| /******************************************************************************* |
| |
| Intel PRO/10GbE Linux driver |
| Copyright(c) 1999 - 2006 Intel Corporation. |
| |
| This program is free software; you can redistribute it and/or modify it |
| under the terms and conditions of the GNU General Public License, |
| version 2, as published by the Free Software Foundation. |
| |
| This program is distributed in the hope it will be useful, but WITHOUT |
| ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| more details. |
| |
| You should have received a copy of the GNU General Public License along with |
| this program; if not, write to the Free Software Foundation, Inc., |
| 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
| |
| The full GNU General Public License is included in this distribution in |
| the file called "COPYING". |
| |
| Contact Information: |
| Linux NICS <linux.nics@intel.com> |
| e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
| Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| |
| *******************************************************************************/ |
| |
| /* ixgb_hw.c |
| * Shared functions for accessing and configuring the adapter |
| */ |
| |
| #include "ixgb_hw.h" |
| #include "ixgb_ids.h" |
| |
| /* Local function prototypes */ |
| |
| static uint32_t ixgb_hash_mc_addr(struct ixgb_hw *hw, uint8_t * mc_addr); |
| |
| static void ixgb_mta_set(struct ixgb_hw *hw, uint32_t hash_value); |
| |
| static void ixgb_get_bus_info(struct ixgb_hw *hw); |
| |
| static boolean_t ixgb_link_reset(struct ixgb_hw *hw); |
| |
| static void ixgb_optics_reset(struct ixgb_hw *hw); |
| |
| static ixgb_phy_type ixgb_identify_phy(struct ixgb_hw *hw); |
| |
| static void ixgb_clear_hw_cntrs(struct ixgb_hw *hw); |
| |
| static void ixgb_clear_vfta(struct ixgb_hw *hw); |
| |
| static void ixgb_init_rx_addrs(struct ixgb_hw *hw); |
| |
| static uint16_t ixgb_read_phy_reg(struct ixgb_hw *hw, |
| uint32_t reg_address, |
| uint32_t phy_address, |
| uint32_t device_type); |
| |
| static boolean_t ixgb_setup_fc(struct ixgb_hw *hw); |
| |
| static boolean_t mac_addr_valid(uint8_t *mac_addr); |
| |
| static uint32_t ixgb_mac_reset(struct ixgb_hw *hw) |
| { |
| uint32_t ctrl_reg; |
| |
| ctrl_reg = IXGB_CTRL0_RST | |
| IXGB_CTRL0_SDP3_DIR | /* All pins are Output=1 */ |
| IXGB_CTRL0_SDP2_DIR | |
| IXGB_CTRL0_SDP1_DIR | |
| IXGB_CTRL0_SDP0_DIR | |
| IXGB_CTRL0_SDP3 | /* Initial value 1101 */ |
| IXGB_CTRL0_SDP2 | |
| IXGB_CTRL0_SDP0; |
| |
| #ifdef HP_ZX1 |
| /* Workaround for 82597EX reset errata */ |
| IXGB_WRITE_REG_IO(hw, CTRL0, ctrl_reg); |
| #else |
| IXGB_WRITE_REG(hw, CTRL0, ctrl_reg); |
| #endif |
| |
| /* Delay a few ms just to allow the reset to complete */ |
| msleep(IXGB_DELAY_AFTER_RESET); |
| ctrl_reg = IXGB_READ_REG(hw, CTRL0); |
| #ifdef DBG |
| /* Make sure the self-clearing global reset bit did self clear */ |
| ASSERT(!(ctrl_reg & IXGB_CTRL0_RST)); |
| #endif |
| |
| if (hw->phy_type == ixgb_phy_type_txn17401) { |
| ixgb_optics_reset(hw); |
| } |
| |
| return ctrl_reg; |
| } |
| |
| /****************************************************************************** |
| * Reset the transmit and receive units; mask and clear all interrupts. |
| * |
| * hw - Struct containing variables accessed by shared code |
| *****************************************************************************/ |
| boolean_t |
| ixgb_adapter_stop(struct ixgb_hw *hw) |
| { |
| uint32_t ctrl_reg; |
| uint32_t icr_reg; |
| |
| DEBUGFUNC("ixgb_adapter_stop"); |
| |
| /* If we are stopped or resetting exit gracefully and wait to be |
| * started again before accessing the hardware. |
| */ |
| if(hw->adapter_stopped) { |
| DEBUGOUT("Exiting because the adapter is already stopped!!!\n"); |
| return FALSE; |
| } |
| |
| /* Set the Adapter Stopped flag so other driver functions stop |
| * touching the Hardware. |
| */ |
| hw->adapter_stopped = TRUE; |
| |
| /* Clear interrupt mask to stop board from generating interrupts */ |
| DEBUGOUT("Masking off all interrupts\n"); |
| IXGB_WRITE_REG(hw, IMC, 0xFFFFFFFF); |
| |
| /* Disable the Transmit and Receive units. Then delay to allow |
| * any pending transactions to complete before we hit the MAC with |
| * the global reset. |
| */ |
| IXGB_WRITE_REG(hw, RCTL, IXGB_READ_REG(hw, RCTL) & ~IXGB_RCTL_RXEN); |
| IXGB_WRITE_REG(hw, TCTL, IXGB_READ_REG(hw, TCTL) & ~IXGB_TCTL_TXEN); |
| msleep(IXGB_DELAY_BEFORE_RESET); |
| |
| /* Issue a global reset to the MAC. This will reset the chip's |
| * transmit, receive, DMA, and link units. It will not effect |
| * the current PCI configuration. The global reset bit is self- |
| * clearing, and should clear within a microsecond. |
| */ |
| DEBUGOUT("Issuing a global reset to MAC\n"); |
| |
| ctrl_reg = ixgb_mac_reset(hw); |
| |
| /* Clear interrupt mask to stop board from generating interrupts */ |
| DEBUGOUT("Masking off all interrupts\n"); |
| IXGB_WRITE_REG(hw, IMC, 0xffffffff); |
| |
| /* Clear any pending interrupt events. */ |
| icr_reg = IXGB_READ_REG(hw, ICR); |
| |
| return (ctrl_reg & IXGB_CTRL0_RST); |
| } |
| |
| |
