| /* bnx2.c: Broadcom NX2 network driver. |
| * |
| * Copyright (c) 2004, 2005, 2006 Broadcom Corporation |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation. |
| * |
| * Written by: Michael Chan (mchan@broadcom.com) |
| */ |
| |
| #include <linux/config.h> |
| |
| #include <linux/module.h> |
| #include <linux/moduleparam.h> |
| |
| #include <linux/kernel.h> |
| #include <linux/timer.h> |
| #include <linux/errno.h> |
| #include <linux/ioport.h> |
| #include <linux/slab.h> |
| #include <linux/vmalloc.h> |
| #include <linux/interrupt.h> |
| #include <linux/pci.h> |
| #include <linux/init.h> |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <linux/skbuff.h> |
| #include <linux/dma-mapping.h> |
| #include <asm/bitops.h> |
| #include <asm/io.h> |
| #include <asm/irq.h> |
| #include <linux/delay.h> |
| #include <asm/byteorder.h> |
| #include <asm/page.h> |
| #include <linux/time.h> |
| #include <linux/ethtool.h> |
| #include <linux/mii.h> |
| #ifdef NETIF_F_HW_VLAN_TX |
| #include <linux/if_vlan.h> |
| #define BCM_VLAN 1 |
| #endif |
| #ifdef NETIF_F_TSO |
| #include <net/ip.h> |
| #include <net/tcp.h> |
| #include <net/checksum.h> |
| #define BCM_TSO 1 |
| #endif |
| #include <linux/workqueue.h> |
| #include <linux/crc32.h> |
| #include <linux/prefetch.h> |
| #include <linux/cache.h> |
| #include <linux/zlib.h> |
| |
| #include "bnx2.h" |
| #include "bnx2_fw.h" |
| |
| #define DRV_MODULE_NAME "bnx2" |
| #define PFX DRV_MODULE_NAME ": " |
| #define DRV_MODULE_VERSION "1.4.43" |
| #define DRV_MODULE_RELDATE "June 28, 2006" |
| |
| #define RUN_AT(x) (jiffies + (x)) |
| |
| /* Time in jiffies before concluding the transmitter is hung. */ |
| #define TX_TIMEOUT (5*HZ) |
| |
| static const char version[] __devinitdata = |
| "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n"; |
| |
| MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>"); |
| MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708 Driver"); |
| MODULE_LICENSE("GPL"); |
| MODULE_VERSION(DRV_MODULE_VERSION); |
| |
| static int disable_msi = 0; |
| |
| module_param(disable_msi, int, 0); |
| MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)"); |
| |
| typedef enum { |
| BCM5706 = 0, |
| NC370T, |
| NC370I, |
| BCM5706S, |
| NC370F, |
| BCM5708, |
| BCM5708S, |
| } board_t; |
| |
| /* indexed by board_t, above */ |
| static const struct { |
| char *name; |
| } board_info[] __devinitdata = { |
| { "Broadcom NetXtreme II BCM5706 1000Base-T" }, |
| { "HP NC370T Multifunction Gigabit Server Adapter" }, |
| { "HP NC370i Multifunction Gigabit Server Adapter" }, |
| { "Broadcom NetXtreme II BCM5706 1000Base-SX" }, |
| { "HP NC370F Multifunction Gigabit Server Adapter" }, |
| { "Broadcom NetXtreme II BCM5708 1000Base-T" }, |
| { "Broadcom NetXtreme II BCM5708 1000Base-SX" }, |
| }; |
| |
| static struct pci_device_id bnx2_pci_tbl[] = { |
| { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706, |
| PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T }, |
| { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706, |
| PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I }, |
| { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706, |
| PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 }, |
| { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708, |
| PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 }, |
| { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S, |
| PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F }, |
| { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S, |
| PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S }, |
| { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S, |
| PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S }, |
| { 0, } |
| }; |
| |
| static struct flash_spec flash_table[] = |
| { |
| /* Slow EEPROM */ |
| {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400, |
| 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE, |
| SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE, |
| "EEPROM - slow"}, |
| /* Expansion entry 0001 */ |
| {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406, |
| 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, |
| SAIFUN_FLASH_BYTE_ADDR_MASK, 0, |
| "Entry 0001"}, |
| /* Saifun SA25F010 (non-buffered flash) */ |
| /* strap, cfg1, & write1 need updates */ |
| {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406, |
| 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, |
| SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2, |
| "Non-buffered flash (128kB)"}, |
| /* Saifun SA25F020 (non-buffered flash) */ |
| /* strap, cfg1, & write1 need updates */ |
| {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406, |
| 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, |
| SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4, |
| "Non-buffered flash (256kB)"}, |
| /* Expansion entry 0100 */ |
| {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406, |
| 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, |
| SAIFUN_FLASH_BYTE_ADDR_MASK, 0, |
| "Entry 0100"}, |
| /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */ |
| {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406, |
| 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE, |
| ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2, |
| "Entry 0101: ST M45PE10 (128kB non-bufferred)"}, |
| /* Entry 0110: ST M45PE20 (non-buffered flash)*/ |
| {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406, |
| 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE, |
| ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4, |
| "Entry 0110: ST M45PE20 (256kB non-bufferred)"}, |
| /* Saifun SA25F005 (non-buffered flash) */ |
| /* strap, cfg1, & write1 need updates */ |
| {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406, |
| 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, |
| SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE, |
| "Non-buffered flash (64kB)"}, |
| /* Fast EEPROM */ |
| {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400, |
| 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE, |
| SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE, |
| "EEPROM - fast"}, |
| /* Expansion entry 1001 */ |
| {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406, |
| 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, |
| SAIFUN_FLASH_BYTE_ADDR_MASK, 0, |
| "Entry 1001"}, |
| /* Expansion entry 1010 */ |
| {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406, |
| 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, |
| SAIFUN_FLASH_BYTE_ADDR_MASK, 0, |
| "Entry 1010"}, |
| /* ATMEL AT45DB011B (buffered flash) */ |
| {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400, |
| 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, |
| BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE, |
| "Buffered flash (128kB)"}, |
| /* Expansion entry 1100 */ |
| {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406, |
| 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, |
| SAIFUN_FLASH_BYTE_ADDR_MASK, 0, |
| "Entry 1100"}, |
| /* Expansion entry 1101 */ |
| {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406, |
| 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, |
| SAIFUN_FLASH_BYTE_ADDR_MASK, 0, |
| "Entry 1101"}, |
| /* Ateml Expansion entry 1110 */ |
| {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400, |
| 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, |
| BUFFERED_FLASH_BYTE_ADDR_MASK, 0, |
| "Entry 1110 (Atmel)"}, |
| /* ATMEL AT45DB021B (buffered flash) */ |
| {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400, |
| 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, |
| BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2, |
| "Buffered flash (256kB)"}, |
| }; |
| |
| MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl); |
| |
| static inline u32 bnx2_tx_avail(struct bnx2 *bp) |
| { |
| u32 diff = TX_RING_IDX(bp->tx_prod) - TX_RING_IDX(bp->tx_cons); |
| |
| if (diff > MAX_TX_DESC_CNT) |
| diff = (diff & MAX_TX_DESC_CNT) - 1; |
| return (bp->tx_ring_size - diff); |
| } |
| |
| static u32 |
| bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset) |
| { |
| REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset); |
| return (REG_RD(bp, BNX2_PCICFG_REG_WINDOW)); |
| } |
| |
| static void |
| bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val) |
| { |
| REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset); |
| REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val); |
| } |
| |
| static void |
| bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val) |
| { |
| offset += cid_addr; |
| REG_WR(bp, BNX2_CTX_DATA_ADR, offset); |
| REG_WR(bp, BNX2_CTX_DATA, val); |
| } |
| |
| static int |
| bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val) |
| { |
| u32 val1; |
| int i, ret; |
| |
| if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) { |
| val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE); |
| val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL; |
| |
| REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1); |
| REG_RD(bp, BNX2_EMAC_MDIO_MODE); |
| |
| udelay(40); |
| } |
| |
| val1 = (bp->phy_addr << 21) | (reg << 16) | |
| BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT | |
| BNX2_EMAC_MDIO_COMM_START_BUSY; |
| REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1); |
| |
| for (i = 0; i < 50; i++) { |
| udelay(10); |
| |
| val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM); |
| if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) { |
| udelay(5); |
| |
| val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM); |
| val1 &= BNX2_EMAC_MDIO_COMM_DATA; |
| |
| break; |
| } |
| } |
| |
| if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) { |
| *val = 0x0; |
| ret = -EBUSY; |
| } |
| else { |
| *val = val1; |
| ret = 0; |
| } |
| |
| if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) { |
| val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE); |
| val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL; |
| |
| REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1); |
| REG_RD(bp, BNX2_EMAC_MDIO_MODE); |
| |
| udelay(40); |
| } |
| |
| return ret; |
| } |
| |
| static int |
| bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val) |
| { |
| u32 val1; |
| int i, ret; |
| |
| if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) { |
| val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE); |
| val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL; |
| |
| REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1); |
| REG_RD(bp, BNX2_EMAC_MDIO_MODE); |
| |
| udelay(40); |
| } |
| |
| val1 = (bp->phy_addr << 21) | (reg << 16) | val | |
| BNX2_EMAC_MDIO_COMM_COMMAND_WRITE | |
| BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT; |
| REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1); |
| |
| for (i = 0; i < 50; i++) { |
| udelay(10); |
| |
| val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM); |
| if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) { |
| udelay(5); |
| break; |
| } |
| } |
| |
| if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) |
| ret = -EBUSY; |
| else |
| ret = 0; |
| |
| if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) { |
| val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE); |
| val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL; |
| |
| REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1); |
| REG_RD(bp, BNX2_EMAC_MDIO_MODE); |
| |
| udelay(40); |
| } |
| |
| return ret; |
| } |
| |
| static void |
| bnx2_disable_int(struct bnx2 *bp) |
| { |
| REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, |
| BNX2_PCICFG_INT_ACK_CMD_MASK_INT); |
| REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD); |
| } |
| |
| static void |
| bnx2_enable_int(struct bnx2 *bp) |
| { |
| REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, |
| BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID | |
| BNX2_PCICFG_INT_ACK_CMD_MASK_INT | bp->last_status_idx); |
| |
| REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, |
| BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID | bp->last_status_idx); |
| |
| REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW); |
| } |
| |
| static void |
| bnx2_disable_int_sync(struct bnx2 *bp) |
| { |
| atomic_inc(&bp->intr_sem); |
| bnx2_disable_int(bp); |
| synchronize_irq(bp->pdev->irq); |
| } |
| |
| static void |
| bnx2_netif_stop(struct bnx2 *bp) |
| { |
| bnx2_disable_int_sync(bp); |
| if (netif_running(bp->dev)) { |
| netif_poll_disable(bp->dev); |
| netif_tx_disable(bp->dev); |
| bp->dev->trans_start = jiffies; /* prevent tx timeout */ |
| } |
| } |
| |
| static void |
| bnx2_netif_start(struct bnx2 *bp) |
| { |
| if (atomic_dec_and_test(&bp->intr_sem)) { |
| if (netif_running(bp->dev)) { |
| netif_wake_queue(bp->dev); |
| netif_poll_enable(bp->dev); |
| bnx2_enable_int(bp); |
| } |
| } |
| } |
| |
| static void |
| bnx2_free_mem(struct bnx2 *bp) |
| { |
| int i; |
| |
| if (bp->status_blk) { |
| pci_free_consistent(bp->pdev, bp->status_stats_size, |
| bp->status_blk, bp->status_blk_mapping); |
| bp->status_blk = NULL; |
| bp->stats_blk = NULL; |
| } |
| if (bp->tx_desc_ring) { |
| pci_free_consistent(bp->pdev, |
| sizeof(struct tx_bd) * TX_DESC_CNT, |
| bp->tx_desc_ring, bp->tx_desc_mapping); |
| bp->tx_desc_ring = NULL; |
| } |
| kfree(bp->tx_buf_ring); |
| bp->tx_buf_ring = NULL; |
| for (i = 0; i < bp->rx_max_ring; i++) { |
| if (bp->rx_desc_ring[i]) |
| pci_free_consistent(bp->pdev, |
| sizeof(struct rx_bd) * RX_DESC_CNT, |
| bp->rx_desc_ring[i], |
| bp->rx_desc_mapping[i]); |
| bp->rx_desc_ring[i] = NULL; |
| } |
| vfree(bp->rx_buf_ring); |
| bp->rx_buf_ring = NULL; |
| } |
| |
| static int |
| bnx2_alloc_mem(struct bnx2 *bp) |
| { |
| int i, status_blk_size; |
| |
| bp->tx_buf_ring = kzalloc(sizeof(struct sw_bd) * TX_DESC_CNT, |
| GFP_KERNEL); |
| if (bp->tx_buf_ring == NULL) |
| return -ENOMEM; |
| |
| bp->tx_desc_ring = pci_alloc_consistent(bp->pdev, |
| sizeof(struct tx_bd) * |
| TX_DESC_CNT, |
| &bp->tx_desc_mapping); |
| if (bp->tx_desc_ring == NULL) |
| goto alloc_mem_err; |
| |
| bp->rx_buf_ring = vmalloc(sizeof(struct sw_bd) * RX_DESC_CNT * |
| bp->rx_max_ring); |
| if (bp->rx_buf_ring == NULL) |
| goto alloc_mem_err; |
| |
| memset(bp->rx_buf_ring, 0, sizeof(struct sw_bd) * RX_DESC_CNT * |
| bp->rx_max_ring); |
| |
| for (i = 0; i < bp->rx_max_ring; i++) { |
| bp->rx_desc_ring[i] = |
| pci_alloc_consistent(bp->pdev, |
| sizeof(struct rx_bd) * RX_DESC_CNT, |
| &bp->rx_desc_mapping[i]); |
| if (bp->rx_desc_ring[i] == NULL) |
| goto alloc_mem_err; |
| |
| } |
| |
| /* Combine status and statistics blocks into one allocation. */ |
| status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block)); |
| bp->status_stats_size = status_blk_size + |
| sizeof(struct statistics_block); |
| |
| bp->status_blk = pci_alloc_consistent(bp->pdev, bp->status_stats_size, |
| &bp->status_blk_mapping); |
| if (bp->status_blk == NULL) |
| goto alloc_mem_err; |
| |
| memset(bp->status_blk, 0, bp->status_stats_size); |
| |
| bp->stats_blk = (void *) ((unsigned long) bp->status_blk + |
| status_blk_size); |
| |
| bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size; |
| |
| return 0; |
| |
| alloc_mem_err: |
| bnx2_free_mem(bp); |
| return -ENOMEM; |
| } |
| |
| static void |
| bnx2_report_fw_link(struct bnx2 *bp) |
| { |
| u32 fw_link_status = 0; |
| |
| if (bp->link_up) { |
| u32 bmsr; |
| |
| switch (bp->line_speed) { |
| case SPEED_10: |
| if (bp->duplex == DUPLEX_HALF) |
| fw_link_status = BNX2_LINK_STATUS_10HALF; |
| else |
| fw_link_status = BNX2_LINK_STATUS_10FULL; |
| break; |
| case SPEED_100: |
| if (bp->duplex == DUPLEX_HALF) |
| fw_link_status = BNX2_LINK_STATUS_100HALF; |
| else |
| fw_link_status = BNX2_LINK_STATUS_100FULL; |
| break; |
| case SPEED_1000: |
| if (bp->duplex == DUPLEX_HALF) |
| fw_link_status = BNX2_LINK_STATUS_1000HALF; |
| else |
| fw_link_status = BNX2_LINK_STATUS_1000FULL; |
| break; |
| case SPEED_2500: |
| if (bp->duplex == DUPLEX_HALF) |
| fw_link_status = BNX2_LINK_STATUS_2500HALF; |
| else |
| fw_link_status = BNX2_LINK_STATUS_2500FULL; |
| break; |
| } |
| |
| fw_link_status |= BNX2_LINK_STATUS_LINK_UP; |
| |
| if (bp->autoneg) { |
| fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED; |
| |
| bnx2_read_phy(bp, MII_BMSR, &bmsr); |
| bnx2_read_phy(bp, MII_BMSR, &bmsr); |
| |
| if (!(bmsr & BMSR_ANEGCOMPLETE) || |
| bp->phy_flags & PHY_PARALLEL_DETECT_FLAG) |
| fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET; |
| else |
| fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE; |
| } |
| } |
| else |
| fw_link_status = BNX2_LINK_STATUS_LINK_DOWN; |
| |
| REG_WR_IND(bp, bp->shmem_base + BNX2_LINK_STATUS, fw_link_status); |
| } |
| |
| static void |
| bnx2_report_link(struct bnx2 *bp) |
| { |
| if (bp->link_up) { |
| netif_carrier_on(bp->dev); |
| printk(KERN_INFO PFX "%s NIC Link is Up, ", bp->dev->name); |
| |
| printk("%d Mbps ", bp->line_speed); |
| |
| if (bp->duplex == DUPLEX_FULL) |
| printk("full duplex"); |
| else |
| printk("half duplex"); |
| |
| if (bp->flow_ctrl) { |
| if (bp->flow_ctrl & FLOW_CTRL_RX) { |
| printk(", receive "); |
| if (bp->flow_ctrl & FLOW_CTRL_TX) |
| printk("& transmit "); |
| } |
| else { |
| printk(", transmit "); |
| } |
| printk("flow control ON"); |
| } |
| printk("\n"); |
| } |
| else { |
| netif_carrier_off(bp->dev); |
| printk(KERN_ERR PFX "%s NIC Link is Down\n", bp->dev->name); |
| } |
| |
| bnx2_report_fw_link(bp); |
| } |
| |
| static void |
| bnx2_resolve_flow_ctrl(struct bnx2 *bp) |
| { |
| u32 local_adv, remote_adv; |
| |
| bp->flow_ctrl = 0; |
| if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) != |
| (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) { |
| |
| if (bp->duplex == DUPLEX_FULL) { |
| bp->flow_ctrl = bp->req_flow_ctrl; |
| } |
| return; |
| } |
| |
| if (bp->duplex != DUPLEX_FULL) { |
| return; |
| } |
| |
| if ((bp->phy_flags & PHY_SERDES_FLAG) && |
| (CHIP_NUM(bp) == CHIP_NUM_5708)) { |
| u32 val; |
| |
| bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val); |
| if (val & BCM5708S_1000X_STAT1_TX_PAUSE) |
| bp->flow_ctrl |= FLOW_CTRL_TX; |
| if (val & BCM5708S_1000X_STAT1_RX_PAUSE) |
| bp->flow_ctrl |= FLOW_CTRL_RX; |
| return; |
| } |
| |
| bnx2_read_phy(bp, MII_ADVERTISE, &local_adv); |
| bnx2_read_phy(bp, MII_LPA, &remote_adv); |
| |
| if (bp->phy_flags & PHY_SERDES_FLAG) { |
| u32 new_local_adv = 0; |
| u32 new_remote_adv = 0; |
| |
| if (local_adv & ADVERTISE_1000XPAUSE) |
| new_local_adv |= ADVERTISE_PAUSE_CAP; |
| if (local_adv & ADVERTISE_1000XPSE_ASYM) |
| new_local_adv |= ADVERTISE_PAUSE_ASYM; |
| if (remote_adv & ADVERTISE_1000XPAUSE) |
| new_remote_adv |= ADVERTISE_PAUSE_CAP; |
| if (remote_adv & ADVERTISE_1000XPSE_ASYM) |
| new_remote_adv |= ADVERTISE_PAUSE_ASYM; |
| |
| local_adv = new_local_adv; |
| remote_adv = new_remote_adv; |
| } |
| |
| /* See Table 28B-3 of 802.3ab-1999 spec. */ |
| if (local_adv & ADVERTISE_PAUSE_CAP) { |
| if(local_adv & ADVERTISE_PAUSE_ASYM) { |
| if (remote_adv & ADVERTISE_PAUSE_CAP) { |
| bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX; |
| } |
| else if (remote_adv & ADVERTISE_PAUSE_ASYM) { |
| bp->flow_ctrl = FLOW_CTRL_RX; |
| } |
| } |
| else { |
| if (remote_adv & ADVERTISE_PAUSE_CAP) { |
| bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX; |
| } |
| } |
| } |
| else if (local_adv & ADVERTISE_PAUSE_ASYM) { |
| if ((remote_adv & ADVERTISE_PAUSE_CAP) && |
| (remote_adv & ADVERTISE_PAUSE_ASYM)) { |
| |
| bp->flow_ctrl = FLOW_CTRL_TX; |
| } |
| } |
| } |
| |
| static int |
| bnx2_5708s_linkup(struct bnx2 *bp) |
| { |
| u32 val; |
| |
| bp->link_up = 1; |
| bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val); |
| switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) { |
| case BCM5708S_1000X_STAT1_SPEED_10: |
| bp->line_speed = SPEED_10; |
| break; |
| case BCM5708S_1000X_STAT1_SPEED_100: |
| bp->line_speed = SPEED_100; |
| break; |
| case BCM5708S_1000X_STAT1_SPEED_1G: |
| bp->line_speed = SPEED_1000; |
| break; |
| case BCM5708S_1000X_STAT1_SPEED_2G5: |
| bp->line_speed = SPEED_2500; |
| break; |
| } |
| if (val & BCM5708S_1000X_STAT1_FD) |
| bp->duplex = DUPLEX_FULL; |
| else |
| bp->duplex = DUPLEX_HALF; |
| |
| return 0; |
| } |
| |
| static int |
