_VI */
0x06, /* 1 1 0 AC_VO */
0x07 /* 1 1 1 AC_VO */
};
/*
* This table inverses the tos_to_tid operation to get a priority
* which is in sequential order, and can be compared.
* Use this to compare the priority of two different TIDs.
*/
static u8 tos_to_tid_inv[] = {
0x02, /* from tos_to_tid[2] = 0 */
0x00, /* from tos_to_tid[0] = 1 */
0x01, /* from tos_to_tid[1] = 2 */
0x03,
0x04,
0x05,
0x06,
0x07};
static u8 ac_to_tid[4][2] = { {1, 2}, {0, 3}, {4, 5}, {6, 7} };
/*
* This function debug prints the priority parameters for a WMM AC.
*/
static void
mwifiex_wmm_ac_debug_print(const struct ieee_types_wmm_ac_parameters *ac_param)
{
const char *ac_str[] = { "BK", "BE", "VI", "VO" };
pr_debug("info: WMM AC_%s: ACI=%d, ACM=%d, Aifsn=%d, "
"EcwMin=%d, EcwMax=%d, TxopLimit=%d\n",
ac_str[wmm_aci_to_qidx_map[(ac_param->aci_aifsn_bitmap
& MWIFIEX_ACI) >> 5]],
(ac_param->aci_aifsn_bitmap & MWIFIEX_ACI) >> 5,
(ac_param->aci_aifsn_bitmap & MWIFIEX_ACM) >> 4,
ac_param->aci_aifsn_bitmap & MWIFIEX_AIFSN,
ac_param->ecw_bitmap & MWIFIEX_ECW_MIN,
(ac_param->ecw_bitmap & MWIFIEX_ECW_MAX) >> 4,
le16_to_cpu(ac_param->tx_op_limit));
}
/*
* This function allocates a route address list.
*
* The function also initializes the list with the provided RA.
*/
static struct mwifiex_ra_list_tbl *
mwifiex_wmm_allocate_ralist_node(struct mwifiex_adapter *adapter, u8 *ra)
{
struct mwifiex_ra_list_tbl *ra_list;
ra_list = kzalloc(sizeof(struct mwifiex_ra_list_tbl), GFP_ATOMIC);
if (!ra_list)
return NULL;
INIT_LIST_HEAD(&ra_list->list);
skb_queue_head_init(&ra_list->skb_head);
memcpy(ra_list->ra, ra, ETH_ALEN);
ra_list->total_pkts_size = 0;
dev_dbg(adapter->dev, "info: allocated ra_list %p\n", ra_list);
return ra_list;
}
/* This function returns random no between 16 and 32 to be used as threshold
* for no of packets after which BA setup is initiated.
*/
static u8 mwifiex_get_random_ba_threshold(void)
{
u32 sec, usec;
struct timeval ba_tstamp;
u8 ba_threshold;
/* setup ba_packet_threshold here random number between
* [BA_SETUP_PACKET_OFFSET,
* BA_SETUP_PACKET_OFFSET+BA_SETUP_MAX_PACKET_THRESHOLD-1]
*/
do_gettimeofday(&ba_tstamp);
sec = (ba_tstamp.tv_sec & 0xFFFF) + (ba_tstamp.tv_sec >> 16);
usec = (ba_tstamp.tv_usec & 0xFFFF) + (ba_tstamp.tv_usec >> 16);
ba_threshold = (((sec << 16) + usec) % BA_SETUP_MAX_PACKET_THRESHOLD)
+ BA_SETUP_PACKET_OFFSET;
return ba_threshold;
}
/*
* This function allocates and adds a RA list for all TIDs
* with the given RA.
*/
void
mwifiex_ralist_add(struct mwifiex_private *priv, u8 *ra)
{
int i;
struct mwifiex_ra_list_tbl *ra_list;
struct mwifiex_adapter *adapter = priv->adapter;
struct mwifiex_sta_node *node;
unsigned long flags;
spin_lock_irqsave(&priv->sta_list_spinlock, flags);
node = mwifiex_get_sta_entry(priv, ra);
spin_unlock_irqrestore(&priv->sta_list_spinlock, flags);
for (i = 0; i < MAX_NUM_TID; ++i) {
ra_list = mwifiex_wmm_allocate_ralist_node(adapter, ra);
dev_dbg(adapter->dev, "info: created ra_list %p\n", ra_list);
if (!ra_list)
break;
ra_list->is_11n_enabled = 0;
if (!mwifiex_queuing_ra_based(priv)) {
ra_list->is_11n_enabled = IS_11N_ENABLED(priv);
} else {
ra_list->is_11n_enabled =
mwifiex_is_sta_11n_enabled(priv, node);
if (ra_list->is_11n_enabled)
ra_list->max_amsdu = node->max_amsdu;
}
dev_dbg(adapter->dev, "data: ralist %p: is_11n_enabled=%d\n",
ra_list, ra_list->is_11n_enabled);
if (ra_list->is_11n_enabled) {
ra_list->pkt_count = 0;
ra_list->ba_packet_thr =
mwifiex_get_random_ba_threshold();
}
list_add_tail(&ra_list->list,
&priv->wmm.tid_tbl_ptr[i].ra_list);
}
}
/*
* This function sets the WMM queue priorities to their default values.