| /****************************************************************************** |
| * Identifies the vendor of the optics module on the adapter. The SR adapters |
| * support two different types of XPAK optics, so it is necessary to determine |
| * which optics are present before applying any optics-specific workarounds. |
| * |
| * hw - Struct containing variables accessed by shared code. |
| * |
| * Returns: the vendor of the XPAK optics module. |
| *****************************************************************************/ |
| static ixgb_xpak_vendor |
| ixgb_identify_xpak_vendor(struct ixgb_hw *hw) |
| { |
| uint32_t i; |
| uint16_t vendor_name[5]; |
| ixgb_xpak_vendor xpak_vendor; |
| |
| DEBUGFUNC("ixgb_identify_xpak_vendor"); |
| |
| /* Read the first few bytes of the vendor string from the XPAK NVR |
| * registers. These are standard XENPAK/XPAK registers, so all XPAK |
| * devices should implement them. */ |
| for (i = 0; i < 5; i++) { |
| vendor_name[i] = ixgb_read_phy_reg(hw, |
| MDIO_PMA_PMD_XPAK_VENDOR_NAME |
| + i, IXGB_PHY_ADDRESS, |
| MDIO_PMA_PMD_DID); |
| } |
| |
| /* Determine the actual vendor */ |
| if (vendor_name[0] == 'I' && |
| vendor_name[1] == 'N' && |
| vendor_name[2] == 'T' && |
| vendor_name[3] == 'E' && vendor_name[4] == 'L') { |
| xpak_vendor = ixgb_xpak_vendor_intel; |
| } else { |
| xpak_vendor = ixgb_xpak_vendor_infineon; |
| } |
| |
| return (xpak_vendor); |
| } |
| |
| /****************************************************************************** |
| * Determine the physical layer module on the adapter. |
| * |
| * hw - Struct containing variables accessed by shared code. The device_id |
| * field must be (correctly) populated before calling this routine. |
| * |
| * Returns: the phy type of the adapter. |
| *****************************************************************************/ |
| static ixgb_phy_type |
| ixgb_identify_phy(struct ixgb_hw *hw) |
| { |
| ixgb_phy_type phy_type; |
| ixgb_xpak_vendor xpak_vendor; |
| |
| DEBUGFUNC("ixgb_identify_phy"); |
| |
| /* Infer the transceiver/phy type from the device id */ |
| switch (hw->device_id) { |
| case IXGB_DEVICE_ID_82597EX: |
| DEBUGOUT("Identified TXN17401 optics\n"); |
| phy_type = ixgb_phy_type_txn17401; |
| break; |
| |
| case IXGB_DEVICE_ID_82597EX_SR: |
| /* The SR adapters carry two different types of XPAK optics |
| * modules; read the vendor identifier to determine the exact |
| * type of optics. */ |
| xpak_vendor = ixgb_identify_xpak_vendor(hw); |
| if (xpak_vendor == ixgb_xpak_vendor_intel) { |
| DEBUGOUT("Identified TXN17201 optics\n"); |
| phy_type = ixgb_phy_type_txn17201; |
| } else { |
| DEBUGOUT("Identified G6005 optics\n"); |
| phy_type = ixgb_phy_type_g6005; |
| } |
| break; |
| case IXGB_DEVICE_ID_82597EX_LR: |
| DEBUGOUT("Identified G6104 optics\n"); |
| phy_type = ixgb_phy_type_g6104; |
| break; |
| case IXGB_DEVICE_ID_82597EX_CX4: |
| DEBUGOUT("Identified CX4\n"); |
| xpak_vendor = ixgb_identify_xpak_vendor(hw); |
| if (xpak_vendor == ixgb_xpak_vendor_intel) { |
| DEBUGOUT("Identified TXN17201 optics\n"); |
| phy_type = ixgb_phy_type_txn17201; |
| } else { |
| DEBUGOUT("Identified G6005 optics\n"); |
| phy_type = ixgb_phy_type_g6005; |
| } |
| break; |
| default: |
| DEBUGOUT("Unknown physical layer module\n"); |
| phy_type = ixgb_phy_type_unknown; |
| break; |
| } |
| |
| return (phy_type); |
| } |
| |
| /****************************************************************************** |
| * Performs basic configuration of the adapter. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * |
| * Resets the controller. |
| * Reads and validates the EEPROM. |
| * Initializes the receive address registers. |
| * Initializes the multicast table. |
| * Clears all on-chip counters. |
| * Calls routine to setup flow control settings. |
| * Leaves the transmit and receive units disabled and uninitialized. |
| * |
| * Returns: |
| * TRUE if successful, |
| * FALSE if unrecoverable problems were encountered. |
| *****************************************************************************/ |
| boolean_t |
| ixgb_init_hw(struct ixgb_hw *hw) |
| { |
| uint32_t i; |
| uint32_t ctrl_reg; |
| boolean_t status; |
| |
| DEBUGFUNC("ixgb_init_hw"); |
| |
| /* Issue a global reset to the MAC. This will reset the chip's |
| * transmit, receive, DMA, and link units. It will not effect |
| * the current PCI configuration. The global reset bit is self- |
| * clearing, and should clear within a microsecond. |
| */ |
| DEBUGOUT("Issuing a global reset to MAC\n"); |
| |
| ctrl_reg = ixgb_mac_reset(hw); |
| |
| DEBUGOUT("Issuing an EE reset to MAC\n"); |
| #ifdef HP_ZX1 |
| /* Workaround for 82597EX reset errata */ |
| IXGB_WRITE_REG_IO(hw, CTRL1, IXGB_CTRL1_EE_RST); |
| #else |
| IXGB_WRITE_REG(hw, CTRL1, IXGB_CTRL1_EE_RST); |
| #endif |
| |
| /* Delay a few ms just to allow the reset to complete */ |
| msleep(IXGB_DELAY_AFTER_EE_RESET); |
| |
| if (ixgb_get_eeprom_data(hw) == FALSE) { |
| return(FALSE); |
| } |
| |
| /* Use the device id to determine the type of phy/transceiver. */ |
| hw->device_id = ixgb_get_ee_device_id(hw); |
| hw->phy_type = ixgb_identify_phy(hw); |
| |