| bnx2_5706s_linkup(struct bnx2 *bp) |
| { |
| u32 bmcr, local_adv, remote_adv, common; |
| |
| bp->link_up = 1; |
| bp->line_speed = SPEED_1000; |
| |
| bnx2_read_phy(bp, MII_BMCR, &bmcr); |
| if (bmcr & BMCR_FULLDPLX) { |
| bp->duplex = DUPLEX_FULL; |
| } |
| else { |
| bp->duplex = DUPLEX_HALF; |
| } |
| |
| if (!(bmcr & BMCR_ANENABLE)) { |
| return 0; |
| } |
| |
| bnx2_read_phy(bp, MII_ADVERTISE, &local_adv); |
| bnx2_read_phy(bp, MII_LPA, &remote_adv); |
| |
| common = local_adv & remote_adv; |
| if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) { |
| |
| if (common & ADVERTISE_1000XFULL) { |
| bp->duplex = DUPLEX_FULL; |
| } |
| else { |
| bp->duplex = DUPLEX_HALF; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int |
| bnx2_copper_linkup(struct bnx2 *bp) |
| { |
| u32 bmcr; |
| |
| bnx2_read_phy(bp, MII_BMCR, &bmcr); |
| if (bmcr & BMCR_ANENABLE) { |
| u32 local_adv, remote_adv, common; |
| |
| bnx2_read_phy(bp, MII_CTRL1000, &local_adv); |
| bnx2_read_phy(bp, MII_STAT1000, &remote_adv); |
| |
| common = local_adv & (remote_adv >> 2); |
| if (common & ADVERTISE_1000FULL) { |
| bp->line_speed = SPEED_1000; |
| bp->duplex = DUPLEX_FULL; |
| } |
| else if (common & ADVERTISE_1000HALF) { |
| bp->line_speed = SPEED_1000; |
| bp->duplex = DUPLEX_HALF; |
| } |
| else { |
| bnx2_read_phy(bp, MII_ADVERTISE, &local_adv); |
| bnx2_read_phy(bp, MII_LPA, &remote_adv); |
| |
| common = local_adv & remote_adv; |
| if (common & ADVERTISE_100FULL) { |
| bp->line_speed = SPEED_100; |
| bp->duplex = DUPLEX_FULL; |
| } |
| else if (common & ADVERTISE_100HALF) { |
| bp->line_speed = SPEED_100; |
| bp->duplex = DUPLEX_HALF; |
| } |
| else if (common & ADVERTISE_10FULL) { |
| bp->line_speed = SPEED_10; |
| bp->duplex = DUPLEX_FULL; |
| } |
| else if (common & ADVERTISE_10HALF) { |
| bp->line_speed = SPEED_10; |
| bp->duplex = DUPLEX_HALF; |
| } |
| else { |
| bp->line_speed = 0; |
| bp->link_up = 0; |
| } |
| } |
| } |
| else { |
| if (bmcr & BMCR_SPEED100) { |
| bp->line_speed = SPEED_100; |
| } |
| else { |
| bp->line_speed = SPEED_10; |
| } |
| if (bmcr & BMCR_FULLDPLX) { |
| bp->duplex = DUPLEX_FULL; |
| } |
| else { |
| bp->duplex = DUPLEX_HALF; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int |
| bnx2_set_mac_link(struct bnx2 *bp) |
| { |
| u32 val; |
| |
| REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620); |
| if (bp->link_up && (bp->line_speed == SPEED_1000) && |
| (bp->duplex == DUPLEX_HALF)) { |
| REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff); |
| } |
| |
| /* Configure the EMAC mode register. */ |
| val = REG_RD(bp, BNX2_EMAC_MODE); |
| |
| val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX | |
| BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK | |
| BNX2_EMAC_MODE_25G); |
| |
| if (bp->link_up) { |
| switch (bp->line_speed) { |
| case SPEED_10: |
| if (CHIP_NUM(bp) == CHIP_NUM_5708) { |
| val |= BNX2_EMAC_MODE_PORT_MII_10; |
| break; |
| } |
| /* fall through */ |
| case SPEED_100: |
| val |= BNX2_EMAC_MODE_PORT_MII; |
| break; |
| case SPEED_2500: |
| val |= BNX2_EMAC_MODE_25G; |
| /* fall through */ |
| case SPEED_1000: |
| val |= BNX2_EMAC_MODE_PORT_GMII; |
| break; |
| } |
| } |
| else { |
| val |= BNX2_EMAC_MODE_PORT_GMII; |
| } |
| |
| /* Set the MAC to operate in the appropriate duplex mode. */ |
| if (bp->duplex == DUPLEX_HALF) |
| val |= BNX2_EMAC_MODE_HALF_DUPLEX; |
| REG_WR(bp, BNX2_EMAC_MODE, val); |
| |
| /* Enable/disable rx PAUSE. */ |
| bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN; |
| |
| if (bp->flow_ctrl & FLOW_CTRL_RX) |
| bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN; |
| REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode); |
| |
| /* Enable/disable tx PAUSE. */ |
| val = REG_RD(bp, BNX2_EMAC_TX_MODE); |
| val &= ~BNX2_EMAC_TX_MODE_FLOW_EN; |
| |
| if (bp->flow_ctrl & FLOW_CTRL_TX) |
| val |= BNX2_EMAC_TX_MODE_FLOW_EN; |
| REG_WR(bp, BNX2_EMAC_TX_MODE, val); |
| |
| /* Acknowledge the interrupt. */ |
| REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE); |
| |
| return 0; |
| } |
| |
| static int |
| bnx2_set_link(struct bnx2 *bp) |
| { |
| u32 bmsr; |
| u8 link_up; |
| |
| if (bp->loopback == MAC_LOOPBACK) { |
| bp->link_up = 1; |
| return 0; |
| } |
| |
| link_up = bp->link_up; |
| |
| bnx2_read_phy(bp, MII_BMSR, &bmsr); |
| bnx2_read_phy(bp, MII_BMSR, &bmsr); |
| |
| if ((bp->phy_flags & PHY_SERDES_FLAG) && |
| (CHIP_NUM(bp) == CHIP_NUM_5706)) { |
| u32 val; |
| |
| val = REG_RD(bp, BNX2_EMAC_STATUS); |
| if (val & BNX2_EMAC_STATUS_LINK) |
| bmsr |= BMSR_LSTATUS; |
| else |
| bmsr &= ~BMSR_LSTATUS; |
| } |
| |
| if (bmsr & BMSR_LSTATUS) { |
| bp->link_up = 1; |
| |
| if (bp->phy_flags & PHY_SERDES_FLAG) { |
| if (CHIP_NUM(bp) == CHIP_NUM_5706) |
| bnx2_5706s_linkup(bp); |
| else if (CHIP_NUM(bp) == CHIP_NUM_5708) |
| bnx2_5708s_linkup(bp); |
| } |
| else { |
| bnx2_copper_linkup(bp); |
| } |
| bnx2_resolve_flow_ctrl(bp); |
| } |
| else { |
| if ((bp->phy_flags & PHY_SERDES_FLAG) && |
| (bp->autoneg & AUTONEG_SPEED)) { |
| |
| u32 bmcr; |
| |
| bnx2_read_phy(bp, MII_BMCR, &bmcr); |
| if (!(bmcr & BMCR_ANENABLE)) { |
| bnx2_write_phy(bp, MII_BMCR, bmcr | |
| BMCR_ANENABLE); |
| } |
| } |
| bp->phy_flags &= ~PHY_PARALLEL_DETECT_FLAG; |
| bp->link_up = 0; |
| } |
| |
| if (bp->link_up != link_up) { |
| bnx2_report_link(bp); |
| } |
| |
| bnx2_set_mac_link(bp); |
| |
| return 0; |
| } |
| |
| static int |
| bnx2_reset_phy(struct bnx2 *bp) |
| { |
| int i; |
| u32 reg; |
| |
| bnx2_write_phy(bp, MII_BMCR, BMCR_RESET); |
| |
| #define PHY_RESET_MAX_WAIT 100 |
| for (i = 0; i < PHY_RESET_MAX_WAIT; i++) { |
| udelay(10); |
| |
| bnx2_read_phy(bp, MII_BMCR, ®); |
| if (!(reg & BMCR_RESET)) { |
| udelay(20); |
| break; |
| } |
| } |
| if (i == PHY_RESET_MAX_WAIT) { |
| return -EBUSY; |
| } |
| return 0; |
| } |
| |
| static u32 |
| bnx2_phy_get_pause_adv(struct bnx2 *bp) |
| { |
| u32 adv = 0; |
| |
| if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) == |
| (FLOW_CTRL_RX | FLOW_CTRL_TX)) { |
| |
| if (bp->phy_flags & PHY_SERDES_FLAG) { |
| adv = ADVERTISE_1000XPAUSE; |
| } |
| else { |
| adv = ADVERTISE_PAUSE_CAP; |
| } |
| } |
| else if (bp->req_flow_ctrl & FLOW_CTRL_TX) { |
| if (bp->phy_flags & PHY_SERDES_FLAG) { |
| adv = ADVERTISE_1000XPSE_ASYM; |
| } |
| else { |
| adv = ADVERTISE_PAUSE_ASYM; |
| } |
| } |
| else if (bp->req_flow_ctrl & FLOW_CTRL_RX) { |
| if (bp->phy_flags & PHY_SERDES_FLAG) { |
| adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM; |
| } |
| else { |
| adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM; |
| } |
| } |
| return adv; |
| } |
| |
| static int |
| bnx2_setup_serdes_phy(struct bnx2 *bp) |
| { |
| u32 adv, bmcr, up1; |
| u32 new_adv = 0; |
| |
| if (!(bp->autoneg & AUTONEG_SPEED)) { |
| u32 new_bmcr; |
| int force_link_down = 0; |
| |
| if (CHIP_NUM(bp) == CHIP_NUM_5708) { |
| bnx2_read_phy(bp, BCM5708S_UP1, &up1); |
| if (up1 & BCM5708S_UP1_2G5) { |
| up1 &= ~BCM5708S_UP1_2G5; |
| bnx2_write_phy(bp, BCM5708S_UP1, up1); |
| force_link_down = 1; |
| } |
| } |
| |
| bnx2_read_phy(bp, MII_ADVERTISE, &adv); |
| adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF); |
| |
| bnx2_read_phy(bp, MII_BMCR, &bmcr); |
| new_bmcr = bmcr & ~BMCR_ANENABLE; |
| new_bmcr |= BMCR_SPEED1000; |
| if (bp->req_duplex == DUPLEX_FULL) { |
| adv |= ADVERTISE_1000XFULL; |
| new_bmcr |= BMCR_FULLDPLX; |
| } |
| else { |
| adv |= ADVERTISE_1000XHALF; |
| new_bmcr &= ~BMCR_FULLDPLX; |
| } |
| if ((new_bmcr != bmcr) || (force_link_down)) { |
| /* Force a link down visible on the other side */ |
| if (bp->link_up) { |
| bnx2_write_phy(bp, MII_ADVERTISE, adv & |
| ~(ADVERTISE_1000XFULL | |
| ADVERTISE_1000XHALF)); |
| bnx2_write_phy(bp, MII_BMCR, bmcr | |
| BMCR_ANRESTART | BMCR_ANENABLE); |
| |
| bp->link_up = 0; |
| netif_carrier_off(bp->dev); |
| bnx2_write_phy(bp, MII_BMCR, new_bmcr); |
| } |
| bnx2_write_phy(bp, MII_ADVERTISE, adv); |
| bnx2_write_phy(bp, MII_BMCR, new_bmcr); |
| } |
| return 0; |
| } |
| |
| if (bp->phy_flags & PHY_2_5G_CAPABLE_FLAG) { |
| bnx2_read_phy(bp, BCM5708S_UP1, &up1); |
| up1 |= BCM5708S_UP1_2G5; |
| bnx2_write_phy(bp, BCM5708S_UP1, up1); |
| } |
| |
| if (bp->advertising & ADVERTISED_1000baseT_Full) |
| new_adv |= ADVERTISE_1000XFULL; |
| |
| new_adv |= bnx2_phy_get_pause_adv(bp); |
| |
| bnx2_read_phy(bp, MII_ADVERTISE, &adv); |
| bnx2_read_phy(bp, MII_BMCR, &bmcr); |
| |
| bp->serdes_an_pending = 0; |
| if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) { |
| /* Force a link down visible on the other side */ |
| if (bp->link_up) { |
| int i; |
| |
| bnx2_write_phy(bp, MII_BMCR, BMCR_LOOPBACK); |
| for (i = 0; i < 110; i++) { |
| udelay(100); |
| } |
| } |
| |
| bnx2_write_phy(bp, MII_ADVERTISE, new_adv); |
| bnx2_write_phy(bp, MII_BMCR, bmcr | BMCR_ANRESTART | |
| BMCR_ANENABLE); |
| if (CHIP_NUM(bp) == CHIP_NUM_5706) { |
| /* Speed up link-up time when the link partner |
| * does not autonegotiate which is very common |
| * in blade servers. Some blade servers use |
| * IPMI for kerboard input and it's important |
| * to minimize link disruptions. Autoneg. involves |
| * exchanging base pages plus 3 next pages and |
| * normally completes in about 120 msec. |
| */ |
| bp->current_interval = SERDES_AN_TIMEOUT; |
| bp->serdes_an_pending = 1; |
| mod_timer(&bp->timer, jiffies + bp->current_interval); |
| } |
| } |
| |
| return 0; |
| } |
| |
| #define ETHTOOL_ALL_FIBRE_SPEED \ |
| (ADVERTISED_1000baseT_Full) |
| |
| #define ETHTOOL_ALL_COPPER_SPEED \ |
| (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \ |
| ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \ |
| ADVERTISED_1000baseT_Full) |
| |
| #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \ |
| ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA) |
| |
| #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL) |
| |
| static int |
| bnx2_setup_copper_phy(struct bnx2 *bp) |
| { |
| u32 bmcr; |
| u32 new_bmcr; |
| |
| bnx2_read_phy(bp, MII_BMCR, &bmcr); |
| |
| if (bp->autoneg & AUTONEG_SPEED) { |
| u32 adv_reg, adv1000_reg; |
| u32 new_adv_reg = 0; |
| u32 new_adv1000_reg = 0; |
| |
| bnx2_read_phy(bp, MII_ADVERTISE, &adv_reg); |
| adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP | |
| ADVERTISE_PAUSE_ASYM); |
| |
| bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg); |
| adv1000_reg &= PHY_ALL_1000_SPEED; |
| |
| if (bp->advertising & ADVERTISED_10baseT_Half) |
| new_adv_reg |= ADVERTISE_10HALF; |
| if (bp->advertising & ADVERTISED_10baseT_Full) |
| new_adv_reg |= ADVERTISE_10FULL; |
| if (bp->advertising & ADVERTISED_100baseT_Half) |
| new_adv_reg |= ADVERTISE_100HALF; |
| if (bp->advertising & ADVERTISED_100baseT_Full) |
| new_adv_reg |= ADVERTISE_100FULL; |
| if (bp->advertising & ADVERTISED_1000baseT_Full) |
| new_adv1000_reg |= ADVERTISE_1000FULL; |
| |
| new_adv_reg |= ADVERTISE_CSMA; |
| |
| new_adv_reg |= bnx2_phy_get_pause_adv(bp); |
| |
| if ((adv1000_reg != new_adv1000_reg) || |
| (adv_reg != new_adv_reg) || |
| ((bmcr & BMCR_ANENABLE) == 0)) { |
| |
| bnx2_write_phy(bp, MII_ADVERTISE, new_adv_reg); |
| bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg); |
| bnx2_write_phy(bp, MII_BMCR, BMCR_ANRESTART | |
| BMCR_ANENABLE); |
| } |
| else if (bp->link_up) { |
| /* Flow ctrl may have changed from auto to forced */ |
| /* or vice-versa. */ |
| |
| bnx2_resolve_flow_ctrl(bp); |
| bnx2_set_mac_link(bp); |
| } |
| return 0; |
| } |
| |
| new_bmcr = 0; |
| if (bp->req_line_speed == SPEED_100) { |
| new_bmcr |= BMCR_SPEED100; |
| } |
| if (bp->req_duplex == DUPLEX_FULL) { |
| new_bmcr |= BMCR_FULLDPLX; |
| } |
| if (new_bmcr != bmcr) { |
| u32 bmsr; |
| int i = 0; |
| |
| bnx2_read_phy(bp, MII_BMSR, &bmsr); |
| bnx2_read_phy(bp, MII_BMSR, &bmsr); |
| |
| if (bmsr & BMSR_LSTATUS) { |
| /* Force link down */ |
| bnx2_write_phy(bp, MII_BMCR, BMCR_LOOPBACK); |
| do { |
| udelay(100); |
| bnx2_read_phy(bp, MII_BMSR, &bmsr); |
| bnx2_read_phy(bp, MII_BMSR, &bmsr); |
| i++; |
| } while ((bmsr & BMSR_LSTATUS) && (i < 620)); |
| } |
| |
| bnx2_write_phy(bp, MII_BMCR, new_bmcr); |
| |
| /* Normally, the new speed is setup after the link has |
| * gone down and up again. In some cases, link will not go |
| * down so we need to set up the new speed here. |
| */ |
| if (bmsr & BMSR_LSTATUS) { |
| bp->line_speed = bp->req_line_speed; |
| bp->duplex = bp->req_duplex; |
| bnx2_resolve_flow_ctrl(bp); |
| bnx2_set_mac_link(bp); |
| } |
| } |
| return 0; |
| } |
| |
| static int |
| bnx2_setup_phy(struct bnx2 *bp) |
| { |
| if (bp->loopback == MAC_LOOPBACK) |
| return 0; |
| |
| if (bp->phy_flags & PHY_SERDES_FLAG) { |
| return (bnx2_setup_serdes_phy(bp)); |
| } |
| else { |
| return (bnx2_setup_copper_phy(bp)); |
| } |
| } |
| |
| static int |
| bnx2_init_5708s_phy(struct bnx2 *bp) |
| { |
| u32 val; |
| |
| bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3); |
| bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE); |
| bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG); |
| |
| bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val); |
| val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN; |
| bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val); |
| |
| bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val); |
| val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN; |
| bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val); |
| |
| if (bp->phy_flags & PHY_2_5G_CAPABLE_FLAG) { |
| bnx2_read_phy(bp, BCM5708S_UP1, &val); |
| val |= BCM5708S_UP1_2G5; |
| bnx2_write_phy(bp, BCM5708S_UP1, val); |
| } |
| |
| if ((CHIP_ID(bp) == CHIP_ID_5708_A0) || |
| (CHIP_ID(bp) == CHIP_ID_5708_B0) || |
| (CHIP_ID(bp) == CHIP_ID_5708_B1)) { |
| /* increase tx signal amplitude */ |
| bnx2_write_phy(bp, BCM5708S_BLK_ADDR, |
| BCM5708S_BLK_ADDR_TX_MISC); |
| bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val); |
| val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM; |
| bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val); |
| bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG); |
| } |
| |
| val = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_CONFIG) & |
| BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK; |
| |
| if (val) { |
| u32 is_backplane; |
| |
| is_backplane = REG_RD_IND(bp, bp->shmem_base + |
| BNX2_SHARED_HW_CFG_CONFIG); |
| if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) { |
| bnx2_write_phy(bp, BCM5708S_BLK_ADDR, |
| BCM5708S_BLK_ADDR_TX_MISC); |
| bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val); |
| bnx2_write_phy(bp, BCM5708S_BLK_ADDR, |
| BCM5708S_BLK_ADDR_DIG); |
| } |
| } |
| return 0; |
| } |
| |
| static int |
| bnx2_init_5706s_phy(struct bnx2 *bp) |
| { |
| bp->phy_flags &= ~PHY_PARALLEL_DETECT_FLAG; |
| |
| if (CHIP_NUM(bp) == CHIP_NUM_5706) { |
| REG_WR(bp, BNX2_MISC_UNUSED0, 0x300); |
| } |
| |
| if (bp->dev->mtu > 1500) { |
| u32 val; |
| |
| /* Set extended packet length bit */ |
| bnx2_write_phy(bp, 0x18, 0x7); |
| bnx2_read_phy(bp, 0x18, &val); |
| bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000); |
| |
| bnx2_write_phy(bp, 0x1c, 0x6c00); |
| bnx2_read_phy(bp, 0x1c, &val); |
| bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02); |
| } |
| else { |
| u32 val; |
| |
| bnx2_write_phy(bp, 0x18, 0x7); |
| bnx2_read_phy(bp, 0x18, &val); |
| bnx2_write_phy(bp, 0x18, val & ~0x4007); |
| |
| bnx2_write_phy(bp, 0x1c, 0x6c00); |
| bnx2_read_phy(bp, 0x1c, &val); |
| bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00); |
| } |
| |
| return 0; |
| } |
| |
| static int |
| bnx2_init_copper_phy(struct bnx2 *bp) |
| { |
| u32 val; |
| |
| bp->phy_flags |= PHY_CRC_FIX_FLAG; |
| |
| if (bp->phy_flags & PHY_CRC_FIX_FLAG) { |
| bnx2_write_phy(bp, 0x18, 0x0c00); |
| bnx2_write_phy(bp, 0x17, 0x000a); |
| bnx2_write_phy(bp, 0x15, 0x310b); |
| bnx2_write_phy(bp, 0x17, 0x201f); |
| bnx2_write_phy(bp, 0x15, 0x9506); |
| bnx2_write_phy(bp, 0x17, 0x401f); |
| bnx2_write_phy(bp, 0x15, 0x14e2); |
| bnx2_write_phy(bp, 0x18, 0x0400); |
| } |
| |
| if (bp->dev->mtu > 1500) { |
| /* Set extended packet length bit */ |
| bnx2_write_phy(bp, 0x18, 0x7); |
| bnx2_read_phy(bp, 0x18, &val); |
| bnx2_write_phy(bp, 0x18, val | 0x4000); |
| |
| bnx2_read_phy(bp, 0x10, &val); |
| bnx2_write_phy(bp, 0x10, val | 0x1); |
| } |
| else { |
| bnx2_write_phy(bp, 0x18, 0x7); |
| bnx2_read_phy(bp, 0x18, &val); |
| bnx2_write_phy(bp, 0x18, val & ~0x4007); |
| |
| bnx2_read_phy(bp, 0x10, &val); |
| bnx2_write_phy(bp, 0x10, val & ~0x1); |
| } |
| |
| /* ethernet@wirespeed */ |
| bnx2_write_phy(bp, 0x18, 0x7007); |
| bnx2_read_phy(bp, 0x18, &val); |
| bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4)); |
| return 0; |
| } |
| |
| |
| static int |
| bnx2_init_phy(struct bnx2 *bp) |
| { |
| u32 val; |
| int rc = 0; |
| |
| bp->phy_flags &= ~PHY_INT_MODE_MASK_FLAG; |
| bp->phy_flags |= PHY_INT_MODE_LINK_READY_FLAG; |
| |
| REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK); |
| |
| bnx2_reset_phy(bp); |
| |
| bnx2_read_phy(bp, MII_PHYSID1, &val); |
| bp->phy_id = val << 16; |
| bnx2_read_phy(bp, MII_PHYSID2, &val); |
| bp->phy_id |= val & 0xffff; |
| |
| if (bp->phy_flags & PHY_SERDES_FLAG) { |
| if (CHIP_NUM(bp) == CHIP_NUM_5706) |
| rc = bnx2_init_5706s_phy(bp); |
| else if (CHIP_NUM(bp) == CHIP_NUM_5708) |
| rc = bnx2_init_5708s_phy(bp); |
| } |
| else { |
| rc = bnx2_init_copper_phy(bp); |
| } |
| |
| bnx2_setup_phy(bp); |
| |
| return rc; |
| } |
| |
| static int |
| bnx2_set_mac_loopback(struct bnx2 *bp) |
| { |
| u32 mac_mode; |
| |
| mac_mode = REG_RD(bp, BNX2_EMAC_MODE); |
| mac_mode &= ~BNX2_EMAC_MODE_PORT; |
| mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK; |
| REG_WR(bp, BNX2_EMAC_MODE, mac_mode); |
| bp->link_up = 1; |
| return 0; |
| } |
| |
| static int bnx2_test_link(struct bnx2 *); |
| |
| static int |
| bnx2_set_phy_loopback(struct bnx2 *bp) |
| { |
| u32 mac_mode; |
| int rc, i; |
| |
| spin_lock_bh(&bp->phy_lock); |
| rc = bnx2_write_phy(bp, MII_BMCR, BMCR_LOOPBACK | BMCR_FULLDPLX | |
| BMCR_SPEED1000); |
| spin_unlock_bh(&bp->phy_lock); |
| if (rc) |
| return rc; |
| |
| for (i = 0; i < 10; i++) { |
| if (bnx2_test_link(bp) == 0) |
| break; |
| udelay(10); |
| } |
| |
| mac_mode = REG_RD(bp, BNX2_EMAC_MODE); |
| mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX | |
| BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK | |
| BNX2_EMAC_MODE_25G); |
| |
| mac_mode |= BNX2_EMAC_MODE_PORT_GMII; |
| REG_WR(bp, BNX2_EMAC_MODE, mac_mode); |
| bp->link_up = 1; |
| return 0; |
| } |
| |
| static int |
| bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int silent) |
| { |
| int i; |
| u32 val; |
| |
| bp->fw_wr_seq++; |
| msg_data |= bp->fw_wr_seq; |
| |
| REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_MB, msg_data); |
| |
| /* wait for an acknowledgement. */ |
| for (i = 0; i < (FW_ACK_TIME_OUT_MS / 10); i++) { |
| msleep(10); |
| |
| val = REG_RD_IND(bp, bp->shmem_base + BNX2_FW_MB); |
| |
| if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ)) |
| break; |
| } |
| if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0) |
| return 0; |
| |
| /* If we timed out, inform the firmware that this is the case. */ |
| if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) { |
| if (!silent) |
| printk(KERN_ERR PFX "fw sync timeout, reset code = " |
| "%x\n", msg_data); |
| |
| msg_data &= ~BNX2_DRV_MSG_CODE; |
| msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT; |
| |
| REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_MB, msg_data); |
| |
| return -EBUSY; |
| } |
| |
| if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK) |
| return -EIO; |
| |
| return 0; |
| } |
| |
| static void |
| bnx2_init_context(struct bnx2 *bp) |
| { |
| u32 vcid; |
| |
| vcid = 96; |
| while (vcid) { |
| u32 vcid_addr, pcid_addr, offset; |
| |
| vcid--; |
| |
| if (CHIP_ID(bp) == CHIP_ID_5706_A0) { |
| u32 new_vcid; |
| |
| vcid_addr = GET_PCID_ADDR(vcid); |
| if (vcid & 0x8) { |
| new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7); |
| } |
| else { |
| new_vcid = vcid; |
| } |
| pcid_addr = GET_PCID_ADDR(new_vcid); |
| } |
| else { |
| vcid_addr = GET_CID_ADDR(vcid); |
| pcid_addr = vcid_addr; |
| } |
| |
| REG_WR(bp, BNX2_CTX_VIRT_ADDR, 0x00); |
| REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr); |
| |
| /* Zero out the context. */ |
