blob: b142a78ed1e5eb3c326e1a2af32cdf824573dfe2 [file] [log] [blame]
/*-
* Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
* Copyright (c) 2004-2005 Atheros Communications, Inc.
* Copyright (c) 2006 Devicescape Software, Inc.
* Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
* Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
* redistribution must be conditioned upon including a substantially
* similar Disclaimer requirement for further binary redistribution.
* 3. Neither the names of the above-listed copyright holders nor the names
* of any contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* Alternatively, this software may be distributed under the terms of the
* GNU General Public License ("GPL") version 2 as published by the Free
* Software Foundation.
*
* NO WARRANTY
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGES.
*
*/
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/hardirq.h>
#include <linux/if.h>
#include <linux/io.h>
#include <linux/netdevice.h>
#include <linux/cache.h>
#include <linux/pci.h>
#include <linux/ethtool.h>
#include <linux/uaccess.h>
#include <net/ieee80211_radiotap.h>
#include <asm/unaligned.h>
#include "base.h"
#include "reg.h"
#include "debug.h"
static u8 ath5k_calinterval = 10; /* Calibrate PHY every 10 secs (TODO: Fixme) */
static int modparam_nohwcrypt;
module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
static int modparam_all_channels;
module_param_named(all_channels, modparam_all_channels, bool, S_IRUGO);
MODULE_PARM_DESC(all_channels, "Expose all channels the device can use.");
/******************\
* Internal defines *
\******************/
/* Module info */
MODULE_AUTHOR("Jiri Slaby");
MODULE_AUTHOR("Nick Kossifidis");
MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_VERSION("0.6.0 (EXPERIMENTAL)");
/* Known PCI ids */
static DEFINE_PCI_DEVICE_TABLE(ath5k_pci_id_table) = {
{ PCI_VDEVICE(ATHEROS, 0x0207) }, /* 5210 early */
{ PCI_VDEVICE(ATHEROS, 0x0007) }, /* 5210 */
{ PCI_VDEVICE(ATHEROS, 0x0011) }, /* 5311 - this is on AHB bus !*/
{ PCI_VDEVICE(ATHEROS, 0x0012) }, /* 5211 */
{ PCI_VDEVICE(ATHEROS, 0x0013) }, /* 5212 */
{ PCI_VDEVICE(3COM_2, 0x0013) }, /* 3com 5212 */
{ PCI_VDEVICE(3COM, 0x0013) }, /* 3com 3CRDAG675 5212 */
{ PCI_VDEVICE(ATHEROS, 0x1014) }, /* IBM minipci 5212 */
{ PCI_VDEVICE(ATHEROS, 0x0014) }, /* 5212 combatible */
{ PCI_VDEVICE(ATHEROS, 0x0015) }, /* 5212 combatible */
{ PCI_VDEVICE(ATHEROS, 0x0016) }, /* 5212 combatible */
{ PCI_VDEVICE(ATHEROS, 0x0017) }, /* 5212 combatible */
{ PCI_VDEVICE(ATHEROS, 0x0018) }, /* 5212 combatible */
{ PCI_VDEVICE(ATHEROS, 0x0019) }, /* 5212 combatible */
{ PCI_VDEVICE(ATHEROS, 0x001a) }, /* 2413 Griffin-lite */
{ PCI_VDEVICE(ATHEROS, 0x001b) }, /* 5413 Eagle */
{ PCI_VDEVICE(ATHEROS, 0x001c) }, /* PCI-E cards */
{ PCI_VDEVICE(ATHEROS, 0x001d) }, /* 2417 Nala */
{ 0 }
};
MODULE_DEVICE_TABLE(pci, ath5k_pci_id_table);
/* Known SREVs */
static const struct ath5k_srev_name srev_names[] = {
{ "5210", AR5K_VERSION_MAC, AR5K_SREV_AR5210 },
{ "5311", AR5K_VERSION_MAC, AR5K_SREV_AR5311 },
{ "5311A", AR5K_VERSION_MAC, AR5K_SREV_AR5311A },
{ "5311B", AR5K_VERSION_MAC, AR5K_SREV_AR5311B },
{ "5211", AR5K_VERSION_MAC, AR5K_SREV_AR5211 },
{ "5212", AR5K_VERSION_MAC, AR5K_SREV_AR5212 },
{ "5213", AR5K_VERSION_MAC, AR5K_SREV_AR5213 },
{ "5213A", AR5K_VERSION_MAC, AR5K_SREV_AR5213A },
{ "2413", AR5K_VERSION_MAC, AR5K_SREV_AR2413 },
{ "2414", AR5K_VERSION_MAC, AR5K_SREV_AR2414 },
{ "5424", AR5K_VERSION_MAC, AR5K_SREV_AR5424 },
{ "5413", AR5K_VERSION_MAC, AR5K_SREV_AR5413 },
{ "5414", AR5K_VERSION_MAC, AR5K_SREV_AR5414 },
{ "2415", AR5K_VERSION_MAC, AR5K_SREV_AR2415 },
{ "5416", AR5K_VERSION_MAC, AR5K_SREV_AR5416 },
{ "5418", AR5K_VERSION_MAC, AR5K_SREV_AR5418 },
{ "2425", AR5K_VERSION_MAC, AR5K_SREV_AR2425 },
{ "2417", AR5K_VERSION_MAC, AR5K_SREV_AR2417 },
{ "xxxxx", AR5K_VERSION_MAC, AR5K_SREV_UNKNOWN },
{ "5110", AR5K_VERSION_RAD, AR5K_SREV_RAD_5110 },
{ "5111", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111 },
{ "5111A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111A },
{ "2111", AR5K_VERSION_RAD, AR5K_SREV_RAD_2111 },
{ "5112", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112 },
{ "5112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112A },
{ "5112B", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112B },
{ "2112", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112 },
{ "2112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112A },
{ "2112B", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112B },
{ "2413", AR5K_VERSION_RAD, AR5K_SREV_RAD_2413 },
{ "5413", AR5K_VERSION_RAD, AR5K_SREV_RAD_5413 },
{ "2316", AR5K_VERSION_RAD, AR5K_SREV_RAD_2316 },
{ "2317", AR5K_VERSION_RAD, AR5K_SREV_RAD_2317 },
{ "5424", AR5K_VERSION_RAD, AR5K_SREV_RAD_5424 },
{ "5133", AR5K_VERSION_RAD, AR5K_SREV_RAD_5133 },
{ "xxxxx", AR5K_VERSION_RAD, AR5K_SREV_UNKNOWN },
};
static const struct ieee80211_rate ath5k_rates[] = {
{ .bitrate = 10,
.hw_value = ATH5K_RATE_CODE_1M, },
{ .bitrate = 20,
.hw_value = ATH5K_RATE_CODE_2M,
.hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE,
.flags = IEEE80211_RATE_SHORT_PREAMBLE },
{ .bitrate = 55,
.hw_value = ATH5K_RATE_CODE_5_5M,
.hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE,
.flags = IEEE80211_RATE_SHORT_PREAMBLE },
{ .bitrate = 110,
.hw_value = ATH5K_RATE_CODE_11M,
.hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE,
.flags = IEEE80211_RATE_SHORT_PREAMBLE },
{ .bitrate = 60,
.hw_value = ATH5K_RATE_CODE_6M,
.flags = 0 },
{ .bitrate = 90,
.hw_value = ATH5K_RATE_CODE_9M,
.flags = 0 },
{ .bitrate = 120,
.hw_value = ATH5K_RATE_CODE_12M,
.flags = 0 },
{ .bitrate = 180,
.hw_value = ATH5K_RATE_CODE_18M,
.flags = 0 },
{ .bitrate = 240,
.hw_value = ATH5K_RATE_CODE_24M,
.flags = 0 },
{ .bitrate = 360,
.hw_value = ATH5K_RATE_CODE_36M,
.flags = 0 },
{ .bitrate = 480,
.hw_value = ATH5K_RATE_CODE_48M,
.flags = 0 },
{ .bitrate = 540,
.hw_value = ATH5K_RATE_CODE_54M,
.flags = 0 },
/* XR missing */
};
/*
* Prototypes - PCI stack related functions
*/
static int __devinit ath5k_pci_probe(struct pci_dev *pdev,
const struct pci_device_id *id);
static void __devexit ath5k_pci_remove(struct pci_dev *pdev);
#ifdef CONFIG_PM
static int ath5k_pci_suspend(struct device *dev);
static int ath5k_pci_resume(struct device *dev);
static SIMPLE_DEV_PM_OPS(ath5k_pm_ops, ath5k_pci_suspend, ath5k_pci_resume);
#define ATH5K_PM_OPS (&ath5k_pm_ops)
#else
#define ATH5K_PM_OPS NULL
#endif /* CONFIG_PM */
static struct pci_driver ath5k_pci_driver = {
.name = KBUILD_MODNAME,
.id_table = ath5k_pci_id_table,
.probe = ath5k_pci_probe,
.remove = __devexit_p(ath5k_pci_remove),
.driver.pm = ATH5K_PM_OPS,
};
/*
* Prototypes - MAC 802.11 stack related functions
*/
static int ath5k_tx(struct ieee80211_hw *hw, struct sk_buff *skb);
static int ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb,
struct ath5k_txq *txq);
static int ath5k_reset(struct ath5k_softc *sc, struct ieee80211_channel *chan);
static int ath5k_reset_wake(struct ath5k_softc *sc);
static int ath5k_start(struct ieee80211_hw *hw);
static void ath5k_stop(struct ieee80211_hw *hw);
static int ath5k_add_interface(struct ieee80211_hw *hw,
struct ieee80211_vif *vif);
static void ath5k_remove_interface(struct ieee80211_hw *hw,
struct ieee80211_vif *vif);
static int ath5k_config(struct ieee80211_hw *hw, u32 changed);
static u64 ath5k_prepare_multicast(struct ieee80211_hw *hw,
int mc_count, struct dev_addr_list *mc_list);
static void ath5k_configure_filter(struct ieee80211_hw *hw,
unsigned int changed_flags,
unsigned int *new_flags,
u64 multicast);
static int ath5k_set_key(struct ieee80211_hw *hw,
enum set_key_cmd cmd,
struct ieee80211_vif *vif, struct ieee80211_sta *sta,
struct ieee80211_key_conf *key);
static int ath5k_get_stats(struct ieee80211_hw *hw,
struct ieee80211_low_level_stats *stats);
static u64 ath5k_get_tsf(struct ieee80211_hw *hw);
static void ath5k_set_tsf(struct ieee80211_hw *hw, u64 tsf);
static void ath5k_reset_tsf(struct ieee80211_hw *hw);
static int ath5k_beacon_update(struct ieee80211_hw *hw,
struct ieee80211_vif *vif);
static void ath5k_bss_info_changed(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_bss_conf *bss_conf,
u32 changes);
static void ath5k_sw_scan_start(struct ieee80211_hw *hw);
static void ath5k_sw_scan_complete(struct ieee80211_hw *hw);
static void ath5k_set_coverage_class(struct ieee80211_hw *hw,
u8 coverage_class);
static const struct ieee80211_ops ath5k_hw_ops = {
.tx = ath5k_tx,
.start = ath5k_start,
.stop = ath5k_stop,
.add_interface = ath5k_add_interface,
.remove_interface = ath5k_remove_interface,
.config = ath5k_config,
.prepare_multicast = ath5k_prepare_multicast,
.configure_filter = ath5k_configure_filter,
.set_key = ath5k_set_key,
.get_stats = ath5k_get_stats,
.conf_tx = NULL,
.get_tsf = ath5k_get_tsf,
.set_tsf = ath5k_set_tsf,
.reset_tsf = ath5k_reset_tsf,
.bss_info_changed = ath5k_bss_info_changed,
.sw_scan_start = ath5k_sw_scan_start,
.sw_scan_complete = ath5k_sw_scan_complete,
.set_coverage_class = ath5k_set_coverage_class,
};
/*
* Prototypes - Internal functions
*/
/* Attach detach */
static int ath5k_attach(struct pci_dev *pdev,
struct ieee80211_hw *hw);
static void ath5k_detach(struct pci_dev *pdev,
struct ieee80211_hw *hw);
/* Channel/mode setup */
static inline short ath5k_ieee2mhz(short chan);
static unsigned int ath5k_copy_channels(struct ath5k_hw *ah,
struct ieee80211_channel *channels,
unsigned int mode,
unsigned int max);
static int ath5k_setup_bands(struct ieee80211_hw *hw);
static int ath5k_chan_set(struct ath5k_softc *sc,
struct ieee80211_channel *chan);
static void ath5k_setcurmode(struct ath5k_softc *sc,
unsigned int mode);
static void ath5k_mode_setup(struct ath5k_softc *sc);
/* Descriptor setup */
static int ath5k_desc_alloc(struct ath5k_softc *sc,
struct pci_dev *pdev);
static void ath5k_desc_free(struct ath5k_softc *sc,
struct pci_dev *pdev);
/* Buffers setup */
static int ath5k_rxbuf_setup(struct ath5k_softc *sc,
struct ath5k_buf *bf);
static int ath5k_txbuf_setup(struct ath5k_softc *sc,
struct ath5k_buf *bf,
struct ath5k_txq *txq, int padsize);
static inline void ath5k_txbuf_free(struct ath5k_softc *sc,
struct ath5k_buf *bf)
{
BUG_ON(!bf);
if (!bf->skb)
return;
pci_unmap_single(sc->pdev, bf->skbaddr, bf->skb->len,
PCI_DMA_TODEVICE);
dev_kfree_skb_any(bf->skb);
bf->skb = NULL;
}
static inline void ath5k_rxbuf_free(struct ath5k_softc *sc,
struct ath5k_buf *bf)
{
struct ath5k_hw *ah = sc->ah;
struct ath_common *common = ath5k_hw_common(ah);