| /* Setup the receive addresses. |
| * Receive Address Registers (RARs 0 - 15). |
| */ |
| ixgb_init_rx_addrs(hw); |
| |
| /* |
| * Check that a valid MAC address has been set. |
| * If it is not valid, we fail hardware init. |
| */ |
| if (!mac_addr_valid(hw->curr_mac_addr)) { |
| DEBUGOUT("MAC address invalid after ixgb_init_rx_addrs\n"); |
| return(FALSE); |
| } |
| |
| /* tell the routines in this file they can access hardware again */ |
| hw->adapter_stopped = FALSE; |
| |
| /* Fill in the bus_info structure */ |
| ixgb_get_bus_info(hw); |
| |
| /* Zero out the Multicast HASH table */ |
| DEBUGOUT("Zeroing the MTA\n"); |
| for(i = 0; i < IXGB_MC_TBL_SIZE; i++) |
| IXGB_WRITE_REG_ARRAY(hw, MTA, i, 0); |
| |
| /* Zero out the VLAN Filter Table Array */ |
| ixgb_clear_vfta(hw); |
| |
| /* Zero all of the hardware counters */ |
| ixgb_clear_hw_cntrs(hw); |
| |
| /* Call a subroutine to setup flow control. */ |
| status = ixgb_setup_fc(hw); |
| |
| /* 82597EX errata: Call check-for-link in case lane deskew is locked */ |
| ixgb_check_for_link(hw); |
| |
| return (status); |
| } |
| |
| /****************************************************************************** |
| * Initializes receive address filters. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * |
| * Places the MAC address in receive address register 0 and clears the rest |
| * of the receive addresss registers. Clears the multicast table. Assumes |
| * the receiver is in reset when the routine is called. |
| *****************************************************************************/ |
| static void |
| ixgb_init_rx_addrs(struct ixgb_hw *hw) |
| { |
| uint32_t i; |
| |
| DEBUGFUNC("ixgb_init_rx_addrs"); |
| |
| /* |
| * If the current mac address is valid, assume it is a software override |
| * to the permanent address. |
| * Otherwise, use the permanent address from the eeprom. |
| */ |
| if (!mac_addr_valid(hw->curr_mac_addr)) { |
| |
| /* Get the MAC address from the eeprom for later reference */ |
| ixgb_get_ee_mac_addr(hw, hw->curr_mac_addr); |
| |
| DEBUGOUT3(" Keeping Permanent MAC Addr =%.2X %.2X %.2X ", |
| hw->curr_mac_addr[0], |
| hw->curr_mac_addr[1], hw->curr_mac_addr[2]); |
| DEBUGOUT3("%.2X %.2X %.2X\n", |
| hw->curr_mac_addr[3], |
| hw->curr_mac_addr[4], hw->curr_mac_addr[5]); |
| } else { |
| |
| /* Setup the receive address. */ |
| DEBUGOUT("Overriding MAC Address in RAR[0]\n"); |
| DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ", |
| hw->curr_mac_addr[0], |
| hw->curr_mac_addr[1], hw->curr_mac_addr[2]); |
| DEBUGOUT3("%.2X %.2X %.2X\n", |
| hw->curr_mac_addr[3], |
| hw->curr_mac_addr[4], hw->curr_mac_addr[5]); |
| |
| ixgb_rar_set(hw, hw->curr_mac_addr, 0); |
| } |
| |
| /* Zero out the other 15 receive addresses. */ |
| DEBUGOUT("Clearing RAR[1-15]\n"); |
| for(i = 1; i < IXGB_RAR_ENTRIES; i++) { |
| /* Write high reg first to disable the AV bit first */ |
| IXGB_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); |
| IXGB_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); |
| } |
| |
| return; |
| } |
| |
| /****************************************************************************** |
| * Updates the MAC's list of multicast addresses. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * mc_addr_list - the list of new multicast addresses |
| * mc_addr_count - number of addresses |
| * pad - number of bytes between addresses in the list |
| * |
| * The given list replaces any existing list. Clears the last 15 receive |
| * address registers and the multicast table. Uses receive address registers |
| * for the first 15 multicast addresses, and hashes the rest into the |
| * multicast table. |
| *****************************************************************************/ |
| void |
| ixgb_mc_addr_list_update(struct ixgb_hw *hw, |
| uint8_t *mc_addr_list, |
| uint32_t mc_addr_count, |
| uint32_t pad) |
| { |
| uint32_t hash_value; |
| uint32_t i; |
| uint32_t rar_used_count = 1; /* RAR[0] is used for our MAC address */ |
| |
| DEBUGFUNC("ixgb_mc_addr_list_update"); |
| |
| /* Set the new number of MC addresses that we are being requested to use. */ |
| hw->num_mc_addrs = mc_addr_count; |
| |
| /* Clear RAR[1-15] */ |
| DEBUGOUT(" Clearing RAR[1-15]\n"); |
| for(i = rar_used_count; i < IXGB_RAR_ENTRIES; i++) { |
| IXGB_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); |
| IXGB_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); |
| } |
| |
| /* Clear the MTA */ |
| DEBUGOUT(" Clearing MTA\n"); |
| for(i = 0; i < IXGB_MC_TBL_SIZE; i++) { |
| IXGB_WRITE_REG_ARRAY(hw, MTA, i, 0); |
| } |
| |
| /* Add the new addresses */ |
| for(i = 0; i < mc_addr_count; i++) { |
| DEBUGOUT(" Adding the multicast addresses:\n"); |
| DEBUGOUT7(" MC Addr #%d =%.2X %.2X %.2X %.2X %.2X %.2X\n", i, |
| mc_addr_list[i * (IXGB_ETH_LENGTH_OF_ADDRESS + pad)], |
| mc_addr_list[i * (IXGB_ETH_LENGTH_OF_ADDRESS + pad) + |
| 1], |
| mc_addr_list[i * (IXGB_ETH_LENGTH_OF_ADDRESS + pad) + |
| 2], |
| mc_addr_list[i * (IXGB_ETH_LENGTH_OF_ADDRESS + pad) + |
| 3], |
| mc_addr_list[i * (IXGB_ETH_LENGTH_OF_ADDRESS + pad) + |
| 4], |
| mc_addr_list[i * (IXGB_ETH_LENGTH_OF_ADDRESS + pad) + |