| for (offset = 0; offset < PHY_CTX_SIZE; offset += 4) { |
| CTX_WR(bp, 0x00, offset, 0); |
| } |
| |
| REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr); |
| REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr); |
| } |
| } |
| |
| static int |
| bnx2_alloc_bad_rbuf(struct bnx2 *bp) |
| { |
| u16 *good_mbuf; |
| u32 good_mbuf_cnt; |
| u32 val; |
| |
| good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL); |
| if (good_mbuf == NULL) { |
| printk(KERN_ERR PFX "Failed to allocate memory in " |
| "bnx2_alloc_bad_rbuf\n"); |
| return -ENOMEM; |
| } |
| |
| REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, |
| BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE); |
| |
| good_mbuf_cnt = 0; |
| |
| /* Allocate a bunch of mbufs and save the good ones in an array. */ |
| val = REG_RD_IND(bp, BNX2_RBUF_STATUS1); |
| while (val & BNX2_RBUF_STATUS1_FREE_COUNT) { |
| REG_WR_IND(bp, BNX2_RBUF_COMMAND, BNX2_RBUF_COMMAND_ALLOC_REQ); |
| |
| val = REG_RD_IND(bp, BNX2_RBUF_FW_BUF_ALLOC); |
| |
| val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE; |
| |
| /* The addresses with Bit 9 set are bad memory blocks. */ |
| if (!(val & (1 << 9))) { |
| good_mbuf[good_mbuf_cnt] = (u16) val; |
| good_mbuf_cnt++; |
| } |
| |
| val = REG_RD_IND(bp, BNX2_RBUF_STATUS1); |
| } |
| |
| /* Free the good ones back to the mbuf pool thus discarding |
| * all the bad ones. */ |
| while (good_mbuf_cnt) { |
| good_mbuf_cnt--; |
| |
| val = good_mbuf[good_mbuf_cnt]; |
| val = (val << 9) | val | 1; |
| |
| REG_WR_IND(bp, BNX2_RBUF_FW_BUF_FREE, val); |
| } |
| kfree(good_mbuf); |
| return 0; |
| } |
| |
| static void |
| bnx2_set_mac_addr(struct bnx2 *bp) |
| { |
| u32 val; |
| u8 *mac_addr = bp->dev->dev_addr; |
| |
| val = (mac_addr[0] << 8) | mac_addr[1]; |
| |
| REG_WR(bp, BNX2_EMAC_MAC_MATCH0, val); |
| |
| val = (mac_addr[2] << 24) | (mac_addr[3] << 16) | |
| (mac_addr[4] << 8) | mac_addr[5]; |
| |
| REG_WR(bp, BNX2_EMAC_MAC_MATCH1, val); |
| } |
| |
| static inline int |
| bnx2_alloc_rx_skb(struct bnx2 *bp, u16 index) |
| { |
| struct sk_buff *skb; |
| struct sw_bd *rx_buf = &bp->rx_buf_ring[index]; |
| dma_addr_t mapping; |
| struct rx_bd *rxbd = &bp->rx_desc_ring[RX_RING(index)][RX_IDX(index)]; |
| unsigned long align; |
| |
| skb = dev_alloc_skb(bp->rx_buf_size); |
| if (skb == NULL) { |
| return -ENOMEM; |
| } |
| |
| if (unlikely((align = (unsigned long) skb->data & 0x7))) { |
| skb_reserve(skb, 8 - align); |
| } |
| |
| skb->dev = bp->dev; |
| mapping = pci_map_single(bp->pdev, skb->data, bp->rx_buf_use_size, |
| PCI_DMA_FROMDEVICE); |
| |
| rx_buf->skb = skb; |
| pci_unmap_addr_set(rx_buf, mapping, mapping); |
| |
| rxbd->rx_bd_haddr_hi = (u64) mapping >> 32; |
| rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff; |
| |
| bp->rx_prod_bseq += bp->rx_buf_use_size; |
| |
| return 0; |
| } |
| |
| static void |
| bnx2_phy_int(struct bnx2 *bp) |
| { |
| u32 new_link_state, old_link_state; |
| |
| new_link_state = bp->status_blk->status_attn_bits & |
| STATUS_ATTN_BITS_LINK_STATE; |
| old_link_state = bp->status_blk->status_attn_bits_ack & |
| STATUS_ATTN_BITS_LINK_STATE; |
| if (new_link_state != old_link_state) { |
| if (new_link_state) { |
| REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, |
| STATUS_ATTN_BITS_LINK_STATE); |
| } |
| else { |
| REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, |
| STATUS_ATTN_BITS_LINK_STATE); |
| } |
| bnx2_set_link(bp); |
| } |
| } |
| |
| static void |
| bnx2_tx_int(struct bnx2 *bp) |
| { |
| struct status_block *sblk = bp->status_blk; |
| u16 hw_cons, sw_cons, sw_ring_cons; |
| int tx_free_bd = 0; |
| |
| hw_cons = bp->hw_tx_cons = sblk->status_tx_quick_consumer_index0; |
| if ((hw_cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT) { |
| hw_cons++; |
| } |
| sw_cons = bp->tx_cons; |
| |
| while (sw_cons != hw_cons) { |
| struct sw_bd *tx_buf; |
| struct sk_buff *skb; |
| int i, last; |
| |
| sw_ring_cons = TX_RING_IDX(sw_cons); |
| |
| tx_buf = &bp->tx_buf_ring[sw_ring_cons]; |
| skb = tx_buf->skb; |
| #ifdef BCM_TSO |
| /* partial BD completions possible with TSO packets */ |
| if (skb_shinfo(skb)->gso_size) { |
| u16 last_idx, last_ring_idx; |
| |
| last_idx = sw_cons + |
| skb_shinfo(skb)->nr_frags + 1; |
| last_ring_idx = sw_ring_cons + |
| skb_shinfo(skb)->nr_frags + 1; |
| if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) { |
| last_idx++; |
| } |
| if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) { |
| break; |
| } |
| } |
| #endif |
| pci_unmap_single(bp->pdev, pci_unmap_addr(tx_buf, mapping), |
| skb_headlen(skb), PCI_DMA_TODEVICE); |
| |
| tx_buf->skb = NULL; |
| last = skb_shinfo(skb)->nr_frags; |
| |
| for (i = 0; i < last; i++) { |
| sw_cons = NEXT_TX_BD(sw_cons); |
| |
| pci_unmap_page(bp->pdev, |
| pci_unmap_addr( |
| &bp->tx_buf_ring[TX_RING_IDX(sw_cons)], |
| mapping), |
| skb_shinfo(skb)->frags[i].size, |
| PCI_DMA_TODEVICE); |
| } |
| |
| sw_cons = NEXT_TX_BD(sw_cons); |
| |
| tx_free_bd += last + 1; |
| |
| dev_kfree_skb(skb); |
| |
| hw_cons = bp->hw_tx_cons = |
| sblk->status_tx_quick_consumer_index0; |
| |
| if ((hw_cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT) { |
| hw_cons++; |
| } |
| } |
| |
| bp->tx_cons = sw_cons; |
| |
| if (unlikely(netif_queue_stopped(bp->dev))) { |
| spin_lock(&bp->tx_lock); |
| if ((netif_queue_stopped(bp->dev)) && |
| (bnx2_tx_avail(bp) > MAX_SKB_FRAGS)) { |
| |
| netif_wake_queue(bp->dev); |
| } |
| spin_unlock(&bp->tx_lock); |
| } |
| } |
| |
| static inline void |
| bnx2_reuse_rx_skb(struct bnx2 *bp, struct sk_buff *skb, |
| u16 cons, u16 prod) |
| { |
| struct sw_bd *cons_rx_buf, *prod_rx_buf; |
| struct rx_bd *cons_bd, *prod_bd; |
| |
| cons_rx_buf = &bp->rx_buf_ring[cons]; |
| prod_rx_buf = &bp->rx_buf_ring[prod]; |
| |
| pci_dma_sync_single_for_device(bp->pdev, |
| pci_unmap_addr(cons_rx_buf, mapping), |
| bp->rx_offset + RX_COPY_THRESH, PCI_DMA_FROMDEVICE); |
| |
| bp->rx_prod_bseq += bp->rx_buf_use_size; |
| |
| prod_rx_buf->skb = skb; |
| |
| if (cons == prod) |
| return; |
| |
| pci_unmap_addr_set(prod_rx_buf, mapping, |
| pci_unmap_addr(cons_rx_buf, mapping)); |
| |
| cons_bd = &bp->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)]; |
| prod_bd = &bp->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)]; |
| prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi; |
| prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo; |
| } |
| |
| static int |
| bnx2_rx_int(struct bnx2 *bp, int budget) |
| { |
| struct status_block *sblk = bp->status_blk; |
| u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod; |
| struct l2_fhdr *rx_hdr; |
| int rx_pkt = 0; |
| |
| hw_cons = bp->hw_rx_cons = sblk->status_rx_quick_consumer_index0; |
| if ((hw_cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT) { |
| hw_cons++; |
| } |
| sw_cons = bp->rx_cons; |
| sw_prod = bp->rx_prod; |
| |
| /* Memory barrier necessary as speculative reads of the rx |
| * buffer can be ahead of the index in the status block |
| */ |
| rmb(); |
| while (sw_cons != hw_cons) { |
| unsigned int len; |
| u32 status; |
| struct sw_bd *rx_buf; |
| struct sk_buff *skb; |
| dma_addr_t dma_addr; |
| |
| sw_ring_cons = RX_RING_IDX(sw_cons); |
| sw_ring_prod = RX_RING_IDX(sw_prod); |
| |
| rx_buf = &bp->rx_buf_ring[sw_ring_cons]; |
| skb = rx_buf->skb; |
| |
| rx_buf->skb = NULL; |
| |
| dma_addr = pci_unmap_addr(rx_buf, mapping); |
| |
| pci_dma_sync_single_for_cpu(bp->pdev, dma_addr, |
| bp->rx_offset + RX_COPY_THRESH, PCI_DMA_FROMDEVICE); |
| |
| rx_hdr = (struct l2_fhdr *) skb->data; |
| len = rx_hdr->l2_fhdr_pkt_len - 4; |
| |
| if ((status = rx_hdr->l2_fhdr_status) & |
| (L2_FHDR_ERRORS_BAD_CRC | |
| L2_FHDR_ERRORS_PHY_DECODE | |
| L2_FHDR_ERRORS_ALIGNMENT | |
| L2_FHDR_ERRORS_TOO_SHORT | |
| L2_FHDR_ERRORS_GIANT_FRAME)) { |
| |
| goto reuse_rx; |
| } |
| |
| /* Since we don't have a jumbo ring, copy small packets |
| * if mtu > 1500 |
| */ |
| if ((bp->dev->mtu > 1500) && (len <= RX_COPY_THRESH)) { |
| struct sk_buff *new_skb; |
| |
| new_skb = dev_alloc_skb(len + 2); |
| if (new_skb == NULL) |
| goto reuse_rx; |
| |
| /* aligned copy */ |
| memcpy(new_skb->data, |
| skb->data + bp->rx_offset - 2, |
| len + 2); |
| |
| skb_reserve(new_skb, 2); |
| skb_put(new_skb, len); |
| new_skb->dev = bp->dev; |
| |
| bnx2_reuse_rx_skb(bp, skb, |
| sw_ring_cons, sw_ring_prod); |
| |
| skb = new_skb; |
| } |
| else if (bnx2_alloc_rx_skb(bp, sw_ring_prod) == 0) { |
| pci_unmap_single(bp->pdev, dma_addr, |
| bp->rx_buf_use_size, PCI_DMA_FROMDEVICE); |
| |
| skb_reserve(skb, bp->rx_offset); |
| skb_put(skb, len); |
| } |
| else { |
| reuse_rx: |
| bnx2_reuse_rx_skb(bp, skb, |
| sw_ring_cons, sw_ring_prod); |
| goto next_rx; |
| } |
| |
| skb->protocol = eth_type_trans(skb, bp->dev); |
| |
| if ((len > (bp->dev->mtu + ETH_HLEN)) && |
| (ntohs(skb->protocol) != 0x8100)) { |
| |
| dev_kfree_skb(skb); |
| goto next_rx; |
| |
| } |
| |
| skb->ip_summed = CHECKSUM_NONE; |
| if (bp->rx_csum && |
| (status & (L2_FHDR_STATUS_TCP_SEGMENT | |
| L2_FHDR_STATUS_UDP_DATAGRAM))) { |
| |
| if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM | |
| L2_FHDR_ERRORS_UDP_XSUM)) == 0)) |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| } |
| |
| #ifdef BCM_VLAN |
| if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) && (bp->vlgrp != 0)) { |
| vlan_hwaccel_receive_skb(skb, bp->vlgrp, |
| rx_hdr->l2_fhdr_vlan_tag); |
| } |
| else |
| #endif |
| netif_receive_skb(skb); |
| |
| bp->dev->last_rx = jiffies; |
| rx_pkt++; |
| |
| next_rx: |
| sw_cons = NEXT_RX_BD(sw_cons); |
| sw_prod = NEXT_RX_BD(sw_prod); |
| |
| if ((rx_pkt == budget)) |
| break; |
| |
| /* Refresh hw_cons to see if there is new work */ |
| if (sw_cons == hw_cons) { |
| hw_cons = bp->hw_rx_cons = |
| sblk->status_rx_quick_consumer_index0; |
| if ((hw_cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT) |
| hw_cons++; |
| rmb(); |
| } |
| } |
| bp->rx_cons = sw_cons; |
| bp->rx_prod = sw_prod; |
| |
| REG_WR16(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BDIDX, sw_prod); |
| |
| REG_WR(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BSEQ, bp->rx_prod_bseq); |
| |
| mmiowb(); |
| |
| return rx_pkt; |
| |
| } |
| |
| /* MSI ISR - The only difference between this and the INTx ISR |
| * is that the MSI interrupt is always serviced. |
| */ |
| static irqreturn_t |
| bnx2_msi(int irq, void *dev_instance, struct pt_regs *regs) |
| { |
| struct net_device *dev = dev_instance; |
| struct bnx2 *bp = netdev_priv(dev); |
| |
| prefetch(bp->status_blk); |
| REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, |
| BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM | |
| BNX2_PCICFG_INT_ACK_CMD_MASK_INT); |
| |
| /* Return here if interrupt is disabled. */ |
| if (unlikely(atomic_read(&bp->intr_sem) != 0)) |
| return IRQ_HANDLED; |
| |
| netif_rx_schedule(dev); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t |
| bnx2_interrupt(int irq, void *dev_instance, struct pt_regs *regs) |
| { |
| struct net_device *dev = dev_instance; |
| struct bnx2 *bp = netdev_priv(dev); |
| |
| /* When using INTx, it is possible for the interrupt to arrive |
| * at the CPU before the status block posted prior to the |
| * interrupt. Reading a register will flush the status block. |
| * When using MSI, the MSI message will always complete after |
| * the status block write. |
| */ |
| if ((bp->status_blk->status_idx == bp->last_status_idx) && |
| (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) & |
| BNX2_PCICFG_MISC_STATUS_INTA_VALUE)) |
| return IRQ_NONE; |
| |
| REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, |
| BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM | |
| BNX2_PCICFG_INT_ACK_CMD_MASK_INT); |
| |
| /* Return here if interrupt is shared and is disabled. */ |
| if (unlikely(atomic_read(&bp->intr_sem) != 0)) |
| return IRQ_HANDLED; |
| |
| netif_rx_schedule(dev); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static inline int |
| bnx2_has_work(struct bnx2 *bp) |
| { |
| struct status_block *sblk = bp->status_blk; |
| |
| if ((sblk->status_rx_quick_consumer_index0 != bp->hw_rx_cons) || |
| (sblk->status_tx_quick_consumer_index0 != bp->hw_tx_cons)) |
| return 1; |
| |
| if (((sblk->status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) != 0) != |
| bp->link_up) |
| return 1; |
| |
| return 0; |
| } |
| |
| static int |
| bnx2_poll(struct net_device *dev, int *budget) |
| { |
| struct bnx2 *bp = netdev_priv(dev); |
| |
| if ((bp->status_blk->status_attn_bits & |
| STATUS_ATTN_BITS_LINK_STATE) != |
| (bp->status_blk->status_attn_bits_ack & |
| STATUS_ATTN_BITS_LINK_STATE)) { |
| |
| spin_lock(&bp->phy_lock); |
| bnx2_phy_int(bp); |
| spin_unlock(&bp->phy_lock); |
| |
| /* This is needed to take care of transient status |
| * during link changes. |
| */ |
| REG_WR(bp, BNX2_HC_COMMAND, |
| bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT); |
| REG_RD(bp, BNX2_HC_COMMAND); |
| } |
| |
| if (bp->status_blk->status_tx_quick_consumer_index0 != bp->hw_tx_cons) |
| bnx2_tx_int(bp); |
| |
| if (bp->status_blk->status_rx_quick_consumer_index0 != bp->hw_rx_cons) { |
| int orig_budget = *budget; |
| int work_done; |
| |
| if (orig_budget > dev->quota) |
| orig_budget = dev->quota; |
| |
| work_done = bnx2_rx_int(bp, orig_budget); |
| *budget -= work_done; |
| dev->quota -= work_done; |
| } |
| |
| bp->last_status_idx = bp->status_blk->status_idx; |
| rmb(); |
| |
| if (!bnx2_has_work(bp)) { |
| netif_rx_complete(dev); |
| if (likely(bp->flags & USING_MSI_FLAG)) { |
| REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, |
| BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID | |
| bp->last_status_idx); |
| return 0; |
| } |
| REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, |
| BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID | |
| BNX2_PCICFG_INT_ACK_CMD_MASK_INT | |
| bp->last_status_idx); |
| |
| REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, |
| BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID | |
| bp->last_status_idx); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| /* Called with rtnl_lock from vlan functions and also netif_tx_lock |
| * from set_multicast. |
| */ |
| static void |
| bnx2_set_rx_mode(struct net_device *dev) |
| { |
| struct bnx2 *bp = netdev_priv(dev); |
| u32 rx_mode, sort_mode; |
| int i; |
| |
| spin_lock_bh(&bp->phy_lock); |
| |
| rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS | |
| BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG); |
| sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN; |
| #ifdef BCM_VLAN |
| if (!bp->vlgrp && !(bp->flags & ASF_ENABLE_FLAG)) |
| rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG; |
| #else |
| if (!(bp->flags & ASF_ENABLE_FLAG)) |
| rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG; |
| #endif |
| if (dev->flags & IFF_PROMISC) { |
| /* Promiscuous mode. */ |
| rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS; |
| sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN; |
| } |
| else if (dev->flags & IFF_ALLMULTI) { |
| for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) { |
| REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4), |
| 0xffffffff); |
| } |
| sort_mode |= BNX2_RPM_SORT_USER0_MC_EN; |
| } |
| else { |
| /* Accept one or more multicast(s). */ |
| struct dev_mc_list *mclist; |
| u32 mc_filter[NUM_MC_HASH_REGISTERS]; |
| u32 regidx; |
| u32 bit; |
| u32 crc; |
| |
| memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS); |
| |
| for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count; |
| i++, mclist = mclist->next) { |
| |
| crc = ether_crc_le(ETH_ALEN, mclist->dmi_addr); |
| bit = crc & 0xff; |
| regidx = (bit & 0xe0) >> 5; |
| bit &= 0x1f; |
| mc_filter[regidx] |= (1 << bit); |
| } |
| |
| for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) { |
| REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4), |
| mc_filter[i]); |
| } |
| |
| sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN; |
| } |
| |
| if (rx_mode != bp->rx_mode) { |
| bp->rx_mode = rx_mode; |
| REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode); |
| } |
| |
| REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0); |
| REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode); |
| REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA); |
| |
| spin_unlock_bh(&bp->phy_lock); |
| } |
| |
| #define FW_BUF_SIZE 0x8000 |
| |
| static int |
| bnx2_gunzip_init(struct bnx2 *bp) |
| { |
| if ((bp->gunzip_buf = vmalloc(FW_BUF_SIZE)) == NULL) |
| goto gunzip_nomem1; |
| |
| if ((bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL)) == NULL) |
| goto gunzip_nomem2; |
| |
| bp->strm->workspace = kmalloc(zlib_inflate_workspacesize(), GFP_KERNEL); |
| if (bp->strm->workspace == NULL) |
| goto gunzip_nomem3; |
| |
| return 0; |
| |
| gunzip_nomem3: |
| kfree(bp->strm); |
| bp->strm = NULL; |
| |
| gunzip_nomem2: |
| vfree(bp->gunzip_buf); |
| bp->gunzip_buf = NULL; |
| |
| gunzip_nomem1: |
| printk(KERN_ERR PFX "%s: Cannot allocate firmware buffer for " |
| "uncompression.\n", bp->dev->name); |
| return -ENOMEM; |
| } |
| |
| static void |
| bnx2_gunzip_end(struct bnx2 *bp) |
| { |
| kfree(bp->strm->workspace); |
| |
| kfree(bp->strm); |
| bp->strm = NULL; |
| |
| if (bp->gunzip_buf) { |
| vfree(bp->gunzip_buf); |
| bp->gunzip_buf = NULL; |
| } |
| } |
| |
| static int |
| bnx2_gunzip(struct bnx2 *bp, u8 *zbuf, int len, void **outbuf, int *outlen) |
| { |
| int n, rc; |
| |
| /* check gzip header */ |
| if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) |
| return -EINVAL; |
| |
| n = 10; |
| |
| #define FNAME 0x8 |
| if (zbuf[3] & FNAME) |
| while ((zbuf[n++] != 0) && (n < len)); |
| |
| bp->strm->next_in = zbuf + n; |
| bp->strm->avail_in = len - n; |
| bp->strm->next_out = bp->gunzip_buf; |
| bp->strm->avail_out = FW_BUF_SIZE; |
| |
| rc = zlib_inflateInit2(bp->strm, -MAX_WBITS); |
| if (rc != Z_OK) |
| return rc; |
| |
| rc = zlib_inflate(bp->strm, Z_FINISH); |
| |
| *outlen = FW_BUF_SIZE - bp->strm->avail_out; |
| *outbuf = bp->gunzip_buf; |
| |
| if ((rc != Z_OK) && (rc != Z_STREAM_END)) |
| printk(KERN_ERR PFX "%s: Firmware decompression error: %s\n", |
| bp->dev->name, bp->strm->msg); |
| |
| zlib_inflateEnd(bp->strm); |
| |
| if (rc == Z_STREAM_END) |
| return 0; |
| |
| return rc; |
| } |
| |
| static void |
| load_rv2p_fw(struct bnx2 *bp, u32 *rv2p_code, u32 rv2p_code_len, |
| u32 rv2p_proc) |
| { |
| int i; |
| u32 val; |
| |
| |
| for (i = 0; i < rv2p_code_len; i += 8) { |
| REG_WR(bp, BNX2_RV2P_INSTR_HIGH, cpu_to_le32(*rv2p_code)); |
| rv2p_code++; |
| REG_WR(bp, BNX2_RV2P_INSTR_LOW, cpu_to_le32(*rv2p_code)); |
| rv2p_code++; |
| |
| if (rv2p_proc == RV2P_PROC1) { |
| val = (i / 8) | BNX2_RV2P_PROC1_ADDR_CMD_RDWR; |
| REG_WR(bp, BNX2_RV2P_PROC1_ADDR_CMD, val); |
| } |
| else { |
| val = (i / 8) | BNX2_RV2P_PROC2_ADDR_CMD_RDWR; |
| REG_WR(bp, BNX2_RV2P_PROC2_ADDR_CMD, val); |
| } |
| } |
| |
| /* Reset the processor, un-stall is done later. */ |
| if (rv2p_proc == RV2P_PROC1) { |
| REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET); |
| } |
| else { |
| REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET); |
| } |
| } |
| |
| static void |
| load_cpu_fw(struct bnx2 *bp, struct cpu_reg *cpu_reg, struct fw_info *fw) |
| { |
| u32 offset; |
| u32 val; |
| |
| /* Halt the CPU. */ |
| val = REG_RD_IND(bp, cpu_reg->mode); |
| val |= cpu_reg->mode_value_halt; |
| REG_WR_IND(bp, cpu_reg->mode, val); |
| REG_WR_IND(bp, cpu_reg->state, cpu_reg->state_value_clear); |
| |
| /* Load the Text area. */ |
| offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base); |
| if (fw->text) { |
| int j; |
| |
| for (j = 0; j < (fw->text_len / 4); j++, offset += 4) { |
| REG_WR_IND(bp, offset, cpu_to_le32(fw->text[j])); |
| } |
| } |
| |
| /* Load the Data area. */ |
| offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base); |
| if (fw->data) { |
| int j; |
| |
| for (j = 0; j < (fw->data_len / 4); j++, offset += 4) { |
| REG_WR_IND(bp, offset, fw->data[j]); |
| } |
| } |
| |
| /* Load the SBSS area. */ |
| offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base); |
| if (fw->sbss) { |
| int j; |
| |
| for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) { |
| REG_WR_IND(bp, offset, fw->sbss[j]); |
| } |
| } |
| |
| /* Load the BSS area. */ |
| offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base); |