BUG_ON(!bf);
if (!bf->skb)
return;
pci_unmap_single(sc->pdev, bf->skbaddr, common->rx_bufsize,
PCI_DMA_FROMDEVICE);
dev_kfree_skb_any(bf->skb);
bf->skb = NULL;
}
/* Queues setup */
static struct ath5k_txq *ath5k_txq_setup(struct ath5k_softc *sc,
int qtype, int subtype);
static int ath5k_beaconq_setup(struct ath5k_hw *ah);
static int ath5k_beaconq_config(struct ath5k_softc *sc);
static void ath5k_txq_drainq(struct ath5k_softc *sc,
struct ath5k_txq *txq);
static void ath5k_txq_cleanup(struct ath5k_softc *sc);
static void ath5k_txq_release(struct ath5k_softc *sc);
/* Rx handling */
static int ath5k_rx_start(struct ath5k_softc *sc);
static void ath5k_rx_stop(struct ath5k_softc *sc);
static unsigned int ath5k_rx_decrypted(struct ath5k_softc *sc,
struct ath5k_desc *ds,
struct sk_buff *skb,
struct ath5k_rx_status *rs);
static void ath5k_tasklet_rx(unsigned long data);
/* Tx handling */
static void ath5k_tx_processq(struct ath5k_softc *sc,
struct ath5k_txq *txq);
static void ath5k_tasklet_tx(unsigned long data);
/* Beacon handling */
static int ath5k_beacon_setup(struct ath5k_softc *sc,
struct ath5k_buf *bf);
static void ath5k_beacon_send(struct ath5k_softc *sc);
static void ath5k_beacon_config(struct ath5k_softc *sc);
static void ath5k_beacon_update_timers(struct ath5k_softc *sc, u64 bc_tsf);
static void ath5k_tasklet_beacon(unsigned long data);
static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
{
u64 tsf = ath5k_hw_get_tsf64(ah);
if ((tsf & 0x7fff) < rstamp)
tsf -= 0x8000;
return (tsf & ~0x7fff) | rstamp;
}
/* Interrupt handling */
static int ath5k_init(struct ath5k_softc *sc);
static int ath5k_stop_locked(struct ath5k_softc *sc);
static int ath5k_stop_hw(struct ath5k_softc *sc);
static irqreturn_t ath5k_intr(int irq, void *dev_id);
static void ath5k_tasklet_reset(unsigned long data);
static void ath5k_tasklet_calibrate(unsigned long data);
/*
* Module init/exit functions
*/
static int __init
init_ath5k_pci(void)
{
int ret;
ath5k_debug_init();
ret = pci_register_driver(&ath5k_pci_driver);
if (ret) {
printk(KERN_ERR "ath5k_pci: can't register pci driver\n");
return ret;
}
return 0;
}
static void __exit
exit_ath5k_pci(void)
{
pci_unregister_driver(&ath5k_pci_driver);
ath5k_debug_finish();
}
module_init(init_ath5k_pci);
module_exit(exit_ath5k_pci);
/********************\
* PCI Initialization *
\********************/
static const char *
ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
{
const char *name = "xxxxx";
unsigned int i;
for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
if (srev_names[i].sr_type != type)
continue;
if ((val & 0xf0) == srev_names[i].sr_val)
name = srev_names[i].sr_name;
if ((val & 0xff) == srev_names[i].sr_val) {
name = srev_names[i].sr_name;
break;
}
}
return name;
}
static unsigned int ath5k_ioread32(void *hw_priv, u32 reg_offset)
{
struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
return ath5k_hw_reg_read(ah, reg_offset);
}
static void ath5k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
{
struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
ath5k_hw_reg_write(ah, val, reg_offset);
}
static const struct ath_ops ath5k_common_ops = {
.read = ath5k_ioread32,
.write = ath5k_iowrite32,
};
static int __devinit
ath5k_pci_probe(struct pci_dev *pdev,
const struct pci_device_id *id)
{
void __iomem *mem;
struct ath5k_softc *sc;
struct ath_common *common;
struct ieee80211_hw *hw;
int ret;
u8 csz;
ret = pci_enable_device(pdev);
if (ret) {
dev_err(&pdev->dev, "can't enable device\n");
goto err;
}
/* XXX 32-bit addressing only */
ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
if (ret) {
dev_err(&pdev->dev, "32-bit DMA not available\n");
goto err_dis;
}
/*
* Cache line size is used to size and align various
* structures used to communicate with the hardware.
*/
pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &csz);
if (csz == 0) {
/*
* Linux 2.4.18 (at least) writes the cache line size
* register as a 16-bit wide register which is wrong.
* We must have this setup properly for rx buffer
* DMA to work so force a reasonable value here if it
* comes up zero.
*/
csz = L1_CACHE_BYTES >> 2;
pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, csz);
}
/*
* The default setting of latency timer yields poor results,
* set it to the value used by other systems. It may be worth
* tweaking this setting more.
*/
pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xa8);
/* Enable bus mastering */
pci_set_master(pdev);
/*
* Disable the RETRY_TIMEOUT register (0x41) to keep
* PCI Tx retries from interfering with C3 CPU state.
*/
pci_write_config_byte(pdev, 0x41, 0);
ret = pci_request_region(pdev, 0, "ath5k");
if (ret) {
dev_err(&pdev->dev, "cannot reserve PCI memory region\n");
goto err_dis;
}
mem = pci_iomap(pdev, 0, 0);
if (!mem) {
dev_err(&pdev->dev, "cannot remap PCI memory region\n") ;
ret = -EIO;
goto err_reg;
}
/*
* Allocate hw (mac80211 main struct)
* and hw->priv (driver private data)
*/
hw = ieee80211_alloc_hw(sizeof(*sc), &ath5k_hw_ops);
if (hw == NULL) {
dev_err(&pdev->dev, "cannot allocate ieee80211_hw\n");
ret = -ENOMEM;
goto err_map;
}
dev_info(&pdev->dev, "registered as '%s'\n", wiphy_name(hw->wiphy));
/* Initialize driver private data */
SET_IEEE80211_DEV(hw, &pdev->dev);
hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
IEEE80211_HW_SIGNAL_DBM |
IEEE80211_HW_NOISE_DBM;
hw->wiphy->interface_modes =
BIT(NL80211_IFTYPE_AP) |
BIT(NL80211_IFTYPE_STATION) |
BIT(NL80211_IFTYPE_ADHOC) |
BIT(NL80211_IFTYPE_MESH_POINT);
hw->extra_tx_headroom = 2;
hw->channel_change_time = 5000;
sc = hw->priv;
sc->hw = hw;
sc->pdev = pdev;
ath5k_debug_init_device(sc);
/*
* Mark the device as detached to avoid processing
* interrupts until setup is complete.
*/
__set_bit(ATH_STAT_INVALID, sc->status);
sc->iobase = mem; /* So we can unmap it on detach */
sc->opmode = NL80211_IFTYPE_STATION;
sc->bintval = 1000;
mutex_init(&sc->lock);
spin_lock_init(&sc->rxbuflock);
spin_lock_init(&sc->txbuflock);
spin_lock_init(&sc->block);
/* Set private data */
pci_set_drvdata(pdev, hw);
/* Setup interrupt handler */
ret = request_irq(pdev->irq, ath5k_intr, IRQF_SHARED, "ath", sc);
if (ret) {
ATH5K_ERR(sc, "request_irq failed\n");
goto err_free;
}
/*If we passed the test malloc a ath5k_hw struct*/
sc->ah = kzalloc(sizeof(struct ath5k_hw), GFP_KERNEL);
if (!sc->ah) {
ret = -ENOMEM;
ATH5K_ERR(sc, "out of memory\n");
goto err_irq;
}
sc->ah->ah_sc = sc;
sc->ah->ah_iobase = sc->iobase;
common = ath5k_hw_common(sc->ah);
common->ops = &ath5k_common_ops;
common->ah = sc->ah;
common->hw = hw;
common->cachelsz = csz << 2; /* convert to bytes */
/* Initialize device */
ret = ath5k_hw_attach(sc);
if (ret) {
goto err_free_ah;
}
/* set up multi-rate retry capabilities */
if (sc->ah->ah_version == AR5K_AR5212) {
hw->max_rates = 4;
hw->max_rate_tries = 11;
}
/* Finish private driver data initialization */
ret = ath5k_attach(pdev, hw);
if (ret)
goto err_ah;
ATH5K_INFO(sc, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
ath5k_chip_name(AR5K_VERSION_MAC, sc->ah->ah_mac_srev),
sc->ah->ah_mac_srev,
sc->ah->ah_phy_revision);
if (!sc->ah->ah_single_chip) {
/* Single chip radio (!RF5111) */
if (sc->ah->ah_radio_5ghz_revision &&
!sc->ah->ah_radio_2ghz_revision) {
/* No 5GHz support -> report 2GHz radio */
if (!test_bit(AR5K_MODE_11A,
sc->ah->ah_capabilities.cap_mode)) {
ATH5K_INFO(sc, "RF%s 2GHz radio found (0x%x)\n",
ath5k_chip_name(AR5K_VERSION_RAD,
sc->ah->ah_radio_5ghz_revision),
sc->ah->ah_radio_5ghz_revision);
/* No 2GHz support (5110 and some
* 5Ghz only cards) -> report 5Ghz radio */
} else if (!test_bit(AR5K_MODE_11B,
sc->ah->ah_capabilities.cap_mode)) {
ATH5K_INFO(sc, "RF%s 5GHz radio found (0x%x)\n",
ath5k_chip_name(AR5K_VERSION_RAD,
sc->ah->ah_radio_5ghz_revision),
sc->ah->ah_radio_5ghz_revision);
/* Multiband radio */
} else {
ATH5K_INFO(sc, "RF%s multiband radio found"
" (0x%x)\n",
ath5k_chip_name(AR5K_VERSION_RAD,
sc->ah->ah_radio_5ghz_revision),
sc->ah->ah_radio_5ghz_revision);
}
}
/* Multi chip radio (RF5111 - RF2111) ->
* report both 2GHz/5GHz radios */
else if (sc->ah->ah_radio_5ghz_revision &&
sc->ah->ah_radio_2ghz_revision){
ATH5K_INFO(sc, "RF%s 5GHz radio found (0x%x)\n",
ath5k_chip_name(AR5K_VERSION_RAD,
sc->ah->ah_radio_5ghz_revision),
sc->ah->ah_radio_5ghz_revision);
ATH5K_INFO(sc, "RF%s 2GHz radio found (0x%x)\n",
ath5k_chip_name(AR5K_VERSION_RAD,
sc->ah->ah_radio_2ghz_revision),
sc->ah->ah_radio_2ghz_revision);
}
}
/* ready to process interrupts */
__clear_bit(ATH_STAT_INVALID, sc->status);
return 0;
err_ah:
ath5k_hw_detach(sc->ah);
err_irq:
free_irq(pdev->irq, sc);
err_free_ah:
kfree(sc->ah);
err_free:
ieee80211_free_hw(hw);
err_map:
pci_iounmap(pdev, mem);
err_reg:
pci_release_region(pdev, 0);
err_dis:
pci_disable_device(pdev);
err:
return ret;
}
static void __devexit
ath5k_pci_remove(struct pci_dev *pdev)
{
struct ieee80211_hw *hw = pci_get_drvdata(pdev);
struct ath5k_softc *sc = hw->priv;
ath5k_debug_finish_device(sc);
ath5k_detach(pdev, hw);
ath5k_hw_detach(sc->ah);
kfree(sc->ah);
free_irq(pdev->irq, sc);
pci_iounmap(pdev, sc->iobase);
pci_release_region(pdev, 0);
pci_disable_device(pdev);
ieee80211_free_hw(hw);
}
#ifdef CONFIG_PM
static int ath5k_pci_suspend(struct device *dev)
{
struct ieee80211_hw *hw = pci_get_drvdata(to_pci_dev(dev));
struct ath5k_softc *sc = hw->priv;
ath5k_led_off(sc);
return 0;
}
static int ath5k_pci_resume(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct ieee80211_hw *hw = pci_get_drvdata(pdev);
struct ath5k_softc *sc = hw->priv;
/*
* Suspend/Resume resets the PCI configuration space, so we have to
* re-disable the RETRY_TIMEOUT register (0x41) to keep
* PCI Tx retries from interfering with C3 CPU state
*/
pci_write_config_byte(pdev, 0x41, 0);
ath5k_led_enable(sc);
return 0;
}
#endif /* CONFIG_PM */
/***********************\
* Driver Initialization *
\***********************/
static int ath5k_reg_notifier(struct wiphy *wiphy, struct regulatory_request *request)
{
struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
struct ath5k_softc *sc = hw->priv;
struct ath_regulatory *regulatory = ath5k_hw_regulatory(sc->ah);
return ath_reg_notifier_apply(wiphy, request, regulatory);
}
static int
ath5k_attach(struct pci_dev *pdev, struct ieee80211_hw *hw)
{
struct ath5k_softc *sc = hw->priv;
struct ath5k_hw *ah = sc->ah;
struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
u8 mac[ETH_ALEN] = {};
int ret;
ATH5K_DBG(sc, ATH5K_DEBUG_ANY, "devid 0x%x\n", pdev->device);
/*
* Check if the MAC has multi-rate retry support.