| 5]); |
| |
| /* Place this multicast address in the RAR if there is room, * |
| * else put it in the MTA |
| */ |
| if(rar_used_count < IXGB_RAR_ENTRIES) { |
| ixgb_rar_set(hw, |
| mc_addr_list + |
| (i * (IXGB_ETH_LENGTH_OF_ADDRESS + pad)), |
| rar_used_count); |
| DEBUGOUT1("Added a multicast address to RAR[%d]\n", i); |
| rar_used_count++; |
| } else { |
| hash_value = ixgb_hash_mc_addr(hw, |
| mc_addr_list + |
| (i * |
| (IXGB_ETH_LENGTH_OF_ADDRESS |
| + pad))); |
| |
| DEBUGOUT1(" Hash value = 0x%03X\n", hash_value); |
| |
| ixgb_mta_set(hw, hash_value); |
| } |
| } |
| |
| DEBUGOUT("MC Update Complete\n"); |
| return; |
| } |
| |
| /****************************************************************************** |
| * Hashes an address to determine its location in the multicast table |
| * |
| * hw - Struct containing variables accessed by shared code |
| * mc_addr - the multicast address to hash |
| * |
| * Returns: |
| * The hash value |
| *****************************************************************************/ |
| static uint32_t |
| ixgb_hash_mc_addr(struct ixgb_hw *hw, |
| uint8_t *mc_addr) |
| { |
| uint32_t hash_value = 0; |
| |
| DEBUGFUNC("ixgb_hash_mc_addr"); |
| |
| /* The portion of the address that is used for the hash table is |
| * determined by the mc_filter_type setting. |
| */ |
| switch (hw->mc_filter_type) { |
| /* [0] [1] [2] [3] [4] [5] |
| * 01 AA 00 12 34 56 |
| * LSB MSB - According to H/W docs */ |
| case 0: |
| /* [47:36] i.e. 0x563 for above example address */ |
| hash_value = |
| ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4)); |
| break; |
| case 1: /* [46:35] i.e. 0xAC6 for above example address */ |
| hash_value = |
| ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5)); |
| break; |
| case 2: /* [45:34] i.e. 0x5D8 for above example address */ |
| hash_value = |
| ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6)); |
| break; |
| case 3: /* [43:32] i.e. 0x634 for above example address */ |
| hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8)); |
| break; |
| default: |
| /* Invalid mc_filter_type, what should we do? */ |
| DEBUGOUT("MC filter type param set incorrectly\n"); |
| ASSERT(0); |
| break; |
| } |
| |
| hash_value &= 0xFFF; |
| return (hash_value); |
| } |
| |
| /****************************************************************************** |
| * Sets the bit in the multicast table corresponding to the hash value. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * hash_value - Multicast address hash value |
| *****************************************************************************/ |
| static void |
| ixgb_mta_set(struct ixgb_hw *hw, |
| uint32_t hash_value) |
| { |
| uint32_t hash_bit, hash_reg; |
| uint32_t mta_reg; |
| |
| /* The MTA is a register array of 128 32-bit registers. |
| * It is treated like an array of 4096 bits. We want to set |
| * bit BitArray[hash_value]. So we figure out what register |
| * the bit is in, read it, OR in the new bit, then write |
| * back the new value. The register is determined by the |
| * upper 7 bits of the hash value and the bit within that |
| * register are determined by the lower 5 bits of the value. |
| */ |
| hash_reg = (hash_value >> 5) & 0x7F; |
| hash_bit = hash_value & 0x1F; |
| |
| mta_reg = IXGB_READ_REG_ARRAY(hw, MTA, hash_reg); |
| |
| mta_reg |= (1 << hash_bit); |
| |
| IXGB_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta_reg); |
| |
| return; |
| } |
| |
| /****************************************************************************** |
| * Puts an ethernet address into a receive address register. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * addr - Address to put into receive address register |
| * index - Receive address register to write |
| *****************************************************************************/ |
| void |
| ixgb_rar_set(struct ixgb_hw *hw, |
| uint8_t *addr, |
| uint32_t index) |
| { |
| uint32_t rar_low, rar_high; |
| |
| DEBUGFUNC("ixgb_rar_set"); |
| |
| /* HW expects these in little endian so we reverse the byte order |
| * from network order (big endian) to little endian |
| */ |
| rar_low = ((uint32_t) addr[0] | |
| ((uint32_t)addr[1] << 8) | |
| ((uint32_t)addr[2] << 16) | |
| ((uint32_t)addr[3] << 24)); |
| |
| rar_high = ((uint32_t) addr[4] | |
| ((uint32_t)addr[5] << 8) | |
| IXGB_RAH_AV); |
| |
| IXGB_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low); |
| IXGB_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high); |
| return; |
| } |
| |
| /****************************************************************************** |
| * Writes a value to the specified offset in the VLAN filter table. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * offset - Offset in VLAN filer table to write |
| * value - Value to write into VLAN filter table |
| *****************************************************************************/ |
| void |
| ixgb_write_vfta(struct ixgb_hw *hw, |
| uint32_t offset, |
| uint32_t value) |
| { |
| IXGB_WRITE_REG_ARRAY(hw, VFTA, offset, value); |
| return; |
| } |
| |