| if (fw->bss) { |
| int j; |
| |
| for (j = 0; j < (fw->bss_len/4); j++, offset += 4) { |
| REG_WR_IND(bp, offset, fw->bss[j]); |
| } |
| } |
| |
| /* Load the Read-Only area. */ |
| offset = cpu_reg->spad_base + |
| (fw->rodata_addr - cpu_reg->mips_view_base); |
| if (fw->rodata) { |
| int j; |
| |
| for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) { |
| REG_WR_IND(bp, offset, fw->rodata[j]); |
| } |
| } |
| |
| /* Clear the pre-fetch instruction. */ |
| REG_WR_IND(bp, cpu_reg->inst, 0); |
| REG_WR_IND(bp, cpu_reg->pc, fw->start_addr); |
| |
| /* Start the CPU. */ |
| val = REG_RD_IND(bp, cpu_reg->mode); |
| val &= ~cpu_reg->mode_value_halt; |
| REG_WR_IND(bp, cpu_reg->state, cpu_reg->state_value_clear); |
| REG_WR_IND(bp, cpu_reg->mode, val); |
| } |
| |
| static int |
| bnx2_init_cpus(struct bnx2 *bp) |
| { |
| struct cpu_reg cpu_reg; |
| struct fw_info fw; |
| int rc = 0; |
| void *text; |
| u32 text_len; |
| |
| if ((rc = bnx2_gunzip_init(bp)) != 0) |
| return rc; |
| |
| /* Initialize the RV2P processor. */ |
| rc = bnx2_gunzip(bp, bnx2_rv2p_proc1, sizeof(bnx2_rv2p_proc1), &text, |
| &text_len); |
| if (rc) |
| goto init_cpu_err; |
| |
| load_rv2p_fw(bp, text, text_len, RV2P_PROC1); |
| |
| rc = bnx2_gunzip(bp, bnx2_rv2p_proc2, sizeof(bnx2_rv2p_proc2), &text, |
| &text_len); |
| if (rc) |
| goto init_cpu_err; |
| |
| load_rv2p_fw(bp, text, text_len, RV2P_PROC2); |
| |
| /* Initialize the RX Processor. */ |
| cpu_reg.mode = BNX2_RXP_CPU_MODE; |
| cpu_reg.mode_value_halt = BNX2_RXP_CPU_MODE_SOFT_HALT; |
| cpu_reg.mode_value_sstep = BNX2_RXP_CPU_MODE_STEP_ENA; |
| cpu_reg.state = BNX2_RXP_CPU_STATE; |
| cpu_reg.state_value_clear = 0xffffff; |
| cpu_reg.gpr0 = BNX2_RXP_CPU_REG_FILE; |
| cpu_reg.evmask = BNX2_RXP_CPU_EVENT_MASK; |
| cpu_reg.pc = BNX2_RXP_CPU_PROGRAM_COUNTER; |
| cpu_reg.inst = BNX2_RXP_CPU_INSTRUCTION; |
| cpu_reg.bp = BNX2_RXP_CPU_HW_BREAKPOINT; |
| cpu_reg.spad_base = BNX2_RXP_SCRATCH; |
| cpu_reg.mips_view_base = 0x8000000; |
| |
| fw.ver_major = bnx2_RXP_b06FwReleaseMajor; |
| fw.ver_minor = bnx2_RXP_b06FwReleaseMinor; |
| fw.ver_fix = bnx2_RXP_b06FwReleaseFix; |
| fw.start_addr = bnx2_RXP_b06FwStartAddr; |
| |
| fw.text_addr = bnx2_RXP_b06FwTextAddr; |
| fw.text_len = bnx2_RXP_b06FwTextLen; |
| fw.text_index = 0; |
| |
| rc = bnx2_gunzip(bp, bnx2_RXP_b06FwText, sizeof(bnx2_RXP_b06FwText), |
| &text, &text_len); |
| if (rc) |
| goto init_cpu_err; |
| |
| fw.text = text; |
| |
| fw.data_addr = bnx2_RXP_b06FwDataAddr; |
| fw.data_len = bnx2_RXP_b06FwDataLen; |
| fw.data_index = 0; |
| fw.data = bnx2_RXP_b06FwData; |
| |
| fw.sbss_addr = bnx2_RXP_b06FwSbssAddr; |
| fw.sbss_len = bnx2_RXP_b06FwSbssLen; |
| fw.sbss_index = 0; |
| fw.sbss = bnx2_RXP_b06FwSbss; |
| |
| fw.bss_addr = bnx2_RXP_b06FwBssAddr; |
| fw.bss_len = bnx2_RXP_b06FwBssLen; |
| fw.bss_index = 0; |
| fw.bss = bnx2_RXP_b06FwBss; |
| |
| fw.rodata_addr = bnx2_RXP_b06FwRodataAddr; |
| fw.rodata_len = bnx2_RXP_b06FwRodataLen; |
| fw.rodata_index = 0; |
| fw.rodata = bnx2_RXP_b06FwRodata; |
| |
| load_cpu_fw(bp, &cpu_reg, &fw); |
| |
| /* Initialize the TX Processor. */ |
| cpu_reg.mode = BNX2_TXP_CPU_MODE; |
| cpu_reg.mode_value_halt = BNX2_TXP_CPU_MODE_SOFT_HALT; |
| cpu_reg.mode_value_sstep = BNX2_TXP_CPU_MODE_STEP_ENA; |
| cpu_reg.state = BNX2_TXP_CPU_STATE; |
| cpu_reg.state_value_clear = 0xffffff; |
| cpu_reg.gpr0 = BNX2_TXP_CPU_REG_FILE; |
| cpu_reg.evmask = BNX2_TXP_CPU_EVENT_MASK; |
| cpu_reg.pc = BNX2_TXP_CPU_PROGRAM_COUNTER; |
| cpu_reg.inst = BNX2_TXP_CPU_INSTRUCTION; |
| cpu_reg.bp = BNX2_TXP_CPU_HW_BREAKPOINT; |
| cpu_reg.spad_base = BNX2_TXP_SCRATCH; |
| cpu_reg.mips_view_base = 0x8000000; |
| |
| fw.ver_major = bnx2_TXP_b06FwReleaseMajor; |
| fw.ver_minor = bnx2_TXP_b06FwReleaseMinor; |
| fw.ver_fix = bnx2_TXP_b06FwReleaseFix; |
| fw.start_addr = bnx2_TXP_b06FwStartAddr; |
| |
| fw.text_addr = bnx2_TXP_b06FwTextAddr; |
| fw.text_len = bnx2_TXP_b06FwTextLen; |
| fw.text_index = 0; |
| |
| rc = bnx2_gunzip(bp, bnx2_TXP_b06FwText, sizeof(bnx2_TXP_b06FwText), |
| &text, &text_len); |
| if (rc) |
| goto init_cpu_err; |
| |
| fw.text = text; |
| |
| fw.data_addr = bnx2_TXP_b06FwDataAddr; |
| fw.data_len = bnx2_TXP_b06FwDataLen; |
| fw.data_index = 0; |
| fw.data = bnx2_TXP_b06FwData; |
| |
| fw.sbss_addr = bnx2_TXP_b06FwSbssAddr; |
| fw.sbss_len = bnx2_TXP_b06FwSbssLen; |
| fw.sbss_index = 0; |
| fw.sbss = bnx2_TXP_b06FwSbss; |
| |
| fw.bss_addr = bnx2_TXP_b06FwBssAddr; |
| fw.bss_len = bnx2_TXP_b06FwBssLen; |
| fw.bss_index = 0; |
| fw.bss = bnx2_TXP_b06FwBss; |
| |
| fw.rodata_addr = bnx2_TXP_b06FwRodataAddr; |
| fw.rodata_len = bnx2_TXP_b06FwRodataLen; |
| fw.rodata_index = 0; |
| fw.rodata = bnx2_TXP_b06FwRodata; |
| |
| load_cpu_fw(bp, &cpu_reg, &fw); |
| |
| /* Initialize the TX Patch-up Processor. */ |
| cpu_reg.mode = BNX2_TPAT_CPU_MODE; |
| cpu_reg.mode_value_halt = BNX2_TPAT_CPU_MODE_SOFT_HALT; |
| cpu_reg.mode_value_sstep = BNX2_TPAT_CPU_MODE_STEP_ENA; |
| cpu_reg.state = BNX2_TPAT_CPU_STATE; |
| cpu_reg.state_value_clear = 0xffffff; |
| cpu_reg.gpr0 = BNX2_TPAT_CPU_REG_FILE; |
| cpu_reg.evmask = BNX2_TPAT_CPU_EVENT_MASK; |
| cpu_reg.pc = BNX2_TPAT_CPU_PROGRAM_COUNTER; |
| cpu_reg.inst = BNX2_TPAT_CPU_INSTRUCTION; |
| cpu_reg.bp = BNX2_TPAT_CPU_HW_BREAKPOINT; |
| cpu_reg.spad_base = BNX2_TPAT_SCRATCH; |
| cpu_reg.mips_view_base = 0x8000000; |
| |
| fw.ver_major = bnx2_TPAT_b06FwReleaseMajor; |
| fw.ver_minor = bnx2_TPAT_b06FwReleaseMinor; |
| fw.ver_fix = bnx2_TPAT_b06FwReleaseFix; |
| fw.start_addr = bnx2_TPAT_b06FwStartAddr; |
| |
| fw.text_addr = bnx2_TPAT_b06FwTextAddr; |
| fw.text_len = bnx2_TPAT_b06FwTextLen; |
| fw.text_index = 0; |
| |
| rc = bnx2_gunzip(bp, bnx2_TPAT_b06FwText, sizeof(bnx2_TPAT_b06FwText), |
| &text, &text_len); |
| if (rc) |
| goto init_cpu_err; |
| |
| fw.text = text; |
| |
| fw.data_addr = bnx2_TPAT_b06FwDataAddr; |
| fw.data_len = bnx2_TPAT_b06FwDataLen; |
| fw.data_index = 0; |
| fw.data = bnx2_TPAT_b06FwData; |
| |
| fw.sbss_addr = bnx2_TPAT_b06FwSbssAddr; |
| fw.sbss_len = bnx2_TPAT_b06FwSbssLen; |
| fw.sbss_index = 0; |
| fw.sbss = bnx2_TPAT_b06FwSbss; |
| |
| fw.bss_addr = bnx2_TPAT_b06FwBssAddr; |
| fw.bss_len = bnx2_TPAT_b06FwBssLen; |
| fw.bss_index = 0; |
| fw.bss = bnx2_TPAT_b06FwBss; |
| |
| fw.rodata_addr = bnx2_TPAT_b06FwRodataAddr; |
| fw.rodata_len = bnx2_TPAT_b06FwRodataLen; |
| fw.rodata_index = 0; |
| fw.rodata = bnx2_TPAT_b06FwRodata; |
| |
| load_cpu_fw(bp, &cpu_reg, &fw); |
| |
| /* Initialize the Completion Processor. */ |
| cpu_reg.mode = BNX2_COM_CPU_MODE; |
| cpu_reg.mode_value_halt = BNX2_COM_CPU_MODE_SOFT_HALT; |
| cpu_reg.mode_value_sstep = BNX2_COM_CPU_MODE_STEP_ENA; |
| cpu_reg.state = BNX2_COM_CPU_STATE; |
| cpu_reg.state_value_clear = 0xffffff; |
| cpu_reg.gpr0 = BNX2_COM_CPU_REG_FILE; |
| cpu_reg.evmask = BNX2_COM_CPU_EVENT_MASK; |
| cpu_reg.pc = BNX2_COM_CPU_PROGRAM_COUNTER; |
| cpu_reg.inst = BNX2_COM_CPU_INSTRUCTION; |
| cpu_reg.bp = BNX2_COM_CPU_HW_BREAKPOINT; |
| cpu_reg.spad_base = BNX2_COM_SCRATCH; |
| cpu_reg.mips_view_base = 0x8000000; |
| |
| fw.ver_major = bnx2_COM_b06FwReleaseMajor; |
| fw.ver_minor = bnx2_COM_b06FwReleaseMinor; |
| fw.ver_fix = bnx2_COM_b06FwReleaseFix; |
| fw.start_addr = bnx2_COM_b06FwStartAddr; |
| |
| fw.text_addr = bnx2_COM_b06FwTextAddr; |
| fw.text_len = bnx2_COM_b06FwTextLen; |
| fw.text_index = 0; |
| |
| rc = bnx2_gunzip(bp, bnx2_COM_b06FwText, sizeof(bnx2_COM_b06FwText), |
| &text, &text_len); |
| if (rc) |
| goto init_cpu_err; |
| |
| fw.text = text; |
| |
| fw.data_addr = bnx2_COM_b06FwDataAddr; |
| fw.data_len = bnx2_COM_b06FwDataLen; |
| fw.data_index = 0; |
| fw.data = bnx2_COM_b06FwData; |
| |
| fw.sbss_addr = bnx2_COM_b06FwSbssAddr; |
| fw.sbss_len = bnx2_COM_b06FwSbssLen; |
| fw.sbss_index = 0; |
| fw.sbss = bnx2_COM_b06FwSbss; |
| |
| fw.bss_addr = bnx2_COM_b06FwBssAddr; |
| fw.bss_len = bnx2_COM_b06FwBssLen; |
| fw.bss_index = 0; |
| fw.bss = bnx2_COM_b06FwBss; |
| |
| fw.rodata_addr = bnx2_COM_b06FwRodataAddr; |
| fw.rodata_len = bnx2_COM_b06FwRodataLen; |
| fw.rodata_index = 0; |
| fw.rodata = bnx2_COM_b06FwRodata; |
| |
| load_cpu_fw(bp, &cpu_reg, &fw); |
| |
| init_cpu_err: |
| bnx2_gunzip_end(bp); |
| return rc; |
| } |
| |
| static int |
| bnx2_set_power_state(struct bnx2 *bp, pci_power_t state) |
| { |
| u16 pmcsr; |
| |
| pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr); |
| |
| switch (state) { |
| case PCI_D0: { |
| u32 val; |
| |
| pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, |
| (pmcsr & ~PCI_PM_CTRL_STATE_MASK) | |
| PCI_PM_CTRL_PME_STATUS); |
| |
| if (pmcsr & PCI_PM_CTRL_STATE_MASK) |
| /* delay required during transition out of D3hot */ |
| msleep(20); |
| |
| val = REG_RD(bp, BNX2_EMAC_MODE); |
| val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD; |
| val &= ~BNX2_EMAC_MODE_MPKT; |
| REG_WR(bp, BNX2_EMAC_MODE, val); |
| |
| val = REG_RD(bp, BNX2_RPM_CONFIG); |
| val &= ~BNX2_RPM_CONFIG_ACPI_ENA; |
| REG_WR(bp, BNX2_RPM_CONFIG, val); |
| break; |
| } |
| case PCI_D3hot: { |
| int i; |
| u32 val, wol_msg; |
| |
| if (bp->wol) { |
| u32 advertising; |
| u8 autoneg; |
| |
| autoneg = bp->autoneg; |
| advertising = bp->advertising; |
| |
| bp->autoneg = AUTONEG_SPEED; |
| bp->advertising = ADVERTISED_10baseT_Half | |
| ADVERTISED_10baseT_Full | |
| ADVERTISED_100baseT_Half | |
| ADVERTISED_100baseT_Full | |
| ADVERTISED_Autoneg; |
| |
| bnx2_setup_copper_phy(bp); |
| |
| bp->autoneg = autoneg; |
| bp->advertising = advertising; |
| |
| bnx2_set_mac_addr(bp); |
| |
| val = REG_RD(bp, BNX2_EMAC_MODE); |
| |
| /* Enable port mode. */ |
| val &= ~BNX2_EMAC_MODE_PORT; |
| val |= BNX2_EMAC_MODE_PORT_MII | |
| BNX2_EMAC_MODE_MPKT_RCVD | |
| BNX2_EMAC_MODE_ACPI_RCVD | |
| BNX2_EMAC_MODE_MPKT; |
| |
| REG_WR(bp, BNX2_EMAC_MODE, val); |
| |
| /* receive all multicast */ |
| for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) { |
| REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4), |
| 0xffffffff); |
| } |
| REG_WR(bp, BNX2_EMAC_RX_MODE, |
| BNX2_EMAC_RX_MODE_SORT_MODE); |
| |
| val = 1 | BNX2_RPM_SORT_USER0_BC_EN | |
| BNX2_RPM_SORT_USER0_MC_EN; |
| REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0); |
| REG_WR(bp, BNX2_RPM_SORT_USER0, val); |
| REG_WR(bp, BNX2_RPM_SORT_USER0, val | |
| BNX2_RPM_SORT_USER0_ENA); |
| |
| /* Need to enable EMAC and RPM for WOL. */ |
| REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, |
| BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE | |
| BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE | |
| BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE); |
| |
| val = REG_RD(bp, BNX2_RPM_CONFIG); |
| val &= ~BNX2_RPM_CONFIG_ACPI_ENA; |
| REG_WR(bp, BNX2_RPM_CONFIG, val); |
| |
| wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL; |
| } |
| else { |
| wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL; |
| } |
| |
| if (!(bp->flags & NO_WOL_FLAG)) |
| bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg, 0); |
| |
| pmcsr &= ~PCI_PM_CTRL_STATE_MASK; |
| if ((CHIP_ID(bp) == CHIP_ID_5706_A0) || |
| (CHIP_ID(bp) == CHIP_ID_5706_A1)) { |
| |
| if (bp->wol) |
| pmcsr |= 3; |
| } |
| else { |
| pmcsr |= 3; |
| } |
| if (bp->wol) { |
| pmcsr |= PCI_PM_CTRL_PME_ENABLE; |
| } |
| pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, |
| pmcsr); |
| |
| /* No more memory access after this point until |
| * device is brought back to D0. |
| */ |
| udelay(50); |
| break; |
| } |
| default: |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| static int |
| bnx2_acquire_nvram_lock(struct bnx2 *bp) |
| { |
| u32 val; |
| int j; |
| |
| /* Request access to the flash interface. */ |
| REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2); |
| for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { |
| val = REG_RD(bp, BNX2_NVM_SW_ARB); |
| if (val & BNX2_NVM_SW_ARB_ARB_ARB2) |
| break; |
| |
| udelay(5); |
| } |
| |
| if (j >= NVRAM_TIMEOUT_COUNT) |
| return -EBUSY; |
| |
| return 0; |
| } |
| |
| static int |
| bnx2_release_nvram_lock(struct bnx2 *bp) |
| { |
| int j; |
| u32 val; |
| |
| /* Relinquish nvram interface. */ |
| REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2); |
| |
| for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { |
| val = REG_RD(bp, BNX2_NVM_SW_ARB); |
| if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2)) |
| break; |
| |
| udelay(5); |
| } |
| |
| if (j >= NVRAM_TIMEOUT_COUNT) |
| return -EBUSY; |
| |
| return 0; |
| } |
| |
| |
| static int |
| bnx2_enable_nvram_write(struct bnx2 *bp) |
| { |
| u32 val; |
| |
| val = REG_RD(bp, BNX2_MISC_CFG); |
| REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI); |
| |
| if (!bp->flash_info->buffered) { |
| int j; |
| |
| REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE); |
| REG_WR(bp, BNX2_NVM_COMMAND, |
| BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT); |
| |
| for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { |
| udelay(5); |
| |
| val = REG_RD(bp, BNX2_NVM_COMMAND); |
| if (val & BNX2_NVM_COMMAND_DONE) |
| break; |
| } |
| |
| if (j >= NVRAM_TIMEOUT_COUNT) |
| return -EBUSY; |
| } |
| return 0; |
| } |
| |
| static void |
| bnx2_disable_nvram_write(struct bnx2 *bp) |
| { |
| u32 val; |
| |
| val = REG_RD(bp, BNX2_MISC_CFG); |
| REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN); |
| } |
| |
| |
| static void |
| bnx2_enable_nvram_access(struct bnx2 *bp) |
| { |
| u32 val; |
| |
| val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE); |
| /* Enable both bits, even on read. */ |
| REG_WR(bp, BNX2_NVM_ACCESS_ENABLE, |
| val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN); |
| } |
| |
| static void |
| bnx2_disable_nvram_access(struct bnx2 *bp) |
| { |
| u32 val; |
| |
| val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE); |
| /* Disable both bits, even after read. */ |
| REG_WR(bp, BNX2_NVM_ACCESS_ENABLE, |
| val & ~(BNX2_NVM_ACCESS_ENABLE_EN | |
| BNX2_NVM_ACCESS_ENABLE_WR_EN)); |
| } |
| |
| static int |
| bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset) |
| { |
| u32 cmd; |
| int j; |
| |
| if (bp->flash_info->buffered) |
| /* Buffered flash, no erase needed */ |
| return 0; |
| |
| /* Build an erase command */ |
| cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR | |
| BNX2_NVM_COMMAND_DOIT; |
| |
| /* Need to clear DONE bit separately. */ |
| REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE); |
| |
| /* Address of the NVRAM to read from. */ |
| REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE); |
| |
| /* Issue an erase command. */ |
| REG_WR(bp, BNX2_NVM_COMMAND, cmd); |
| |
| /* Wait for completion. */ |
| for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { |
| u32 val; |
| |
| udelay(5); |
| |
| val = REG_RD(bp, BNX2_NVM_COMMAND); |
| if (val & BNX2_NVM_COMMAND_DONE) |
| break; |
| } |
| |
| if (j >= NVRAM_TIMEOUT_COUNT) |
| return -EBUSY; |
| |
| return 0; |
| } |
| |
| static int |
| bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags) |
| { |
| u32 cmd; |
| int j; |
| |
| /* Build the command word. */ |
| cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags; |
| |
| /* Calculate an offset of a buffered flash. */ |
| if (bp->flash_info->buffered) { |
| offset = ((offset / bp->flash_info->page_size) << |
| bp->flash_info->page_bits) + |
| (offset % bp->flash_info->page_size); |
| } |
| |
| /* Need to clear DONE bit separately. */ |
| REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE); |
| |
| /* Address of the NVRAM to read from. */ |
| REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE); |
| |
| /* Issue a read command. */ |
| REG_WR(bp, BNX2_NVM_COMMAND, cmd); |
| |
| /* Wait for completion. */ |
| for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { |
| u32 val; |
| |
| udelay(5); |
| |
| val = REG_RD(bp, BNX2_NVM_COMMAND); |
| if (val & BNX2_NVM_COMMAND_DONE) { |
| val = REG_RD(bp, BNX2_NVM_READ); |
| |
| val = be32_to_cpu(val); |
| memcpy(ret_val, &val, 4); |
| break; |
| } |
| } |
| if (j >= NVRAM_TIMEOUT_COUNT) |
| return -EBUSY; |
| |
| return 0; |
| } |
| |
| |
| static int |
| bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags) |
| { |
| u32 cmd, val32; |
| int j; |
| |
| /* Build the command word. */ |
| cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags; |
| |
| /* Calculate an offset of a buffered flash. */ |
| if (bp->flash_info->buffered) { |
| offset = ((offset / bp->flash_info->page_size) << |
| bp->flash_info->page_bits) + |
| (offset % bp->flash_info->page_size); |
| } |
| |
| /* Need to clear DONE bit separately. */ |
| REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE); |
| |
| memcpy(&val32, val, 4); |
| val32 = cpu_to_be32(val32); |
| |
| /* Write the data. */ |
| REG_WR(bp, BNX2_NVM_WRITE, val32); |
| |
| /* Address of the NVRAM to write to. */ |
| REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE); |
| |
| /* Issue the write command. */ |
| REG_WR(bp, BNX2_NVM_COMMAND, cmd); |
| |
| /* Wait for completion. */ |
| for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { |
| udelay(5); |
| |
| if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE) |
| break; |
| } |
| if (j >= NVRAM_TIMEOUT_COUNT) |
| return -EBUSY; |
| |
| return 0; |
| } |
| |
| static int |
| bnx2_init_nvram(struct bnx2 *bp) |
| { |
| u32 val; |
| int j, entry_count, rc; |
| struct flash_spec *flash; |
| |
| /* Determine the selected interface. */ |
| val = REG_RD(bp, BNX2_NVM_CFG1); |
| |
| entry_count = sizeof(flash_table) / sizeof(struct flash_spec); |
| |
| rc = 0; |
| if (val & 0x40000000) { |
| |
| /* Flash interface has been reconfigured */ |
| for (j = 0, flash = &flash_table[0]; j < entry_count; |
| j++, flash++) { |
| if ((val & FLASH_BACKUP_STRAP_MASK) == |
| (flash->config1 & FLASH_BACKUP_STRAP_MASK)) { |
| bp->flash_info = flash; |
| break; |
| } |
| } |
| } |
| else { |
| u32 mask; |
| /* Not yet been reconfigured */ |
| |
| if (val & (1 << 23)) |
| mask = FLASH_BACKUP_STRAP_MASK; |
| else |
| mask = FLASH_STRAP_MASK; |
| |
| for (j = 0, flash = &flash_table[0]; j < entry_count; |
| j++, flash++) { |
| |
| if ((val & mask) == (flash->strapping & mask)) { |
| bp->flash_info = flash; |
| |
| /* Request access to the flash interface. */ |
| if ((rc = bnx2_acquire_nvram_lock(bp)) != 0) |
| return rc; |
| |
| /* Enable access to flash interface */ |
| bnx2_enable_nvram_access(bp); |
| |
| /* Reconfigure the flash interface */ |
| REG_WR(bp, BNX2_NVM_CFG1, flash->config1); |
| REG_WR(bp, BNX2_NVM_CFG2, flash->config2); |
| REG_WR(bp, BNX2_NVM_CFG3, flash->config3); |
| REG_WR(bp, BNX2_NVM_WRITE1, flash->write1); |
| |
| /* Disable access to flash interface */ |
| bnx2_disable_nvram_access(bp); |
| bnx2_release_nvram_lock(bp); |
| |
| break; |
| } |
| } |
| } /* if (val & 0x40000000) */ |
| |
| if (j == entry_count) { |
| bp->flash_info = NULL; |
| printk(KERN_ALERT PFX "Unknown flash/EEPROM type.\n"); |
| return -ENODEV; |
| } |
| |
| val = REG_RD_IND(bp, bp->shmem_base + BNX2_SHARED_HW_CFG_CONFIG2); |
| val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK; |
| if (val) |
| bp->flash_size = val; |
| else |
| bp->flash_size = bp->flash_info->total_size; |
| |
| return rc; |
| } |
| |
| static int |
| bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf, |
| int buf_size) |
| { |
| int rc = 0; |
| u32 cmd_flags, offset32, len32, extra; |
| |
| if (buf_size == 0) |
| return 0; |
| |
| /* Request access to the flash interface. */ |
| if ((rc = bnx2_acquire_nvram_lock(bp)) != 0) |
| return rc; |
| |
| /* Enable access to flash interface */ |
| bnx2_enable_nvram_access(bp); |
| |
| len32 = buf_size; |
| offset32 = offset; |
| extra = 0; |
| |
| cmd_flags = 0; |
| |
| if (offset32 & 3) { |
| u8 buf[4]; |
| u32 pre_len; |
| |
| offset32 &= ~3; |
| pre_len = 4 - (offset & 3); |
| |
| if (pre_len >= len32) { |
| pre_len = len32; |
| cmd_flags = BNX2_NVM_COMMAND_FIRST | |
| BNX2_NVM_COMMAND_LAST; |
| } |
| else { |
| cmd_flags = BNX2_NVM_COMMAND_FIRST; |
| } |
| |
| rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags); |
| |
| if (rc) |
| return rc; |
| |
| memcpy(ret_buf, buf + (offset & 3), pre_len); |
| |
| offset32 += 4; |
| ret_buf += pre_len; |
| len32 -= pre_len; |
| } |
| if (len32 & 3) { |
| extra = 4 - (len32 & 3); |
| len32 = (len32 + 4) & ~3; |
| } |
| |
| if (len32 == 4) { |
| u8 buf[4]; |
| |
| if (cmd_flags) |