* We do this by trying to setup a fake extended
* descriptor. MAC's that don't have support will
* return false w/o doing anything. MAC's that do
* support it will return true w/o doing anything.
*/
ret = ah->ah_setup_mrr_tx_desc(ah, NULL, 0, 0, 0, 0, 0, 0);
if (ret < 0)
goto err;
if (ret > 0)
__set_bit(ATH_STAT_MRRETRY, sc->status);
/*
* Collect the channel list. The 802.11 layer
* is resposible for filtering this list based
* on settings like the phy mode and regulatory
* domain restrictions.
*/
ret = ath5k_setup_bands(hw);
if (ret) {
ATH5K_ERR(sc, "can't get channels\n");
goto err;
}
/* NB: setup here so ath5k_rate_update is happy */
if (test_bit(AR5K_MODE_11A, ah->ah_modes))
ath5k_setcurmode(sc, AR5K_MODE_11A);
else
ath5k_setcurmode(sc, AR5K_MODE_11B);
/*
* Allocate tx+rx descriptors and populate the lists.
*/
ret = ath5k_desc_alloc(sc, pdev);
if (ret) {
ATH5K_ERR(sc, "can't allocate descriptors\n");
goto err;
}
/*
* Allocate hardware transmit queues: one queue for
* beacon frames and one data queue for each QoS
* priority. Note that hw functions handle reseting
* these queues at the needed time.
*/
ret = ath5k_beaconq_setup(ah);
if (ret < 0) {
ATH5K_ERR(sc, "can't setup a beacon xmit queue\n");
goto err_desc;
}
sc->bhalq = ret;
sc->cabq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_CAB, 0);
if (IS_ERR(sc->cabq)) {
ATH5K_ERR(sc, "can't setup cab queue\n");
ret = PTR_ERR(sc->cabq);
goto err_bhal;
}
sc->txq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
if (IS_ERR(sc->txq)) {
ATH5K_ERR(sc, "can't setup xmit queue\n");
ret = PTR_ERR(sc->txq);
goto err_queues;
}
tasklet_init(&sc->rxtq, ath5k_tasklet_rx, (unsigned long)sc);
tasklet_init(&sc->txtq, ath5k_tasklet_tx, (unsigned long)sc);
tasklet_init(&sc->restq, ath5k_tasklet_reset, (unsigned long)sc);
tasklet_init(&sc->calib, ath5k_tasklet_calibrate, (unsigned long)sc);
tasklet_init(&sc->beacontq, ath5k_tasklet_beacon, (unsigned long)sc);
ret = ath5k_eeprom_read_mac(ah, mac);
if (ret) {
ATH5K_ERR(sc, "unable to read address from EEPROM: 0x%04x\n",
sc->pdev->device);
goto err_queues;
}
SET_IEEE80211_PERM_ADDR(hw, mac);
/* All MAC address bits matter for ACKs */
memcpy(sc->bssidmask, ath_bcast_mac, ETH_ALEN);
ath5k_hw_set_bssid_mask(sc->ah, sc->bssidmask);
regulatory->current_rd = ah->ah_capabilities.cap_eeprom.ee_regdomain;
ret = ath_regd_init(regulatory, hw->wiphy, ath5k_reg_notifier);
if (ret) {
ATH5K_ERR(sc, "can't initialize regulatory system\n");
goto err_queues;
}
ret = ieee80211_register_hw(hw);
if (ret) {
ATH5K_ERR(sc, "can't register ieee80211 hw\n");
goto err_queues;
}
if (!ath_is_world_regd(regulatory))
regulatory_hint(hw->wiphy, regulatory->alpha2);
ath5k_init_leds(sc);
return 0;
err_queues:
ath5k_txq_release(sc);
err_bhal:
ath5k_hw_release_tx_queue(ah, sc->bhalq);
err_desc:
ath5k_desc_free(sc, pdev);
err:
return ret;
}
static void
ath5k_detach(struct pci_dev *pdev, struct ieee80211_hw *hw)
{
struct ath5k_softc *sc = hw->priv;
/*
* NB: the order of these is important:
* o call the 802.11 layer before detaching ath5k_hw to
* insure callbacks into the driver to delete global
* key cache entries can be handled
* o reclaim the tx queue data structures after calling
* the 802.11 layer as we'll get called back to reclaim
* node state and potentially want to use them
* o to cleanup the tx queues the hal is called, so detach
* it last
* XXX: ??? detach ath5k_hw ???
* Other than that, it's straightforward...
*/
ieee80211_unregister_hw(hw);
ath5k_desc_free(sc, pdev);
ath5k_txq_release(sc);
ath5k_hw_release_tx_queue(sc->ah, sc->bhalq);
ath5k_unregister_leds(sc);
/*
* NB: can't reclaim these until after ieee80211_ifdetach
* returns because we'll get called back to reclaim node
* state and potentially want to use them.
*/
}
/********************\
* Channel/mode setup *
\********************/
/*
* Convert IEEE channel number to MHz frequency.
*/
static inline short
ath5k_ieee2mhz(short chan)
{
if (chan <= 14 || chan >= 27)
return ieee80211chan2mhz(chan);
else
return 2212 + chan * 20;
}
/*
* Returns true for the channel numbers used without all_channels modparam.
*/
static bool ath5k_is_standard_channel(short chan)
{
return ((chan <= 14) ||
/* UNII 1,2 */
((chan & 3) == 0 && chan >= 36 && chan <= 64) ||
/* midband */
((chan & 3) == 0 && chan >= 100 && chan <= 140) ||
/* UNII-3 */
((chan & 3) == 1 && chan >= 149 && chan <= 165));
}
static unsigned int
ath5k_copy_channels(struct ath5k_hw *ah,
struct ieee80211_channel *channels,
unsigned int mode,
unsigned int max)
{
unsigned int i, count, size, chfreq, freq, ch;
if (!test_bit(mode, ah->ah_modes))
return 0;
switch (mode) {
case AR5K_MODE_11A:
case AR5K_MODE_11A_TURBO:
/* 1..220, but 2GHz frequencies are filtered by check_channel */
size = 220 ;
chfreq = CHANNEL_5GHZ;
break;
case AR5K_MODE_11B:
case AR5K_MODE_11G:
case AR5K_MODE_11G_TURBO:
size = 26;
chfreq = CHANNEL_2GHZ;
break;
default:
ATH5K_WARN(ah->ah_sc, "bad mode, not copying channels\n");
return 0;
}
for (i = 0, count = 0; i < size && max > 0; i++) {
ch = i + 1 ;
freq = ath5k_ieee2mhz(ch);
/* Check if channel is supported by the chipset */
if (!ath5k_channel_ok(ah, freq, chfreq))
continue;
if (!modparam_all_channels && !ath5k_is_standard_channel(ch))
continue;
/* Write channel info and increment counter */
channels[count].center_freq = freq;
channels[count].band = (chfreq == CHANNEL_2GHZ) ?
IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
switch (mode) {
case AR5K_MODE_11A:
case AR5K_MODE_11G:
channels[count].hw_value = chfreq | CHANNEL_OFDM;
break;
case AR5K_MODE_11A_TURBO:
case AR5K_MODE_11G_TURBO:
channels[count].hw_value = chfreq |
CHANNEL_OFDM | CHANNEL_TURBO;
break;
case AR5K_MODE_11B:
channels[count].hw_value = CHANNEL_B;
}
count++;
max--;
}
return count;
}
static void
ath5k_setup_rate_idx(struct ath5k_softc *sc, struct ieee80211_supported_band *b)
{
u8 i;
for (i = 0; i < AR5K_MAX_RATES; i++)
sc->rate_idx[b->band][i] = -1;
for (i = 0; i < b->n_bitrates; i++) {
sc->rate_idx[b->band][b->bitrates[i].hw_value] = i;
if (b->bitrates[i].hw_value_short)
sc->rate_idx[b->band][b->bitrates[i].hw_value_short] = i;
}
}
static int
ath5k_setup_bands(struct ieee80211_hw *hw)
{
struct ath5k_softc *sc = hw->priv;
struct ath5k_hw *ah = sc->ah;
struct ieee80211_supported_band *sband;
int max_c, count_c = 0;
int i;
BUILD_BUG_ON(ARRAY_SIZE(sc->sbands) < IEEE80211_NUM_BANDS);
max_c = ARRAY_SIZE(sc->channels);
/* 2GHz band */
sband = &sc->sbands[IEEE80211_BAND_2GHZ];
sband->band = IEEE80211_BAND_2GHZ;
sband->bitrates = &sc->rates[IEEE80211_BAND_2GHZ][0];
if (test_bit(AR5K_MODE_11G, sc->ah->ah_capabilities.cap_mode)) {
/* G mode */
memcpy(sband->bitrates, &ath5k_rates[0],
sizeof(struct ieee80211_rate) * 12);
sband->n_bitrates = 12;
sband->channels = sc->channels;
sband->n_channels = ath5k_copy_channels(ah, sband->channels,
AR5K_MODE_11G, max_c);
hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
count_c = sband->n_channels;
max_c -= count_c;
} else if (test_bit(AR5K_MODE_11B, sc->ah->ah_capabilities.cap_mode)) {
/* B mode */
memcpy(sband->bitrates, &ath5k_rates[0],
sizeof(struct ieee80211_rate) * 4);
sband->n_bitrates = 4;
/* 5211 only supports B rates and uses 4bit rate codes
* (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
* fix them up here:
*/
if (ah->ah_version == AR5K_AR5211) {
for (i = 0; i < 4; i++) {
sband->bitrates[i].hw_value =
sband->bitrates[i].hw_value & 0xF;
sband->bitrates[i].hw_value_short =
sband->bitrates[i].hw_value_short & 0xF;
}
}
sband->channels = sc->channels;
sband->n_channels = ath5k_copy_channels(ah, sband->channels,
AR5K_MODE_11B, max_c);
hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
count_c = sband->n_channels;
max_c -= count_c;
}
ath5k_setup_rate_idx(sc, sband);
/* 5GHz band, A mode */
if (test_bit(AR5K_MODE_11A, sc->ah->ah_capabilities.cap_mode)) {
sband = &sc->sbands[IEEE80211_BAND_5GHZ];
sband->band = IEEE80211_BAND_5GHZ;
sband->bitrates = &sc->rates[IEEE80211_BAND_5GHZ][0];
memcpy(sband->bitrates, &ath5k_rates[4],
sizeof(struct ieee80211_rate) * 8);
sband->n_bitrates = 8;
sband->channels = &sc->channels[count_c];
sband->n_channels = ath5k_copy_channels(ah, sband->channels,
AR5K_MODE_11A, max_c);
hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
}
ath5k_setup_rate_idx(sc, sband);
ath5k_debug_dump_bands(sc);
return 0;
}
/*
* Set/change channels. We always reset the chip.
* To accomplish this we must first cleanup any pending DMA,
* then restart stuff after a la ath5k_init.
*
* Called with sc->lock.
*/
static int
ath5k_chan_set(struct ath5k_softc *sc, struct ieee80211_channel *chan)
{
ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "(%u MHz) -> (%u MHz)\n",
sc->curchan->center_freq, chan->center_freq);
/*
* To switch channels clear any pending DMA operations;
* wait long enough for the RX fifo to drain, reset the
* hardware at the new frequency, and then re-enable
* the relevant bits of the h/w.
*/
return ath5k_reset(sc, chan);
}
static void
ath5k_setcurmode(struct ath5k_softc *sc, unsigned int mode)
{
sc->curmode = mode;
if (mode == AR5K_MODE_11A) {
sc->curband = &sc->sbands[IEEE80211_BAND_5GHZ];
} else {
sc->curband = &sc->sbands[IEEE80211_BAND_2GHZ];
}
}
static void
ath5k_mode_setup(struct ath5k_softc *sc)
{
struct ath5k_hw *ah = sc->ah;
u32 rfilt;
/* configure rx filter */
rfilt = sc->filter_flags;
ath5k_hw_set_rx_filter(ah, rfilt);
if (ath5k_hw_hasbssidmask(ah))
ath5k_hw_set_bssid_mask(ah, sc->bssidmask);
/* configure operational mode */
ath5k_hw_set_opmode(ah, sc->opmode);
ATH5K_DBG(sc, ATH5K_DEBUG_MODE, "mode setup opmode %d\n", sc->opmode);
ATH5K_DBG(sc, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
}
static inline int
ath5k_hw_to_driver_rix(struct ath5k_softc *sc, int hw_rix)
{
int rix;
/* return base rate on errors */
if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES,
"hw_rix out of bounds: %x\n", hw_rix))
return 0;
rix = sc->rate_idx[sc->curband->band][hw_rix];
if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix))
rix = 0;
return rix;
}
/***************\
* Buffers setup *
\***************/
static
struct sk_buff *ath5k_rx_skb_alloc(struct ath5k_softc *sc, dma_addr_t *skb_addr)
{
struct ath_common *common = ath5k_hw_common(sc->ah);
struct sk_buff *skb;
/*
* Allocate buffer with headroom_needed space for the
* fake physical layer header at the start.
