| /* |
| * blk-mq scheduling framework |
| * |
| * Copyright (C) 2016 Jens Axboe |
| */ |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/blk-mq.h> |
| |
| #include <trace/events/block.h> |
| |
| #include "blk.h" |
| #include "blk-mq.h" |
| #include "blk-mq-sched.h" |
| #include "blk-mq-tag.h" |
| #include "blk-wbt.h" |
| |
| void blk_mq_sched_free_hctx_data(struct request_queue *q, |
| void (*exit)(struct blk_mq_hw_ctx *)) |
| { |
| struct blk_mq_hw_ctx *hctx; |
| int i; |
| |
| queue_for_each_hw_ctx(q, hctx, i) { |
| if (exit && hctx->sched_data) |
| exit(hctx); |
| kfree(hctx->sched_data); |
| hctx->sched_data = NULL; |
| } |
| } |
| EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data); |
| |
| static void __blk_mq_sched_assign_ioc(struct request_queue *q, |
| struct request *rq, |
| struct bio *bio, |
| struct io_context *ioc) |
| { |
| struct io_cq *icq; |
| |
| spin_lock_irq(q->queue_lock); |
| icq = ioc_lookup_icq(ioc, q); |
| spin_unlock_irq(q->queue_lock); |
| |
| if (!icq) { |
| icq = ioc_create_icq(ioc, q, GFP_ATOMIC); |
| if (!icq) |
| return; |
| } |
| |
| rq->elv.icq = icq; |
| if (!blk_mq_sched_get_rq_priv(q, rq, bio)) { |
| rq->rq_flags |= RQF_ELVPRIV; |
| get_io_context(icq->ioc); |
| return; |
| } |
| |
| rq->elv.icq = NULL; |
| } |
| |
| static void blk_mq_sched_assign_ioc(struct request_queue *q, |
| struct request *rq, struct bio *bio) |
| { |
| struct io_context *ioc; |
| |
| ioc = rq_ioc(bio); |
| if (ioc) |
| __blk_mq_sched_assign_ioc(q, rq, bio, ioc); |
| } |
| |
| struct request *blk_mq_sched_get_request(struct request_queue *q, |
| struct bio *bio, |
| unsigned int op, |
| struct blk_mq_alloc_data *data) |
| { |
| struct elevator_queue *e = q->elevator; |
| struct request *rq; |
| |
| blk_queue_enter_live(q); |
| data->q = q; |
| if (likely(!data->ctx)) |
| data->ctx = blk_mq_get_ctx(q); |
| if (likely(!data->hctx)) |
| data->hctx = blk_mq_map_queue(q, data->ctx->cpu); |
| |
| if (e) { |
| data->flags |= BLK_MQ_REQ_INTERNAL; |
| |
| /* |
| * Flush requests are special and go directly to the |
| * dispatch list. |
| */ |
| if (!op_is_flush(op) && e->type->ops.mq.get_request) { |
| rq = e->type->ops.mq.get_request(q, op, data); |
| if (rq) |
| rq->rq_flags |= RQF_QUEUED; |
| } else |
| rq = __blk_mq_alloc_request(data, op); |
| } else { |
| rq = __blk_mq_alloc_request(data, op); |
| } |
| |
| if (rq) { |
| if (!op_is_flush(op)) { |
| rq->elv.icq = NULL; |
| if (e && e->type->icq_cache) |
| blk_mq_sched_assign_ioc(q, rq, bio); |
| } |
| data->hctx->queued++; |
| return rq; |
| } |
| |
| blk_queue_exit(q); |
| return NULL; |
| } |
| |
| void blk_mq_sched_put_request(struct request *rq) |
| { |
| struct request_queue *q = rq->q; |
| struct elevator_queue *e = q->elevator; |
| |
| if (rq->rq_flags & RQF_ELVPRIV) { |
| blk_mq_sched_put_rq_priv(rq->q, rq); |
| if (rq->elv.icq) { |
| put_io_context(rq->elv.icq->ioc); |
| rq->elv.icq = NULL; |
| } |
| } |
| |
| if ((rq->rq_flags & RQF_QUEUED) && e && e->type->ops.mq.put_request) |
| e->type->ops.mq.put_request(rq); |
| else |
| blk_mq_finish_request(rq); |
| } |
| |
| void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx) |
| { |
| struct request_queue *q = hctx->queue; |
| struct elevator_queue *e = q->elevator; |
| const bool has_sched_dispatch = e && e->type->ops.mq.dispatch_request; |
| bool did_work = false; |
| LIST_HEAD(rq_list); |
| |
| if (unlikely(blk_mq_hctx_stopped(hctx))) |
| return; |
| |
| hctx->run++; |
| |
| /* |
| * If we have previous entries on our dispatch list, grab them first for |
| * more fair dispatch. |
| */ |
| if (!list_empty_careful(&hctx->dispatch)) { |
| spin_lock(&hctx->lock); |
| if (!list_empty(&hctx->dispatch)) |
| list_splice_init(&hctx->dispatch, &rq_list); |
| spin_unlock(&hctx->lock); |
| } |
| |
| /* |