| cmd_flags = BNX2_NVM_COMMAND_LAST; |
| else |
| cmd_flags = BNX2_NVM_COMMAND_FIRST | |
| BNX2_NVM_COMMAND_LAST; |
| |
| rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags); |
| |
| memcpy(ret_buf, buf, 4 - extra); |
| } |
| else if (len32 > 0) { |
| u8 buf[4]; |
| |
| /* Read the first word. */ |
| if (cmd_flags) |
| cmd_flags = 0; |
| else |
| cmd_flags = BNX2_NVM_COMMAND_FIRST; |
| |
| rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags); |
| |
| /* Advance to the next dword. */ |
| offset32 += 4; |
| ret_buf += 4; |
| len32 -= 4; |
| |
| while (len32 > 4 && rc == 0) { |
| rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0); |
| |
| /* Advance to the next dword. */ |
| offset32 += 4; |
| ret_buf += 4; |
| len32 -= 4; |
| } |
| |
| if (rc) |
| return rc; |
| |
| cmd_flags = BNX2_NVM_COMMAND_LAST; |
| rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags); |
| |
| memcpy(ret_buf, buf, 4 - extra); |
| } |
| |
| /* Disable access to flash interface */ |
| bnx2_disable_nvram_access(bp); |
| |
| bnx2_release_nvram_lock(bp); |
| |
| return rc; |
| } |
| |
| static int |
| bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf, |
| int buf_size) |
| { |
| u32 written, offset32, len32; |
| u8 *buf, start[4], end[4], *flash_buffer = NULL; |
| int rc = 0; |
| int align_start, align_end; |
| |
| buf = data_buf; |
| offset32 = offset; |
| len32 = buf_size; |
| align_start = align_end = 0; |
| |
| if ((align_start = (offset32 & 3))) { |
| offset32 &= ~3; |
| len32 += align_start; |
| if ((rc = bnx2_nvram_read(bp, offset32, start, 4))) |
| return rc; |
| } |
| |
| if (len32 & 3) { |
| if ((len32 > 4) || !align_start) { |
| align_end = 4 - (len32 & 3); |
| len32 += align_end; |
| if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, |
| end, 4))) { |
| return rc; |
| } |
| } |
| } |
| |
| if (align_start || align_end) { |
| buf = kmalloc(len32, GFP_KERNEL); |
| if (buf == 0) |
| return -ENOMEM; |
| if (align_start) { |
| memcpy(buf, start, 4); |
| } |
| if (align_end) { |
| memcpy(buf + len32 - 4, end, 4); |
| } |
| memcpy(buf + align_start, data_buf, buf_size); |
| } |
| |
| if (bp->flash_info->buffered == 0) { |
| flash_buffer = kmalloc(264, GFP_KERNEL); |
| if (flash_buffer == NULL) { |
| rc = -ENOMEM; |
| goto nvram_write_end; |
| } |
| } |
| |
| written = 0; |
| while ((written < len32) && (rc == 0)) { |
| u32 page_start, page_end, data_start, data_end; |
| u32 addr, cmd_flags; |
| int i; |
| |
| /* Find the page_start addr */ |
| page_start = offset32 + written; |
| page_start -= (page_start % bp->flash_info->page_size); |
| /* Find the page_end addr */ |
| page_end = page_start + bp->flash_info->page_size; |
| /* Find the data_start addr */ |
| data_start = (written == 0) ? offset32 : page_start; |
| /* Find the data_end addr */ |
| data_end = (page_end > offset32 + len32) ? |
| (offset32 + len32) : page_end; |
| |
| /* Request access to the flash interface. */ |
| if ((rc = bnx2_acquire_nvram_lock(bp)) != 0) |
| goto nvram_write_end; |
| |
| /* Enable access to flash interface */ |
| bnx2_enable_nvram_access(bp); |
| |
| cmd_flags = BNX2_NVM_COMMAND_FIRST; |
| if (bp->flash_info->buffered == 0) { |
| int j; |
| |
| /* Read the whole page into the buffer |
| * (non-buffer flash only) */ |
| for (j = 0; j < bp->flash_info->page_size; j += 4) { |
| if (j == (bp->flash_info->page_size - 4)) { |
| cmd_flags |= BNX2_NVM_COMMAND_LAST; |
| } |
| rc = bnx2_nvram_read_dword(bp, |
| page_start + j, |
| &flash_buffer[j], |
| cmd_flags); |
| |
| if (rc) |
| goto nvram_write_end; |
| |
| cmd_flags = 0; |
| } |
| } |
| |
| /* Enable writes to flash interface (unlock write-protect) */ |
| if ((rc = bnx2_enable_nvram_write(bp)) != 0) |
| goto nvram_write_end; |
| |
| /* Erase the page */ |
| if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0) |
| goto nvram_write_end; |
| |
| /* Re-enable the write again for the actual write */ |
| bnx2_enable_nvram_write(bp); |
| |
| /* Loop to write back the buffer data from page_start to |
| * data_start */ |
| i = 0; |
| if (bp->flash_info->buffered == 0) { |
| for (addr = page_start; addr < data_start; |
| addr += 4, i += 4) { |
| |
| rc = bnx2_nvram_write_dword(bp, addr, |
| &flash_buffer[i], cmd_flags); |
| |
| if (rc != 0) |
| goto nvram_write_end; |
| |
| cmd_flags = 0; |
| } |
| } |
| |
| /* Loop to write the new data from data_start to data_end */ |
| for (addr = data_start; addr < data_end; addr += 4, i += 4) { |
| if ((addr == page_end - 4) || |
| ((bp->flash_info->buffered) && |
| (addr == data_end - 4))) { |
| |
| cmd_flags |= BNX2_NVM_COMMAND_LAST; |
| } |
| rc = bnx2_nvram_write_dword(bp, addr, buf, |
| cmd_flags); |
| |
| if (rc != 0) |
| goto nvram_write_end; |
| |
| cmd_flags = 0; |
| buf += 4; |
| } |
| |
| /* Loop to write back the buffer data from data_end |
| * to page_end */ |
| if (bp->flash_info->buffered == 0) { |
| for (addr = data_end; addr < page_end; |
| addr += 4, i += 4) { |
| |
| if (addr == page_end-4) { |
| cmd_flags = BNX2_NVM_COMMAND_LAST; |
| } |
| rc = bnx2_nvram_write_dword(bp, addr, |
| &flash_buffer[i], cmd_flags); |
| |
| if (rc != 0) |
| goto nvram_write_end; |
| |
| cmd_flags = 0; |
| } |
| } |
| |
| /* Disable writes to flash interface (lock write-protect) */ |
| bnx2_disable_nvram_write(bp); |
| |
| /* Disable access to flash interface */ |
| bnx2_disable_nvram_access(bp); |
| bnx2_release_nvram_lock(bp); |
| |
| /* Increment written */ |
| written += data_end - data_start; |
| } |
| |
| nvram_write_end: |
| if (bp->flash_info->buffered == 0) |
| kfree(flash_buffer); |
| |
| if (align_start || align_end) |
| kfree(buf); |
| return rc; |
| } |
| |
| static int |
| bnx2_reset_chip(struct bnx2 *bp, u32 reset_code) |
| { |
| u32 val; |
| int i, rc = 0; |
| |
| /* Wait for the current PCI transaction to complete before |
| * issuing a reset. */ |
| REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS, |
| BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE | |
| BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE | |
| BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE | |
| BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE); |
| val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS); |
| udelay(5); |
| |
| /* Wait for the firmware to tell us it is ok to issue a reset. */ |
| bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1); |
| |
| /* Deposit a driver reset signature so the firmware knows that |
| * this is a soft reset. */ |
| REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_RESET_SIGNATURE, |
| BNX2_DRV_RESET_SIGNATURE_MAGIC); |
| |
| /* Do a dummy read to force the chip to complete all current transaction |
| * before we issue a reset. */ |
| val = REG_RD(bp, BNX2_MISC_ID); |
| |
| val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ | |
| BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | |
| BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP; |
| |
| /* Chip reset. */ |
| REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val); |
| |
| if ((CHIP_ID(bp) == CHIP_ID_5706_A0) || |
| (CHIP_ID(bp) == CHIP_ID_5706_A1)) |
| msleep(15); |
| |
| /* Reset takes approximate 30 usec */ |
| for (i = 0; i < 10; i++) { |
| val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG); |
| if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ | |
| BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) { |
| break; |
| } |
| udelay(10); |
| } |
| |
| if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ | |
| BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) { |
| printk(KERN_ERR PFX "Chip reset did not complete\n"); |
| return -EBUSY; |
| } |
| |
| /* Make sure byte swapping is properly configured. */ |
| val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0); |
| if (val != 0x01020304) { |
| printk(KERN_ERR PFX "Chip not in correct endian mode\n"); |
| return -ENODEV; |
| } |
| |
| /* Wait for the firmware to finish its initialization. */ |
| rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 0); |
| if (rc) |
| return rc; |
| |
| if (CHIP_ID(bp) == CHIP_ID_5706_A0) { |
| /* Adjust the voltage regular to two steps lower. The default |
| * of this register is 0x0000000e. */ |
| REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa); |
| |
| /* Remove bad rbuf memory from the free pool. */ |
| rc = bnx2_alloc_bad_rbuf(bp); |
| } |
| |
| return rc; |
| } |
| |
| static int |
| bnx2_init_chip(struct bnx2 *bp) |
| { |
| u32 val; |
| int rc; |
| |
| /* Make sure the interrupt is not active. */ |
| REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT); |
| |
| val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP | |
| BNX2_DMA_CONFIG_DATA_WORD_SWAP | |
| #ifdef __BIG_ENDIAN |
| BNX2_DMA_CONFIG_CNTL_BYTE_SWAP | |
| #endif |
| BNX2_DMA_CONFIG_CNTL_WORD_SWAP | |
| DMA_READ_CHANS << 12 | |
| DMA_WRITE_CHANS << 16; |
| |
| val |= (0x2 << 20) | (1 << 11); |
| |
| if ((bp->flags & PCIX_FLAG) && (bp->bus_speed_mhz == 133)) |
| val |= (1 << 23); |
| |
| if ((CHIP_NUM(bp) == CHIP_NUM_5706) && |
| (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & PCIX_FLAG)) |
| val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA; |
| |
| REG_WR(bp, BNX2_DMA_CONFIG, val); |
| |
| if (CHIP_ID(bp) == CHIP_ID_5706_A0) { |
| val = REG_RD(bp, BNX2_TDMA_CONFIG); |
| val |= BNX2_TDMA_CONFIG_ONE_DMA; |
| REG_WR(bp, BNX2_TDMA_CONFIG, val); |
| } |
| |
| if (bp->flags & PCIX_FLAG) { |
| u16 val16; |
| |
| pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD, |
| &val16); |
| pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD, |
| val16 & ~PCI_X_CMD_ERO); |
| } |
| |
| REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, |
| BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE | |
| BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE | |
| BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE); |
| |
| /* Initialize context mapping and zero out the quick contexts. The |
| * context block must have already been enabled. */ |
| bnx2_init_context(bp); |
| |
| if ((rc = bnx2_init_cpus(bp)) != 0) |
| return rc; |
| |
| bnx2_init_nvram(bp); |
| |
| bnx2_set_mac_addr(bp); |
| |
| val = REG_RD(bp, BNX2_MQ_CONFIG); |
| val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE; |
| val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256; |
| REG_WR(bp, BNX2_MQ_CONFIG, val); |
| |
| val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE); |
| REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val); |
| REG_WR(bp, BNX2_MQ_KNL_WIND_END, val); |
| |
| val = (BCM_PAGE_BITS - 8) << 24; |
| REG_WR(bp, BNX2_RV2P_CONFIG, val); |
| |
| /* Configure page size. */ |
| val = REG_RD(bp, BNX2_TBDR_CONFIG); |
| val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE; |
| val |= (BCM_PAGE_BITS - 8) << 24 | 0x40; |
| REG_WR(bp, BNX2_TBDR_CONFIG, val); |
| |
| val = bp->mac_addr[0] + |
| (bp->mac_addr[1] << 8) + |
| (bp->mac_addr[2] << 16) + |
| bp->mac_addr[3] + |
| (bp->mac_addr[4] << 8) + |
| (bp->mac_addr[5] << 16); |
| REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val); |
| |
| /* Program the MTU. Also include 4 bytes for CRC32. */ |
| val = bp->dev->mtu + ETH_HLEN + 4; |
| if (val > (MAX_ETHERNET_PACKET_SIZE + 4)) |
| val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA; |
| REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val); |
| |
| bp->last_status_idx = 0; |
| bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE; |
| |
| /* Set up how to generate a link change interrupt. */ |
| REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK); |
| |
| REG_WR(bp, BNX2_HC_STATUS_ADDR_L, |
| (u64) bp->status_blk_mapping & 0xffffffff); |
| REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32); |
| |
| REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L, |
| (u64) bp->stats_blk_mapping & 0xffffffff); |
| REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H, |
| (u64) bp->stats_blk_mapping >> 32); |
| |
| REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP, |
| (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip); |
| |
| REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP, |
| (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip); |
| |
| REG_WR(bp, BNX2_HC_COMP_PROD_TRIP, |
| (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip); |
| |
| REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks); |
| |
| REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks); |
| |
| REG_WR(bp, BNX2_HC_COM_TICKS, |
| (bp->com_ticks_int << 16) | bp->com_ticks); |
| |
| REG_WR(bp, BNX2_HC_CMD_TICKS, |
| (bp->cmd_ticks_int << 16) | bp->cmd_ticks); |
| |
| REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks & 0xffff00); |
| REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */ |
| |
| if (CHIP_ID(bp) == CHIP_ID_5706_A1) |
| REG_WR(bp, BNX2_HC_CONFIG, BNX2_HC_CONFIG_COLLECT_STATS); |
| else { |
| REG_WR(bp, BNX2_HC_CONFIG, BNX2_HC_CONFIG_RX_TMR_MODE | |
| BNX2_HC_CONFIG_TX_TMR_MODE | |
| BNX2_HC_CONFIG_COLLECT_STATS); |
| } |
| |
| /* Clear internal stats counters. */ |
| REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW); |
| |
| REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE); |
| |
| if (REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_FEATURE) & |
| BNX2_PORT_FEATURE_ASF_ENABLED) |
| bp->flags |= ASF_ENABLE_FLAG; |
| |
| /* Initialize the receive filter. */ |
| bnx2_set_rx_mode(bp->dev); |
| |
| rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET, |
| 0); |
| |
| REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, 0x5ffffff); |
| REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS); |
| |
| udelay(20); |
| |
| bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND); |
| |
| return rc; |
| } |
| |
| |
| static void |
| bnx2_init_tx_ring(struct bnx2 *bp) |
| { |
| struct tx_bd *txbd; |
| u32 val; |
| |
| txbd = &bp->tx_desc_ring[MAX_TX_DESC_CNT]; |
| |
| txbd->tx_bd_haddr_hi = (u64) bp->tx_desc_mapping >> 32; |
| txbd->tx_bd_haddr_lo = (u64) bp->tx_desc_mapping & 0xffffffff; |
| |
| bp->tx_prod = 0; |
| bp->tx_cons = 0; |
| bp->hw_tx_cons = 0; |
| bp->tx_prod_bseq = 0; |
| |
| val = BNX2_L2CTX_TYPE_TYPE_L2; |
| val |= BNX2_L2CTX_TYPE_SIZE_L2; |
| CTX_WR(bp, GET_CID_ADDR(TX_CID), BNX2_L2CTX_TYPE, val); |
| |
| val = BNX2_L2CTX_CMD_TYPE_TYPE_L2; |
| val |= 8 << 16; |
| CTX_WR(bp, GET_CID_ADDR(TX_CID), BNX2_L2CTX_CMD_TYPE, val); |
| |
| val = (u64) bp->tx_desc_mapping >> 32; |
| CTX_WR(bp, GET_CID_ADDR(TX_CID), BNX2_L2CTX_TBDR_BHADDR_HI, val); |
| |
| val = (u64) bp->tx_desc_mapping & 0xffffffff; |
| CTX_WR(bp, GET_CID_ADDR(TX_CID), BNX2_L2CTX_TBDR_BHADDR_LO, val); |
| } |
| |
| static void |
| bnx2_init_rx_ring(struct bnx2 *bp) |
| { |
| struct rx_bd *rxbd; |
| int i; |
| u16 prod, ring_prod; |
| u32 val; |
| |
| /* 8 for CRC and VLAN */ |
| bp->rx_buf_use_size = bp->dev->mtu + ETH_HLEN + bp->rx_offset + 8; |
| /* 8 for alignment */ |
| bp->rx_buf_size = bp->rx_buf_use_size + 8; |
| |
| ring_prod = prod = bp->rx_prod = 0; |
| bp->rx_cons = 0; |
| bp->hw_rx_cons = 0; |
| bp->rx_prod_bseq = 0; |
| |
| for (i = 0; i < bp->rx_max_ring; i++) { |
| int j; |
| |
| rxbd = &bp->rx_desc_ring[i][0]; |
| for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) { |
| rxbd->rx_bd_len = bp->rx_buf_use_size; |
| rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END; |
| } |
| if (i == (bp->rx_max_ring - 1)) |
| j = 0; |
| else |
| j = i + 1; |
| rxbd->rx_bd_haddr_hi = (u64) bp->rx_desc_mapping[j] >> 32; |
| rxbd->rx_bd_haddr_lo = (u64) bp->rx_desc_mapping[j] & |
| 0xffffffff; |
| } |
| |
| val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE; |
| val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2; |
| val |= 0x02 << 8; |
| CTX_WR(bp, GET_CID_ADDR(RX_CID), BNX2_L2CTX_CTX_TYPE, val); |
| |
| val = (u64) bp->rx_desc_mapping[0] >> 32; |
| CTX_WR(bp, GET_CID_ADDR(RX_CID), BNX2_L2CTX_NX_BDHADDR_HI, val); |
| |
| val = (u64) bp->rx_desc_mapping[0] & 0xffffffff; |
| CTX_WR(bp, GET_CID_ADDR(RX_CID), BNX2_L2CTX_NX_BDHADDR_LO, val); |
| |
| for (i = 0; i < bp->rx_ring_size; i++) { |
| if (bnx2_alloc_rx_skb(bp, ring_prod) < 0) { |
| break; |
| } |
| prod = NEXT_RX_BD(prod); |
| ring_prod = RX_RING_IDX(prod); |
| } |
| bp->rx_prod = prod; |
| |
| REG_WR16(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BDIDX, prod); |
| |
| REG_WR(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BSEQ, bp->rx_prod_bseq); |
| } |
| |
| static void |
| bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size) |
| { |
| u32 num_rings, max; |
| |
| bp->rx_ring_size = size; |
| num_rings = 1; |
| while (size > MAX_RX_DESC_CNT) { |
| size -= MAX_RX_DESC_CNT; |
| num_rings++; |
| } |
| /* round to next power of 2 */ |
| max = MAX_RX_RINGS; |
| while ((max & num_rings) == 0) |
| max >>= 1; |
| |
| if (num_rings != max) |
| max <<= 1; |
| |
| bp->rx_max_ring = max; |
| bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1; |
| } |
| |
| static void |
| bnx2_free_tx_skbs(struct bnx2 *bp) |
| { |
| int i; |
| |
| if (bp->tx_buf_ring == NULL) |
| return; |
| |
| for (i = 0; i < TX_DESC_CNT; ) { |
| struct sw_bd *tx_buf = &bp->tx_buf_ring[i]; |
| struct sk_buff *skb = tx_buf->skb; |
| int j, last; |
| |
| if (skb == NULL) { |
| i++; |
| continue; |
| } |
| |
| pci_unmap_single(bp->pdev, pci_unmap_addr(tx_buf, mapping), |
| skb_headlen(skb), PCI_DMA_TODEVICE); |
| |
| tx_buf->skb = NULL; |
| |
| last = skb_shinfo(skb)->nr_frags; |
| for (j = 0; j < last; j++) { |
| tx_buf = &bp->tx_buf_ring[i + j + 1]; |
| pci_unmap_page(bp->pdev, |
| pci_unmap_addr(tx_buf, mapping), |
| skb_shinfo(skb)->frags[j].size, |
| PCI_DMA_TODEVICE); |
| } |
| dev_kfree_skb(skb); |
| i += j + 1; |
| } |
| |
| } |
| |
| static void |
| bnx2_free_rx_skbs(struct bnx2 *bp) |
| { |
| int i; |
| |
| if (bp->rx_buf_ring == NULL) |
| return; |
| |
| for (i = 0; i < bp->rx_max_ring_idx; i++) { |
| struct sw_bd *rx_buf = &bp->rx_buf_ring[i]; |
| struct sk_buff *skb = rx_buf->skb; |
| |
| if (skb == NULL) |
| continue; |
| |
| pci_unmap_single(bp->pdev, pci_unmap_addr(rx_buf, mapping), |
| bp->rx_buf_use_size, PCI_DMA_FROMDEVICE); |
| |
| rx_buf->skb = NULL; |
| |
| dev_kfree_skb(skb); |
| } |
| } |
| |
| static void |
| bnx2_free_skbs(struct bnx2 *bp) |
| { |
| bnx2_free_tx_skbs(bp); |
| bnx2_free_rx_skbs(bp); |
| } |
| |
| static int |
| bnx2_reset_nic(struct bnx2 *bp, u32 reset_code) |
| { |
| int rc; |
| |
| rc = bnx2_reset_chip(bp, reset_code); |
| bnx2_free_skbs(bp); |
| if (rc) |
| return rc; |
| |
| if ((rc = bnx2_init_chip(bp)) != 0) |
| return rc; |
| |
| bnx2_init_tx_ring(bp); |
| bnx2_init_rx_ring(bp); |
| return 0; |
| } |
| |
| static int |
| bnx2_init_nic(struct bnx2 *bp) |
| { |
| int rc; |
| |
| if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0) |
| return rc; |
| |
| bnx2_init_phy(bp); |
| bnx2_set_link(bp); |
| return 0; |
| } |
| |
| static int |
| bnx2_test_registers(struct bnx2 *bp) |
| { |
| int ret; |
| int i; |
| static const struct { |
| u16 offset; |
| u16 flags; |
| u32 rw_mask; |
| u32 ro_mask; |
| } reg_tbl[] = { |
| { 0x006c, 0, 0x00000000, 0x0000003f }, |
| { 0x0090, 0, 0xffffffff, 0x00000000 }, |
| { 0x0094, 0, 0x00000000, 0x00000000 }, |
| |
| { 0x0404, 0, 0x00003f00, 0x00000000 }, |
| { 0x0418, 0, 0x00000000, 0xffffffff }, |
| { 0x041c, 0, 0x00000000, 0xffffffff }, |
| { 0x0420, 0, 0x00000000, 0x80ffffff }, |
| { 0x0424, 0, 0x00000000, 0x00000000 }, |
| { 0x0428, 0, 0x00000000, 0x00000001 }, |
| { 0x0450, 0, 0x00000000, 0x0000ffff }, |
| { 0x0454, 0, 0x00000000, 0xffffffff }, |
| { 0x0458, 0, 0x00000000, 0xffffffff }, |
| |
| { 0x0808, 0, 0x00000000, 0xffffffff }, |
| { 0x0854, 0, 0x00000000, 0xffffffff }, |
| { 0x0868, 0, 0x00000000, 0x77777777 }, |
| { 0x086c, 0, 0x00000000, 0x77777777 }, |
| { 0x0870, 0, 0x00000000, 0x77777777 }, |
| { 0x0874, 0, 0x00000000, 0x77777777 }, |
| |
| { 0x0c00, 0, 0x00000000, 0x00000001 }, |
| { 0x0c04, 0, 0x00000000, 0x03ff0001 }, |
| { 0x0c08, 0, 0x0f0ff073, 0x00000000 }, |
| |
| { 0x1000, 0, 0x00000000, 0x00000001 }, |
| { 0x1004, 0, 0x00000000, 0x000f0001 }, |
| |
| { 0x1408, 0, 0x01c00800, 0x00000000 }, |
| { 0x149c, 0, 0x8000ffff, 0x00000000 }, |
| { 0x14a8, 0, 0x00000000, 0x000001ff }, |
| { 0x14ac, 0, 0x0fffffff, 0x10000000 }, |
| { 0x14b0, 0, 0x00000002, 0x00000001 }, |
| { 0x14b8, 0, 0x00000000, 0x00000000 }, |
| { 0x14c0, 0, 0x00000000, 0x00000009 }, |
| { 0x14c4, 0, 0x00003fff, 0x00000000 }, |