*/
skb = ath_rxbuf_alloc(common,
common->rx_bufsize,
GFP_ATOMIC);
if (!skb) {
ATH5K_ERR(sc, "can't alloc skbuff of size %u\n",
common->rx_bufsize);
return NULL;
}
*skb_addr = pci_map_single(sc->pdev,
skb->data, common->rx_bufsize,
PCI_DMA_FROMDEVICE);
if (unlikely(pci_dma_mapping_error(sc->pdev, *skb_addr))) {
ATH5K_ERR(sc, "%s: DMA mapping failed\n", __func__);
dev_kfree_skb(skb);
return NULL;
}
return skb;
}
static int
ath5k_rxbuf_setup(struct ath5k_softc *sc, struct ath5k_buf *bf)
{
struct ath5k_hw *ah = sc->ah;
struct sk_buff *skb = bf->skb;
struct ath5k_desc *ds;
if (!skb) {
skb = ath5k_rx_skb_alloc(sc, &bf->skbaddr);
if (!skb)
return -ENOMEM;
bf->skb = skb;
}
/*
* Setup descriptors. For receive we always terminate
* the descriptor list with a self-linked entry so we'll
* not get overrun under high load (as can happen with a
* 5212 when ANI processing enables PHY error frames).
*
* To insure the last descriptor is self-linked we create
* each descriptor as self-linked and add it to the end. As
* each additional descriptor is added the previous self-linked
* entry is ``fixed'' naturally. This should be safe even
* if DMA is happening. When processing RX interrupts we
* never remove/process the last, self-linked, entry on the
* descriptor list. This insures the hardware always has
* someplace to write a new frame.
*/
ds = bf->desc;
ds->ds_link = bf->daddr; /* link to self */
ds->ds_data = bf->skbaddr;
ah->ah_setup_rx_desc(ah, ds,
skb_tailroom(skb), /* buffer size */
0);
if (sc->rxlink != NULL)
*sc->rxlink = bf->daddr;
sc->rxlink = &ds->ds_link;
return 0;
}
static enum ath5k_pkt_type get_hw_packet_type(struct sk_buff *skb)
{
struct ieee80211_hdr *hdr;
enum ath5k_pkt_type htype;
__le16 fc;
hdr = (struct ieee80211_hdr *)skb->data;
fc = hdr->frame_control;
if (ieee80211_is_beacon(fc))
htype = AR5K_PKT_TYPE_BEACON;
else if (ieee80211_is_probe_resp(fc))
htype = AR5K_PKT_TYPE_PROBE_RESP;
else if (ieee80211_is_atim(fc))
htype = AR5K_PKT_TYPE_ATIM;
else if (ieee80211_is_pspoll(fc))
htype = AR5K_PKT_TYPE_PSPOLL;
else
htype = AR5K_PKT_TYPE_NORMAL;
return htype;
}
static int
ath5k_txbuf_setup(struct ath5k_softc *sc, struct ath5k_buf *bf,
struct ath5k_txq *txq, int padsize)
{
struct ath5k_hw *ah = sc->ah;
struct ath5k_desc *ds = bf->desc;
struct sk_buff *skb = bf->skb;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
struct ieee80211_rate *rate;
unsigned int mrr_rate[3], mrr_tries[3];
int i, ret;
u16 hw_rate;
u16 cts_rate = 0;
u16 duration = 0;
u8 rc_flags;
flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
/* XXX endianness */
bf->skbaddr = pci_map_single(sc->pdev, skb->data, skb->len,
PCI_DMA_TODEVICE);
rate = ieee80211_get_tx_rate(sc->hw, info);
if (info->flags & IEEE80211_TX_CTL_NO_ACK)
flags |= AR5K_TXDESC_NOACK;
rc_flags = info->control.rates[0].flags;
hw_rate = (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ?
rate->hw_value_short : rate->hw_value;
pktlen = skb->len;
/* FIXME: If we are in g mode and rate is a CCK rate
* subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
* from tx power (value is in dB units already) */
if (info->control.hw_key) {
keyidx = info->control.hw_key->hw_key_idx;
pktlen += info->control.hw_key->icv_len;
}
if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
flags |= AR5K_TXDESC_RTSENA;
cts_rate = ieee80211_get_rts_cts_rate(sc->hw, info)->hw_value;
duration = le16_to_cpu(ieee80211_rts_duration(sc->hw,
sc->vif, pktlen, info));
}
if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
flags |= AR5K_TXDESC_CTSENA;
cts_rate = ieee80211_get_rts_cts_rate(sc->hw, info)->hw_value;
duration = le16_to_cpu(ieee80211_ctstoself_duration(sc->hw,
sc->vif, pktlen, info));
}
ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
ieee80211_get_hdrlen_from_skb(skb), padsize,
get_hw_packet_type(skb),
(sc->power_level * 2),
hw_rate,
info->control.rates[0].count, keyidx, ah->ah_tx_ant, flags,
cts_rate, duration);
if (ret)
goto err_unmap;
memset(mrr_rate, 0, sizeof(mrr_rate));
memset(mrr_tries, 0, sizeof(mrr_tries));
for (i = 0; i < 3; i++) {
rate = ieee80211_get_alt_retry_rate(sc->hw, info, i);
if (!rate)
break;
mrr_rate[i] = rate->hw_value;
mrr_tries[i] = info->control.rates[i + 1].count;
}
ah->ah_setup_mrr_tx_desc(ah, ds,
mrr_rate[0], mrr_tries[0],
mrr_rate[1], mrr_tries[1],
mrr_rate[2], mrr_tries[2]);
ds->ds_link = 0;
ds->ds_data = bf->skbaddr;
spin_lock_bh(&txq->lock);
list_add_tail(&bf->list, &txq->q);
if (txq->link == NULL) /* is this first packet? */
ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
else /* no, so only link it */
*txq->link = bf->daddr;
txq->link = &ds->ds_link;
ath5k_hw_start_tx_dma(ah, txq->qnum);
mmiowb();
spin_unlock_bh(&txq->lock);
return 0;
err_unmap:
pci_unmap_single(sc->pdev, bf->skbaddr, skb->len, PCI_DMA_TODEVICE);
return ret;
}
/*******************\
* Descriptors setup *
\*******************/
static int
ath5k_desc_alloc(struct ath5k_softc *sc, struct pci_dev *pdev)
{
struct ath5k_desc *ds;
struct ath5k_buf *bf;
dma_addr_t da;
unsigned int i;
int ret;
/* allocate descriptors */
sc->desc_len = sizeof(struct ath5k_desc) *
(ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
sc->desc = pci_alloc_consistent(pdev, sc->desc_len, &sc->desc_daddr);
if (sc->desc == NULL) {
ATH5K_ERR(sc, "can't allocate descriptors\n");
ret = -ENOMEM;
goto err;
}
ds = sc->desc;
da = sc->desc_daddr;
ATH5K_DBG(sc, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
ds, sc->desc_len, (unsigned long long)sc->desc_daddr);
bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
sizeof(struct ath5k_buf), GFP_KERNEL);
if (bf == NULL) {
ATH5K_ERR(sc, "can't allocate bufptr\n");
ret = -ENOMEM;
goto err_free;
}
sc->bufptr = bf;
INIT_LIST_HEAD(&sc->rxbuf);
for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
bf->desc = ds;
bf->daddr = da;
list_add_tail(&bf->list, &sc->rxbuf);
}
INIT_LIST_HEAD(&sc->txbuf);
sc->txbuf_len = ATH_TXBUF;
for (i = 0; i < ATH_TXBUF; i++, bf++, ds++,
da += sizeof(*ds)) {
bf->desc = ds;
bf->daddr = da;
list_add_tail(&bf->list, &sc->txbuf);
}
/* beacon buffer */
bf->desc = ds;
bf->daddr = da;
sc->bbuf = bf;
return 0;
err_free:
pci_free_consistent(pdev, sc->desc_len, sc->desc, sc->desc_daddr);
err:
sc->desc = NULL;
return ret;
}
static void
ath5k_desc_free(struct ath5k_softc *sc, struct pci_dev *pdev)
{
struct ath5k_buf *bf;
ath5k_txbuf_free(sc, sc->bbuf);
list_for_each_entry(bf, &sc->txbuf, list)
ath5k_txbuf_free(sc, bf);
list_for_each_entry(bf, &sc->rxbuf, list)
ath5k_rxbuf_free(sc, bf);
/* Free memory associated with all descriptors */
pci_free_consistent(pdev, sc->desc_len, sc->desc, sc->desc_daddr);
kfree(sc->bufptr);
sc->bufptr = NULL;
}
/**************\
* Queues setup *
\**************/
static struct ath5k_txq *
ath5k_txq_setup(struct ath5k_softc *sc,
int qtype, int subtype)
{
struct ath5k_hw *ah = sc->ah;
struct ath5k_txq *txq;
struct ath5k_txq_info qi = {
.tqi_subtype = subtype,
.tqi_aifs = AR5K_TXQ_USEDEFAULT,
.tqi_cw_min = AR5K_TXQ_USEDEFAULT,
.tqi_cw_max = AR5K_TXQ_USEDEFAULT
};
int qnum;
/*
* Enable interrupts only for EOL and DESC conditions.
* We mark tx descriptors to receive a DESC interrupt
* when a tx queue gets deep; otherwise waiting for the
* EOL to reap descriptors. Note that this is done to
* reduce interrupt load and this only defers reaping
* descriptors, never transmitting frames. Aside from
* reducing interrupts this also permits more concurrency.
* The only potential downside is if the tx queue backs
* up in which case the top half of the kernel may backup
* due to a lack of tx descriptors.
*/
qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
if (qnum < 0) {
/*
* NB: don't print a message, this happens
* normally on parts with too few tx queues
*/
return ERR_PTR(qnum);
}
if (qnum >= ARRAY_SIZE(sc->txqs)) {
ATH5K_ERR(sc, "hw qnum %u out of range, max %tu!\n",
qnum, ARRAY_SIZE(sc->txqs));
ath5k_hw_release_tx_queue(ah, qnum);
return ERR_PTR(-EINVAL);
}
txq = &sc->txqs[qnum];
if (!txq->setup) {
txq->qnum = qnum;
txq->link = NULL;
INIT_LIST_HEAD(&txq->q);
spin_lock_init(&txq->lock);
txq->setup = true;
}
return &sc->txqs[qnum];
}
static int
ath5k_beaconq_setup(struct ath5k_hw *ah)
{
struct ath5k_txq_info qi = {
.tqi_aifs = AR5K_TXQ_USEDEFAULT,
.tqi_cw_min = AR5K_TXQ_USEDEFAULT,
.tqi_cw_max = AR5K_TXQ_USEDEFAULT,
/* NB: for dynamic turbo, don't enable any other interrupts */
.tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
};
return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
}
static int
ath5k_beaconq_config(struct ath5k_softc *sc)
{
struct ath5k_hw *ah = sc->ah;
struct ath5k_txq_info qi;
int ret;
ret = ath5k_hw_get_tx_queueprops(ah, sc->bhalq, &qi);
if (ret)
goto err;
if (sc->opmode == NL80211_IFTYPE_AP ||
sc->opmode == NL80211_IFTYPE_MESH_POINT) {
/*
* Always burst out beacon and CAB traffic
* (aifs = cwmin = cwmax = 0)
*/
qi.tqi_aifs = 0;
qi.tqi_cw_min = 0;
qi.tqi_cw_max = 0;
} else if (sc->opmode == NL80211_IFTYPE_ADHOC) {
/*
* Adhoc mode; backoff between 0 and (2 * cw_min).
*/
qi.tqi_aifs = 0;
qi.tqi_cw_min = 0;
qi.tqi_cw_max = 2 * ah->ah_cw_min;
}
ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
"beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
ret = ath5k_hw_set_tx_queueprops(ah, sc->bhalq, &qi);
if (ret) {
ATH5K_ERR(sc, "%s: unable to update parameters for beacon "
"hardware queue!\n", __func__);
goto err;
}
ret = ath5k_hw_reset_tx_queue(ah, sc->bhalq); /* push to h/w */
if (ret)
goto err;
/* reconfigure cabq with ready time to 80% of beacon_interval */
ret = ath5k_hw_get_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
if (ret)
goto err;
qi.tqi_ready_time = (sc->bintval * 80) / 100;
ret = ath5k_hw_set_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
if (ret)
goto err;
ret = ath5k_hw_reset_tx_queue(ah, AR5K_TX_QUEUE_ID_CAB);
err:
return ret;
}
static void
ath5k_txq_drainq(struct ath5k_softc *sc, struct ath5k_txq *txq)
{
struct ath5k_buf *bf, *bf0;
/*
* NB: this assumes output has been stopped and
* we do not need to block ath5k_tx_tasklet
*/
spin_lock_bh(&txq->lock);
list_for_each_entry_safe(bf, bf0, &txq->q, list) {
ath5k_debug_printtxbuf(sc, bf);
ath5k_txbuf_free(sc, bf);
spin_lock_bh(&sc->txbuflock);
list_move_tail(&bf->list, &sc->txbuf);
sc->txbuf_len++;
spin_unlock_bh(&sc->txbuflock);
}
txq->link = NULL;
spin_unlock_bh(&txq->lock);
}
/*
* Drain the transmit queues and reclaim resources.