*/
static void mwifiex_wmm_default_queue_priorities(struct mwifiex_private *priv)
{
/* Default queue priorities: VO->VI->BE->BK */
priv->wmm.queue_priority[0] = WMM_AC_VO;
priv->wmm.queue_priority[1] = WMM_AC_VI;
priv->wmm.queue_priority[2] = WMM_AC_BE;
priv->wmm.queue_priority[3] = WMM_AC_BK;
}
/*
* This function map ACs to TIDs.
*/
static void
mwifiex_wmm_queue_priorities_tid(struct mwifiex_wmm_desc *wmm)
{
u8 *queue_priority = wmm->queue_priority;
int i;
for (i = 0; i < 4; ++i) {
tos_to_tid[7 - (i * 2)] = ac_to_tid[queue_priority[i]][1];
tos_to_tid[6 - (i * 2)] = ac_to_tid[queue_priority[i]][0];
}
for (i = 0; i < MAX_NUM_TID; ++i)
tos_to_tid_inv[tos_to_tid[i]] = (u8)i;
atomic_set(&wmm->highest_queued_prio, HIGH_PRIO_TID);
}
/*
* This function initializes WMM priority queues.
*/
void
mwifiex_wmm_setup_queue_priorities(struct mwifiex_private *priv,
struct ieee_types_wmm_parameter *wmm_ie)
{
u16 cw_min, avg_back_off, tmp[4];
u32 i, j, num_ac;
u8 ac_idx;
if (!wmm_ie || !priv->wmm_enabled) {
/* WMM is not enabled, just set the defaults and return */
mwifiex_wmm_default_queue_priorities(priv);
return;
}
dev_dbg(priv->adapter->dev, "info: WMM Parameter IE: version=%d, "
"qos_info Parameter Set Count=%d, Reserved=%#x\n",
wmm_ie->vend_hdr.version, wmm_ie->qos_info_bitmap &
IEEE80211_WMM_IE_AP_QOSINFO_PARAM_SET_CNT_MASK,
wmm_ie->reserved);
for (num_ac = 0; num_ac < ARRAY_SIZE(wmm_ie->ac_params); num_ac++) {
u8 ecw = wmm_ie->ac_params[num_ac].ecw_bitmap;
u8 aci_aifsn = wmm_ie->ac_params[num_ac].aci_aifsn_bitmap;
cw_min = (1 << (ecw & MWIFIEX_ECW_MIN)) - 1;
avg_back_off = (cw_min >> 1) + (aci_aifsn & MWIFIEX_AIFSN);
ac_idx = wmm_aci_to_qidx_map[(aci_aifsn & MWIFIEX_ACI) >> 5];
priv->wmm.queue_priority[ac_idx] = ac_idx;
tmp[ac_idx] = avg_back_off;
dev_dbg(priv->adapter->dev,
"info: WMM: CWmax=%d CWmin=%d Avg Back-off=%d\n",
(1 << ((ecw & MWIFIEX_ECW_MAX) >> 4)) - 1,
cw_min, avg_back_off);
mwifiex_wmm_ac_debug_print(&wmm_ie->ac_params[num_ac]);
}
/* Bubble sort */
for (i = 0; i < num_ac; i++) {
for (j = 1; j < num_ac - i; j++) {
if (tmp[j - 1] > tmp[j]) {
swap(tmp[j - 1], tmp[j]);
swap(priv->wmm.queue_priority[j - 1],
priv->wmm.queue_priority[j]);
} else if (tmp[j - 1] == tmp[j]) {
if (priv->wmm.queue_priority[j - 1]
< priv->wmm.queue_priority[j])
swap(priv->wmm.queue_priority[j - 1],
priv->wmm.queue_priority[j]);
}
}
}
mwifiex_wmm_queue_priorities_tid(&priv->wmm);
}
/*
* This function evaluates whether or not an AC is to be downgraded.
*
* In case the AC is not enabled, the highest AC is returned that is
* enabled and does not require admission control.
*/
static enum mwifiex_wmm_ac_e
mwifiex_wmm_eval_downgrade_ac(struct mwifiex_private *priv,
enum mwifiex_wmm_ac_e eval_ac)
{
int down_ac;
enum mwifiex_wmm_ac_e ret_ac;
struct mwifiex_wmm_ac_status *ac_status;
ac_status = &priv->wmm.ac_status[eval_ac];
if (!ac_status->disabled)
/* Okay to use this AC, its enabled */
return eval_ac;
/* Setup a default return value of the lowest priority */
ret_ac = WMM_AC_BK;
/*
* Find the highest AC that is enabled and does not require
* admission control. The spec disallows downgrading to an AC,
* which is enabled due to a completed admission control.
* Unadmitted traffic is not to be sent on an AC with admitted
* traffic.
*/
for (down_ac = WMM_AC_BK; down_ac < eval_ac; down_ac++) {
ac_status = &priv->wmm.ac_status[down_ac];
if (!ac_status->disabled && !ac_status->flow_required)
/* AC is enabled and does not require admission
control */
ret_ac = (enum mwifiex_wmm_ac_e) down_ac;
}
return ret_ac;
}
/*
* This function downgrades WMM priority queue.