| /****************************************************************************** |
| * Clears the VLAN filer table |
| * |
| * hw - Struct containing variables accessed by shared code |
| *****************************************************************************/ |
| static void |
| ixgb_clear_vfta(struct ixgb_hw *hw) |
| { |
| uint32_t offset; |
| |
| for(offset = 0; offset < IXGB_VLAN_FILTER_TBL_SIZE; offset++) |
| IXGB_WRITE_REG_ARRAY(hw, VFTA, offset, 0); |
| return; |
| } |
| |
| /****************************************************************************** |
| * Configures the flow control settings based on SW configuration. |
| * |
| * hw - Struct containing variables accessed by shared code |
| *****************************************************************************/ |
| |
| static boolean_t |
| ixgb_setup_fc(struct ixgb_hw *hw) |
| { |
| uint32_t ctrl_reg; |
| uint32_t pap_reg = 0; /* by default, assume no pause time */ |
| boolean_t status = TRUE; |
| |
| DEBUGFUNC("ixgb_setup_fc"); |
| |
| /* Get the current control reg 0 settings */ |
| ctrl_reg = IXGB_READ_REG(hw, CTRL0); |
| |
| /* Clear the Receive Pause Enable and Transmit Pause Enable bits */ |
| ctrl_reg &= ~(IXGB_CTRL0_RPE | IXGB_CTRL0_TPE); |
| |
| /* The possible values of the "flow_control" parameter are: |
| * 0: Flow control is completely disabled |
| * 1: Rx flow control is enabled (we can receive pause frames |
| * but not send pause frames). |
| * 2: Tx flow control is enabled (we can send pause frames |
| * but we do not support receiving pause frames). |
| * 3: Both Rx and TX flow control (symmetric) are enabled. |
| * other: Invalid. |
| */ |
| switch (hw->fc.type) { |
| case ixgb_fc_none: /* 0 */ |
| /* Set CMDC bit to disable Rx Flow control */ |
| ctrl_reg |= (IXGB_CTRL0_CMDC); |
| break; |
| case ixgb_fc_rx_pause: /* 1 */ |
| /* RX Flow control is enabled, and TX Flow control is |
| * disabled. |
| */ |
| ctrl_reg |= (IXGB_CTRL0_RPE); |
| break; |
| case ixgb_fc_tx_pause: /* 2 */ |
| /* TX Flow control is enabled, and RX Flow control is |
| * disabled, by a software over-ride. |
| */ |
| ctrl_reg |= (IXGB_CTRL0_TPE); |
| pap_reg = hw->fc.pause_time; |
| break; |
| case ixgb_fc_full: /* 3 */ |
| /* Flow control (both RX and TX) is enabled by a software |
| * over-ride. |
| */ |
| ctrl_reg |= (IXGB_CTRL0_RPE | IXGB_CTRL0_TPE); |
| pap_reg = hw->fc.pause_time; |
| break; |
| default: |
| /* We should never get here. The value should be 0-3. */ |
| DEBUGOUT("Flow control param set incorrectly\n"); |
| ASSERT(0); |
| break; |
| } |
| |
| /* Write the new settings */ |
| IXGB_WRITE_REG(hw, CTRL0, ctrl_reg); |
| |
| if (pap_reg != 0) { |
| IXGB_WRITE_REG(hw, PAP, pap_reg); |
| } |
| |
| /* Set the flow control receive threshold registers. Normally, |
| * these registers will be set to a default threshold that may be |
| * adjusted later by the driver's runtime code. However, if the |
| * ability to transmit pause frames in not enabled, then these |
| * registers will be set to 0. |
| */ |
| if(!(hw->fc.type & ixgb_fc_tx_pause)) { |
| IXGB_WRITE_REG(hw, FCRTL, 0); |
| IXGB_WRITE_REG(hw, FCRTH, 0); |
| } else { |
| /* We need to set up the Receive Threshold high and low water |
| * marks as well as (optionally) enabling the transmission of XON |
| * frames. */ |
| if(hw->fc.send_xon) { |
| IXGB_WRITE_REG(hw, FCRTL, |
| (hw->fc.low_water | IXGB_FCRTL_XONE)); |
| } else { |
| IXGB_WRITE_REG(hw, FCRTL, hw->fc.low_water); |
| } |
| IXGB_WRITE_REG(hw, FCRTH, hw->fc.high_water); |
| } |
| return (status); |
| } |
| |
| /****************************************************************************** |
| * Reads a word from a device over the Management Data Interface (MDI) bus. |
| * This interface is used to manage Physical layer devices. |
| * |
| * hw - Struct containing variables accessed by hw code |
| * reg_address - Offset of device register being read. |
| * phy_address - Address of device on MDI. |
| * |
| * Returns: Data word (16 bits) from MDI device. |
| * |
| * The 82597EX has support for several MDI access methods. This routine |
| * uses the new protocol MDI Single Command and Address Operation. |
| * This requires that first an address cycle command is sent, followed by a |
| * read command. |
| *****************************************************************************/ |
| static uint16_t |
| ixgb_read_phy_reg(struct ixgb_hw *hw, |
| uint32_t reg_address, |
| uint32_t phy_address, |
| uint32_t device_type) |
| { |
| uint32_t i; |
| uint32_t data; |
| uint32_t command = 0; |
| |
| ASSERT(reg_address <= IXGB_MAX_PHY_REG_ADDRESS); |
| ASSERT(phy_address <= IXGB_MAX_PHY_ADDRESS); |
| ASSERT(device_type <= IXGB_MAX_PHY_DEV_TYPE); |
| |
| /* Setup and write the address cycle command */ |
| command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT) | |
| (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) | |
| (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) | |
| (IXGB_MSCA_ADDR_CYCLE | IXGB_MSCA_MDI_COMMAND)); |
| |
| IXGB_WRITE_REG(hw, MSCA, command); |
| |
| /************************************************************** |