| * Only ask the scheduler for requests, if we didn't have residual |
| * requests from the dispatch list. This is to avoid the case where |
| * we only ever dispatch a fraction of the requests available because |
| * of low device queue depth. Once we pull requests out of the IO |
| * scheduler, we can no longer merge or sort them. So it's best to |
| * leave them there for as long as we can. Mark the hw queue as |
| * needing a restart in that case. |
| */ |
| if (!list_empty(&rq_list)) { |
| blk_mq_sched_mark_restart_hctx(hctx); |
| did_work = blk_mq_dispatch_rq_list(q, &rq_list); |
| } else if (!has_sched_dispatch) { |
| blk_mq_flush_busy_ctxs(hctx, &rq_list); |
| blk_mq_dispatch_rq_list(q, &rq_list); |
| } |
| |
| /* |
| * We want to dispatch from the scheduler if we had no work left |
| * on the dispatch list, OR if we did have work but weren't able |
| * to make progress. |
| */ |
| if (!did_work && has_sched_dispatch) { |
| do { |
| struct request *rq; |
| |
| rq = e->type->ops.mq.dispatch_request(hctx); |
| if (!rq) |
| break; |
| list_add(&rq->queuelist, &rq_list); |
| } while (blk_mq_dispatch_rq_list(q, &rq_list)); |
| } |
| } |
| |
| bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio, |
| struct request **merged_request) |
| { |
| struct request *rq; |
| |
| switch (elv_merge(q, &rq, bio)) { |
| case ELEVATOR_BACK_MERGE: |
| if (!blk_mq_sched_allow_merge(q, rq, bio)) |
| return false; |
| if (!bio_attempt_back_merge(q, rq, bio)) |
| return false; |
| *merged_request = attempt_back_merge(q, rq); |
| if (!*merged_request) |
| elv_merged_request(q, rq, ELEVATOR_BACK_MERGE); |
| return true; |
| case ELEVATOR_FRONT_MERGE: |
| if (!blk_mq_sched_allow_merge(q, rq, bio)) |
| return false; |
| if (!bio_attempt_front_merge(q, rq, bio)) |
| return false; |
| *merged_request = attempt_front_merge(q, rq); |
| if (!*merged_request) |
| elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE); |
| return true; |
| default: |
| return false; |
| } |
| } |
| EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge); |
| |
| bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio) |
| { |
| struct elevator_queue *e = q->elevator; |
| |
| if (e->type->ops.mq.bio_merge) { |
| struct blk_mq_ctx *ctx = blk_mq_get_ctx(q); |
| struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu); |
| |
| blk_mq_put_ctx(ctx); |
| return e->type->ops.mq.bio_merge(hctx, bio); |
| } |
| |
| return false; |
| } |
| |
| bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq) |
| { |
| return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq); |
| } |
| EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge); |
| |
| void blk_mq_sched_request_inserted(struct request *rq) |
| { |
| trace_block_rq_insert(rq->q, rq); |
| } |
| EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted); |
| |
| static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx, |
| struct request *rq) |
| { |
| if (rq->tag == -1) { |
| rq->rq_flags |= RQF_SORTED; |
| return false; |
| } |
| |
| /* |
| * If we already have a real request tag, send directly to |
| * the dispatch list. |
| */ |
| spin_lock(&hctx->lock); |
| list_add(&rq->queuelist, &hctx->dispatch); |
| spin_unlock(&hctx->lock); |
| return true; |
| } |
| |
| static bool blk_mq_sched_restart_hctx(struct blk_mq_hw_ctx *hctx) |
| { |
| if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) { |
| clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state); |
| if (blk_mq_hctx_has_pending(hctx)) { |
| blk_mq_run_hw_queue(hctx, true); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /** |
| * list_for_each_entry_rcu_rr - iterate in a round-robin fashion over rcu list |
| * @pos: loop cursor. |
| * @skip: the list element that will not be examined. Iteration starts at |
| * @skip->next. |
| * @head: head of the list to examine. This list must have at least one |