*/
void
mwifiex_wmm_setup_ac_downgrade(struct mwifiex_private *priv)
{
int ac_val;
dev_dbg(priv->adapter->dev, "info: WMM: AC Priorities:"
"BK(0), BE(1), VI(2), VO(3)\n");
if (!priv->wmm_enabled) {
/* WMM is not enabled, default priorities */
for (ac_val = WMM_AC_BK; ac_val <= WMM_AC_VO; ac_val++)
priv->wmm.ac_down_graded_vals[ac_val] =
(enum mwifiex_wmm_ac_e) ac_val;
} else {
for (ac_val = WMM_AC_BK; ac_val <= WMM_AC_VO; ac_val++) {
priv->wmm.ac_down_graded_vals[ac_val]
= mwifiex_wmm_eval_downgrade_ac(priv,
(enum mwifiex_wmm_ac_e) ac_val);
dev_dbg(priv->adapter->dev,
"info: WMM: AC PRIO %d maps to %d\n",
ac_val, priv->wmm.ac_down_graded_vals[ac_val]);
}
}
}
/*
* This function converts the IP TOS field to an WMM AC
* Queue assignment.
*/
static enum mwifiex_wmm_ac_e
mwifiex_wmm_convert_tos_to_ac(struct mwifiex_adapter *adapter, u32 tos)
{
/* Map of TOS UP values to WMM AC */
const enum mwifiex_wmm_ac_e tos_to_ac[] = { WMM_AC_BE,
WMM_AC_BK,
WMM_AC_BK,
WMM_AC_BE,
WMM_AC_VI,
WMM_AC_VI,
WMM_AC_VO,
WMM_AC_VO
};
if (tos >= ARRAY_SIZE(tos_to_ac))
return WMM_AC_BE;
return tos_to_ac[tos];
}
/*
* This function evaluates a given TID and downgrades it to a lower
* TID if the WMM Parameter IE received from the AP indicates that the
* AP is disabled (due to call admission control (ACM bit). Mapping
* of TID to AC is taken care of internally.
*/
static u8
mwifiex_wmm_downgrade_tid(struct mwifiex_private *priv, u32 tid)
{
enum mwifiex_wmm_ac_e ac, ac_down;
u8 new_tid;
ac = mwifiex_wmm_convert_tos_to_ac(priv->adapter, tid);
ac_down = priv->wmm.ac_down_graded_vals[ac];
/* Send the index to tid array, picking from the array will be
* taken care by dequeuing function
*/
new_tid = ac_to_tid[ac_down][tid % 2];
return new_tid;
}
/*
* This function initializes the WMM state information and the
* WMM data path queues.
*/
void
mwifiex_wmm_init(struct mwifiex_adapter *adapter)
{
int i, j;
struct mwifiex_private *priv;
for (j = 0; j < adapter->priv_num; ++j) {
priv = adapter->priv[j];
if (!priv)
continue;
for (i = 0; i < MAX_NUM_TID; ++i) {
priv->aggr_prio_tbl[i].amsdu = tos_to_tid_inv[i];
priv->aggr_prio_tbl[i].ampdu_ap = tos_to_tid_inv[i];
priv->aggr_prio_tbl[i].ampdu_user = tos_to_tid_inv[i];
}
priv->aggr_prio_tbl[6].amsdu
= priv->aggr_prio_tbl[6].ampdu_ap
= priv->aggr_prio_tbl[6].ampdu_user
= BA_STREAM_NOT_ALLOWED;
priv->aggr_prio_tbl[7].amsdu = priv->aggr_prio_tbl[7].ampdu_ap
= priv->aggr_prio_tbl[7].ampdu_user
= BA_STREAM_NOT_ALLOWED;
mwifiex_set_ba_params(priv);
mwifiex_reset_11n_rx_seq_num(priv);
atomic_set(&priv->wmm.tx_pkts_queued, 0);
atomic_set(&priv->wmm.highest_queued_prio, HIGH_PRIO_TID);
}
}
/*
* This function checks if WMM Tx queue is empty.
*/
int
mwifiex_wmm_lists_empty(struct mwifiex_adapter *adapter)
{
int i;
struct mwifiex_private *priv;
for (i = 0; i < adapter->priv_num; ++i) {
priv = adapter->priv[i];
if (priv && atomic_read(&priv->wmm.tx_pkts_queued))
return false;
}
return true;
}
/*
* This function deletes all packets in an RA list node.
*
* The packet sent completion callback handler are called with
* status failure, after they are dequeued to ensure proper
* cleanup. The RA list node itself is freed at the end.
*/
static void
mwifiex_wmm_del_pkts_in_ralist_node(struct mwifiex_private *priv,
struct mwifiex_ra_list_tbl *ra_list)
{
struct mwifiex_adapter *adapter = priv->adapter;
struct sk_buff *skb, *tmp;
skb_queue_walk_safe(&ra_list->skb_head, skb, tmp)
mwifiex_write_data_complete(adapter, skb, 0, -1);
}
/*
* This function deletes all packets in an RA list.
*
* Each nodes in the RA list are freed individually first, and then
* the RA list itself is freed.
*/
static void
mwifiex_wmm_del_pkts_in_ralist(struct mwifiex_private *priv,
struct list_head *ra_list_head)
{
struct mwifiex_ra_list_tbl *ra_list;
list_for_each_entry(ra_list, ra_list_head, list)
mwifiex_wmm_del_pkts_in_ralist_node(priv, ra_list);
}
/*
* This function deletes all packets in all RA lists.