| ** Check every 10 usec to see if the address cycle completed |
| ** The COMMAND bit will clear when the operation is complete. |
| ** This may take as long as 64 usecs (we'll wait 100 usecs max) |
| ** from the CPU Write to the Ready bit assertion. |
| **************************************************************/ |
| |
| for(i = 0; i < 10; i++) |
| { |
| udelay(10); |
| |
| command = IXGB_READ_REG(hw, MSCA); |
| |
| if ((command & IXGB_MSCA_MDI_COMMAND) == 0) |
| break; |
| } |
| |
| ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0); |
| |
| /* Address cycle complete, setup and write the read command */ |
| command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT) | |
| (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) | |
| (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) | |
| (IXGB_MSCA_READ | IXGB_MSCA_MDI_COMMAND)); |
| |
| IXGB_WRITE_REG(hw, MSCA, command); |
| |
| /************************************************************** |
| ** Check every 10 usec to see if the read command completed |
| ** The COMMAND bit will clear when the operation is complete. |
| ** The read may take as long as 64 usecs (we'll wait 100 usecs max) |
| ** from the CPU Write to the Ready bit assertion. |
| **************************************************************/ |
| |
| for(i = 0; i < 10; i++) |
| { |
| udelay(10); |
| |
| command = IXGB_READ_REG(hw, MSCA); |
| |
| if ((command & IXGB_MSCA_MDI_COMMAND) == 0) |
| break; |
| } |
| |
| ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0); |
| |
| /* Operation is complete, get the data from the MDIO Read/Write Data |
| * register and return. |
| */ |
| data = IXGB_READ_REG(hw, MSRWD); |
| data >>= IXGB_MSRWD_READ_DATA_SHIFT; |
| return((uint16_t) data); |
| } |
| |
| /****************************************************************************** |
| * Writes a word to a device over the Management Data Interface (MDI) bus. |
| * This interface is used to manage Physical layer devices. |
| * |
| * hw - Struct containing variables accessed by hw code |
| * reg_address - Offset of device register being read. |
| * phy_address - Address of device on MDI. |
| * device_type - Also known as the Device ID or DID. |
| * data - 16-bit value to be written |
| * |
| * Returns: void. |
| * |
| * The 82597EX has support for several MDI access methods. This routine |
| * uses the new protocol MDI Single Command and Address Operation. |
| * This requires that first an address cycle command is sent, followed by a |
| * write command. |
| *****************************************************************************/ |
| static void |
| ixgb_write_phy_reg(struct ixgb_hw *hw, |
| uint32_t reg_address, |
| uint32_t phy_address, |
| uint32_t device_type, |
| uint16_t data) |
| { |
| uint32_t i; |
| uint32_t command = 0; |
| |
| ASSERT(reg_address <= IXGB_MAX_PHY_REG_ADDRESS); |
| ASSERT(phy_address <= IXGB_MAX_PHY_ADDRESS); |
| ASSERT(device_type <= IXGB_MAX_PHY_DEV_TYPE); |
| |
| /* Put the data in the MDIO Read/Write Data register */ |
| IXGB_WRITE_REG(hw, MSRWD, (uint32_t)data); |
| |
| /* Setup and write the address cycle command */ |
| command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT) | |
| (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) | |
| (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) | |
| (IXGB_MSCA_ADDR_CYCLE | IXGB_MSCA_MDI_COMMAND)); |
| |
| IXGB_WRITE_REG(hw, MSCA, command); |
| |
| /************************************************************** |
| ** Check every 10 usec to see if the address cycle completed |
| ** The COMMAND bit will clear when the operation is complete. |
| ** This may take as long as 64 usecs (we'll wait 100 usecs max) |
| ** from the CPU Write to the Ready bit assertion. |
| **************************************************************/ |
| |
| for(i = 0; i < 10; i++) |
| { |
| udelay(10); |
| |
| command = IXGB_READ_REG(hw, MSCA); |
| |
| if ((command & IXGB_MSCA_MDI_COMMAND) == 0) |
| break; |
| } |
| |
| ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0); |
| |
| /* Address cycle complete, setup and write the write command */ |
| command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT) | |
| (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) | |
| (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) | |
| (IXGB_MSCA_WRITE | IXGB_MSCA_MDI_COMMAND)); |
| |
| IXGB_WRITE_REG(hw, MSCA, command); |
| |
| /************************************************************** |
| ** Check every 10 usec to see if the read command completed |
| ** The COMMAND bit will clear when the operation is complete. |
| ** The write may take as long as 64 usecs (we'll wait 100 usecs max) |
| ** from the CPU Write to the Ready bit assertion. |
| **************************************************************/ |
| |
| for(i = 0; i < 10; i++) |
| { |
| udelay(10); |
| |
| command = IXGB_READ_REG(hw, MSCA); |
| |
| if ((command & IXGB_MSCA_MDI_COMMAND) == 0) |
| break; |
| } |
| |
| ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0); |
| |
| /* Operation is complete, return. */ |
| } |
| |
| /****************************************************************************** |