*/
static void
ath5k_txq_cleanup(struct ath5k_softc *sc)
{
struct ath5k_hw *ah = sc->ah;
unsigned int i;
/* XXX return value */
if (likely(!test_bit(ATH_STAT_INVALID, sc->status))) {
/* don't touch the hardware if marked invalid */
ath5k_hw_stop_tx_dma(ah, sc->bhalq);
ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "beacon queue %x\n",
ath5k_hw_get_txdp(ah, sc->bhalq));
for (i = 0; i < ARRAY_SIZE(sc->txqs); i++)
if (sc->txqs[i].setup) {
ath5k_hw_stop_tx_dma(ah, sc->txqs[i].qnum);
ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "txq [%u] %x, "
"link %p\n",
sc->txqs[i].qnum,
ath5k_hw_get_txdp(ah,
sc->txqs[i].qnum),
sc->txqs[i].link);
}
}
ieee80211_wake_queues(sc->hw); /* XXX move to callers */
for (i = 0; i < ARRAY_SIZE(sc->txqs); i++)
if (sc->txqs[i].setup)
ath5k_txq_drainq(sc, &sc->txqs[i]);
}
static void
ath5k_txq_release(struct ath5k_softc *sc)
{
struct ath5k_txq *txq = sc->txqs;
unsigned int i;
for (i = 0; i < ARRAY_SIZE(sc->txqs); i++, txq++)
if (txq->setup) {
ath5k_hw_release_tx_queue(sc->ah, txq->qnum);
txq->setup = false;
}
}
/*************\
* RX Handling *
\*************/
/*
* Enable the receive h/w following a reset.
*/
static int
ath5k_rx_start(struct ath5k_softc *sc)
{
struct ath5k_hw *ah = sc->ah;
struct ath_common *common = ath5k_hw_common(ah);
struct ath5k_buf *bf;
int ret;
common->rx_bufsize = roundup(IEEE80211_MAX_LEN, common->cachelsz);
ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "cachelsz %u rx_bufsize %u\n",
common->cachelsz, common->rx_bufsize);
spin_lock_bh(&sc->rxbuflock);
sc->rxlink = NULL;
list_for_each_entry(bf, &sc->rxbuf, list) {
ret = ath5k_rxbuf_setup(sc, bf);
if (ret != 0) {
spin_unlock_bh(&sc->rxbuflock);
goto err;
}
}
bf = list_first_entry(&sc->rxbuf, struct ath5k_buf, list);
ath5k_hw_set_rxdp(ah, bf->daddr);
spin_unlock_bh(&sc->rxbuflock);
ath5k_hw_start_rx_dma(ah); /* enable recv descriptors */
ath5k_mode_setup(sc); /* set filters, etc. */
ath5k_hw_start_rx_pcu(ah); /* re-enable PCU/DMA engine */
return 0;
err:
return ret;
}
/*
* Disable the receive h/w in preparation for a reset.
*/
static void
ath5k_rx_stop(struct ath5k_softc *sc)
{
struct ath5k_hw *ah = sc->ah;
ath5k_hw_stop_rx_pcu(ah); /* disable PCU */
ath5k_hw_set_rx_filter(ah, 0); /* clear recv filter */
ath5k_hw_stop_rx_dma(ah); /* disable DMA engine */
ath5k_debug_printrxbuffs(sc, ah);
sc->rxlink = NULL; /* just in case */
}
static unsigned int
ath5k_rx_decrypted(struct ath5k_softc *sc, struct ath5k_desc *ds,
struct sk_buff *skb, struct ath5k_rx_status *rs)
{
struct ath5k_hw *ah = sc->ah;
struct ath_common *common = ath5k_hw_common(ah);
struct ieee80211_hdr *hdr = (void *)skb->data;
unsigned int keyix, hlen;
if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
rs->rs_keyix != AR5K_RXKEYIX_INVALID)
return RX_FLAG_DECRYPTED;
/* Apparently when a default key is used to decrypt the packet
the hw does not set the index used to decrypt. In such cases
get the index from the packet. */
hlen = ieee80211_hdrlen(hdr->frame_control);
if (ieee80211_has_protected(hdr->frame_control) &&
!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
skb->len >= hlen + 4) {
keyix = skb->data[hlen + 3] >> 6;
if (test_bit(keyix, common->keymap))
return RX_FLAG_DECRYPTED;
}
return 0;
}
static void
ath5k_check_ibss_tsf(struct ath5k_softc *sc, struct sk_buff *skb,
struct ieee80211_rx_status *rxs)
{
struct ath_common *common = ath5k_hw_common(sc->ah);
u64 tsf, bc_tstamp;
u32 hw_tu;
struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
if (ieee80211_is_beacon(mgmt->frame_control) &&
le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS &&
memcmp(mgmt->bssid, common->curbssid, ETH_ALEN) == 0) {
/*
* Received an IBSS beacon with the same BSSID. Hardware *must*
* have updated the local TSF. We have to work around various
* hardware bugs, though...
*/
tsf = ath5k_hw_get_tsf64(sc->ah);
bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
hw_tu = TSF_TO_TU(tsf);
ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
"beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
(unsigned long long)bc_tstamp,
(unsigned long long)rxs->mactime,
(unsigned long long)(rxs->mactime - bc_tstamp),
(unsigned long long)tsf);
/*
* Sometimes the HW will give us a wrong tstamp in the rx
* status, causing the timestamp extension to go wrong.
* (This seems to happen especially with beacon frames bigger
* than 78 byte (incl. FCS))
* But we know that the receive timestamp must be later than the
* timestamp of the beacon since HW must have synced to that.
*
* NOTE: here we assume mactime to be after the frame was
* received, not like mac80211 which defines it at the start.
*/
if (bc_tstamp > rxs->mactime) {
ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
"fixing mactime from %llx to %llx\n",
(unsigned long long)rxs->mactime,
(unsigned long long)tsf);
rxs->mactime = tsf;
}
/*
* Local TSF might have moved higher than our beacon timers,
* in that case we have to update them to continue sending
* beacons. This also takes care of synchronizing beacon sending
* times with other stations.
*/
if (hw_tu >= sc->nexttbtt)
ath5k_beacon_update_timers(sc, bc_tstamp);
}
}
/*
* Compute padding position. skb must contains an IEEE 802.11 frame
*/
static int ath5k_common_padpos(struct sk_buff *skb)
{
struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
__le16 frame_control = hdr->frame_control;
int padpos = 24;
if (ieee80211_has_a4(frame_control)) {
padpos += ETH_ALEN;
}
if (ieee80211_is_data_qos(frame_control)) {
padpos += IEEE80211_QOS_CTL_LEN;
}
return padpos;
}
/*
* This function expects a 802.11 frame and returns the number of
* bytes added, or -1 if we don't have enought header room.
*/
static int ath5k_add_padding(struct sk_buff *skb)
{
int padpos = ath5k_common_padpos(skb);
int padsize = padpos & 3;
if (padsize && skb->len>padpos) {
if (skb_headroom(skb) < padsize)
return -1;
skb_push(skb, padsize);
memmove(skb->data, skb->data+padsize, padpos);
return padsize;
}
return 0;
}
/*
* This function expects a 802.11 frame and returns the number of
* bytes removed
*/
static int ath5k_remove_padding(struct sk_buff *skb)
{
int padpos = ath5k_common_padpos(skb);
int padsize = padpos & 3;
if (padsize && skb->len>=padpos+padsize) {
memmove(skb->data + padsize, skb->data, padpos);
skb_pull(skb, padsize);
return padsize;
}
return 0;
}
static void
ath5k_tasklet_rx(unsigned long data)
{
struct ieee80211_rx_status *rxs;
struct ath5k_rx_status rs = {};
struct sk_buff *skb, *next_skb;
dma_addr_t next_skb_addr;
struct ath5k_softc *sc = (void *)data;
struct ath5k_hw *ah = sc->ah;
struct ath_common *common = ath5k_hw_common(ah);
struct ath5k_buf *bf;
struct ath5k_desc *ds;
int ret;
int rx_flag;
spin_lock(&sc->rxbuflock);
if (list_empty(&sc->rxbuf)) {
ATH5K_WARN(sc, "empty rx buf pool\n");
goto unlock;
}
do {
rx_flag = 0;
bf = list_first_entry(&sc->rxbuf, struct ath5k_buf, list);
BUG_ON(bf->skb == NULL);
skb = bf->skb;
ds = bf->desc;
/* bail if HW is still using self-linked descriptor */
if (ath5k_hw_get_rxdp(sc->ah) == bf->daddr)
break;
ret = sc->ah->ah_proc_rx_desc(sc->ah, ds, &rs);
if (unlikely(ret == -EINPROGRESS))
break;
else if (unlikely(ret)) {
ATH5K_ERR(sc, "error in processing rx descriptor\n");
sc->stats.rxerr_proc++;
spin_unlock(&sc->rxbuflock);
return;
}
sc->stats.rx_all_count++;
if (unlikely(rs.rs_more)) {
ATH5K_WARN(sc, "unsupported jumbo\n");
sc->stats.rxerr_jumbo++;
goto next;
}
if (unlikely(rs.rs_status)) {
if (rs.rs_status & AR5K_RXERR_CRC)
sc->stats.rxerr_crc++;
if (rs.rs_status & AR5K_RXERR_FIFO)
sc->stats.rxerr_fifo++;
if (rs.rs_status & AR5K_RXERR_PHY) {
sc->stats.rxerr_phy++;
goto next;
}
if (rs.rs_status & AR5K_RXERR_DECRYPT) {
/*
* Decrypt error. If the error occurred
* because there was no hardware key, then
* let the frame through so the upper layers
* can process it. This is necessary for 5210
* parts which have no way to setup a ``clear''
* key cache entry.
*
* XXX do key cache faulting
*/
sc->stats.rxerr_decrypt++;
if (rs.rs_keyix == AR5K_RXKEYIX_INVALID &&
!(rs.rs_status & AR5K_RXERR_CRC))
goto accept;
}
if (rs.rs_status & AR5K_RXERR_MIC) {
rx_flag |= RX_FLAG_MMIC_ERROR;
sc->stats.rxerr_mic++;
goto accept;
}
/* let crypto-error packets fall through in MNTR */
if ((rs.rs_status &
~(AR5K_RXERR_DECRYPT|AR5K_RXERR_MIC)) ||
sc->opmode != NL80211_IFTYPE_MONITOR)
goto next;
}
accept:
next_skb = ath5k_rx_skb_alloc(sc, &next_skb_addr);
/*
* If we can't replace bf->skb with a new skb under memory
* pressure, just skip this packet
*/
if (!next_skb)
goto next;
pci_unmap_single(sc->pdev, bf->skbaddr, common->rx_bufsize,
PCI_DMA_FROMDEVICE);
skb_put(skb, rs.rs_datalen);
/* The MAC header is padded to have 32-bit boundary if the
* packet payload is non-zero. The general calculation for
* padsize would take into account odd header lengths:
* padsize = (4 - hdrlen % 4) % 4; However, since only
* even-length headers are used, padding can only be 0 or 2
* bytes and we can optimize this a bit. In addition, we must
* not try to remove padding from short control frames that do
* not have payload. */
ath5k_remove_padding(skb);
rxs = IEEE80211_SKB_RXCB(skb);
/*
* always extend the mac timestamp, since this information is
* also needed for proper IBSS merging.
*
* XXX: it might be too late to do it here, since rs_tstamp is
* 15bit only. that means TSF extension has to be done within
* 32768usec (about 32ms). it might be necessary to move this to
* the interrupt handler, like it is done in madwifi.
*
* Unfortunately we don't know when the hardware takes the rx
* timestamp (beginning of phy frame, data frame, end of rx?).
* The only thing we know is that it is hardware specific...
* On AR5213 it seems the rx timestamp is at the end of the
* frame, but i'm not sure.
*
* NOTE: mac80211 defines mactime at the beginning of the first
* data symbol. Since we don't have any time references it's
* impossible to comply to that. This affects IBSS merge only
* right now, so it's not too bad...
*/
rxs->mactime = ath5k_extend_tsf(sc->ah, rs.rs_tstamp);
rxs->flag = rx_flag | RX_FLAG_TSFT;
rxs->freq = sc->curchan->center_freq;
rxs->band = sc->curband->band;
rxs->noise = sc->ah->ah_noise_floor;
rxs->signal = rxs->noise + rs.rs_rssi;
rxs->antenna = rs.rs_antenna;
if (rs.rs_antenna > 0 && rs.rs_antenna < 5)
sc->stats.antenna_rx[rs.rs_antenna]++;
else
sc->stats.antenna_rx[0]++; /* invalid */
rxs->rate_idx = ath5k_hw_to_driver_rix(sc, rs.rs_rate);
rxs->flag |= ath5k_rx_decrypted(sc, ds, skb, &rs);
if (rxs->rate_idx >= 0 && rs.rs_rate ==
sc->curband->bitrates[rxs->rate_idx].hw_value_short)
rxs->flag |= RX_FLAG_SHORTPRE;
ath5k_debug_dump_skb(sc, skb, "RX ", 0);
/* check beacons in IBSS mode */
if (sc->opmode == NL80211_IFTYPE_ADHOC)
ath5k_check_ibss_tsf(sc, skb, rxs);
ieee80211_rx(sc->hw, skb);
bf->skb = next_skb;
bf->skbaddr = next_skb_addr;
next:
list_move_tail(&bf->list, &sc->rxbuf);
} while (ath5k_rxbuf_setup(sc, bf) == 0);
unlock:
spin_unlock(&sc->rxbuflock);
}
/*************\
* TX Handling *
\*************/
static void
ath5k_tx_processq(struct ath5k_softc *sc, struct ath5k_txq *txq)
{
struct ath5k_tx_status ts = {};
struct ath5k_buf *bf, *bf0;
struct ath5k_desc *ds;
struct sk_buff *skb;
struct ieee80211_tx_info *info;
int i, ret;
spin_lock(&txq->lock);
list_for_each_entry_safe(bf, bf0, &txq->q, list) {
ds = bf->desc;
ret = sc->ah->ah_proc_tx_desc(sc->ah, ds, &ts);
if (unlikely(ret == -EINPROGRESS))
break;
else if (unlikely(ret)) {
ATH5K_ERR(sc, "error %d while processing queue %u\n",
ret, txq->qnum);
break;
}
sc->stats.tx_all_count++;
skb = bf->skb;
info = IEEE80211_SKB_CB(skb);
bf->skb = NULL;
pci_unmap_single(sc->pdev, bf->skbaddr, skb->len,
PCI_DMA_TODEVICE);
ieee80211_tx_info_clear_status(info);
for (i = 0; i < 4; i++) {
struct ieee80211_tx_rate *r =
&info->status.rates[i];
if (ts.ts_rate[i]) {
r->idx = ath5k_hw_to_driver_rix(sc, ts.ts_rate[i]);
r->count = ts.ts_retry[i];
} else {
r->idx = -1;
r->count = 0;
}
}
/* count the successful attempt as well */
info->status.rates[ts.ts_final_idx].count++;
if (unlikely(ts.ts_status)) {
sc->ll_stats.dot11ACKFailureCount++;
if (ts.ts_status & AR5K_TXERR_FILT) {
info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
sc->stats.txerr_filt++;
}
if (ts.ts_status & AR5K_TXERR_XRETRY)
sc->stats.txerr_retry++;
if (ts.ts_status & AR5K_TXERR_FIFO)
sc->stats.txerr_fifo++;
} else {
info->flags |= IEEE80211_TX_STAT_ACK;
info->status.ack_signal = ts.ts_rssi;
}
/*
* Remove MAC header padding before giving the frame
* back to mac80211.