*/
static void mwifiex_wmm_cleanup_queues(struct mwifiex_private *priv)
{
int i;
for (i = 0; i < MAX_NUM_TID; i++)
mwifiex_wmm_del_pkts_in_ralist(priv, &priv->wmm.tid_tbl_ptr[i].
ra_list);
atomic_set(&priv->wmm.tx_pkts_queued, 0);
atomic_set(&priv->wmm.highest_queued_prio, HIGH_PRIO_TID);
}
/*
* This function deletes all route addresses from all RA lists.
*/
static void mwifiex_wmm_delete_all_ralist(struct mwifiex_private *priv)
{
struct mwifiex_ra_list_tbl *ra_list, *tmp_node;
int i;
for (i = 0; i < MAX_NUM_TID; ++i) {
dev_dbg(priv->adapter->dev,
"info: ra_list: freeing buf for tid %d\n", i);
list_for_each_entry_safe(ra_list, tmp_node,
&priv->wmm.tid_tbl_ptr[i].ra_list,
list) {
list_del(&ra_list->list);
kfree(ra_list);
}
INIT_LIST_HEAD(&priv->wmm.tid_tbl_ptr[i].ra_list);
}
}
/*
* This function cleans up the Tx and Rx queues.
*
* Cleanup includes -
* - All packets in RA lists
* - All entries in Rx reorder table
* - All entries in Tx BA stream table
* - MPA buffer (if required)
* - All RA lists
*/
void
mwifiex_clean_txrx(struct mwifiex_private *priv)
{
unsigned long flags;
mwifiex_11n_cleanup_reorder_tbl(priv);
spin_lock_irqsave(&priv->wmm.ra_list_spinlock, flags);
mwifiex_wmm_cleanup_queues(priv);
mwifiex_11n_delete_all_tx_ba_stream_tbl(priv);
if (priv->adapter->if_ops.cleanup_mpa_buf)
priv->adapter->if_ops.cleanup_mpa_buf(priv->adapter);
mwifiex_wmm_delete_all_ralist(priv);
memcpy(tos_to_tid, ac_to_tid, sizeof(tos_to_tid));
if (priv->adapter->if_ops.clean_pcie_ring)
priv->adapter->if_ops.clean_pcie_ring(priv->adapter);
spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock, flags);
}
/*
* This function retrieves a particular RA list node, matching with the
* given TID and RA address.
*/
static struct mwifiex_ra_list_tbl *
mwifiex_wmm_get_ralist_node(struct mwifiex_private *priv, u8 tid,
u8 *ra_addr)
{
struct mwifiex_ra_list_tbl *ra_list;
list_for_each_entry(ra_list, &priv->wmm.tid_tbl_ptr[tid].ra_list,
list) {
if (!memcmp(ra_list->ra, ra_addr, ETH_ALEN))
return ra_list;
}
return NULL;
}
/*
* This function retrieves an RA list node for a given TID and
* RA address pair.
*
* If no such node is found, a new node is added first and then
* retrieved.
*/
static struct mwifiex_ra_list_tbl *
mwifiex_wmm_get_queue_raptr(struct mwifiex_private *priv, u8 tid, u8 *ra_addr)
{
struct mwifiex_ra_list_tbl *ra_list;
ra_list = mwifiex_wmm_get_ralist_node(priv, tid, ra_addr);
if (ra_list)
return ra_list;
mwifiex_ralist_add(priv, ra_addr);
return mwifiex_wmm_get_ralist_node(priv, tid, ra_addr);
}
/*
* This function checks if a particular RA list node exists in a given TID
* table index.
*/
int
mwifiex_is_ralist_valid(struct mwifiex_private *priv,
struct mwifiex_ra_list_tbl *ra_list, int ptr_index)
{
struct mwifiex_ra_list_tbl *rlist;
list_for_each_entry(rlist, &priv->wmm.tid_tbl_ptr[ptr_index].ra_list,
list) {
if (rlist == ra_list)
return true;
}
return false;
}
/*
* This function adds a packet to WMM queue.
*
* In disconnected state the packet is immediately dropped and the
* packet send completion callback is called with status failure.
*
* Otherwise, the correct RA list node is located and the packet
* is queued at the list tail.
*/
void
mwifiex_wmm_add_buf_txqueue(struct mwifiex_private *priv,
struct sk_buff *skb)
{
struct mwifiex_adapter *adapter = priv->adapter;
u32 tid;
struct mwifiex_ra_list_tbl *ra_list;
u8 ra[ETH_ALEN], tid_down;
unsigned long flags;
if (!priv->media_connected && !mwifiex_is_skb_mgmt_frame(skb)) {
dev_dbg(adapter->dev, "data: drop packet in disconnect\n");
mwifiex_write_data_complete(adapter, skb, 0, -1);
return;
}
tid = skb->priority;
spin_lock_irqsave(&priv->wmm.ra_list_spinlock, flags);
tid_down = mwifiex_wmm_downgrade_tid(priv, tid);
/* In case of infra as we have already created the list during
association we just don't have to call get_queue_raptr, we will
have only 1 raptr for a tid in case of infra */
if (!mwifiex_queuing_ra_based(priv) &&
!mwifiex_is_skb_mgmt_frame(skb)) {
if (!list_empty(&priv->wmm.tid_tbl_ptr[tid_down].ra_list))
ra_list = list_first_entry(
&priv->wmm.tid_tbl_ptr[tid_down].ra_list,
struct mwifiex_ra_list_tbl, list);
else
ra_list = NULL;
} else {
memcpy(ra, skb->data, ETH_ALEN);
if (ra[0] & 0x01 || mwifiex_is_skb_mgmt_frame(skb))
memset(ra, 0xff, ETH_ALEN);
ra_list = mwifiex_wmm_get_queue_raptr(priv, tid_down, ra);
}
if (!ra_list) {
spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock, flags);
mwifiex_write_data_complete(adapter, skb, 0, -1);
return;
}
skb_queue_tail(&ra_list->skb_head, skb);
ra_list->total_pkts_size += skb->len;
ra_list->pkt_count++;
if (atomic_read(&priv->wmm.highest_queued_prio) <
tos_to_tid_inv[tid_down])
atomic_set(&priv->wmm.highest_queued_prio,
tos_to_tid_inv[tid_down]);
atomic_inc(&priv->wmm.tx_pkts_queued);
spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock, flags);
}
/*
* This function processes the get WMM status command response from firmware.