| { 0x14cc, 0, 0x00000000, 0x00000001 }, |
| { 0x14d0, 0, 0xffffffff, 0x00000000 }, |
| |
| { 0x1800, 0, 0x00000000, 0x00000001 }, |
| { 0x1804, 0, 0x00000000, 0x00000003 }, |
| |
| { 0x2800, 0, 0x00000000, 0x00000001 }, |
| { 0x2804, 0, 0x00000000, 0x00003f01 }, |
| { 0x2808, 0, 0x0f3f3f03, 0x00000000 }, |
| { 0x2810, 0, 0xffff0000, 0x00000000 }, |
| { 0x2814, 0, 0xffff0000, 0x00000000 }, |
| { 0x2818, 0, 0xffff0000, 0x00000000 }, |
| { 0x281c, 0, 0xffff0000, 0x00000000 }, |
| { 0x2834, 0, 0xffffffff, 0x00000000 }, |
| { 0x2840, 0, 0x00000000, 0xffffffff }, |
| { 0x2844, 0, 0x00000000, 0xffffffff }, |
| { 0x2848, 0, 0xffffffff, 0x00000000 }, |
| { 0x284c, 0, 0xf800f800, 0x07ff07ff }, |
| |
| { 0x2c00, 0, 0x00000000, 0x00000011 }, |
| { 0x2c04, 0, 0x00000000, 0x00030007 }, |
| |
| { 0x3c00, 0, 0x00000000, 0x00000001 }, |
| { 0x3c04, 0, 0x00000000, 0x00070000 }, |
| { 0x3c08, 0, 0x00007f71, 0x07f00000 }, |
| { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 }, |
| { 0x3c10, 0, 0xffffffff, 0x00000000 }, |
| { 0x3c14, 0, 0x00000000, 0xffffffff }, |
| { 0x3c18, 0, 0x00000000, 0xffffffff }, |
| { 0x3c1c, 0, 0xfffff000, 0x00000000 }, |
| { 0x3c20, 0, 0xffffff00, 0x00000000 }, |
| |
| { 0x5004, 0, 0x00000000, 0x0000007f }, |
| { 0x5008, 0, 0x0f0007ff, 0x00000000 }, |
| { 0x500c, 0, 0xf800f800, 0x07ff07ff }, |
| |
| { 0x5c00, 0, 0x00000000, 0x00000001 }, |
| { 0x5c04, 0, 0x00000000, 0x0003000f }, |
| { 0x5c08, 0, 0x00000003, 0x00000000 }, |
| { 0x5c0c, 0, 0x0000fff8, 0x00000000 }, |
| { 0x5c10, 0, 0x00000000, 0xffffffff }, |
| { 0x5c80, 0, 0x00000000, 0x0f7113f1 }, |
| { 0x5c84, 0, 0x00000000, 0x0000f333 }, |
| { 0x5c88, 0, 0x00000000, 0x00077373 }, |
| { 0x5c8c, 0, 0x00000000, 0x0007f737 }, |
| |
| { 0x6808, 0, 0x0000ff7f, 0x00000000 }, |
| { 0x680c, 0, 0xffffffff, 0x00000000 }, |
| { 0x6810, 0, 0xffffffff, 0x00000000 }, |
| { 0x6814, 0, 0xffffffff, 0x00000000 }, |
| { 0x6818, 0, 0xffffffff, 0x00000000 }, |
| { 0x681c, 0, 0xffffffff, 0x00000000 }, |
| { 0x6820, 0, 0x00ff00ff, 0x00000000 }, |
| { 0x6824, 0, 0x00ff00ff, 0x00000000 }, |
| { 0x6828, 0, 0x00ff00ff, 0x00000000 }, |
| { 0x682c, 0, 0x03ff03ff, 0x00000000 }, |
| { 0x6830, 0, 0x03ff03ff, 0x00000000 }, |
| { 0x6834, 0, 0x03ff03ff, 0x00000000 }, |
| { 0x6838, 0, 0x03ff03ff, 0x00000000 }, |
| { 0x683c, 0, 0x0000ffff, 0x00000000 }, |
| { 0x6840, 0, 0x00000ff0, 0x00000000 }, |
| { 0x6844, 0, 0x00ffff00, 0x00000000 }, |
| { 0x684c, 0, 0xffffffff, 0x00000000 }, |
| { 0x6850, 0, 0x7f7f7f7f, 0x00000000 }, |
| { 0x6854, 0, 0x7f7f7f7f, 0x00000000 }, |
| { 0x6858, 0, 0x7f7f7f7f, 0x00000000 }, |
| { 0x685c, 0, 0x7f7f7f7f, 0x00000000 }, |
| { 0x6908, 0, 0x00000000, 0x0001ff0f }, |
| { 0x690c, 0, 0x00000000, 0x0ffe00f0 }, |
| |
| { 0xffff, 0, 0x00000000, 0x00000000 }, |
| }; |
| |
| ret = 0; |
| for (i = 0; reg_tbl[i].offset != 0xffff; i++) { |
| u32 offset, rw_mask, ro_mask, save_val, val; |
| |
| offset = (u32) reg_tbl[i].offset; |
| rw_mask = reg_tbl[i].rw_mask; |
| ro_mask = reg_tbl[i].ro_mask; |
| |
| save_val = readl(bp->regview + offset); |
| |
| writel(0, bp->regview + offset); |
| |
| val = readl(bp->regview + offset); |
| if ((val & rw_mask) != 0) { |
| goto reg_test_err; |
| } |
| |
| if ((val & ro_mask) != (save_val & ro_mask)) { |
| goto reg_test_err; |
| } |
| |
| writel(0xffffffff, bp->regview + offset); |
| |
| val = readl(bp->regview + offset); |
| if ((val & rw_mask) != rw_mask) { |
| goto reg_test_err; |
| } |
| |
| if ((val & ro_mask) != (save_val & ro_mask)) { |
| goto reg_test_err; |
| } |
| |
| writel(save_val, bp->regview + offset); |
| continue; |
| |
| reg_test_err: |
| writel(save_val, bp->regview + offset); |
| ret = -ENODEV; |
| break; |
| } |
| return ret; |
| } |
| |
| static int |
| bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size) |
| { |
| static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555, |
| 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa }; |
| int i; |
| |
| for (i = 0; i < sizeof(test_pattern) / 4; i++) { |
| u32 offset; |
| |
| for (offset = 0; offset < size; offset += 4) { |
| |
| REG_WR_IND(bp, start + offset, test_pattern[i]); |
| |
| if (REG_RD_IND(bp, start + offset) != |
| test_pattern[i]) { |
| return -ENODEV; |
| } |
| } |
| } |
| return 0; |
| } |
| |
| static int |
| bnx2_test_memory(struct bnx2 *bp) |
| { |
| int ret = 0; |
| int i; |
| static const struct { |
| u32 offset; |
| u32 len; |
| } mem_tbl[] = { |
| { 0x60000, 0x4000 }, |
| { 0xa0000, 0x3000 }, |
| { 0xe0000, 0x4000 }, |
| { 0x120000, 0x4000 }, |
| { 0x1a0000, 0x4000 }, |
| { 0x160000, 0x4000 }, |
| { 0xffffffff, 0 }, |
| }; |
| |
| for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) { |
| if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset, |
| mem_tbl[i].len)) != 0) { |
| return ret; |
| } |
| } |
| |
| return ret; |
| } |
| |
| #define BNX2_MAC_LOOPBACK 0 |
| #define BNX2_PHY_LOOPBACK 1 |
| |
| static int |
| bnx2_run_loopback(struct bnx2 *bp, int loopback_mode) |
| { |
| unsigned int pkt_size, num_pkts, i; |
| struct sk_buff *skb, *rx_skb; |
| unsigned char *packet; |
| u16 rx_start_idx, rx_idx; |
| dma_addr_t map; |
| struct tx_bd *txbd; |
| struct sw_bd *rx_buf; |
| struct l2_fhdr *rx_hdr; |
| int ret = -ENODEV; |
| |
| if (loopback_mode == BNX2_MAC_LOOPBACK) { |
| bp->loopback = MAC_LOOPBACK; |
| bnx2_set_mac_loopback(bp); |
| } |
| else if (loopback_mode == BNX2_PHY_LOOPBACK) { |
| bp->loopback = 0; |
| bnx2_set_phy_loopback(bp); |
| } |
| else |
| return -EINVAL; |
| |
| pkt_size = 1514; |
| skb = dev_alloc_skb(pkt_size); |
| if (!skb) |
| return -ENOMEM; |
| packet = skb_put(skb, pkt_size); |
| memcpy(packet, bp->mac_addr, 6); |
| memset(packet + 6, 0x0, 8); |
| for (i = 14; i < pkt_size; i++) |
| packet[i] = (unsigned char) (i & 0xff); |
| |
| map = pci_map_single(bp->pdev, skb->data, pkt_size, |
| PCI_DMA_TODEVICE); |
| |
| REG_WR(bp, BNX2_HC_COMMAND, |
| bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT); |
| |
| REG_RD(bp, BNX2_HC_COMMAND); |
| |
| udelay(5); |
| rx_start_idx = bp->status_blk->status_rx_quick_consumer_index0; |
| |
| num_pkts = 0; |
| |
| txbd = &bp->tx_desc_ring[TX_RING_IDX(bp->tx_prod)]; |
| |
| txbd->tx_bd_haddr_hi = (u64) map >> 32; |
| txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff; |
| txbd->tx_bd_mss_nbytes = pkt_size; |
| txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END; |
| |
| num_pkts++; |
| bp->tx_prod = NEXT_TX_BD(bp->tx_prod); |
| bp->tx_prod_bseq += pkt_size; |
| |
| REG_WR16(bp, MB_TX_CID_ADDR + BNX2_L2CTX_TX_HOST_BIDX, bp->tx_prod); |
| REG_WR(bp, MB_TX_CID_ADDR + BNX2_L2CTX_TX_HOST_BSEQ, bp->tx_prod_bseq); |
| |
| udelay(100); |
| |
| REG_WR(bp, BNX2_HC_COMMAND, |
| bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT); |
| |
| REG_RD(bp, BNX2_HC_COMMAND); |
| |
| udelay(5); |
| |
| pci_unmap_single(bp->pdev, map, pkt_size, PCI_DMA_TODEVICE); |
| dev_kfree_skb(skb); |
| |
| if (bp->status_blk->status_tx_quick_consumer_index0 != bp->tx_prod) { |
| goto loopback_test_done; |
| } |
| |
| rx_idx = bp->status_blk->status_rx_quick_consumer_index0; |
| if (rx_idx != rx_start_idx + num_pkts) { |
| goto loopback_test_done; |
| } |
| |
| rx_buf = &bp->rx_buf_ring[rx_start_idx]; |
| rx_skb = rx_buf->skb; |
| |
| rx_hdr = (struct l2_fhdr *) rx_skb->data; |
| skb_reserve(rx_skb, bp->rx_offset); |
| |
| pci_dma_sync_single_for_cpu(bp->pdev, |
| pci_unmap_addr(rx_buf, mapping), |
| bp->rx_buf_size, PCI_DMA_FROMDEVICE); |
| |
| if (rx_hdr->l2_fhdr_status & |
| (L2_FHDR_ERRORS_BAD_CRC | |
| L2_FHDR_ERRORS_PHY_DECODE | |
| L2_FHDR_ERRORS_ALIGNMENT | |
| L2_FHDR_ERRORS_TOO_SHORT | |
| L2_FHDR_ERRORS_GIANT_FRAME)) { |
| |
| goto loopback_test_done; |
| } |
| |
| if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) { |
| goto loopback_test_done; |
| } |
| |
| for (i = 14; i < pkt_size; i++) { |
| if (*(rx_skb->data + i) != (unsigned char) (i & 0xff)) { |
| goto loopback_test_done; |
| } |
| } |
| |
| ret = 0; |
| |
| loopback_test_done: |
| bp->loopback = 0; |
| return ret; |
| } |
| |
| #define BNX2_MAC_LOOPBACK_FAILED 1 |
| #define BNX2_PHY_LOOPBACK_FAILED 2 |
| #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \ |
| BNX2_PHY_LOOPBACK_FAILED) |
| |
| static int |
| bnx2_test_loopback(struct bnx2 *bp) |
| { |
| int rc = 0; |
| |
| if (!netif_running(bp->dev)) |
| return BNX2_LOOPBACK_FAILED; |
| |
| bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET); |
| spin_lock_bh(&bp->phy_lock); |
| bnx2_init_phy(bp); |
| spin_unlock_bh(&bp->phy_lock); |
| if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK)) |
| rc |= BNX2_MAC_LOOPBACK_FAILED; |
| if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK)) |
| rc |= BNX2_PHY_LOOPBACK_FAILED; |
| return rc; |
| } |
| |
| #define NVRAM_SIZE 0x200 |
| #define CRC32_RESIDUAL 0xdebb20e3 |
| |
| static int |
| bnx2_test_nvram(struct bnx2 *bp) |
| { |
| u32 buf[NVRAM_SIZE / 4]; |
| u8 *data = (u8 *) buf; |
| int rc = 0; |
| u32 magic, csum; |
| |
| if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0) |
| goto test_nvram_done; |
| |
| magic = be32_to_cpu(buf[0]); |
| if (magic != 0x669955aa) { |
| rc = -ENODEV; |
| goto test_nvram_done; |
| } |
| |
| if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0) |
| goto test_nvram_done; |
| |
| csum = ether_crc_le(0x100, data); |
| if (csum != CRC32_RESIDUAL) { |
| rc = -ENODEV; |
| goto test_nvram_done; |
| } |
| |
| csum = ether_crc_le(0x100, data + 0x100); |
| if (csum != CRC32_RESIDUAL) { |
| rc = -ENODEV; |
| } |
| |
| test_nvram_done: |
| return rc; |
| } |
| |
| static int |
| bnx2_test_link(struct bnx2 *bp) |
| { |
| u32 bmsr; |
| |
| spin_lock_bh(&bp->phy_lock); |
| bnx2_read_phy(bp, MII_BMSR, &bmsr); |
| bnx2_read_phy(bp, MII_BMSR, &bmsr); |
| spin_unlock_bh(&bp->phy_lock); |
| |
| if (bmsr & BMSR_LSTATUS) { |
| return 0; |
| } |
| return -ENODEV; |
| } |
| |
| static int |
| bnx2_test_intr(struct bnx2 *bp) |
| { |
| int i; |
| u16 status_idx; |
| |
| if (!netif_running(bp->dev)) |
| return -ENODEV; |
| |
| status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff; |
| |
| /* This register is not touched during run-time. */ |
| REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW); |
| REG_RD(bp, BNX2_HC_COMMAND); |
| |
| for (i = 0; i < 10; i++) { |
| if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) != |
| status_idx) { |
| |
| break; |
| } |
| |
| msleep_interruptible(10); |
| } |
| if (i < 10) |
| return 0; |
| |
| return -ENODEV; |
| } |
| |
| static void |
| bnx2_timer(unsigned long data) |
| { |
| struct bnx2 *bp = (struct bnx2 *) data; |
| u32 msg; |
| |
| if (!netif_running(bp->dev)) |
| return; |
| |
| if (atomic_read(&bp->intr_sem) != 0) |
| goto bnx2_restart_timer; |
| |
| msg = (u32) ++bp->fw_drv_pulse_wr_seq; |
| REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_PULSE_MB, msg); |
| |
| bp->stats_blk->stat_FwRxDrop = REG_RD_IND(bp, BNX2_FW_RX_DROP_COUNT); |
| |
| if ((bp->phy_flags & PHY_SERDES_FLAG) && |
| (CHIP_NUM(bp) == CHIP_NUM_5706)) { |
| |
| spin_lock(&bp->phy_lock); |
| if (bp->serdes_an_pending) { |
| bp->serdes_an_pending--; |
| } |
| else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) { |
| u32 bmcr; |
| |
| bp->current_interval = bp->timer_interval; |
| |
| bnx2_read_phy(bp, MII_BMCR, &bmcr); |
| |
| if (bmcr & BMCR_ANENABLE) { |
| u32 phy1, phy2; |
| |
| bnx2_write_phy(bp, 0x1c, 0x7c00); |
| bnx2_read_phy(bp, 0x1c, &phy1); |
| |
| bnx2_write_phy(bp, 0x17, 0x0f01); |
| bnx2_read_phy(bp, 0x15, &phy2); |
| bnx2_write_phy(bp, 0x17, 0x0f01); |
| bnx2_read_phy(bp, 0x15, &phy2); |
| |
| if ((phy1 & 0x10) && /* SIGNAL DETECT */ |
| !(phy2 & 0x20)) { /* no CONFIG */ |
| |
| bmcr &= ~BMCR_ANENABLE; |
| bmcr |= BMCR_SPEED1000 | |
| BMCR_FULLDPLX; |
| bnx2_write_phy(bp, MII_BMCR, bmcr); |
| bp->phy_flags |= |
| PHY_PARALLEL_DETECT_FLAG; |
| } |
| } |
| } |
| else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) && |
| (bp->phy_flags & PHY_PARALLEL_DETECT_FLAG)) { |
| u32 phy2; |
| |
| bnx2_write_phy(bp, 0x17, 0x0f01); |
| bnx2_read_phy(bp, 0x15, &phy2); |
| if (phy2 & 0x20) { |
| u32 bmcr; |
| |
| bnx2_read_phy(bp, MII_BMCR, &bmcr); |
| bmcr |= BMCR_ANENABLE; |
| bnx2_write_phy(bp, MII_BMCR, bmcr); |
| |
| bp->phy_flags &= ~PHY_PARALLEL_DETECT_FLAG; |
| |
| } |
| } |
| else |
| bp->current_interval = bp->timer_interval; |
| |
| spin_unlock(&bp->phy_lock); |
| } |
| |
| bnx2_restart_timer: |
| mod_timer(&bp->timer, jiffies + bp->current_interval); |
| } |
| |
| /* Called with rtnl_lock */ |
| static int |
| bnx2_open(struct net_device *dev) |
| { |
| struct bnx2 *bp = netdev_priv(dev); |
| int rc; |
| |
| bnx2_set_power_state(bp, PCI_D0); |
| bnx2_disable_int(bp); |
| |
| rc = bnx2_alloc_mem(bp); |
| if (rc) |
| return rc; |
| |
| if ((CHIP_ID(bp) != CHIP_ID_5706_A0) && |
| (CHIP_ID(bp) != CHIP_ID_5706_A1) && |
| !disable_msi) { |
| |
| if (pci_enable_msi(bp->pdev) == 0) { |
| bp->flags |= USING_MSI_FLAG; |
| rc = request_irq(bp->pdev->irq, bnx2_msi, 0, dev->name, |
| dev); |
| } |
| else { |
| rc = request_irq(bp->pdev->irq, bnx2_interrupt, |
| SA_SHIRQ, dev->name, dev); |
| } |
| } |
| else { |
| rc = request_irq(bp->pdev->irq, bnx2_interrupt, SA_SHIRQ, |
| dev->name, dev); |
| } |
| if (rc) { |
| bnx2_free_mem(bp); |
| return rc; |
| } |
| |
| rc = bnx2_init_nic(bp); |
| |
| if (rc) { |
| free_irq(bp->pdev->irq, dev); |
| if (bp->flags & USING_MSI_FLAG) { |
| pci_disable_msi(bp->pdev); |
| bp->flags &= ~USING_MSI_FLAG; |
| } |
| bnx2_free_skbs(bp); |
| bnx2_free_mem(bp); |
| return rc; |
| } |
| |
| mod_timer(&bp->timer, jiffies + bp->current_interval); |
| |
| atomic_set(&bp->intr_sem, 0); |
| |
| bnx2_enable_int(bp); |
| |
| if (bp->flags & USING_MSI_FLAG) { |
| /* Test MSI to make sure it is working |
| * If MSI test fails, go back to INTx mode |
| */ |
| if (bnx2_test_intr(bp) != 0) { |
| printk(KERN_WARNING PFX "%s: No interrupt was generated" |
| " using MSI, switching to INTx mode. Please" |
| " report this failure to the PCI maintainer" |
| " and include system chipset information.\n", |
| bp->dev->name); |
| |
| bnx2_disable_int(bp); |
| free_irq(bp->pdev->irq, dev); |
| pci_disable_msi(bp->pdev); |
| bp->flags &= ~USING_MSI_FLAG; |
| |
| rc = bnx2_init_nic(bp); |
| |
| if (!rc) { |
| rc = request_irq(bp->pdev->irq, bnx2_interrupt, |
| SA_SHIRQ, dev->name, dev); |
| } |
| if (rc) { |
| bnx2_free_skbs(bp); |
| bnx2_free_mem(bp); |
| del_timer_sync(&bp->timer); |
| return rc; |
| } |
| bnx2_enable_int(bp); |
| } |
| } |
| if (bp->flags & USING_MSI_FLAG) { |
| printk(KERN_INFO PFX "%s: using MSI\n", dev->name); |
| } |
| |
| netif_start_queue(dev); |
| |
| return 0; |
| } |
| |
| static void |
| bnx2_reset_task(void *data) |
| { |
| struct bnx2 *bp = data; |
| |
| if (!netif_running(bp->dev)) |
| return; |
| |
| bp->in_reset_task = 1; |
| bnx2_netif_stop(bp); |
| |
| bnx2_init_nic(bp); |
| |
| atomic_set(&bp->intr_sem, 1); |
| bnx2_netif_start(bp); |
| bp->in_reset_task = 0; |
| } |
| |
| static void |
| bnx2_tx_timeout(struct net_device *dev) |
| { |
| struct bnx2 *bp = netdev_priv(dev); |
| |
| /* This allows the netif to be shutdown gracefully before resetting */ |
| schedule_work(&bp->reset_task); |
| } |
| |
| #ifdef BCM_VLAN |
| /* Called with rtnl_lock */ |
| static void |
| bnx2_vlan_rx_register(struct net_device *dev, struct vlan_group *vlgrp) |
| { |
| struct bnx2 *bp = netdev_priv(dev); |
| |
| bnx2_netif_stop(bp); |
| |
| bp->vlgrp = vlgrp; |
| bnx2_set_rx_mode(dev); |
| |
| bnx2_netif_start(bp); |
| } |
| |
| /* Called with rtnl_lock */ |
| static void |
| bnx2_vlan_rx_kill_vid(struct net_device *dev, uint16_t vid) |
| { |
| struct bnx2 *bp = netdev_priv(dev); |
| |
| bnx2_netif_stop(bp); |
| |
| if (bp->vlgrp) |
| bp->vlgrp->vlan_devices[vid] = NULL; |
| bnx2_set_rx_mode(dev); |
| |
| bnx2_netif_start(bp); |
| } |
| #endif |
| |
| /* Called with netif_tx_lock. |
| * hard_start_xmit is pseudo-lockless - a lock is only required when |
| * the tx queue is full. This way, we get the benefit of lockless |
| * operations most of the time without the complexities to handle |
| * netif_stop_queue/wake_queue race conditions. |
| */ |
| static int |
| bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev) |
| { |
| struct bnx2 *bp = netdev_priv(dev); |
| dma_addr_t mapping; |
| struct tx_bd *txbd; |
| struct sw_bd *tx_buf; |
| u32 len, vlan_tag_flags, last_frag, mss; |
| u16 prod, ring_prod; |
| int i; |
| |
| if (unlikely(bnx2_tx_avail(bp) < (skb_shinfo(skb)->nr_frags + 1))) { |
| netif_stop_queue(dev); |
| printk(KERN_ERR PFX "%s: BUG! Tx ring full when queue awake!\n", |
| dev->name); |
| |
| return NETDEV_TX_BUSY; |
| } |
| len = skb_headlen(skb); |
| prod = bp->tx_prod; |
| ring_prod = TX_RING_IDX(prod); |
| |
| vlan_tag_flags = 0; |
| if (skb->ip_summed == CHECKSUM_HW) { |
| vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM; |
| } |
| |
| if (bp->vlgrp != 0 && vlan_tx_tag_present(skb)) { |
| vlan_tag_flags |= |
| (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16)); |
| } |
| #ifdef BCM_TSO |
| if ((mss = skb_shinfo(skb)->gso_size) && |
| (skb->len > (bp->dev->mtu + ETH_HLEN))) { |
| u32 tcp_opt_len, ip_tcp_len; |
| |
| if (skb_header_cloned(skb) && |
| pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) { |
| dev_kfree_skb(skb); |
| return NETDEV_TX_OK; |
| } |
| |
| tcp_opt_len = ((skb->h.th->doff - 5) * 4); |
| vlan_tag_flags |= TX_BD_FLAGS_SW_LSO; |
| |
| tcp_opt_len = 0; |
| if (skb->h.th->doff > 5) { |
| tcp_opt_len = (skb->h.th->doff - 5) << 2; |
| } |
| ip_tcp_len = (skb->nh.iph->ihl << 2) + sizeof(struct tcphdr); |
| |
| skb->nh.iph->check = 0; |
| skb->nh.iph->tot_len = htons(mss + ip_tcp_len + tcp_opt_len); |
| skb->h.th->check = |
| ~csum_tcpudp_magic(skb->nh.iph->saddr, |
| skb->nh.iph->daddr, |
| 0, IPPROTO_TCP, 0); |
| |
| if (tcp_opt_len || (skb->nh.iph->ihl > 5)) { |
| vlan_tag_flags |= ((skb->nh.iph->ihl - 5) + |
| (tcp_opt_len >> 2)) << 8; |
| } |
| } |
| else |
| #endif |
| { |
| mss = 0; |
| } |
| |
| mapping = pci_map_single(bp->pdev, skb->data, len, PCI_DMA_TODEVICE); |
| |
| tx_buf = &bp->tx_buf_ring[ring_prod]; |
| tx_buf->skb = skb; |
| pci_unmap_addr_set(tx_buf, mapping, mapping); |
| |
| txbd = &bp->tx_desc_ring[ring_prod]; |
| |
| txbd->tx_bd_haddr_hi = (u64) mapping >> 32; |
| txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff; |
| txbd->tx_bd_mss_nbytes = len | (mss << 16); |
| txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START; |
| |
| last_frag = skb_shinfo(skb)->nr_frags; |
| |
| for (i = 0; i < last_frag; i++) { |
| skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; |
| |
| prod = NEXT_TX_BD(prod); |
| ring_prod = TX_RING_IDX(prod); |
| txbd = &bp->tx_desc_ring[ring_prod]; |
| |
| len = frag->size; |
| mapping = pci_map_page(bp->pdev, frag->page, frag->page_offset, |
| len, PCI_DMA_TODEVICE); |
| pci_unmap_addr_set(&bp->tx_buf_ring[ring_prod], |
| mapping, mapping); |
| |
| txbd->tx_bd_haddr_hi = (u64) mapping >> 32; |
| txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff; |
| txbd->tx_bd_mss_nbytes = len | (mss << 16); |
| txbd->tx_bd_vlan_tag_flags = vlan_tag_flags; |
| |
| } |
| txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END; |
| |
| prod = NEXT_TX_BD(prod); |
| bp->tx_prod_bseq += skb->len; |
| |
| REG_WR16(bp, MB_TX_CID_ADDR + BNX2_L2CTX_TX_HOST_BIDX, prod); |
| REG_WR(bp, MB_TX_CID_ADDR + BNX2_L2CTX_TX_HOST_BSEQ, bp->tx_prod_bseq); |
| |
| mmiowb(); |
| |
| bp->tx_prod = prod; |
| dev->trans_start = jiffies; |
| |
| if (unlikely(bnx2_tx_avail(bp) <= MAX_SKB_FRAGS)) { |
| spin_lock(&bp->tx_lock); |
| netif_stop_queue(dev); |
| |
| if (bnx2_tx_avail(bp) > MAX_SKB_FRAGS) |
| netif_wake_queue(dev); |
| spin_unlock(&bp->tx_lock); |
| } |
| |
| return NETDEV_TX_OK; |
| } |
| |
| /* Called with rtnl_lock */ |
| static int |
| bnx2_close(struct net_device *dev) |
| { |
| struct bnx2 *bp = netdev_priv(dev); |
| u32 reset_code; |
| |
| /* Calling flush_scheduled_work() may deadlock because |
| * linkwatch_event() may be on the workqueue and it will try to get |
| * the rtnl_lock which we are holding. |
| */ |
| while (bp->in_reset_task) |
| msleep(1); |
| |
| bnx2_netif_stop(bp); |
| del_timer_sync(&bp->timer); |
| if (bp->flags & NO_WOL_FLAG) |
| reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN; |
| else if (bp->wol) |
| reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL; |
| else |
| reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL; |