*/
ath5k_remove_padding(skb);
if (ts.ts_antenna > 0 && ts.ts_antenna < 5)
sc->stats.antenna_tx[ts.ts_antenna]++;
else
sc->stats.antenna_tx[0]++; /* invalid */
ieee80211_tx_status(sc->hw, skb);
spin_lock(&sc->txbuflock);
list_move_tail(&bf->list, &sc->txbuf);
sc->txbuf_len++;
spin_unlock(&sc->txbuflock);
}
if (likely(list_empty(&txq->q)))
txq->link = NULL;
spin_unlock(&txq->lock);
if (sc->txbuf_len > ATH_TXBUF / 5)
ieee80211_wake_queues(sc->hw);
}
static void
ath5k_tasklet_tx(unsigned long data)
{
int i;
struct ath5k_softc *sc = (void *)data;
for (i=0; i < AR5K_NUM_TX_QUEUES; i++)
if (sc->txqs[i].setup && (sc->ah->ah_txq_isr & BIT(i)))
ath5k_tx_processq(sc, &sc->txqs[i]);
}
/*****************\
* Beacon handling *
\*****************/
/*
* Setup the beacon frame for transmit.
*/
static int
ath5k_beacon_setup(struct ath5k_softc *sc, struct ath5k_buf *bf)
{
struct sk_buff *skb = bf->skb;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ath5k_hw *ah = sc->ah;
struct ath5k_desc *ds;
int ret = 0;
u8 antenna;
u32 flags;
const int padsize = 0;
bf->skbaddr = pci_map_single(sc->pdev, skb->data, skb->len,
PCI_DMA_TODEVICE);
ATH5K_DBG(sc, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
"skbaddr %llx\n", skb, skb->data, skb->len,
(unsigned long long)bf->skbaddr);
if (pci_dma_mapping_error(sc->pdev, bf->skbaddr)) {
ATH5K_ERR(sc, "beacon DMA mapping failed\n");
return -EIO;
}
ds = bf->desc;
antenna = ah->ah_tx_ant;
flags = AR5K_TXDESC_NOACK;
if (sc->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) {
ds->ds_link = bf->daddr; /* self-linked */
flags |= AR5K_TXDESC_VEOL;
} else
ds->ds_link = 0;
/*
* If we use multiple antennas on AP and use
* the Sectored AP scenario, switch antenna every
* 4 beacons to make sure everybody hears our AP.
* When a client tries to associate, hw will keep
* track of the tx antenna to be used for this client
* automaticaly, based on ACKed packets.
*
* Note: AP still listens and transmits RTS on the
* default antenna which is supposed to be an omni.
*
* Note2: On sectored scenarios it's possible to have
* multiple antennas (1omni -the default- and 14 sectors)
* so if we choose to actually support this mode we need
* to allow user to set how many antennas we have and tweak
* the code below to send beacons on all of them.
*/
if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP)
antenna = sc->bsent & 4 ? 2 : 1;
/* FIXME: If we are in g mode and rate is a CCK rate
* subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
* from tx power (value is in dB units already) */
ds->ds_data = bf->skbaddr;
ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
ieee80211_get_hdrlen_from_skb(skb), padsize,
AR5K_PKT_TYPE_BEACON, (sc->power_level * 2),
ieee80211_get_tx_rate(sc->hw, info)->hw_value,
1, AR5K_TXKEYIX_INVALID,
antenna, flags, 0, 0);
if (ret)
goto err_unmap;
return 0;
err_unmap:
pci_unmap_single(sc->pdev, bf->skbaddr, skb->len, PCI_DMA_TODEVICE);
return ret;
}
/*
* Transmit a beacon frame at SWBA. Dynamic updates to the
* frame contents are done as needed and the slot time is
* also adjusted based on current state.
*
* This is called from software irq context (beacontq or restq
* tasklets) or user context from ath5k_beacon_config.
*/
static void
ath5k_beacon_send(struct ath5k_softc *sc)
{
struct ath5k_buf *bf = sc->bbuf;
struct ath5k_hw *ah = sc->ah;
struct sk_buff *skb;
ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON, "in beacon_send\n");
if (unlikely(bf->skb == NULL || sc->opmode == NL80211_IFTYPE_STATION ||
sc->opmode == NL80211_IFTYPE_MONITOR)) {
ATH5K_WARN(sc, "bf=%p bf_skb=%p\n", bf, bf ? bf->skb : NULL);
return;
}
/*
* Check if the previous beacon has gone out. If
* not don't don't try to post another, skip this
* period and wait for the next. Missed beacons
* indicate a problem and should not occur. If we
* miss too many consecutive beacons reset the device.
*/
if (unlikely(ath5k_hw_num_tx_pending(ah, sc->bhalq) != 0)) {
sc->bmisscount++;
ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
"missed %u consecutive beacons\n", sc->bmisscount);
if (sc->bmisscount > 10) { /* NB: 10 is a guess */
ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
"stuck beacon time (%u missed)\n",
sc->bmisscount);
tasklet_schedule(&sc->restq);
}
return;
}
if (unlikely(sc->bmisscount != 0)) {
ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
"resume beacon xmit after %u misses\n",
sc->bmisscount);
sc->bmisscount = 0;
}
/*
* Stop any current dma and put the new frame on the queue.
* This should never fail since we check above that no frames
* are still pending on the queue.
*/
if (unlikely(ath5k_hw_stop_tx_dma(ah, sc->bhalq))) {
ATH5K_WARN(sc, "beacon queue %u didn't start/stop ?\n", sc->bhalq);
/* NB: hw still stops DMA, so proceed */
}
/* refresh the beacon for AP mode */
if (sc->opmode == NL80211_IFTYPE_AP)
ath5k_beacon_update(sc->hw, sc->vif);
ath5k_hw_set_txdp(ah, sc->bhalq, bf->daddr);
ath5k_hw_start_tx_dma(ah, sc->bhalq);
ATH5K_DBG(sc, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
sc->bhalq, (unsigned long long)bf->daddr, bf->desc);
skb = ieee80211_get_buffered_bc(sc->hw, sc->vif);
while (skb) {
ath5k_tx_queue(sc->hw, skb, sc->cabq);
skb = ieee80211_get_buffered_bc(sc->hw, sc->vif);
}
sc->bsent++;
}
/**
* ath5k_beacon_update_timers - update beacon timers
*
* @sc: struct ath5k_softc pointer we are operating on
* @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
* beacon timer update based on the current HW TSF.
*
* Calculate the next target beacon transmit time (TBTT) based on the timestamp
* of a received beacon or the current local hardware TSF and write it to the
* beacon timer registers.
*
* This is called in a variety of situations, e.g. when a beacon is received,
* when a TSF update has been detected, but also when an new IBSS is created or
* when we otherwise know we have to update the timers, but we keep it in this
* function to have it all together in one place.
*/
static void
ath5k_beacon_update_timers(struct ath5k_softc *sc, u64 bc_tsf)
{
struct ath5k_hw *ah = sc->ah;
u32 nexttbtt, intval, hw_tu, bc_tu;
u64 hw_tsf;
intval = sc->bintval & AR5K_BEACON_PERIOD;
if (WARN_ON(!intval))
return;
/* beacon TSF converted to TU */
bc_tu = TSF_TO_TU(bc_tsf);
/* current TSF converted to TU */
hw_tsf = ath5k_hw_get_tsf64(ah);
hw_tu = TSF_TO_TU(hw_tsf);
#define FUDGE 3
/* we use FUDGE to make sure the next TBTT is ahead of the current TU */
if (bc_tsf == -1) {
/*
* no beacons received, called internally.
* just need to refresh timers based on HW TSF.
*/
nexttbtt = roundup(hw_tu + FUDGE, intval);
} else if (bc_tsf == 0) {
/*
* no beacon received, probably called by ath5k_reset_tsf().
* reset TSF to start with 0.
*/
nexttbtt = intval;
intval |= AR5K_BEACON_RESET_TSF;
} else if (bc_tsf > hw_tsf) {
/*
* beacon received, SW merge happend but HW TSF not yet updated.
* not possible to reconfigure timers yet, but next time we
* receive a beacon with the same BSSID, the hardware will
* automatically update the TSF and then we need to reconfigure
* the timers.
*/
ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
"need to wait for HW TSF sync\n");
return;
} else {
/*
* most important case for beacon synchronization between STA.
*
* beacon received and HW TSF has been already updated by HW.
* update next TBTT based on the TSF of the beacon, but make
* sure it is ahead of our local TSF timer.
*/
nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
}
#undef FUDGE
sc->nexttbtt = nexttbtt;
intval |= AR5K_BEACON_ENA;
ath5k_hw_init_beacon(ah, nexttbtt, intval);
/*
* debugging output last in order to preserve the time critical aspect
* of this function
*/
if (bc_tsf == -1)
ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
"reconfigured timers based on HW TSF\n");
else if (bc_tsf == 0)
ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
"reset HW TSF and timers\n");
else
ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
"updated timers based on beacon TSF\n");
ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
"bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
(unsigned long long) bc_tsf,
(unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
intval & AR5K_BEACON_PERIOD,
intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
}
/**
* ath5k_beacon_config - Configure the beacon queues and interrupts
*
* @sc: struct ath5k_softc pointer we are operating on
*
* In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
* interrupts to detect TSF updates only.
*/
static void
ath5k_beacon_config(struct ath5k_softc *sc)
{
struct ath5k_hw *ah = sc->ah;
unsigned long flags;
spin_lock_irqsave(&sc->block, flags);
sc->bmisscount = 0;
sc->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
if (sc->enable_beacon) {
/*
* In IBSS mode we use a self-linked tx descriptor and let the
* hardware send the beacons automatically. We have to load it
* only once here.
* We use the SWBA interrupt only to keep track of the beacon
* timers in order to detect automatic TSF updates.
*/
ath5k_beaconq_config(sc);
sc->imask |= AR5K_INT_SWBA;
if (sc->opmode == NL80211_IFTYPE_ADHOC) {
if (ath5k_hw_hasveol(ah))
ath5k_beacon_send(sc);
} else
ath5k_beacon_update_timers(sc, -1);
} else {
ath5k_hw_stop_tx_dma(sc->ah, sc->bhalq);
}
ath5k_hw_set_imr(ah, sc->imask);
mmiowb();
spin_unlock_irqrestore(&sc->block, flags);
}
static void ath5k_tasklet_beacon(unsigned long data)
{
struct ath5k_softc *sc = (struct ath5k_softc *) data;
/*
* Software beacon alert--time to send a beacon.
*
* In IBSS mode we use this interrupt just to
* keep track of the next TBTT (target beacon
* transmission time) in order to detect wether
* automatic TSF updates happened.
*/
if (sc->opmode == NL80211_IFTYPE_ADHOC) {
/* XXX: only if VEOL suppported */
u64 tsf = ath5k_hw_get_tsf64(sc->ah);
sc->nexttbtt += sc->bintval;
ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
"SWBA nexttbtt: %x hw_tu: %x "
"TSF: %llx\n",
sc->nexttbtt,
TSF_TO_TU(tsf),
(unsigned long long) tsf);
} else {
spin_lock(&sc->block);
ath5k_beacon_send(sc);
spin_unlock(&sc->block);
}
}
/********************\
* Interrupt handling *
\********************/
static int
ath5k_init(struct ath5k_softc *sc)
{
struct ath5k_hw *ah = sc->ah;
int ret, i;
mutex_lock(&sc->lock);
ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "mode %d\n", sc->opmode);
/*
* Stop anything previously setup. This is safe
* no matter this is the first time through or not.