*
* The response may contain multiple TLVs -
* - AC Queue status TLVs
* - Current WMM Parameter IE TLV
* - Admission Control action frame TLVs
*
* This function parses the TLVs and then calls further specific functions
* to process any changes in the queue prioritize or state.
*/
int mwifiex_ret_wmm_get_status(struct mwifiex_private *priv,
const struct host_cmd_ds_command *resp)
{
u8 *curr = (u8 *) &resp->params.get_wmm_status;
uint16_t resp_len = le16_to_cpu(resp->size), tlv_len;
int valid = true;
struct mwifiex_ie_types_data *tlv_hdr;
struct mwifiex_ie_types_wmm_queue_status *tlv_wmm_qstatus;
struct ieee_types_wmm_parameter *wmm_param_ie = NULL;
struct mwifiex_wmm_ac_status *ac_status;
dev_dbg(priv->adapter->dev, "info: WMM: WMM_GET_STATUS cmdresp received: %d\n",
resp_len);
while ((resp_len >= sizeof(tlv_hdr->header)) && valid) {
tlv_hdr = (struct mwifiex_ie_types_data *) curr;
tlv_len = le16_to_cpu(tlv_hdr->header.len);
switch (le16_to_cpu(tlv_hdr->header.type)) {
case TLV_TYPE_WMMQSTATUS:
tlv_wmm_qstatus =
(struct mwifiex_ie_types_wmm_queue_status *)
tlv_hdr;
dev_dbg(priv->adapter->dev,
"info: CMD_RESP: WMM_GET_STATUS:"
" QSTATUS TLV: %d, %d, %d\n",
tlv_wmm_qstatus->queue_index,
tlv_wmm_qstatus->flow_required,
tlv_wmm_qstatus->disabled);
ac_status = &priv->wmm.ac_status[tlv_wmm_qstatus->
queue_index];
ac_status->disabled = tlv_wmm_qstatus->disabled;
ac_status->flow_required =
tlv_wmm_qstatus->flow_required;
ac_status->flow_created = tlv_wmm_qstatus->flow_created;
break;
case WLAN_EID_VENDOR_SPECIFIC:
/*
* Point the regular IEEE IE 2 bytes into the Marvell IE
* and setup the IEEE IE type and length byte fields
*/
wmm_param_ie =
(struct ieee_types_wmm_parameter *) (curr +
2);
wmm_param_ie->vend_hdr.len = (u8) tlv_len;
wmm_param_ie->vend_hdr.element_id =
WLAN_EID_VENDOR_SPECIFIC;
dev_dbg(priv->adapter->dev,
"info: CMD_RESP: WMM_GET_STATUS:"
" WMM Parameter Set Count: %d\n",
wmm_param_ie->qos_info_bitmap &
IEEE80211_WMM_IE_AP_QOSINFO_PARAM_SET_CNT_MASK);
memcpy((u8 *) &priv->curr_bss_params.bss_descriptor.
wmm_ie, wmm_param_ie,
wmm_param_ie->vend_hdr.len + 2);
break;
default:
valid = false;
break;
}
curr += (tlv_len + sizeof(tlv_hdr->header));
resp_len -= (tlv_len + sizeof(tlv_hdr->header));
}
mwifiex_wmm_setup_queue_priorities(priv, wmm_param_ie);
mwifiex_wmm_setup_ac_downgrade(priv);
return 0;
}
/*
* Callback handler from the command module to allow insertion of a WMM TLV.
*
* If the BSS we are associating to supports WMM, this function adds the
* required WMM Information IE to the association request command buffer in
* the form of a Marvell extended IEEE IE.