| bnx2_reset_chip(bp, reset_code); |
| free_irq(bp->pdev->irq, dev); |
| if (bp->flags & USING_MSI_FLAG) { |
| pci_disable_msi(bp->pdev); |
| bp->flags &= ~USING_MSI_FLAG; |
| } |
| bnx2_free_skbs(bp); |
| bnx2_free_mem(bp); |
| bp->link_up = 0; |
| netif_carrier_off(bp->dev); |
| bnx2_set_power_state(bp, PCI_D3hot); |
| return 0; |
| } |
| |
| #define GET_NET_STATS64(ctr) \ |
| (unsigned long) ((unsigned long) (ctr##_hi) << 32) + \ |
| (unsigned long) (ctr##_lo) |
| |
| #define GET_NET_STATS32(ctr) \ |
| (ctr##_lo) |
| |
| #if (BITS_PER_LONG == 64) |
| #define GET_NET_STATS GET_NET_STATS64 |
| #else |
| #define GET_NET_STATS GET_NET_STATS32 |
| #endif |
| |
| static struct net_device_stats * |
| bnx2_get_stats(struct net_device *dev) |
| { |
| struct bnx2 *bp = netdev_priv(dev); |
| struct statistics_block *stats_blk = bp->stats_blk; |
| struct net_device_stats *net_stats = &bp->net_stats; |
| |
| if (bp->stats_blk == NULL) { |
| return net_stats; |
| } |
| net_stats->rx_packets = |
| GET_NET_STATS(stats_blk->stat_IfHCInUcastPkts) + |
| GET_NET_STATS(stats_blk->stat_IfHCInMulticastPkts) + |
| GET_NET_STATS(stats_blk->stat_IfHCInBroadcastPkts); |
| |
| net_stats->tx_packets = |
| GET_NET_STATS(stats_blk->stat_IfHCOutUcastPkts) + |
| GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts) + |
| GET_NET_STATS(stats_blk->stat_IfHCOutBroadcastPkts); |
| |
| net_stats->rx_bytes = |
| GET_NET_STATS(stats_blk->stat_IfHCInOctets); |
| |
| net_stats->tx_bytes = |
| GET_NET_STATS(stats_blk->stat_IfHCOutOctets); |
| |
| net_stats->multicast = |
| GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts); |
| |
| net_stats->collisions = |
| (unsigned long) stats_blk->stat_EtherStatsCollisions; |
| |
| net_stats->rx_length_errors = |
| (unsigned long) (stats_blk->stat_EtherStatsUndersizePkts + |
| stats_blk->stat_EtherStatsOverrsizePkts); |
| |
| net_stats->rx_over_errors = |
| (unsigned long) stats_blk->stat_IfInMBUFDiscards; |
| |
| net_stats->rx_frame_errors = |
| (unsigned long) stats_blk->stat_Dot3StatsAlignmentErrors; |
| |
| net_stats->rx_crc_errors = |
| (unsigned long) stats_blk->stat_Dot3StatsFCSErrors; |
| |
| net_stats->rx_errors = net_stats->rx_length_errors + |
| net_stats->rx_over_errors + net_stats->rx_frame_errors + |
| net_stats->rx_crc_errors; |
| |
| net_stats->tx_aborted_errors = |
| (unsigned long) (stats_blk->stat_Dot3StatsExcessiveCollisions + |
| stats_blk->stat_Dot3StatsLateCollisions); |
| |
| if ((CHIP_NUM(bp) == CHIP_NUM_5706) || |
| (CHIP_ID(bp) == CHIP_ID_5708_A0)) |
| net_stats->tx_carrier_errors = 0; |
| else { |
| net_stats->tx_carrier_errors = |
| (unsigned long) |
| stats_blk->stat_Dot3StatsCarrierSenseErrors; |
| } |
| |
| net_stats->tx_errors = |
| (unsigned long) |
| stats_blk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors |
| + |
| net_stats->tx_aborted_errors + |
| net_stats->tx_carrier_errors; |
| |
| net_stats->rx_missed_errors = |
| (unsigned long) (stats_blk->stat_IfInMBUFDiscards + |
| stats_blk->stat_FwRxDrop); |
| |
| return net_stats; |
| } |
| |
| /* All ethtool functions called with rtnl_lock */ |
| |
| static int |
| bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) |
| { |
| struct bnx2 *bp = netdev_priv(dev); |
| |
| cmd->supported = SUPPORTED_Autoneg; |
| if (bp->phy_flags & PHY_SERDES_FLAG) { |
| cmd->supported |= SUPPORTED_1000baseT_Full | |
| SUPPORTED_FIBRE; |
| |
| cmd->port = PORT_FIBRE; |
| } |
| else { |
| cmd->supported |= SUPPORTED_10baseT_Half | |
| SUPPORTED_10baseT_Full | |
| SUPPORTED_100baseT_Half | |
| SUPPORTED_100baseT_Full | |
| SUPPORTED_1000baseT_Full | |
| SUPPORTED_TP; |
| |
| cmd->port = PORT_TP; |
| } |
| |
| cmd->advertising = bp->advertising; |
| |
| if (bp->autoneg & AUTONEG_SPEED) { |
| cmd->autoneg = AUTONEG_ENABLE; |
| } |
| else { |
| cmd->autoneg = AUTONEG_DISABLE; |
| } |
| |
| if (netif_carrier_ok(dev)) { |
| cmd->speed = bp->line_speed; |
| cmd->duplex = bp->duplex; |
| } |
| else { |
| cmd->speed = -1; |
| cmd->duplex = -1; |
| } |
| |
| cmd->transceiver = XCVR_INTERNAL; |
| cmd->phy_address = bp->phy_addr; |
| |
| return 0; |
| } |
| |
| static int |
| bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) |
| { |
| struct bnx2 *bp = netdev_priv(dev); |
| u8 autoneg = bp->autoneg; |
| u8 req_duplex = bp->req_duplex; |
| u16 req_line_speed = bp->req_line_speed; |
| u32 advertising = bp->advertising; |
| |
| if (cmd->autoneg == AUTONEG_ENABLE) { |
| autoneg |= AUTONEG_SPEED; |
| |
| cmd->advertising &= ETHTOOL_ALL_COPPER_SPEED; |
| |
| /* allow advertising 1 speed */ |
| if ((cmd->advertising == ADVERTISED_10baseT_Half) || |
| (cmd->advertising == ADVERTISED_10baseT_Full) || |
| (cmd->advertising == ADVERTISED_100baseT_Half) || |
| (cmd->advertising == ADVERTISED_100baseT_Full)) { |
| |
| if (bp->phy_flags & PHY_SERDES_FLAG) |
| return -EINVAL; |
| |
| advertising = cmd->advertising; |
| |
| } |
| else if (cmd->advertising == ADVERTISED_1000baseT_Full) { |
| advertising = cmd->advertising; |
| } |
| else if (cmd->advertising == ADVERTISED_1000baseT_Half) { |
| return -EINVAL; |
| } |
| else { |
| if (bp->phy_flags & PHY_SERDES_FLAG) { |
| advertising = ETHTOOL_ALL_FIBRE_SPEED; |
| } |
| else { |
| advertising = ETHTOOL_ALL_COPPER_SPEED; |
| } |
| } |
| advertising |= ADVERTISED_Autoneg; |
| } |
| else { |
| if (bp->phy_flags & PHY_SERDES_FLAG) { |
| if ((cmd->speed != SPEED_1000) || |
| (cmd->duplex != DUPLEX_FULL)) { |
| return -EINVAL; |
| } |
| } |
| else if (cmd->speed == SPEED_1000) { |
| return -EINVAL; |
| } |
| autoneg &= ~AUTONEG_SPEED; |
| req_line_speed = cmd->speed; |
| req_duplex = cmd->duplex; |
| advertising = 0; |
| } |
| |
| bp->autoneg = autoneg; |
| bp->advertising = advertising; |
| bp->req_line_speed = req_line_speed; |
| bp->req_duplex = req_duplex; |
| |
| spin_lock_bh(&bp->phy_lock); |
| |
| bnx2_setup_phy(bp); |
| |
| spin_unlock_bh(&bp->phy_lock); |
| |
| return 0; |
| } |
| |
| static void |
| bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) |
| { |
| struct bnx2 *bp = netdev_priv(dev); |
| |
| strcpy(info->driver, DRV_MODULE_NAME); |
| strcpy(info->version, DRV_MODULE_VERSION); |
| strcpy(info->bus_info, pci_name(bp->pdev)); |
| info->fw_version[0] = ((bp->fw_ver & 0xff000000) >> 24) + '0'; |
| info->fw_version[2] = ((bp->fw_ver & 0xff0000) >> 16) + '0'; |
| info->fw_version[4] = ((bp->fw_ver & 0xff00) >> 8) + '0'; |
| info->fw_version[1] = info->fw_version[3] = '.'; |
| info->fw_version[5] = 0; |
| } |
| |
| #define BNX2_REGDUMP_LEN (32 * 1024) |
| |
| static int |
| bnx2_get_regs_len(struct net_device *dev) |
| { |
| return BNX2_REGDUMP_LEN; |
| } |
| |
| static void |
| bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p) |
| { |
| u32 *p = _p, i, offset; |
| u8 *orig_p = _p; |
| struct bnx2 *bp = netdev_priv(dev); |
| u32 reg_boundaries[] = { 0x0000, 0x0098, 0x0400, 0x045c, |
| 0x0800, 0x0880, 0x0c00, 0x0c10, |
| 0x0c30, 0x0d08, 0x1000, 0x101c, |
| 0x1040, 0x1048, 0x1080, 0x10a4, |
| 0x1400, 0x1490, 0x1498, 0x14f0, |
| 0x1500, 0x155c, 0x1580, 0x15dc, |
| 0x1600, 0x1658, 0x1680, 0x16d8, |
| 0x1800, 0x1820, 0x1840, 0x1854, |
| 0x1880, 0x1894, 0x1900, 0x1984, |
| 0x1c00, 0x1c0c, 0x1c40, 0x1c54, |
| 0x1c80, 0x1c94, 0x1d00, 0x1d84, |
| 0x2000, 0x2030, 0x23c0, 0x2400, |
| 0x2800, 0x2820, 0x2830, 0x2850, |
| 0x2b40, 0x2c10, 0x2fc0, 0x3058, |
| 0x3c00, 0x3c94, 0x4000, 0x4010, |
| 0x4080, 0x4090, 0x43c0, 0x4458, |
| 0x4c00, 0x4c18, 0x4c40, 0x4c54, |
| 0x4fc0, 0x5010, 0x53c0, 0x5444, |
| 0x5c00, 0x5c18, 0x5c80, 0x5c90, |
| 0x5fc0, 0x6000, 0x6400, 0x6428, |
| 0x6800, 0x6848, 0x684c, 0x6860, |
| 0x6888, 0x6910, 0x8000 }; |
| |
| regs->version = 0; |
| |
| memset(p, 0, BNX2_REGDUMP_LEN); |
| |
| if (!netif_running(bp->dev)) |
| return; |
| |
| i = 0; |
| offset = reg_boundaries[0]; |
| p += offset; |
| while (offset < BNX2_REGDUMP_LEN) { |
| *p++ = REG_RD(bp, offset); |
| offset += 4; |
| if (offset == reg_boundaries[i + 1]) { |
| offset = reg_boundaries[i + 2]; |
| p = (u32 *) (orig_p + offset); |
| i += 2; |
| } |
| } |
| } |
| |
| static void |
| bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) |
| { |
| struct bnx2 *bp = netdev_priv(dev); |
| |
| if (bp->flags & NO_WOL_FLAG) { |
| wol->supported = 0; |
| wol->wolopts = 0; |
| } |
| else { |
| wol->supported = WAKE_MAGIC; |
| if (bp->wol) |
| wol->wolopts = WAKE_MAGIC; |
| else |
| wol->wolopts = 0; |
| } |
| memset(&wol->sopass, 0, sizeof(wol->sopass)); |
| } |
| |
| static int |
| bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) |
| { |
| struct bnx2 *bp = netdev_priv(dev); |
| |
| if (wol->wolopts & ~WAKE_MAGIC) |
| return -EINVAL; |
| |
| if (wol->wolopts & WAKE_MAGIC) { |
| if (bp->flags & NO_WOL_FLAG) |
| return -EINVAL; |
| |
| bp->wol = 1; |
| } |
| else { |
| bp->wol = 0; |
| } |
| return 0; |
| } |
| |
| static int |
| bnx2_nway_reset(struct net_device *dev) |
| { |
| struct bnx2 *bp = netdev_priv(dev); |
| u32 bmcr; |
| |
| if (!(bp->autoneg & AUTONEG_SPEED)) { |
| return -EINVAL; |
| } |
| |
| spin_lock_bh(&bp->phy_lock); |
| |
| /* Force a link down visible on the other side */ |
| if (bp->phy_flags & PHY_SERDES_FLAG) { |
| bnx2_write_phy(bp, MII_BMCR, BMCR_LOOPBACK); |
| spin_unlock_bh(&bp->phy_lock); |
| |
| msleep(20); |
| |
| spin_lock_bh(&bp->phy_lock); |
| if (CHIP_NUM(bp) == CHIP_NUM_5706) { |
| bp->current_interval = SERDES_AN_TIMEOUT; |
| bp->serdes_an_pending = 1; |
| mod_timer(&bp->timer, jiffies + bp->current_interval); |
| } |
| } |
| |
| bnx2_read_phy(bp, MII_BMCR, &bmcr); |
| bmcr &= ~BMCR_LOOPBACK; |
| bnx2_write_phy(bp, MII_BMCR, bmcr | BMCR_ANRESTART | BMCR_ANENABLE); |
| |
| spin_unlock_bh(&bp->phy_lock); |
| |
| return 0; |
| } |
| |
| static int |
| bnx2_get_eeprom_len(struct net_device *dev) |
| { |
| struct bnx2 *bp = netdev_priv(dev); |
| |
| if (bp->flash_info == NULL) |
| return 0; |
| |
| return (int) bp->flash_size; |
| } |
| |
| static int |
| bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, |
| u8 *eebuf) |
| { |
| struct bnx2 *bp = netdev_priv(dev); |
| int rc; |
| |
| /* parameters already validated in ethtool_get_eeprom */ |
| |
| rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len); |
| |
| return rc; |
| } |
| |
| static int |
| bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, |
| u8 *eebuf) |
| { |
| struct bnx2 *bp = netdev_priv(dev); |
| int rc; |
| |
| /* parameters already validated in ethtool_set_eeprom */ |
| |
| rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len); |
| |
| return rc; |
| } |
| |
| static int |
| bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal) |
| { |
| struct bnx2 *bp = netdev_priv(dev); |
| |
| memset(coal, 0, sizeof(struct ethtool_coalesce)); |
| |
| coal->rx_coalesce_usecs = bp->rx_ticks; |
| coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip; |
| coal->rx_coalesce_usecs_irq = bp->rx_ticks_int; |
| coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int; |
| |
| coal->tx_coalesce_usecs = bp->tx_ticks; |
| coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip; |
| coal->tx_coalesce_usecs_irq = bp->tx_ticks_int; |
| coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int; |
| |
| coal->stats_block_coalesce_usecs = bp->stats_ticks; |
| |
| return 0; |
| } |
| |
| static int |
| bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal) |
| { |
| struct bnx2 *bp = netdev_priv(dev); |
| |
| bp->rx_ticks = (u16) coal->rx_coalesce_usecs; |
| if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff; |
| |
| bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames; |
| if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff; |
| |
| bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq; |
| if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff; |
| |
| bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq; |
| if (bp->rx_quick_cons_trip_int > 0xff) |
| bp->rx_quick_cons_trip_int = 0xff; |
| |
| bp->tx_ticks = (u16) coal->tx_coalesce_usecs; |
| if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff; |
| |
| bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames; |
| if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff; |
| |
| bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq; |
| if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff; |
| |
| bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq; |
| if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int = |
| 0xff; |
| |
| bp->stats_ticks = coal->stats_block_coalesce_usecs; |
| if (bp->stats_ticks > 0xffff00) bp->stats_ticks = 0xffff00; |
| bp->stats_ticks &= 0xffff00; |
| |
| if (netif_running(bp->dev)) { |
| bnx2_netif_stop(bp); |
| bnx2_init_nic(bp); |
| bnx2_netif_start(bp); |
| } |
| |
| return 0; |
| } |
| |
| static void |
| bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering) |
| { |
| struct bnx2 *bp = netdev_priv(dev); |
| |
| ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT; |
| ering->rx_mini_max_pending = 0; |
| ering->rx_jumbo_max_pending = 0; |
| |
| ering->rx_pending = bp->rx_ring_size; |
| ering->rx_mini_pending = 0; |
| ering->rx_jumbo_pending = 0; |
| |
| ering->tx_max_pending = MAX_TX_DESC_CNT; |
| ering->tx_pending = bp->tx_ring_size; |
| } |
| |
| static int |
| bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering) |
| { |
| struct bnx2 *bp = netdev_priv(dev); |
| |
| if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) || |
| (ering->tx_pending > MAX_TX_DESC_CNT) || |
| (ering->tx_pending <= MAX_SKB_FRAGS)) { |
| |
| return -EINVAL; |
| } |
| if (netif_running(bp->dev)) { |
| bnx2_netif_stop(bp); |
| bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET); |
| bnx2_free_skbs(bp); |
| bnx2_free_mem(bp); |
| } |
| |
| bnx2_set_rx_ring_size(bp, ering->rx_pending); |
| bp->tx_ring_size = ering->tx_pending; |
| |
| if (netif_running(bp->dev)) { |
| int rc; |
| |
| rc = bnx2_alloc_mem(bp); |
| if (rc) |
| return rc; |
| bnx2_init_nic(bp); |
| bnx2_netif_start(bp); |
| } |
| |
| return 0; |
| } |
| |
| static void |
| bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause) |
| { |
| struct bnx2 *bp = netdev_priv(dev); |
| |
| epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0); |
| epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0); |
| epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0); |
| } |
| |
| static int |
| bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause) |
| { |
| struct bnx2 *bp = netdev_priv(dev); |
| |
| bp->req_flow_ctrl = 0; |
| if (epause->rx_pause) |
| bp->req_flow_ctrl |= FLOW_CTRL_RX; |
| if (epause->tx_pause) |
| bp->req_flow_ctrl |= FLOW_CTRL_TX; |
| |
| if (epause->autoneg) { |
| bp->autoneg |= AUTONEG_FLOW_CTRL; |
| } |
| else { |
| bp->autoneg &= ~AUTONEG_FLOW_CTRL; |
| } |
| |
| spin_lock_bh(&bp->phy_lock); |
| |
| bnx2_setup_phy(bp); |
| |
| spin_unlock_bh(&bp->phy_lock); |
| |
| return 0; |
| } |
| |
| static u32 |
| bnx2_get_rx_csum(struct net_device *dev) |
| { |
| struct bnx2 *bp = netdev_priv(dev); |
| |
| return bp->rx_csum; |
| } |
| |
| static int |
| bnx2_set_rx_csum(struct net_device *dev, u32 data) |
| { |
| struct bnx2 *bp = netdev_priv(dev); |
| |
| bp->rx_csum = data; |
| return 0; |
| } |
| |
| static int |
| bnx2_set_tso(struct net_device *dev, u32 data) |
| { |
| if (data) |
| dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN; |
| else |
| dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO_ECN); |
| return 0; |
| } |
| |
| #define BNX2_NUM_STATS 46 |
| |
| static struct { |
| char string[ETH_GSTRING_LEN]; |
| } bnx2_stats_str_arr[BNX2_NUM_STATS] = { |
| { "rx_bytes" }, |
| { "rx_error_bytes" }, |
| { "tx_bytes" }, |
| { "tx_error_bytes" }, |
| { "rx_ucast_packets" }, |
| { "rx_mcast_packets" }, |
| { "rx_bcast_packets" }, |
| { "tx_ucast_packets" }, |
| { "tx_mcast_packets" }, |
| { "tx_bcast_packets" }, |
| { "tx_mac_errors" }, |
| { "tx_carrier_errors" }, |
| { "rx_crc_errors" }, |
| { "rx_align_errors" }, |
| { "tx_single_collisions" }, |
| { "tx_multi_collisions" }, |
| { "tx_deferred" }, |
| { "tx_excess_collisions" }, |
| { "tx_late_collisions" }, |
| { "tx_total_collisions" }, |
| { "rx_fragments" }, |
| { "rx_jabbers" }, |
| { "rx_undersize_packets" }, |
| { "rx_oversize_packets" }, |
| { "rx_64_byte_packets" }, |
| { "rx_65_to_127_byte_packets" }, |
| { "rx_128_to_255_byte_packets" }, |
| { "rx_256_to_511_byte_packets" }, |
| { "rx_512_to_1023_byte_packets" }, |
| { "rx_1024_to_1522_byte_packets" }, |
| { "rx_1523_to_9022_byte_packets" }, |
| { "tx_64_byte_packets" }, |
| { "tx_65_to_127_byte_packets" }, |
| { "tx_128_to_255_byte_packets" }, |
| { "tx_256_to_511_byte_packets" }, |
| { "tx_512_to_1023_byte_packets" }, |
| { "tx_1024_to_1522_byte_packets" }, |
| { "tx_1523_to_9022_byte_packets" }, |
| { "rx_xon_frames" }, |
| { "rx_xoff_frames" }, |
| { "tx_xon_frames" }, |
| { "tx_xoff_frames" }, |
| { "rx_mac_ctrl_frames" }, |
| { "rx_filtered_packets" }, |
| { "rx_discards" }, |
| { "rx_fw_discards" }, |
| }; |
| |
| #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4) |
| |
| static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = { |
| STATS_OFFSET32(stat_IfHCInOctets_hi), |
| STATS_OFFSET32(stat_IfHCInBadOctets_hi), |
| STATS_OFFSET32(stat_IfHCOutOctets_hi), |
| STATS_OFFSET32(stat_IfHCOutBadOctets_hi), |
| STATS_OFFSET32(stat_IfHCInUcastPkts_hi), |
| STATS_OFFSET32(stat_IfHCInMulticastPkts_hi), |
| STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi), |
| STATS_OFFSET32(stat_IfHCOutUcastPkts_hi), |
| STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi), |
| STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi), |
| STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors), |
| STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors), |
| STATS_OFFSET32(stat_Dot3StatsFCSErrors), |
| STATS_OFFSET32(stat_Dot3StatsAlignmentErrors), |
| STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames), |
| STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames), |
| STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions), |
| STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions), |
| STATS_OFFSET32(stat_Dot3StatsLateCollisions), |
| STATS_OFFSET32(stat_EtherStatsCollisions), |
| STATS_OFFSET32(stat_EtherStatsFragments), |
| STATS_OFFSET32(stat_EtherStatsJabbers), |
| STATS_OFFSET32(stat_EtherStatsUndersizePkts), |
| STATS_OFFSET32(stat_EtherStatsOverrsizePkts), |
| STATS_OFFSET32(stat_EtherStatsPktsRx64Octets), |
| STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets), |
| STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets), |
| STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets), |
| STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets), |
| STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets), |
| STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets), |
| STATS_OFFSET32(stat_EtherStatsPktsTx64Octets), |
| STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets), |
| STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets), |
| STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets), |
| STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets), |
| STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets), |
| STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets), |
| STATS_OFFSET32(stat_XonPauseFramesReceived), |
| STATS_OFFSET32(stat_XoffPauseFramesReceived), |
| STATS_OFFSET32(stat_OutXonSent), |
| STATS_OFFSET32(stat_OutXoffSent), |
| STATS_OFFSET32(stat_MacControlFramesReceived), |
| STATS_OFFSET32(stat_IfInFramesL2FilterDiscards), |
| STATS_OFFSET32(stat_IfInMBUFDiscards), |
| STATS_OFFSET32(stat_FwRxDrop), |
| }; |
| |
| /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are |
| * skipped because of errata. |
| */ |
| static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = { |
| 8,0,8,8,8,8,8,8,8,8, |
| 4,0,4,4,4,4,4,4,4,4, |
| 4,4,4,4,4,4,4,4,4,4, |
| 4,4,4,4,4,4,4,4,4,4, |
| 4,4,4,4,4,4, |
| }; |
| |
| static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = { |
| 8,0,8,8,8,8,8,8,8,8, |
| 4,4,4,4,4,4,4,4,4,4, |
| 4,4,4,4,4,4,4,4,4,4, |
| 4,4,4,4,4,4,4,4,4,4, |
| 4,4,4,4,4,4, |
| }; |
| |
| #define BNX2_NUM_TESTS 6 |
| |
| static struct { |
| char string[ETH_GSTRING_LEN]; |
| } bnx2_tests_str_arr[BNX2_NUM_TESTS] = { |
| { "register_test (offline)" }, |
| { "memory_test (offline)" }, |
| { "loopback_test (offline)" }, |
| { "nvram_test (online)" }, |