| * Checks to see if the link status of the hardware has changed. |
| * |
| * hw - Struct containing variables accessed by hw code |
| * |
| * Called by any function that needs to check the link status of the adapter. |
| *****************************************************************************/ |
| void |
| ixgb_check_for_link(struct ixgb_hw *hw) |
| { |
| uint32_t status_reg; |
| uint32_t xpcss_reg; |
| |
| DEBUGFUNC("ixgb_check_for_link"); |
| |
| xpcss_reg = IXGB_READ_REG(hw, XPCSS); |
| status_reg = IXGB_READ_REG(hw, STATUS); |
| |
| if ((xpcss_reg & IXGB_XPCSS_ALIGN_STATUS) && |
| (status_reg & IXGB_STATUS_LU)) { |
| hw->link_up = TRUE; |
| } else if (!(xpcss_reg & IXGB_XPCSS_ALIGN_STATUS) && |
| (status_reg & IXGB_STATUS_LU)) { |
| DEBUGOUT("XPCSS Not Aligned while Status:LU is set.\n"); |
| hw->link_up = ixgb_link_reset(hw); |
| } else { |
| /* |
| * 82597EX errata. Since the lane deskew problem may prevent |
| * link, reset the link before reporting link down. |
| */ |
| hw->link_up = ixgb_link_reset(hw); |
| } |
| /* Anything else for 10 Gig?? */ |
| } |
| |
| /****************************************************************************** |
| * Check for a bad link condition that may have occured. |
| * The indication is that the RFC / LFC registers may be incrementing |
| * continually. A full adapter reset is required to recover. |
| * |
| * hw - Struct containing variables accessed by hw code |
| * |
| * Called by any function that needs to check the link status of the adapter. |
| *****************************************************************************/ |
| boolean_t ixgb_check_for_bad_link(struct ixgb_hw *hw) |
| { |
| uint32_t newLFC, newRFC; |
| boolean_t bad_link_returncode = FALSE; |
| |
| if (hw->phy_type == ixgb_phy_type_txn17401) { |
| newLFC = IXGB_READ_REG(hw, LFC); |
| newRFC = IXGB_READ_REG(hw, RFC); |
| if ((hw->lastLFC + 250 < newLFC) |
| || (hw->lastRFC + 250 < newRFC)) { |
| DEBUGOUT |
| ("BAD LINK! too many LFC/RFC since last check\n"); |
| bad_link_returncode = TRUE; |
| } |
| hw->lastLFC = newLFC; |
| hw->lastRFC = newRFC; |
| } |
| |
| return bad_link_returncode; |
| } |
| |
| /****************************************************************************** |
| * Clears all hardware statistics counters. |
| * |
| * hw - Struct containing variables accessed by shared code |
| *****************************************************************************/ |
| static void |
| ixgb_clear_hw_cntrs(struct ixgb_hw *hw) |
| { |
| volatile uint32_t temp_reg; |
| |
| DEBUGFUNC("ixgb_clear_hw_cntrs"); |
| |
| /* if we are stopped or resetting exit gracefully */ |
| if(hw->adapter_stopped) { |
| DEBUGOUT("Exiting because the adapter is stopped!!!\n"); |
| return; |
| } |
| |
| temp_reg = IXGB_READ_REG(hw, TPRL); |
| temp_reg = IXGB_READ_REG(hw, TPRH); |
| temp_reg = IXGB_READ_REG(hw, GPRCL); |
| temp_reg = IXGB_READ_REG(hw, GPRCH); |
| temp_reg = IXGB_READ_REG(hw, BPRCL); |
| temp_reg = IXGB_READ_REG(hw, BPRCH); |
| temp_reg = IXGB_READ_REG(hw, MPRCL); |
| temp_reg = IXGB_READ_REG(hw, MPRCH); |
| temp_reg = IXGB_READ_REG(hw, UPRCL); |
| temp_reg = IXGB_READ_REG(hw, UPRCH); |
| temp_reg = IXGB_READ_REG(hw, VPRCL); |
| temp_reg = IXGB_READ_REG(hw, VPRCH); |
| temp_reg = IXGB_READ_REG(hw, JPRCL); |
| temp_reg = IXGB_READ_REG(hw, JPRCH); |
| temp_reg = IXGB_READ_REG(hw, GORCL); |
| temp_reg = IXGB_READ_REG(hw, GORCH); |
| temp_reg = IXGB_READ_REG(hw, TORL); |
| temp_reg = IXGB_READ_REG(hw, TORH); |
| temp_reg = IXGB_READ_REG(hw, RNBC); |
| temp_reg = IXGB_READ_REG(hw, RUC); |
| temp_reg = IXGB_READ_REG(hw, ROC); |
| temp_reg = IXGB_READ_REG(hw, RLEC); |
| temp_reg = IXGB_READ_REG(hw, CRCERRS); |
| temp_reg = IXGB_READ_REG(hw, ICBC); |
| temp_reg = IXGB_READ_REG(hw, ECBC); |
| temp_reg = IXGB_READ_REG(hw, MPC); |
| temp_reg = IXGB_READ_REG(hw, TPTL); |
| temp_reg = IXGB_READ_REG(hw, TPTH); |
| temp_reg = IXGB_READ_REG(hw, GPTCL); |
| temp_reg = IXGB_READ_REG(hw, GPTCH); |
| temp_reg = IXGB_READ_REG(hw, BPTCL); |
| temp_reg = IXGB_READ_REG(hw, BPTCH); |
| temp_reg = IXGB_READ_REG(hw, MPTCL); |
| temp_reg = IXGB_READ_REG(hw, MPTCH); |
| temp_reg = IXGB_READ_REG(hw, UPTCL); |
| temp_reg = IXGB_READ_REG(hw, UPTCH); |
| temp_reg = IXGB_READ_REG(hw, VPTCL); |
| temp_reg = IXGB_READ_REG(hw, VPTCH); |
| temp_reg = IXGB_READ_REG(hw, JPTCL); |
| temp_reg = IXGB_READ_REG(hw, JPTCH); |
| temp_reg = IXGB_READ_REG(hw, GOTCL); |
| temp_reg = IXGB_READ_REG(hw, GOTCH); |
| temp_reg = IXGB_READ_REG(hw, TOTL); |
| temp_reg = IXGB_READ_REG(hw, TOTH); |
| temp_reg = IXGB_READ_REG(hw, DC); |
| temp_reg = IXGB_READ_REG(hw, PLT64C); |
| temp_reg = IXGB_READ_REG(hw, TSCTC); |
| temp_reg = IXGB_READ_REG(hw, TSCTFC); |
| temp_reg = IXGB_READ_REG(hw, IBIC); |
| temp_reg = IXGB_READ_REG(hw, RFC); |
| temp_reg = IXGB_READ_REG(hw, LFC); |
| temp_reg = IXGB_READ_REG(hw, PFRC); |
| temp_reg = IXGB_READ_REG(hw, PFTC); |
| temp_reg = IXGB_READ_REG(hw, MCFRC); |
| temp_reg = IXGB_READ_REG(hw, MCFTC); |
| temp_reg = IXGB_READ_REG(hw, XONRXC); |
| temp_reg = IXGB_READ_REG(hw, XONTXC); |
| temp_reg = IXGB_READ_REG(hw, XOFFRXC); |