*/
u32
mwifiex_wmm_process_association_req(struct mwifiex_private *priv,
u8 **assoc_buf,
struct ieee_types_wmm_parameter *wmm_ie,
struct ieee80211_ht_cap *ht_cap)
{
struct mwifiex_ie_types_wmm_param_set *wmm_tlv;
u32 ret_len = 0;
/* Null checks */
if (!assoc_buf)
return 0;
if (!(*assoc_buf))
return 0;
if (!wmm_ie)
return 0;
dev_dbg(priv->adapter->dev,
"info: WMM: process assoc req: bss->wmm_ie=%#x\n",
wmm_ie->vend_hdr.element_id);
if ((priv->wmm_required ||
(ht_cap && (priv->adapter->config_bands & BAND_GN ||
priv->adapter->config_bands & BAND_AN))) &&
wmm_ie->vend_hdr.element_id == WLAN_EID_VENDOR_SPECIFIC) {
wmm_tlv = (struct mwifiex_ie_types_wmm_param_set *) *assoc_buf;
wmm_tlv->header.type = cpu_to_le16((u16) wmm_info_ie[0]);
wmm_tlv->header.len = cpu_to_le16((u16) wmm_info_ie[1]);
memcpy(wmm_tlv->wmm_ie, &wmm_info_ie[2],
le16_to_cpu(wmm_tlv->header.len));
if (wmm_ie->qos_info_bitmap & IEEE80211_WMM_IE_AP_QOSINFO_UAPSD)
memcpy((u8 *) (wmm_tlv->wmm_ie
+ le16_to_cpu(wmm_tlv->header.len)
- sizeof(priv->wmm_qosinfo)),
&priv->wmm_qosinfo, sizeof(priv->wmm_qosinfo));
ret_len = sizeof(wmm_tlv->header)
+ le16_to_cpu(wmm_tlv->header.len);
*assoc_buf += ret_len;
}
return ret_len;
}
/*
* This function computes the time delay in the driver queues for a
* given packet.
*
* When the packet is received at the OS/Driver interface, the current
* time is set in the packet structure. The difference between the present
* time and that received time is computed in this function and limited
* based on pre-compiled limits in the driver.
*/
u8
mwifiex_wmm_compute_drv_pkt_delay(struct mwifiex_private *priv,
const struct sk_buff *skb)
{
u8 ret_val;
struct timeval out_tstamp, in_tstamp;
u32 queue_delay;
do_gettimeofday(&out_tstamp);
in_tstamp = ktime_to_timeval(skb->tstamp);
queue_delay = (out_tstamp.tv_sec - in_tstamp.tv_sec) * 1000;
queue_delay += (out_tstamp.tv_usec - in_tstamp.tv_usec) / 1000;
/*
* Queue delay is passed as a uint8 in units of 2ms (ms shifted
* by 1). Min value (other than 0) is therefore 2ms, max is 510ms.
*
* Pass max value if queue_delay is beyond the uint8 range
*/
ret_val = (u8) (min(queue_delay, priv->wmm.drv_pkt_delay_max) >> 1);
dev_dbg(priv->adapter->dev, "data: WMM: Pkt Delay: %d ms,"
" %d ms sent to FW\n", queue_delay, ret_val);
return ret_val;
}
/*
* This function retrieves the highest priority RA list table pointer.
*/
static struct mwifiex_ra_list_tbl *
mwifiex_wmm_get_highest_priolist_ptr(struct mwifiex_adapter *adapter,
struct mwifiex_private **priv, int *tid)
{
struct mwifiex_private *priv_tmp;
struct mwifiex_ra_list_tbl *ptr;
struct mwifiex_tid_tbl *tid_ptr;
atomic_t *hqp;
unsigned long flags_bss, flags_ra;
int i, j;
/* check the BSS with highest priority first */
for (j = adapter->priv_num - 1; j >= 0; --j) {
spin_lock_irqsave(&adapter->bss_prio_tbl[j].bss_prio_lock,
flags_bss);
/* iterate over BSS with the equal priority */
list_for_each_entry(adapter->bss_prio_tbl[j].bss_prio_cur,
&adapter->bss_prio_tbl[j].bss_prio_head,
list) {
priv_tmp = adapter->bss_prio_tbl[j].bss_prio_cur->priv;
if (atomic_read(&priv_tmp->wmm.tx_pkts_queued) == 0)
continue;
/* iterate over the WMM queues of the BSS */
hqp = &priv_tmp->wmm.highest_queued_prio;
for (i = atomic_read(hqp); i >= LOW_PRIO_TID; --i) {
spin_lock_irqsave(&priv_tmp->wmm.
ra_list_spinlock, flags_ra);
tid_ptr = &(priv_tmp)->wmm.
tid_tbl_ptr[tos_to_tid[i]];
/* iterate over receiver addresses */
list_for_each_entry(ptr, &tid_ptr->ra_list,
list) {
if (!skb_queue_empty(&ptr->skb_head))
/* holds both locks */
goto found;
}
spin_unlock_irqrestore(&priv_tmp->wmm.
ra_list_spinlock,
flags_ra);
}
}
spin_unlock_irqrestore(&adapter->bss_prio_tbl[j].bss_prio_lock,
flags_bss);
}
return NULL;
found:
/* holds bss_prio_lock / ra_list_spinlock */
if (atomic_read(hqp) > i)
atomic_set(hqp, i);
spin_unlock_irqrestore(&priv_tmp->wmm.ra_list_spinlock, flags_ra);
spin_unlock_irqrestore(&adapter->bss_prio_tbl[j].bss_prio_lock,
flags_bss);
*priv = priv_tmp;
*tid = tos_to_tid[i];
return ptr;
}
/* This functions rotates ra and bss lists so packets are picked round robin.
*
* After a packet is successfully transmitted, rotate the ra list, so the ra
* next to the one transmitted, will come first in the list. This way we pick
* the ra' in a round robin fashion. Same applies to bss nodes of equal
* priority.
*
* Function also increments wmm.packets_out counter.