| { "interrupt_test (online)" }, |
| { "link_test (online)" }, |
| }; |
| |
| static int |
| bnx2_self_test_count(struct net_device *dev) |
| { |
| return BNX2_NUM_TESTS; |
| } |
| |
| static void |
| bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf) |
| { |
| struct bnx2 *bp = netdev_priv(dev); |
| |
| memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS); |
| if (etest->flags & ETH_TEST_FL_OFFLINE) { |
| bnx2_netif_stop(bp); |
| bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG); |
| bnx2_free_skbs(bp); |
| |
| if (bnx2_test_registers(bp) != 0) { |
| buf[0] = 1; |
| etest->flags |= ETH_TEST_FL_FAILED; |
| } |
| if (bnx2_test_memory(bp) != 0) { |
| buf[1] = 1; |
| etest->flags |= ETH_TEST_FL_FAILED; |
| } |
| if ((buf[2] = bnx2_test_loopback(bp)) != 0) |
| etest->flags |= ETH_TEST_FL_FAILED; |
| |
| if (!netif_running(bp->dev)) { |
| bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET); |
| } |
| else { |
| bnx2_init_nic(bp); |
| bnx2_netif_start(bp); |
| } |
| |
| /* wait for link up */ |
| msleep_interruptible(3000); |
| if ((!bp->link_up) && !(bp->phy_flags & PHY_SERDES_FLAG)) |
| msleep_interruptible(4000); |
| } |
| |
| if (bnx2_test_nvram(bp) != 0) { |
| buf[3] = 1; |
| etest->flags |= ETH_TEST_FL_FAILED; |
| } |
| if (bnx2_test_intr(bp) != 0) { |
| buf[4] = 1; |
| etest->flags |= ETH_TEST_FL_FAILED; |
| } |
| |
| if (bnx2_test_link(bp) != 0) { |
| buf[5] = 1; |
| etest->flags |= ETH_TEST_FL_FAILED; |
| |
| } |
| } |
| |
| static void |
| bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf) |
| { |
| switch (stringset) { |
| case ETH_SS_STATS: |
| memcpy(buf, bnx2_stats_str_arr, |
| sizeof(bnx2_stats_str_arr)); |
| break; |
| case ETH_SS_TEST: |
| memcpy(buf, bnx2_tests_str_arr, |
| sizeof(bnx2_tests_str_arr)); |
| break; |
| } |
| } |
| |
| static int |
| bnx2_get_stats_count(struct net_device *dev) |
| { |
| return BNX2_NUM_STATS; |
| } |
| |
| static void |
| bnx2_get_ethtool_stats(struct net_device *dev, |
| struct ethtool_stats *stats, u64 *buf) |
| { |
| struct bnx2 *bp = netdev_priv(dev); |
| int i; |
| u32 *hw_stats = (u32 *) bp->stats_blk; |
| u8 *stats_len_arr = NULL; |
| |
| if (hw_stats == NULL) { |
| memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS); |
| return; |
| } |
| |
| if ((CHIP_ID(bp) == CHIP_ID_5706_A0) || |
| (CHIP_ID(bp) == CHIP_ID_5706_A1) || |
| (CHIP_ID(bp) == CHIP_ID_5706_A2) || |
| (CHIP_ID(bp) == CHIP_ID_5708_A0)) |
| stats_len_arr = bnx2_5706_stats_len_arr; |
| else |
| stats_len_arr = bnx2_5708_stats_len_arr; |
| |
| for (i = 0; i < BNX2_NUM_STATS; i++) { |
| if (stats_len_arr[i] == 0) { |
| /* skip this counter */ |
| buf[i] = 0; |
| continue; |
| } |
| if (stats_len_arr[i] == 4) { |
| /* 4-byte counter */ |
| buf[i] = (u64) |
| *(hw_stats + bnx2_stats_offset_arr[i]); |
| continue; |
| } |
| /* 8-byte counter */ |
| buf[i] = (((u64) *(hw_stats + |
| bnx2_stats_offset_arr[i])) << 32) + |
| *(hw_stats + bnx2_stats_offset_arr[i] + 1); |
| } |
| } |
| |
| static int |
| bnx2_phys_id(struct net_device *dev, u32 data) |
| { |
| struct bnx2 *bp = netdev_priv(dev); |
| int i; |
| u32 save; |
| |
| if (data == 0) |
| data = 2; |
| |
| save = REG_RD(bp, BNX2_MISC_CFG); |
| REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC); |
| |
| for (i = 0; i < (data * 2); i++) { |
| if ((i % 2) == 0) { |
| REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE); |
| } |
| else { |
| REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE | |
| BNX2_EMAC_LED_1000MB_OVERRIDE | |
| BNX2_EMAC_LED_100MB_OVERRIDE | |
| BNX2_EMAC_LED_10MB_OVERRIDE | |
| BNX2_EMAC_LED_TRAFFIC_OVERRIDE | |
| BNX2_EMAC_LED_TRAFFIC); |
| } |
| msleep_interruptible(500); |
| if (signal_pending(current)) |
| break; |
| } |
| REG_WR(bp, BNX2_EMAC_LED, 0); |
| REG_WR(bp, BNX2_MISC_CFG, save); |
| return 0; |
| } |
| |
| static struct ethtool_ops bnx2_ethtool_ops = { |
| .get_settings = bnx2_get_settings, |
| .set_settings = bnx2_set_settings, |
| .get_drvinfo = bnx2_get_drvinfo, |
| .get_regs_len = bnx2_get_regs_len, |
| .get_regs = bnx2_get_regs, |
| .get_wol = bnx2_get_wol, |
| .set_wol = bnx2_set_wol, |
| .nway_reset = bnx2_nway_reset, |
| .get_link = ethtool_op_get_link, |
| .get_eeprom_len = bnx2_get_eeprom_len, |
| .get_eeprom = bnx2_get_eeprom, |
| .set_eeprom = bnx2_set_eeprom, |
| .get_coalesce = bnx2_get_coalesce, |
| .set_coalesce = bnx2_set_coalesce, |
| .get_ringparam = bnx2_get_ringparam, |
| .set_ringparam = bnx2_set_ringparam, |
| .get_pauseparam = bnx2_get_pauseparam, |
| .set_pauseparam = bnx2_set_pauseparam, |
| .get_rx_csum = bnx2_get_rx_csum, |
| .set_rx_csum = bnx2_set_rx_csum, |
| .get_tx_csum = ethtool_op_get_tx_csum, |
| .set_tx_csum = ethtool_op_set_tx_csum, |
| .get_sg = ethtool_op_get_sg, |
| .set_sg = ethtool_op_set_sg, |
| #ifdef BCM_TSO |
| .get_tso = ethtool_op_get_tso, |
| .set_tso = bnx2_set_tso, |
| #endif |
| .self_test_count = bnx2_self_test_count, |
| .self_test = bnx2_self_test, |
| .get_strings = bnx2_get_strings, |
| .phys_id = bnx2_phys_id, |
| .get_stats_count = bnx2_get_stats_count, |
| .get_ethtool_stats = bnx2_get_ethtool_stats, |
| .get_perm_addr = ethtool_op_get_perm_addr, |
| }; |
| |
| /* Called with rtnl_lock */ |
| static int |
| bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) |
| { |
| struct mii_ioctl_data *data = if_mii(ifr); |
| struct bnx2 *bp = netdev_priv(dev); |
| int err; |
| |
| switch(cmd) { |
| case SIOCGMIIPHY: |
| data->phy_id = bp->phy_addr; |
| |
| /* fallthru */ |
| case SIOCGMIIREG: { |
| u32 mii_regval; |
| |
| spin_lock_bh(&bp->phy_lock); |
| err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval); |
| spin_unlock_bh(&bp->phy_lock); |
| |
| data->val_out = mii_regval; |
| |
| return err; |
| } |
| |
| case SIOCSMIIREG: |
| if (!capable(CAP_NET_ADMIN)) |
| return -EPERM; |
| |
| spin_lock_bh(&bp->phy_lock); |
| err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in); |
| spin_unlock_bh(&bp->phy_lock); |
| |
| return err; |
| |
| default: |
| /* do nothing */ |
| break; |
| } |
| return -EOPNOTSUPP; |
| } |
| |
| /* Called with rtnl_lock */ |
| static int |
| bnx2_change_mac_addr(struct net_device *dev, void *p) |
| { |
| struct sockaddr *addr = p; |
| struct bnx2 *bp = netdev_priv(dev); |
| |
| if (!is_valid_ether_addr(addr->sa_data)) |
| return -EINVAL; |
| |
| memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); |
| if (netif_running(dev)) |
| bnx2_set_mac_addr(bp); |
| |
| return 0; |
| } |
| |
| /* Called with rtnl_lock */ |
| static int |
| bnx2_change_mtu(struct net_device *dev, int new_mtu) |
| { |
| struct bnx2 *bp = netdev_priv(dev); |
| |
| if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) || |
| ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE)) |
| return -EINVAL; |
| |
| dev->mtu = new_mtu; |
| if (netif_running(dev)) { |
| bnx2_netif_stop(bp); |
| |
| bnx2_init_nic(bp); |
| |
| bnx2_netif_start(bp); |
| } |
| return 0; |
| } |
| |
| #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER) |
| static void |
| poll_bnx2(struct net_device *dev) |
| { |
| struct bnx2 *bp = netdev_priv(dev); |
| |
| disable_irq(bp->pdev->irq); |
| bnx2_interrupt(bp->pdev->irq, dev, NULL); |
| enable_irq(bp->pdev->irq); |
| } |
| #endif |
| |
| static int __devinit |
| bnx2_init_board(struct pci_dev *pdev, struct net_device *dev) |
| { |
| struct bnx2 *bp; |
| unsigned long mem_len; |
| int rc; |
| u32 reg; |
| |
| SET_MODULE_OWNER(dev); |
| SET_NETDEV_DEV(dev, &pdev->dev); |
| bp = netdev_priv(dev); |
| |
| bp->flags = 0; |
| bp->phy_flags = 0; |
| |
| /* enable device (incl. PCI PM wakeup), and bus-mastering */ |
| rc = pci_enable_device(pdev); |
| if (rc) { |
| printk(KERN_ERR PFX "Cannot enable PCI device, aborting."); |
| goto err_out; |
| } |
| |
| if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { |
| printk(KERN_ERR PFX "Cannot find PCI device base address, " |
| "aborting.\n"); |
| rc = -ENODEV; |
| goto err_out_disable; |
| } |
| |
| rc = pci_request_regions(pdev, DRV_MODULE_NAME); |
| if (rc) { |
| printk(KERN_ERR PFX "Cannot obtain PCI resources, aborting.\n"); |
| goto err_out_disable; |
| } |
| |
| pci_set_master(pdev); |
| |
| bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM); |
| if (bp->pm_cap == 0) { |
| printk(KERN_ERR PFX "Cannot find power management capability, " |
| "aborting.\n"); |
| rc = -EIO; |
| goto err_out_release; |
| } |
| |
| bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX); |
| if (bp->pcix_cap == 0) { |
| printk(KERN_ERR PFX "Cannot find PCIX capability, aborting.\n"); |
| rc = -EIO; |
| goto err_out_release; |
| } |
| |
| if (pci_set_dma_mask(pdev, DMA_64BIT_MASK) == 0) { |
| bp->flags |= USING_DAC_FLAG; |
| if (pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK) != 0) { |
| printk(KERN_ERR PFX "pci_set_consistent_dma_mask " |
| "failed, aborting.\n"); |
| rc = -EIO; |
| goto err_out_release; |
| } |
| } |
| else if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0) { |
| printk(KERN_ERR PFX "System does not support DMA, aborting.\n"); |
| rc = -EIO; |
| goto err_out_release; |
| } |
| |
| bp->dev = dev; |
| bp->pdev = pdev; |
| |
| spin_lock_init(&bp->phy_lock); |
| spin_lock_init(&bp->tx_lock); |
| INIT_WORK(&bp->reset_task, bnx2_reset_task, bp); |
| |
| dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0); |
| mem_len = MB_GET_CID_ADDR(17); |
| dev->mem_end = dev->mem_start + mem_len; |
| dev->irq = pdev->irq; |
| |
| bp->regview = ioremap_nocache(dev->base_addr, mem_len); |
| |
| if (!bp->regview) { |
| printk(KERN_ERR PFX "Cannot map register space, aborting.\n"); |
| rc = -ENOMEM; |
| goto err_out_release; |
| } |
| |
| /* Configure byte swap and enable write to the reg_window registers. |
| * Rely on CPU to do target byte swapping on big endian systems |
| * The chip's target access swapping will not swap all accesses |
| */ |
| pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, |
| BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | |
| BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP); |
| |
| bnx2_set_power_state(bp, PCI_D0); |
| |
| bp->chip_id = REG_RD(bp, BNX2_MISC_ID); |
| |
| /* Get bus information. */ |
| reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS); |
| if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) { |
| u32 clkreg; |
| |
| bp->flags |= PCIX_FLAG; |
| |
| clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS); |
| |
| clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET; |
| switch (clkreg) { |
| case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ: |
| bp->bus_speed_mhz = 133; |
| break; |
| |
| case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ: |
| bp->bus_speed_mhz = 100; |
| break; |
| |
| case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ: |
| case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ: |
| bp->bus_speed_mhz = 66; |
| break; |
| |
| case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ: |
| case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ: |
| bp->bus_speed_mhz = 50; |
| break; |
| |
| case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW: |
| case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ: |
| case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ: |
| bp->bus_speed_mhz = 33; |
| break; |
| } |
| } |
| else { |
| if (reg & BNX2_PCICFG_MISC_STATUS_M66EN) |
| bp->bus_speed_mhz = 66; |
| else |
| bp->bus_speed_mhz = 33; |
| } |
| |
| if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET) |
| bp->flags |= PCI_32BIT_FLAG; |
| |
| /* 5706A0 may falsely detect SERR and PERR. */ |
| if (CHIP_ID(bp) == CHIP_ID_5706_A0) { |
| reg = REG_RD(bp, PCI_COMMAND); |
| reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY); |
| REG_WR(bp, PCI_COMMAND, reg); |
| } |
| else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) && |
| !(bp->flags & PCIX_FLAG)) { |
| |
| printk(KERN_ERR PFX "5706 A1 can only be used in a PCIX bus, " |
| "aborting.\n"); |
| goto err_out_unmap; |
| } |
| |
| bnx2_init_nvram(bp); |
| |
| reg = REG_RD_IND(bp, BNX2_SHM_HDR_SIGNATURE); |
| |
| if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) == |
| BNX2_SHM_HDR_SIGNATURE_SIG) |
| bp->shmem_base = REG_RD_IND(bp, BNX2_SHM_HDR_ADDR_0); |
| else |
| bp->shmem_base = HOST_VIEW_SHMEM_BASE; |
| |
| /* Get the permanent MAC address. First we need to make sure the |
| * firmware is actually running. |
| */ |
| reg = REG_RD_IND(bp, bp->shmem_base + BNX2_DEV_INFO_SIGNATURE); |
| |
| if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) != |
| BNX2_DEV_INFO_SIGNATURE_MAGIC) { |
| printk(KERN_ERR PFX "Firmware not running, aborting.\n"); |
| rc = -ENODEV; |
| goto err_out_unmap; |
| } |
| |
| bp->fw_ver = REG_RD_IND(bp, bp->shmem_base + BNX2_DEV_INFO_BC_REV); |
| |
| reg = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_MAC_UPPER); |
| bp->mac_addr[0] = (u8) (reg >> 8); |
| bp->mac_addr[1] = (u8) reg; |
| |
| reg = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_MAC_LOWER); |
| bp->mac_addr[2] = (u8) (reg >> 24); |
| bp->mac_addr[3] = (u8) (reg >> 16); |
| bp->mac_addr[4] = (u8) (reg >> 8); |
| bp->mac_addr[5] = (u8) reg; |
| |
| bp->tx_ring_size = MAX_TX_DESC_CNT; |
| bnx2_set_rx_ring_size(bp, 100); |
| |
| bp->rx_csum = 1; |
| |
| bp->rx_offset = sizeof(struct l2_fhdr) + 2; |
| |
| bp->tx_quick_cons_trip_int = 20; |
| bp->tx_quick_cons_trip = 20; |
| bp->tx_ticks_int = 80; |
| bp->tx_ticks = 80; |
| |
| bp->rx_quick_cons_trip_int = 6; |
| bp->rx_quick_cons_trip = 6; |
| bp->rx_ticks_int = 18; |
| bp->rx_ticks = 18; |
| |
| bp->stats_ticks = 1000000 & 0xffff00; |
| |
| bp->timer_interval = HZ; |
| bp->current_interval = HZ; |
| |
| bp->phy_addr = 1; |
| |
| /* Disable WOL support if we are running on a SERDES chip. */ |
| if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT) { |
| bp->phy_flags |= PHY_SERDES_FLAG; |
| bp->flags |= NO_WOL_FLAG; |
| if (CHIP_NUM(bp) == CHIP_NUM_5708) { |
| bp->phy_addr = 2; |
| reg = REG_RD_IND(bp, bp->shmem_base + |
| BNX2_SHARED_HW_CFG_CONFIG); |
| if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G) |
| bp->phy_flags |= PHY_2_5G_CAPABLE_FLAG; |
| } |
| } |
| |
| if ((CHIP_ID(bp) == CHIP_ID_5708_A0) || |
| (CHIP_ID(bp) == CHIP_ID_5708_B0) || |
| (CHIP_ID(bp) == CHIP_ID_5708_B1)) |
| bp->flags |= NO_WOL_FLAG; |
| |
| if (CHIP_ID(bp) == CHIP_ID_5706_A0) { |
| bp->tx_quick_cons_trip_int = |
| bp->tx_quick_cons_trip; |
| bp->tx_ticks_int = bp->tx_ticks; |
| bp->rx_quick_cons_trip_int = |
| bp->rx_quick_cons_trip; |
| bp->rx_ticks_int = bp->rx_ticks; |
| bp->comp_prod_trip_int = bp->comp_prod_trip; |
| bp->com_ticks_int = bp->com_ticks; |
| bp->cmd_ticks_int = bp->cmd_ticks; |
| } |
| |
| bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL; |
| bp->req_line_speed = 0; |
| if (bp->phy_flags & PHY_SERDES_FLAG) { |
| bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg; |
| |
| reg = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_CONFIG); |
| reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK; |
| if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) { |
| bp->autoneg = 0; |
| bp->req_line_speed = bp->line_speed = SPEED_1000; |
| bp->req_duplex = DUPLEX_FULL; |
| } |
| } |
| else { |
| bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg; |
| } |
| |
| bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX; |
| |
| init_timer(&bp->timer); |
| bp->timer.expires = RUN_AT(bp->timer_interval); |
| bp->timer.data = (unsigned long) bp; |
| bp->timer.function = bnx2_timer; |
| |
| return 0; |
| |
| err_out_unmap: |
| if (bp->regview) { |
| iounmap(bp->regview); |
| bp->regview = NULL; |
| } |
| |
| err_out_release: |
| pci_release_regions(pdev); |
| |
| err_out_disable: |
| pci_disable_device(pdev); |
| pci_set_drvdata(pdev, NULL); |
| |
| err_out: |
| return rc; |
| } |
| |
| static int __devinit |
| bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) |
| { |
| static int version_printed = 0; |
| struct net_device *dev = NULL; |
| struct bnx2 *bp; |
| int rc, i; |
| |
| if (version_printed++ == 0) |
| printk(KERN_INFO "%s", version); |
| |
| /* dev zeroed in init_etherdev */ |
| dev = alloc_etherdev(sizeof(*bp)); |
| |
| if (!dev) |
| return -ENOMEM; |
| |
| rc = bnx2_init_board(pdev, dev); |
| if (rc < 0) { |
| free_netdev(dev); |
| return rc; |
| } |
| |
| dev->open = bnx2_open; |
| dev->hard_start_xmit = bnx2_start_xmit; |
| dev->stop = bnx2_close; |
| dev->get_stats = bnx2_get_stats; |
| dev->set_multicast_list = bnx2_set_rx_mode; |
| dev->do_ioctl = bnx2_ioctl; |
| dev->set_mac_address = bnx2_change_mac_addr; |
| dev->change_mtu = bnx2_change_mtu; |
| dev->tx_timeout = bnx2_tx_timeout; |
| dev->watchdog_timeo = TX_TIMEOUT; |
| #ifdef BCM_VLAN |
| dev->vlan_rx_register = bnx2_vlan_rx_register; |
| dev->vlan_rx_kill_vid = bnx2_vlan_rx_kill_vid; |
| #endif |
| dev->poll = bnx2_poll; |
| dev->ethtool_ops = &bnx2_ethtool_ops; |
| dev->weight = 64; |
| |
| bp = netdev_priv(dev); |
| |
| #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER) |
| dev->poll_controller = poll_bnx2; |
| #endif |
| |
| if ((rc = register_netdev(dev))) { |
| printk(KERN_ERR PFX "Cannot register net device\n"); |
| if (bp->regview) |
| iounmap(bp->regview); |
| pci_release_regions(pdev); |
| pci_disable_device(pdev); |
| pci_set_drvdata(pdev, NULL); |
| free_netdev(dev); |
| return rc; |
| } |
| |
| pci_set_drvdata(pdev, dev); |
| |
| memcpy(dev->dev_addr, bp->mac_addr, 6); |
| memcpy(dev->perm_addr, bp->mac_addr, 6); |
| bp->name = board_info[ent->driver_data].name, |
| printk(KERN_INFO "%s: %s (%c%d) PCI%s %s %dMHz found at mem %lx, " |
| "IRQ %d, ", |
| dev->name, |
| bp->name, |
| ((CHIP_ID(bp) & 0xf000) >> 12) + 'A', |
| ((CHIP_ID(bp) & 0x0ff0) >> 4), |
| ((bp->flags & PCIX_FLAG) ? "-X" : ""), |
| ((bp->flags & PCI_32BIT_FLAG) ? "32-bit" : "64-bit"), |
| bp->bus_speed_mhz, |
| dev->base_addr, |
| bp->pdev->irq); |
| |
| printk("node addr "); |
| for (i = 0; i < 6; i++) |
| printk("%2.2x", dev->dev_addr[i]); |
| printk("\n"); |
| |
| dev->features |= NETIF_F_SG; |
| if (bp->flags & USING_DAC_FLAG) |
| dev->features |= NETIF_F_HIGHDMA; |
| dev->features |= NETIF_F_IP_CSUM; |
| #ifdef BCM_VLAN |
| dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX; |
| #endif |
| #ifdef BCM_TSO |
| dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN; |
| #endif |
| |
| netif_carrier_off(bp->dev); |
| |
| return 0; |
| } |
| |
| static void __devexit |
| bnx2_remove_one(struct pci_dev *pdev) |
| { |
| struct net_device *dev = pci_get_drvdata(pdev); |
| struct bnx2 *bp = netdev_priv(dev); |
| |
| flush_scheduled_work(); |
| |
| unregister_netdev(dev); |
| |
| if (bp->regview) |
| iounmap(bp->regview); |
| |
| free_netdev(dev); |
| pci_release_regions(pdev); |
| pci_disable_device(pdev); |
| pci_set_drvdata(pdev, NULL); |
| } |
| |
| static int |
| bnx2_suspend(struct pci_dev *pdev, pm_message_t state) |
| { |
| struct net_device *dev = pci_get_drvdata(pdev); |
| struct bnx2 *bp = netdev_priv(dev); |
| u32 reset_code; |
| |
| if (!netif_running(dev)) |
| return 0; |
| |
| flush_scheduled_work(); |
| bnx2_netif_stop(bp); |
| netif_device_detach(dev); |
| del_timer_sync(&bp->timer); |
| if (bp->flags & NO_WOL_FLAG) |
| reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN; |
| else if (bp->wol) |
| reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL; |
| else |
| reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL; |
| bnx2_reset_chip(bp, reset_code); |
| bnx2_free_skbs(bp); |
| bnx2_set_power_state(bp, pci_choose_state(pdev, state)); |
| return 0; |
| } |
| |
| static int |
| bnx2_resume(struct pci_dev *pdev) |
| { |
| struct net_device *dev = pci_get_drvdata(pdev); |
| struct bnx2 *bp = netdev_priv(dev); |
| |
| if (!netif_running(dev)) |
| return 0; |
| |
| bnx2_set_power_state(bp, PCI_D0); |
| netif_device_attach(dev); |
| bnx2_init_nic(bp); |
| bnx2_netif_start(bp); |
| return 0; |
| } |
| |
| static struct pci_driver bnx2_pci_driver = { |
| .name = DRV_MODULE_NAME, |
| .id_table = bnx2_pci_tbl, |
| .probe = bnx2_init_one, |
| .remove = __devexit_p(bnx2_remove_one), |
| .suspend = bnx2_suspend, |
| .resume = bnx2_resume, |
| }; |
| |
| static int __init bnx2_init(void) |
| { |
| return pci_module_init(&bnx2_pci_driver); |
| } |
| |
| static void __exit bnx2_cleanup(void) |
| { |
| pci_unregister_driver(&bnx2_pci_driver); |
| } |
| |
| module_init(bnx2_init); |
| module_exit(bnx2_cleanup); |
| |
| |
| |