| * element, namely @skip. |
| * @member: name of the list_head structure within typeof(*pos). |
| */ |
| #define list_for_each_entry_rcu_rr(pos, skip, head, member) \ |
| for ((pos) = (skip); \ |
| (pos = (pos)->member.next != (head) ? list_entry_rcu( \ |
| (pos)->member.next, typeof(*pos), member) : \ |
| list_entry_rcu((pos)->member.next->next, typeof(*pos), member)), \ |
| (pos) != (skip); ) |
| |
| /* |
| * Called after a driver tag has been freed to check whether a hctx needs to |
| * be restarted. Restarts @hctx if its tag set is not shared. Restarts hardware |
| * queues in a round-robin fashion if the tag set of @hctx is shared with other |
| * hardware queues. |
| */ |
| void blk_mq_sched_restart(struct blk_mq_hw_ctx *const hctx) |
| { |
| struct blk_mq_tags *const tags = hctx->tags; |
| struct blk_mq_tag_set *const set = hctx->queue->tag_set; |
| struct request_queue *const queue = hctx->queue, *q; |
| struct blk_mq_hw_ctx *hctx2; |
| unsigned int i, j; |
| |
| if (set->flags & BLK_MQ_F_TAG_SHARED) { |
| rcu_read_lock(); |
| list_for_each_entry_rcu_rr(q, queue, &set->tag_list, |
| tag_set_list) { |
| queue_for_each_hw_ctx(q, hctx2, i) |
| if (hctx2->tags == tags && |
| blk_mq_sched_restart_hctx(hctx2)) |
| goto done; |
| } |
| j = hctx->queue_num + 1; |
| for (i = 0; i < queue->nr_hw_queues; i++, j++) { |
| if (j == queue->nr_hw_queues) |
| j = 0; |
| hctx2 = queue->queue_hw_ctx[j]; |
| if (hctx2->tags == tags && |
| blk_mq_sched_restart_hctx(hctx2)) |
| break; |
| } |
| done: |
| rcu_read_unlock(); |
| } else { |
| blk_mq_sched_restart_hctx(hctx); |
| } |
| } |
| |
| /* |
| * Add flush/fua to the queue. If we fail getting a driver tag, then |
| * punt to the requeue list. Requeue will re-invoke us from a context |
| * that's safe to block from. |
| */ |
| static void blk_mq_sched_insert_flush(struct blk_mq_hw_ctx *hctx, |
| struct request *rq, bool can_block) |
| { |
| if (blk_mq_get_driver_tag(rq, &hctx, can_block)) { |
| blk_insert_flush(rq); |
| blk_mq_run_hw_queue(hctx, true); |
| } else |
| blk_mq_add_to_requeue_list(rq, false, true); |
| } |
| |
| void blk_mq_sched_insert_request(struct request *rq, bool at_head, |
| bool run_queue, bool async, bool can_block) |
| { |
| struct request_queue *q = rq->q; |
| struct elevator_queue *e = q->elevator; |
| struct blk_mq_ctx *ctx = rq->mq_ctx; |
| struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu); |
| |
| if (rq->tag == -1 && op_is_flush(rq->cmd_flags)) { |
| blk_mq_sched_insert_flush(hctx, rq, can_block); |
| return; |
| } |
| |
| if (e && blk_mq_sched_bypass_insert(hctx, rq)) |
| goto run; |
| |
| if (e && e->type->ops.mq.insert_requests) { |
| LIST_HEAD(list); |
| |
| list_add(&rq->queuelist, &list); |
| e->type->ops.mq.insert_requests(hctx, &list, at_head); |
| } else { |
| spin_lock(&ctx->lock); |
| __blk_mq_insert_request(hctx, rq, at_head); |
| spin_unlock(&ctx->lock); |
| } |
| |
| run: |
| if (run_queue) |
| blk_mq_run_hw_queue(hctx, async); |
| } |
| |
| void blk_mq_sched_insert_requests(struct request_queue *q, |
| struct blk_mq_ctx *ctx, |
| struct list_head *list, bool run_queue_async) |
| { |
| struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu); |
| struct elevator_queue *e = hctx->queue->elevator; |
| |
| if (e) { |
| struct request *rq, *next; |
| |
| /* |
| * We bypass requests that already have a driver tag assigned, |
| * which should only be flushes. Flushes are only ever inserted |
| * as single requests, so we shouldn't ever hit the |
| * WARN_ON_ONCE() below (but let's handle it just in case). |
| */ |
| list_for_each_entry_safe(rq, next, list, queuelist) { |
| if (WARN_ON_ONCE(rq->tag != -1)) { |
| list_del_init(&rq->queuelist); |
| blk_mq_sched_bypass_insert(hctx, rq); |
| } |
| } |
| } |
| |