*/
void mwifiex_rotate_priolists(struct mwifiex_private *priv,
struct mwifiex_ra_list_tbl *ra,
int tid)
{
struct mwifiex_adapter *adapter = priv->adapter;
struct mwifiex_bss_prio_tbl *tbl = adapter->bss_prio_tbl;
struct mwifiex_tid_tbl *tid_ptr = &priv->wmm.tid_tbl_ptr[tid];
unsigned long flags;
spin_lock_irqsave(&tbl[priv->bss_priority].bss_prio_lock, flags);
/*
* dirty trick: we remove 'head' temporarily and reinsert it after
* curr bss node. imagine list to stay fixed while head is moved
*/
list_move(&tbl[priv->bss_priority].bss_prio_head,
&tbl[priv->bss_priority].bss_prio_cur->list);
spin_unlock_irqrestore(&tbl[priv->bss_priority].bss_prio_lock, flags);
spin_lock_irqsave(&priv->wmm.ra_list_spinlock, flags);
if (mwifiex_is_ralist_valid(priv, ra, tid)) {
priv->wmm.packets_out[tid]++;
/* same as above */
list_move(&tid_ptr->ra_list, &ra->list);
}
spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock, flags);
}
/*
* This function checks if 11n aggregation is possible.
*/
static int
mwifiex_is_11n_aggragation_possible(struct mwifiex_private *priv,
struct mwifiex_ra_list_tbl *ptr,
int max_buf_size)
{
int count = 0, total_size = 0;
struct sk_buff *skb, *tmp;
int max_amsdu_size;
if (priv->bss_role == MWIFIEX_BSS_ROLE_UAP && priv->ap_11n_enabled &&
ptr->is_11n_enabled)
max_amsdu_size = min_t(int, ptr->max_amsdu, max_buf_size);
else
max_amsdu_size = max_buf_size;
skb_queue_walk_safe(&ptr->skb_head, skb, tmp) {
total_size += skb->len;
if (total_size >= max_amsdu_size)
break;
if (++count >= MIN_NUM_AMSDU)
return true;
}
return false;
}
/*
* This function sends a single packet to firmware for transmission.
*/
static void
mwifiex_send_single_packet(struct mwifiex_private *priv,
struct mwifiex_ra_list_tbl *ptr, int ptr_index,
unsigned long ra_list_flags)
__releases(&priv->wmm.ra_list_spinlock)
{
struct sk_buff *skb, *skb_next;
struct mwifiex_tx_param tx_param;
struct mwifiex_adapter *adapter = priv->adapter;
struct mwifiex_txinfo *tx_info;
if (skb_queue_empty(&ptr->skb_head)) {
spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock,
ra_list_flags);
dev_dbg(adapter->dev, "data: nothing to send\n");
return;
}
skb = skb_dequeue(&ptr->skb_head);
tx_info = MWIFIEX_SKB_TXCB(skb);
dev_dbg(adapter->dev, "data: dequeuing the packet %p %p\n", ptr, skb);
ptr->total_pkts_size -= skb->len;
if (!skb_queue_empty(&ptr->skb_head))
skb_next = skb_peek(&ptr->skb_head);
else
skb_next = NULL;
spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock, ra_list_flags);
tx_param.next_pkt_len = ((skb_next) ? skb_next->len +
sizeof(struct txpd) : 0);
if (mwifiex_process_tx(priv, skb, &tx_param) == -EBUSY) {
/* Queue the packet back at the head */
spin_lock_irqsave(&priv->wmm.ra_list_spinlock, ra_list_flags);
if (!mwifiex_is_ralist_valid(priv, ptr, ptr_index)) {
spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock,
ra_list_flags);
mwifiex_write_data_complete(adapter, skb, 0, -1);
return;
}
skb_queue_tail(&ptr->skb_head, skb);
ptr->total_pkts_size += skb->len;
ptr->pkt_count++;
tx_info->flags |= MWIFIEX_BUF_FLAG_REQUEUED_PKT;
spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock,
ra_list_flags);
} else {
mwifiex_rotate_priolists(priv, ptr, ptr_index);
atomic_dec(&priv->wmm.tx_pkts_queued);
}
}
/*
* This function checks if the first packet in the given RA list
* is already processed or not.
*/
static int
mwifiex_is_ptr_processed(struct mwifiex_private *priv,
struct mwifiex_ra_list_tbl *ptr)
{
struct sk_buff *skb;
struct mwifiex_txinfo *tx_info;
if (skb_queue_empty(&ptr->skb_head))
return false;
skb = skb_peek(&ptr->skb_head);
tx_info = MWIFIEX_SKB_TXCB(skb);
if (tx_info->flags & MWIFIEX_BUF_FLAG_REQUEUED_PKT)
return true;
return false;
}
/*
* This function sends a single processed packet to firmware for
* transmission.