| temp_reg = IXGB_READ_REG(hw, XOFFTXC); |
| temp_reg = IXGB_READ_REG(hw, RJC); |
| return; |
| } |
| |
| /****************************************************************************** |
| * Turns on the software controllable LED |
| * |
| * hw - Struct containing variables accessed by shared code |
| *****************************************************************************/ |
| void |
| ixgb_led_on(struct ixgb_hw *hw) |
| { |
| uint32_t ctrl0_reg = IXGB_READ_REG(hw, CTRL0); |
| |
| /* To turn on the LED, clear software-definable pin 0 (SDP0). */ |
| ctrl0_reg &= ~IXGB_CTRL0_SDP0; |
| IXGB_WRITE_REG(hw, CTRL0, ctrl0_reg); |
| return; |
| } |
| |
| /****************************************************************************** |
| * Turns off the software controllable LED |
| * |
| * hw - Struct containing variables accessed by shared code |
| *****************************************************************************/ |
| void |
| ixgb_led_off(struct ixgb_hw *hw) |
| { |
| uint32_t ctrl0_reg = IXGB_READ_REG(hw, CTRL0); |
| |
| /* To turn off the LED, set software-definable pin 0 (SDP0). */ |
| ctrl0_reg |= IXGB_CTRL0_SDP0; |
| IXGB_WRITE_REG(hw, CTRL0, ctrl0_reg); |
| return; |
| } |
| |
| /****************************************************************************** |
| * Gets the current PCI bus type, speed, and width of the hardware |
| * |
| * hw - Struct containing variables accessed by shared code |
| *****************************************************************************/ |
| static void |
| ixgb_get_bus_info(struct ixgb_hw *hw) |
| { |
| uint32_t status_reg; |
| |
| status_reg = IXGB_READ_REG(hw, STATUS); |
| |
| hw->bus.type = (status_reg & IXGB_STATUS_PCIX_MODE) ? |
| ixgb_bus_type_pcix : ixgb_bus_type_pci; |
| |
| if (hw->bus.type == ixgb_bus_type_pci) { |
| hw->bus.speed = (status_reg & IXGB_STATUS_PCI_SPD) ? |
| ixgb_bus_speed_66 : ixgb_bus_speed_33; |
| } else { |
| switch (status_reg & IXGB_STATUS_PCIX_SPD_MASK) { |
| case IXGB_STATUS_PCIX_SPD_66: |
| hw->bus.speed = ixgb_bus_speed_66; |
| break; |
| case IXGB_STATUS_PCIX_SPD_100: |
| hw->bus.speed = ixgb_bus_speed_100; |
| break; |
| case IXGB_STATUS_PCIX_SPD_133: |
| hw->bus.speed = ixgb_bus_speed_133; |
| break; |
| default: |
| hw->bus.speed = ixgb_bus_speed_reserved; |
| break; |
| } |
| } |
| |
| hw->bus.width = (status_reg & IXGB_STATUS_BUS64) ? |
| ixgb_bus_width_64 : ixgb_bus_width_32; |
| |
| return; |
| } |
| |
| /****************************************************************************** |
| * Tests a MAC address to ensure it is a valid Individual Address |
| * |
| * mac_addr - pointer to MAC address. |
| * |
| *****************************************************************************/ |
| static boolean_t |
| mac_addr_valid(uint8_t *mac_addr) |
| { |
| boolean_t is_valid = TRUE; |
| DEBUGFUNC("mac_addr_valid"); |
| |
| /* Make sure it is not a multicast address */ |
| if (IS_MULTICAST(mac_addr)) { |
| DEBUGOUT("MAC address is multicast\n"); |
| is_valid = FALSE; |
| } |
| /* Not a broadcast address */ |
| else if (IS_BROADCAST(mac_addr)) { |
| DEBUGOUT("MAC address is broadcast\n"); |
| is_valid = FALSE; |
| } |
| /* Reject the zero address */ |
| else if (mac_addr[0] == 0 && |
| mac_addr[1] == 0 && |
| mac_addr[2] == 0 && |
| mac_addr[3] == 0 && |
| mac_addr[4] == 0 && |
| mac_addr[5] == 0) { |
| DEBUGOUT("MAC address is all zeros\n"); |
| is_valid = FALSE; |
| } |
| return (is_valid); |
| } |
| |
| /****************************************************************************** |
| * Resets the 10GbE link. Waits the settle time and returns the state of |
| * the link. |
| * |
| * hw - Struct containing variables accessed by shared code |
| *****************************************************************************/ |
| boolean_t |
| ixgb_link_reset(struct ixgb_hw *hw) |
| { |
| boolean_t link_status = FALSE; |
| uint8_t wait_retries = MAX_RESET_ITERATIONS; |
| uint8_t lrst_retries = MAX_RESET_ITERATIONS; |
| |
| do { |
| /* Reset the link */ |
| IXGB_WRITE_REG(hw, CTRL0, |
| IXGB_READ_REG(hw, CTRL0) | IXGB_CTRL0_LRST); |
| |
| /* Wait for link-up and lane re-alignment */ |
| do { |
| udelay(IXGB_DELAY_USECS_AFTER_LINK_RESET); |
| link_status = |
| ((IXGB_READ_REG(hw, STATUS) & IXGB_STATUS_LU) |
| && (IXGB_READ_REG(hw, XPCSS) & |
| IXGB_XPCSS_ALIGN_STATUS)) ? TRUE : FALSE; |
| } while (!link_status && --wait_retries); |
| |
| } while (!link_status && --lrst_retries); |
| |
| return link_status; |
| } |
| |
| /****************************************************************************** |
| * Resets the 10GbE optics module. |
| * |
| * hw - Struct containing variables accessed by shared code |
| *****************************************************************************/ |
| void |
| ixgb_optics_reset(struct ixgb_hw *hw) |
| { |
| if (hw->phy_type == ixgb_phy_type_txn17401) { |
| uint16_t mdio_reg; |
| |
| ixgb_write_phy_reg(hw, |
| MDIO_PMA_PMD_CR1, |
| IXGB_PHY_ADDRESS, |
| MDIO_PMA_PMD_DID, |
| MDIO_PMA_PMD_CR1_RESET); |
| |
| mdio_reg = ixgb_read_phy_reg( hw, |
| MDIO_PMA_PMD_CR1, |
| IXGB_PHY_ADDRESS, |
| MDIO_PMA_PMD_DID); |
| } |
| |
| return; |
| } |