*/
ath5k_stop_locked(sc);
/* Set PHY calibration interval */
ah->ah_cal_intval = ath5k_calinterval;
/*
* The basic interface to setting the hardware in a good
* state is ``reset''. On return the hardware is known to
* be powered up and with interrupts disabled. This must
* be followed by initialization of the appropriate bits
* and then setup of the interrupt mask.
*/
sc->curchan = sc->hw->conf.channel;
sc->curband = &sc->sbands[sc->curchan->band];
sc->imask = AR5K_INT_RXOK | AR5K_INT_RXERR | AR5K_INT_RXEOL |
AR5K_INT_RXORN | AR5K_INT_TXDESC | AR5K_INT_TXEOL |
AR5K_INT_FATAL | AR5K_INT_GLOBAL | AR5K_INT_SWI;
ret = ath5k_reset(sc, NULL);
if (ret)
goto done;
ath5k_rfkill_hw_start(ah);
/*
* Reset the key cache since some parts do not reset the
* contents on initial power up or resume from suspend.
*/
for (i = 0; i < AR5K_KEYTABLE_SIZE; i++)
ath5k_hw_reset_key(ah, i);
/* Set ack to be sent at low bit-rates */
ath5k_hw_set_ack_bitrate_high(ah, false);
ret = 0;
done:
mmiowb();
mutex_unlock(&sc->lock);
return ret;
}
static int
ath5k_stop_locked(struct ath5k_softc *sc)
{
struct ath5k_hw *ah = sc->ah;
ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "invalid %u\n",
test_bit(ATH_STAT_INVALID, sc->status));
/*
* Shutdown the hardware and driver:
* stop output from above
* disable interrupts
* turn off timers
* turn off the radio
* clear transmit machinery
* clear receive machinery
* drain and release tx queues
* reclaim beacon resources
* power down hardware
*
* Note that some of this work is not possible if the
* hardware is gone (invalid).
*/
ieee80211_stop_queues(sc->hw);
if (!test_bit(ATH_STAT_INVALID, sc->status)) {
ath5k_led_off(sc);
ath5k_hw_set_imr(ah, 0);
synchronize_irq(sc->pdev->irq);
}
ath5k_txq_cleanup(sc);
if (!test_bit(ATH_STAT_INVALID, sc->status)) {
ath5k_rx_stop(sc);
ath5k_hw_phy_disable(ah);
} else
sc->rxlink = NULL;
return 0;
}
/*
* Stop the device, grabbing the top-level lock to protect
* against concurrent entry through ath5k_init (which can happen
* if another thread does a system call and the thread doing the
* stop is preempted).
*/
static int
ath5k_stop_hw(struct ath5k_softc *sc)
{
int ret;
mutex_lock(&sc->lock);
ret = ath5k_stop_locked(sc);
if (ret == 0 && !test_bit(ATH_STAT_INVALID, sc->status)) {
/*
* Don't set the card in full sleep mode!
*
* a) When the device is in this state it must be carefully
* woken up or references to registers in the PCI clock
* domain may freeze the bus (and system). This varies
* by chip and is mostly an issue with newer parts
* (madwifi sources mentioned srev >= 0x78) that go to
* sleep more quickly.
*
* b) On older chips full sleep results a weird behaviour
* during wakeup. I tested various cards with srev < 0x78
* and they don't wake up after module reload, a second
* module reload is needed to bring the card up again.
*
* Until we figure out what's going on don't enable
* full chip reset on any chip (this is what Legacy HAL
* and Sam's HAL do anyway). Instead Perform a full reset
* on the device (same as initial state after attach) and
* leave it idle (keep MAC/BB on warm reset) */
ret = ath5k_hw_on_hold(sc->ah);
ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
"putting device to sleep\n");
}
ath5k_txbuf_free(sc, sc->bbuf);
mmiowb();
mutex_unlock(&sc->lock);
tasklet_kill(&sc->rxtq);
tasklet_kill(&sc->txtq);
tasklet_kill(&sc->restq);
tasklet_kill(&sc->calib);
tasklet_kill(&sc->beacontq);
ath5k_rfkill_hw_stop(sc->ah);
return ret;
}
static irqreturn_t
ath5k_intr(int irq, void *dev_id)
{
struct ath5k_softc *sc = dev_id;
struct ath5k_hw *ah = sc->ah;
enum ath5k_int status;
unsigned int counter = 1000;
if (unlikely(test_bit(ATH_STAT_INVALID, sc->status) ||
!ath5k_hw_is_intr_pending(ah)))
return IRQ_NONE;
do {
ath5k_hw_get_isr(ah, &status); /* NB: clears IRQ too */
ATH5K_DBG(sc, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
status, sc->imask);
if (unlikely(status & AR5K_INT_FATAL)) {
/*
* Fatal errors are unrecoverable.
* Typically these are caused by DMA errors.
*/
tasklet_schedule(&sc->restq);
} else if (unlikely(status & AR5K_INT_RXORN)) {
tasklet_schedule(&sc->restq);
} else {
if (status & AR5K_INT_SWBA) {
tasklet_hi_schedule(&sc->beacontq);
}
if (status & AR5K_INT_RXEOL) {
/*
* NB: the hardware should re-read the link when
* RXE bit is written, but it doesn't work at
* least on older hardware revs.
*/
sc->rxlink = NULL;
}
if (status & AR5K_INT_TXURN) {
/* bump tx trigger level */
ath5k_hw_update_tx_triglevel(ah, true);
}
if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR))
tasklet_schedule(&sc->rxtq);
if (status & (AR5K_INT_TXOK | AR5K_INT_TXDESC
| AR5K_INT_TXERR | AR5K_INT_TXEOL))
tasklet_schedule(&sc->txtq);
if (status & AR5K_INT_BMISS) {
/* TODO */
}
if (status & AR5K_INT_SWI) {
tasklet_schedule(&sc->calib);
}
if (status & AR5K_INT_MIB) {
/*
* These stats are also used for ANI i think
* so how about updating them more often ?
*/
ath5k_hw_update_mib_counters(ah, &sc->ll_stats);
}
if (status & AR5K_INT_GPIO)
tasklet_schedule(&sc->rf_kill.toggleq);
}
} while (ath5k_hw_is_intr_pending(ah) && --counter > 0);
if (unlikely(!counter))
ATH5K_WARN(sc, "too many interrupts, giving up for now\n");
ath5k_hw_calibration_poll(ah);
return IRQ_HANDLED;
}
static void
ath5k_tasklet_reset(unsigned long data)
{
struct ath5k_softc *sc = (void *)data;
ath5k_reset_wake(sc);
}
/*
* Periodically recalibrate the PHY to account
* for temperature/environment changes.
*/
static void
ath5k_tasklet_calibrate(unsigned long data)
{
struct ath5k_softc *sc = (void *)data;
struct ath5k_hw *ah = sc->ah;
/* Only full calibration for now */
if (ah->ah_swi_mask != AR5K_SWI_FULL_CALIBRATION)
return;
/* Stop queues so that calibration
* doesn't interfere with tx */
ieee80211_stop_queues(sc->hw);
ATH5K_DBG(sc, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
ieee80211_frequency_to_channel(sc->curchan->center_freq),
sc->curchan->hw_value);
if (ath5k_hw_gainf_calibrate(ah) == AR5K_RFGAIN_NEED_CHANGE) {
/*
* Rfgain is out of bounds, reset the chip
* to load new gain values.
*/
ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "calibration, resetting\n");
ath5k_reset_wake(sc);
}
if (ath5k_hw_phy_calibrate(ah, sc->curchan))
ATH5K_ERR(sc, "calibration of channel %u failed\n",
ieee80211_frequency_to_channel(
sc->curchan->center_freq));
ah->ah_swi_mask = 0;
/* Wake queues */
ieee80211_wake_queues(sc->hw);
}
/********************\
* Mac80211 functions *
\********************/
static int
ath5k_tx(struct ieee80211_hw *hw, struct sk_buff *skb)
{
struct ath5k_softc *sc = hw->priv;
return ath5k_tx_queue(hw, skb, sc->txq);
}
static int ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb,
struct ath5k_txq *txq)
{
struct ath5k_softc *sc = hw->priv;
struct ath5k_buf *bf;
unsigned long flags;
int padsize;
ath5k_debug_dump_skb(sc, skb, "TX ", 1);
if (sc->opmode == NL80211_IFTYPE_MONITOR)
ATH5K_DBG(sc, ATH5K_DEBUG_XMIT, "tx in monitor (scan?)\n");
/*
* the hardware expects the header padded to 4 byte boundaries
* if this is not the case we add the padding after the header
*/
padsize = ath5k_add_padding(skb);
if (padsize < 0) {
ATH5K_ERR(sc, "tx hdrlen not %%4: not enough"
" headroom to pad");
goto drop_packet;
}
spin_lock_irqsave(&sc->txbuflock, flags);
if (list_empty(&sc->txbuf)) {
ATH5K_ERR(sc, "no further txbuf available, dropping packet\n");
spin_unlock_irqrestore(&sc->txbuflock, flags);
ieee80211_stop_queue(hw, skb_get_queue_mapping(skb));
goto drop_packet;
}
bf = list_first_entry(&sc->txbuf, struct ath5k_buf, list);
list_del(&bf->list);
sc->txbuf_len--;
if (list_empty(&sc->txbuf))
ieee80211_stop_queues(hw);
spin_unlock_irqrestore(&sc->txbuflock, flags);
bf->skb = skb;
if (ath5k_txbuf_setup(sc, bf, txq, padsize)) {
bf->skb = NULL;
spin_lock_irqsave(&sc->txbuflock, flags);
list_add_tail(&bf->list, &sc->txbuf);
sc->txbuf_len++;
spin_unlock_irqrestore(&sc->txbuflock, flags);
goto drop_packet;
}
return NETDEV_TX_OK;
drop_packet:
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
/*
* Reset the hardware. If chan is not NULL, then also pause rx/tx
* and change to the given channel.
*/
static int
ath5k_reset(struct ath5k_softc *sc, struct ieee80211_channel *chan)
{
struct ath5k_hw *ah = sc->ah;
int ret;
ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "resetting\n");
if (chan) {
ath5k_hw_set_imr(ah, 0);
ath5k_txq_cleanup(sc);
ath5k_rx_stop(sc);
sc->curchan = chan;
sc->curband = &sc->sbands[chan->band];
}
ret = ath5k_hw_reset(ah, sc->opmode, sc->curchan, chan != NULL);
if (ret) {
ATH5K_ERR(sc, "can't reset hardware (%d)\n", ret);
goto err;
}
ret = ath5k_rx_start(sc);
if (ret) {
ATH5K_ERR(sc, "can't start recv logic\n");
goto err;
}
/*
* Change channels and update the h/w rate map if we're switching;
* e.g. 11a to 11b/g.
*
* We may be doing a reset in response to an ioctl that changes the
* channel so update any state that might change as a result.
*
* XXX needed?
*/
/* ath5k_chan_change(sc, c); */
ath5k_beacon_config(sc);
/* intrs are enabled by ath5k_beacon_config */
return 0;
err:
return ret;
}
static int
ath5k_reset_wake(struct ath5k_softc *sc)
{
int ret;
ret = ath5k_reset(sc, sc->curchan);
if (!ret)
ieee80211_wake_queues(sc->hw);
return ret;
}
static int ath5k_start(struct ieee80211_hw *hw)
{
return ath5k_init(hw->priv);
}
static void ath5k_stop(struct ieee80211_hw *hw)
{
ath5k_stop_hw(hw->priv);
}
static int ath5k_add_interface(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct ath5k_softc *sc = hw->priv;
int ret;
mutex_lock(&sc->lock);
if (sc->vif) {
ret = 0;
goto end;
}
sc->vif = vif;
switch (vif->type) {
case NL80211_IFTYPE_AP:
case NL80211_IFTYPE_STATION:
case NL80211_IFTYPE_ADHOC:
case NL80211_IFTYPE_MESH_POINT:
case NL80211_IFTYPE_MONITOR:
sc->opmode = vif->type;
break;
default:
ret = -EOPNOTSUPP;
goto end;
}
ATH5K_DBG(sc, ATH5K_DEBUG_MODE, "add interface mode %d\n", sc->opmode);
ath5k_hw_set_lladdr(sc->ah, vif->addr);
ath5k_mode_setup(sc);
ret = 0;
end:
mutex_unlock(&sc->lock);
return ret;
}
static void
ath5k_remove_interface(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct ath5k_softc *sc = hw->priv;
u8 mac[ETH_ALEN] = {};
mutex_lock(&sc->lock);
if (sc->vif != vif)
goto end;
ath5k_hw_set_lladdr(sc->ah, mac);
sc->vif = NULL;
end:
mutex_unlock(&sc->lock);
}
/*
* TODO: Phy disable/diversity etc
*/
static int
ath5k_config(struct ieee80211_hw *hw, u32 changed)
{
struct ath5k_softc *sc = hw->priv;
struct ath5k_hw *ah = sc->ah;
struct ieee80211_conf *conf = &hw->conf;
int ret = 0;
mutex_lock(&sc->lock);
if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
ret = ath5k_chan_set(sc, conf->channel);
if (ret < 0)
goto unlock;
}
if ((changed & IEEE80211_CONF_CHANGE_POWER) &&
(sc->power_level != conf->power_level)) {
sc->power_level = conf->power_level;
/* Half dB steps */
ath5k_hw_set_txpower_limit(ah, (conf->power_level * 2));
}
/* TODO:
* 1) Move this on config_interface and handle each case
* separately eg. when we have only one STA vif, use
* AR5K_ANTMODE_SINGLE_AP
*
* 2) Allow the user to change antenna mode eg. when only
* one antenna is present
*
* 3) Allow the user to set default/tx antenna when possible
*
* 4) Default mode should handle 90% of the cases, together
* with fixed a/b and single AP modes we should be able to
* handle 99%. Sectored modes are extreme cases and i still
* haven't found a usage for them. If we decide to support them,
* then we must allow the user to set how many tx antennas we
* have available
*/
ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
unlock:
mutex_unlock(&sc->lock);
return ret;
}
static u64 ath5k_prepare_multicast(struct ieee80211_hw *hw,
int mc_count, struct dev_addr_list *mclist)
{
u32 mfilt[2], val;
int i;
u8 pos;
mfilt[0] = 0;
mfilt[1] = 1;
for (i = 0; i < mc_count; i++) {
if (!mclist)
break;
/* calculate XOR of eight 6-bit values */
val = get_unaligned_le32(mclist->dmi_addr + 0);
pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
val = get_unaligned_le32(mclist->dmi_addr + 3);
pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
pos &= 0x3f;
mfilt[pos / 32] |= (1 << (pos % 32));
/* XXX: we might be able to just do this instead,
* but not sure, needs testing, if we do use this we'd
* neet to inform below to not reset the mcast */
/* ath5k_hw_set_mcast_filterindex(ah,
* mclist->dmi_addr[5]); */
mclist = mclist->next;
}
return ((u64)(mfilt[1]) << 32) | mfilt[0];
}
#define SUPPORTED_FIF_FLAGS \
FIF_PROMISC_IN_BSS | FIF_ALLMULTI | FIF_FCSFAIL | \
FIF_PLCPFAIL | FIF_CONTROL | FIF_OTHER_BSS | \
FIF_BCN_PRBRESP_PROMISC
/*
* o always accept unicast, broadcast, and multicast traffic
* o multicast traffic for all BSSIDs will be enabled if mac80211
* says it should be
* o maintain current state of phy ofdm or phy cck error reception.