*/
static void
mwifiex_send_processed_packet(struct mwifiex_private *priv,
struct mwifiex_ra_list_tbl *ptr, int ptr_index,
unsigned long ra_list_flags)
__releases(&priv->wmm.ra_list_spinlock)
{
struct mwifiex_tx_param tx_param;
struct mwifiex_adapter *adapter = priv->adapter;
int ret = -1;
struct sk_buff *skb, *skb_next;
struct mwifiex_txinfo *tx_info;
if (skb_queue_empty(&ptr->skb_head)) {
spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock,
ra_list_flags);
return;
}
skb = skb_dequeue(&ptr->skb_head);
if (!skb_queue_empty(&ptr->skb_head))
skb_next = skb_peek(&ptr->skb_head);
else
skb_next = NULL;
tx_info = MWIFIEX_SKB_TXCB(skb);
spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock, ra_list_flags);
if (adapter->iface_type == MWIFIEX_USB) {
adapter->data_sent = true;
ret = adapter->if_ops.host_to_card(adapter, MWIFIEX_USB_EP_DATA,
skb, NULL);
} else {
tx_param.next_pkt_len =
((skb_next) ? skb_next->len +
sizeof(struct txpd) : 0);
ret = adapter->if_ops.host_to_card(adapter, MWIFIEX_TYPE_DATA,
skb, &tx_param);
}
switch (ret) {
case -EBUSY:
dev_dbg(adapter->dev, "data: -EBUSY is returned\n");
spin_lock_irqsave(&priv->wmm.ra_list_spinlock, ra_list_flags);
if (!mwifiex_is_ralist_valid(priv, ptr, ptr_index)) {
spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock,
ra_list_flags);
mwifiex_write_data_complete(adapter, skb, 0, -1);
return;
}
skb_queue_tail(&ptr->skb_head, skb);
tx_info->flags |= MWIFIEX_BUF_FLAG_REQUEUED_PKT;
spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock,
ra_list_flags);
break;
case -1:
if (adapter->iface_type != MWIFIEX_PCIE)
adapter->data_sent = false;
dev_err(adapter->dev, "host_to_card failed: %#x\n", ret);
adapter->dbg.num_tx_host_to_card_failure++;
mwifiex_write_data_complete(adapter, skb, 0, ret);
break;
case -EINPROGRESS:
if (adapter->iface_type != MWIFIEX_PCIE)
adapter->data_sent = false;
default:
break;
}
if (ret != -EBUSY) {
mwifiex_rotate_priolists(priv, ptr, ptr_index);
atomic_dec(&priv->wmm.tx_pkts_queued);
}
}
/*
* This function dequeues a packet from the highest priority list
* and transmits it.
*/
static int
mwifiex_dequeue_tx_packet(struct mwifiex_adapter *adapter)
{
struct mwifiex_ra_list_tbl *ptr;
struct mwifiex_private *priv = NULL;
int ptr_index = 0;
u8 ra[ETH_ALEN];
int tid_del = 0, tid = 0;
unsigned long flags;
ptr = mwifiex_wmm_get_highest_priolist_ptr(adapter, &priv, &ptr_index);
if (!ptr)
return -1;
tid = mwifiex_get_tid(ptr);
dev_dbg(adapter->dev, "data: tid=%d\n", tid);
spin_lock_irqsave(&priv->wmm.ra_list_spinlock, flags);
if (!mwifiex_is_ralist_valid(priv, ptr, ptr_index)) {
spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock, flags);
return -1;
}
if (mwifiex_is_ptr_processed(priv, ptr)) {
mwifiex_send_processed_packet(priv, ptr, ptr_index, flags);
/* ra_list_spinlock has been freed in
mwifiex_send_processed_packet() */
return 0;
}
if (!ptr->is_11n_enabled ||
mwifiex_is_ba_stream_setup(priv, ptr, tid) ||
priv->wps.session_enable ||
((priv->sec_info.wpa_enabled ||
priv->sec_info.wpa2_enabled) &&
!priv->wpa_is_gtk_set)) {
mwifiex_send_single_packet(priv, ptr, ptr_index, flags);
/* ra_list_spinlock has been freed in
mwifiex_send_single_packet() */
} else {
if (mwifiex_is_ampdu_allowed(priv, tid) &&
ptr->pkt_count > ptr->ba_packet_thr) {
if (mwifiex_space_avail_for_new_ba_stream(adapter)) {
mwifiex_create_ba_tbl(priv, ptr->ra, tid,
BA_SETUP_INPROGRESS);
mwifiex_send_addba(priv, tid, ptr->ra);
} else if (mwifiex_find_stream_to_delete
(priv, tid, &tid_del, ra)) {
mwifiex_create_ba_tbl(priv, ptr->ra, tid,
BA_SETUP_INPROGRESS);
mwifiex_send_delba(priv, tid_del, ra, 1);
}
}
if (mwifiex_is_amsdu_allowed(priv, tid) &&
mwifiex_is_11n_aggragation_possible(priv, ptr,
adapter->tx_buf_size))
mwifiex_11n_aggregate_pkt(priv, ptr, INTF_HEADER_LEN,
ptr_index, flags);
/* ra_list_spinlock has been freed in
mwifiex_11n_aggregate_pkt() */
else
mwifiex_send_single_packet(priv, ptr, ptr_index, flags);
/* ra_list_spinlock has been freed in
mwifiex_send_single_packet() */
}
return 0;
}
/*
* This function transmits the highest priority packet awaiting in the
* WMM Queues.
*/
void
mwifiex_wmm_process_tx(struct mwifiex_adapter *adapter)
{
do {
/* Check if busy */
if (adapter->data_sent || adapter->tx_lock_flag)
break;
if (mwifiex_dequeue_tx_packet(adapter))
break;
} while (!mwifiex_wmm_lists_empty(adapter));
}