| if (e && e->type->ops.mq.insert_requests) |
| e->type->ops.mq.insert_requests(hctx, list, false); |
| else |
| blk_mq_insert_requests(hctx, ctx, list); |
| |
| blk_mq_run_hw_queue(hctx, run_queue_async); |
| } |
| |
| static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set, |
| struct blk_mq_hw_ctx *hctx, |
| unsigned int hctx_idx) |
| { |
| if (hctx->sched_tags) { |
| blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx); |
| blk_mq_free_rq_map(hctx->sched_tags); |
| hctx->sched_tags = NULL; |
| } |
| } |
| |
| static int blk_mq_sched_alloc_tags(struct request_queue *q, |
| struct blk_mq_hw_ctx *hctx, |
| unsigned int hctx_idx) |
| { |
| struct blk_mq_tag_set *set = q->tag_set; |
| int ret; |
| |
| hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests, |
| set->reserved_tags); |
| if (!hctx->sched_tags) |
| return -ENOMEM; |
| |
| ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests); |
| if (ret) |
| blk_mq_sched_free_tags(set, hctx, hctx_idx); |
| |
| return ret; |
| } |
| |
| static void blk_mq_sched_tags_teardown(struct request_queue *q) |
| { |
| struct blk_mq_tag_set *set = q->tag_set; |
| struct blk_mq_hw_ctx *hctx; |
| int i; |
| |
| queue_for_each_hw_ctx(q, hctx, i) |
| blk_mq_sched_free_tags(set, hctx, i); |
| } |
| |
| int blk_mq_sched_init_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx, |
| unsigned int hctx_idx) |
| { |
| struct elevator_queue *e = q->elevator; |
| int ret; |
| |
| if (!e) |
| return 0; |
| |
| ret = blk_mq_sched_alloc_tags(q, hctx, hctx_idx); |
| if (ret) |
| return ret; |
| |
| if (e->type->ops.mq.init_hctx) { |
| ret = e->type->ops.mq.init_hctx(hctx, hctx_idx); |
| if (ret) { |
| blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx); |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| void blk_mq_sched_exit_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx, |
| unsigned int hctx_idx) |
| { |
| struct elevator_queue *e = q->elevator; |
| |
| if (!e) |
| return; |
| |
| if (e->type->ops.mq.exit_hctx && hctx->sched_data) { |
| e->type->ops.mq.exit_hctx(hctx, hctx_idx); |
| hctx->sched_data = NULL; |
| } |
| |
| blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx); |
| } |
| |
| int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e) |
| { |
| struct blk_mq_hw_ctx *hctx; |
| struct elevator_queue *eq; |
| unsigned int i; |
| int ret; |
| |
| if (!e) { |
| q->elevator = NULL; |
| return 0; |
| } |
| |
| /* |
| * Default to 256, since we don't split into sync/async like the |
| * old code did. Additionally, this is a per-hw queue depth. |
| */ |
| q->nr_requests = 2 * BLKDEV_MAX_RQ; |
| |
| queue_for_each_hw_ctx(q, hctx, i) { |
| ret = blk_mq_sched_alloc_tags(q, hctx, i); |
| if (ret) |
| goto err; |
| } |
| |
| ret = e->ops.mq.init_sched(q, e); |
| if (ret) |
| goto err; |
| |
| if (e->ops.mq.init_hctx) { |
| queue_for_each_hw_ctx(q, hctx, i) { |
| ret = e->ops.mq.init_hctx(hctx, i); |
| if (ret) { |
| eq = q->elevator; |
| blk_mq_exit_sched(q, eq); |
| kobject_put(&eq->kobj); |
| return ret; |
| } |
| } |
| } |
| |
| return 0; |
| |
| err: |
| blk_mq_sched_tags_teardown(q); |
| q->elevator = NULL; |
| return ret; |
| } |
| |
| void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e) |
| { |
| struct blk_mq_hw_ctx *hctx; |
| unsigned int i; |
| |
| if (e->type->ops.mq.exit_hctx) { |
| queue_for_each_hw_ctx(q, hctx, i) { |
| if (hctx->sched_data) { |
| e->type->ops.mq.exit_hctx(hctx, i); |
| hctx->sched_data = NULL; |
| } |
| } |
| } |
| if (e->type->ops.mq.exit_sched) |
| e->type->ops.mq.exit_sched(e); |
| blk_mq_sched_tags_teardown(q); |
| q->elevator = NULL; |
| } |
| |
| int blk_mq_sched_init(struct request_queue *q) |
| { |
| int ret; |
| |
| mutex_lock(&q->sysfs_lock); |
| ret = elevator_init(q, NULL); |
| mutex_unlock(&q->sysfs_lock); |
| |
| return ret; |
| } |