* If the hardware detects any of these type of errors then
* ath5k_hw_get_rx_filter() will pass to us the respective
* hardware filters to be able to receive these type of frames.
* o probe request frames are accepted only when operating in
* hostap, adhoc, or monitor modes
* o enable promiscuous mode according to the interface state
* o accept beacons:
* - when operating in adhoc mode so the 802.11 layer creates
* node table entries for peers,
* - when operating in station mode for collecting rssi data when
* the station is otherwise quiet, or
* - when scanning
*/
static void ath5k_configure_filter(struct ieee80211_hw *hw,
unsigned int changed_flags,
unsigned int *new_flags,
u64 multicast)
{
struct ath5k_softc *sc = hw->priv;
struct ath5k_hw *ah = sc->ah;
u32 mfilt[2], rfilt;
mutex_lock(&sc->lock);
mfilt[0] = multicast;
mfilt[1] = multicast >> 32;
/* Only deal with supported flags */
changed_flags &= SUPPORTED_FIF_FLAGS;
*new_flags &= SUPPORTED_FIF_FLAGS;
/* If HW detects any phy or radar errors, leave those filters on.
* Also, always enable Unicast, Broadcasts and Multicast
* XXX: move unicast, bssid broadcasts and multicast to mac80211 */
rfilt = (ath5k_hw_get_rx_filter(ah) & (AR5K_RX_FILTER_PHYERR)) |
(AR5K_RX_FILTER_UCAST | AR5K_RX_FILTER_BCAST |
AR5K_RX_FILTER_MCAST);
if (changed_flags & (FIF_PROMISC_IN_BSS | FIF_OTHER_BSS)) {
if (*new_flags & FIF_PROMISC_IN_BSS) {
rfilt |= AR5K_RX_FILTER_PROM;
__set_bit(ATH_STAT_PROMISC, sc->status);
} else {
__clear_bit(ATH_STAT_PROMISC, sc->status);
}
}
/* Note, AR5K_RX_FILTER_MCAST is already enabled */
if (*new_flags & FIF_ALLMULTI) {
mfilt[0] = ~0;
mfilt[1] = ~0;
}
/* This is the best we can do */
if (*new_flags & (FIF_FCSFAIL | FIF_PLCPFAIL))
rfilt |= AR5K_RX_FILTER_PHYERR;
/* FIF_BCN_PRBRESP_PROMISC really means to enable beacons
* and probes for any BSSID, this needs testing */
if (*new_flags & FIF_BCN_PRBRESP_PROMISC)
rfilt |= AR5K_RX_FILTER_BEACON | AR5K_RX_FILTER_PROBEREQ;
/* FIF_CONTROL doc says that if FIF_PROMISC_IN_BSS is not
* set we should only pass on control frames for this
* station. This needs testing. I believe right now this
* enables *all* control frames, which is OK.. but
* but we should see if we can improve on granularity */
if (*new_flags & FIF_CONTROL)
rfilt |= AR5K_RX_FILTER_CONTROL;
/* Additional settings per mode -- this is per ath5k */
/* XXX move these to mac80211, and add a beacon IFF flag to mac80211 */
switch (sc->opmode) {
case NL80211_IFTYPE_MESH_POINT:
case NL80211_IFTYPE_MONITOR:
rfilt |= AR5K_RX_FILTER_CONTROL |
AR5K_RX_FILTER_BEACON |
AR5K_RX_FILTER_PROBEREQ |
AR5K_RX_FILTER_PROM;
break;
case NL80211_IFTYPE_AP:
case NL80211_IFTYPE_ADHOC:
rfilt |= AR5K_RX_FILTER_PROBEREQ |
AR5K_RX_FILTER_BEACON;
break;
case NL80211_IFTYPE_STATION:
if (sc->assoc)
rfilt |= AR5K_RX_FILTER_BEACON;
default:
break;
}
/* Set filters */
ath5k_hw_set_rx_filter(ah, rfilt);
/* Set multicast bits */
ath5k_hw_set_mcast_filter(ah, mfilt[0], mfilt[1]);
/* Set the cached hw filter flags, this will alter actually
* be set in HW */
sc->filter_flags = rfilt;
mutex_unlock(&sc->lock);
}
static int
ath5k_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
struct ieee80211_vif *vif, struct ieee80211_sta *sta,
struct ieee80211_key_conf *key)
{
struct ath5k_softc *sc = hw->priv;
struct ath5k_hw *ah = sc->ah;
struct ath_common *common = ath5k_hw_common(ah);
int ret = 0;
if (modparam_nohwcrypt)
return -EOPNOTSUPP;
if (sc->opmode == NL80211_IFTYPE_AP)
return -EOPNOTSUPP;
switch (key->alg) {
case ALG_WEP:
case ALG_TKIP:
break;
case ALG_CCMP:
if (sc->ah->ah_aes_support)
break;
return -EOPNOTSUPP;
default:
WARN_ON(1);
return -EINVAL;
}
mutex_lock(&sc->lock);
switch (cmd) {
case SET_KEY:
ret = ath5k_hw_set_key(sc->ah, key->keyidx, key,
sta ? sta->addr : NULL);
if (ret) {
ATH5K_ERR(sc, "can't set the key\n");
goto unlock;
}
__set_bit(key->keyidx, common->keymap);
key->hw_key_idx = key->keyidx;
key->flags |= (IEEE80211_KEY_FLAG_GENERATE_IV |
IEEE80211_KEY_FLAG_GENERATE_MMIC);
break;
case DISABLE_KEY:
ath5k_hw_reset_key(sc->ah, key->keyidx);
__clear_bit(key->keyidx, common->keymap);
break;
default:
ret = -EINVAL;
goto unlock;
}
unlock:
mmiowb();
mutex_unlock(&sc->lock);
return ret;
}
static int
ath5k_get_stats(struct ieee80211_hw *hw,
struct ieee80211_low_level_stats *stats)
{
struct ath5k_softc *sc = hw->priv;
struct ath5k_hw *ah = sc->ah;
/* Force update */
ath5k_hw_update_mib_counters(ah, &sc->ll_stats);
memcpy(stats, &sc->ll_stats, sizeof(sc->ll_stats));
return 0;
}
static u64
ath5k_get_tsf(struct ieee80211_hw *hw)
{
struct ath5k_softc *sc = hw->priv;
return ath5k_hw_get_tsf64(sc->ah);
}
static void
ath5k_set_tsf(struct ieee80211_hw *hw, u64 tsf)
{
struct ath5k_softc *sc = hw->priv;
ath5k_hw_set_tsf64(sc->ah, tsf);
}
static void
ath5k_reset_tsf(struct ieee80211_hw *hw)
{
struct ath5k_softc *sc = hw->priv;
/*
* in IBSS mode we need to update the beacon timers too.
* this will also reset the TSF if we call it with 0
*/
if (sc->opmode == NL80211_IFTYPE_ADHOC)
ath5k_beacon_update_timers(sc, 0);
else
ath5k_hw_reset_tsf(sc->ah);
}
/*
* Updates the beacon that is sent by ath5k_beacon_send. For adhoc,
* this is called only once at config_bss time, for AP we do it every
* SWBA interrupt so that the TIM will reflect buffered frames.
*
* Called with the beacon lock.
*/
static int
ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
{
int ret;
struct ath5k_softc *sc = hw->priv;
struct sk_buff *skb;
if (WARN_ON(!vif)) {
ret = -EINVAL;
goto out;
}
skb = ieee80211_beacon_get(hw, vif);
if (!skb) {
ret = -ENOMEM;
goto out;
}
ath5k_debug_dump_skb(sc, skb, "BC ", 1);
ath5k_txbuf_free(sc, sc->bbuf);
sc->bbuf->skb = skb;
ret = ath5k_beacon_setup(sc, sc->bbuf);
if (ret)
sc->bbuf->skb = NULL;
out:
return ret;
}
static void
set_beacon_filter(struct ieee80211_hw *hw, bool enable)
{
struct ath5k_softc *sc = hw->priv;
struct ath5k_hw *ah = sc->ah;
u32 rfilt;
rfilt = ath5k_hw_get_rx_filter(ah);
if (enable)
rfilt |= AR5K_RX_FILTER_BEACON;
else
rfilt &= ~AR5K_RX_FILTER_BEACON;
ath5k_hw_set_rx_filter(ah, rfilt);
sc->filter_flags = rfilt;
}
static void ath5k_bss_info_changed(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_bss_conf *bss_conf,
u32 changes)
{
struct ath5k_softc *sc = hw->priv;
struct ath5k_hw *ah = sc->ah;
struct ath_common *common = ath5k_hw_common(ah);
unsigned long flags;
mutex_lock(&sc->lock);
if (WARN_ON(sc->vif != vif))
goto unlock;
if (changes & BSS_CHANGED_BSSID) {
/* Cache for later use during resets */
memcpy(common->curbssid, bss_conf->bssid, ETH_ALEN);
common->curaid = 0;
ath5k_hw_set_associd(ah);
mmiowb();
}
if (changes & BSS_CHANGED_BEACON_INT)
sc->bintval = bss_conf->beacon_int;
if (changes & BSS_CHANGED_ASSOC) {
sc->assoc = bss_conf->assoc;
if (sc->opmode == NL80211_IFTYPE_STATION)
set_beacon_filter(hw, sc->assoc);
ath5k_hw_set_ledstate(sc->ah, sc->assoc ?
AR5K_LED_ASSOC : AR5K_LED_INIT);
if (bss_conf->assoc) {
ATH5K_DBG(sc, ATH5K_DEBUG_ANY,
"Bss Info ASSOC %d, bssid: %pM\n",
bss_conf->aid, common->curbssid);
common->curaid = bss_conf->aid;
ath5k_hw_set_associd(ah);
/* Once ANI is available you would start it here */
}
}
if (changes & BSS_CHANGED_BEACON) {
spin_lock_irqsave(&sc->block, flags);
ath5k_beacon_update(hw, vif);
spin_unlock_irqrestore(&sc->block, flags);
}
if (changes & BSS_CHANGED_BEACON_ENABLED)
sc->enable_beacon = bss_conf->enable_beacon;
if (changes & (BSS_CHANGED_BEACON | BSS_CHANGED_BEACON_ENABLED |
BSS_CHANGED_BEACON_INT))
ath5k_beacon_config(sc);
unlock:
mutex_unlock(&sc->lock);
}
static void ath5k_sw_scan_start(struct ieee80211_hw *hw)
{
struct ath5k_softc *sc = hw->priv;
if (!sc->assoc)
ath5k_hw_set_ledstate(sc->ah, AR5K_LED_SCAN);
}
static void ath5k_sw_scan_complete(struct ieee80211_hw *hw)
{
struct ath5k_softc *sc = hw->priv;
ath5k_hw_set_ledstate(sc->ah, sc->assoc ?
AR5K_LED_ASSOC : AR5K_LED_INIT);
}
/**
* ath5k_set_coverage_class - Set IEEE 802.11 coverage class
*
* @hw: struct ieee80211_hw pointer
* @coverage_class: IEEE 802.11 coverage class number
*
* Mac80211 callback. Sets slot time, ACK timeout and CTS timeout for given
* coverage class. The values are persistent, they are restored after device
* reset.
*/
static void ath5k_set_coverage_class(struct ieee80211_hw *hw, u8 coverage_class)
{
struct ath5k_softc *sc = hw->priv;
mutex_lock(&sc->lock);
ath5k_hw_set_coverage_class(sc->ah, coverage_class);
mutex_unlock(&sc->lock);
}