| /******************************************************************************* |
| |
| |
| Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. |
| |
| This program is free software; you can redistribute it and/or modify it |
| under the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 2 of the License, or (at your option) |
| any later version. |
| |
| This program is distributed in the hope that it will be useful, but WITHOUT |
| ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| more details. |
| |
| You should have received a copy of the GNU General Public License along with |
| this program; if not, write to the Free Software Foundation, Inc., 59 |
| Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| |
| The full GNU General Public License is included in this distribution in the |
| file called LICENSE. |
| |
| Contact Information: |
| Linux NICS <linux.nics@intel.com> |
| Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| |
| *******************************************************************************/ |
| |
| /* ethtool support for e1000 */ |
| |
| #include "e1000.h" |
| |
| #include <asm/uaccess.h> |
| |
| extern char e1000_driver_name[]; |
| extern char e1000_driver_version[]; |
| |
| extern int e1000_up(struct e1000_adapter *adapter); |
| extern void e1000_down(struct e1000_adapter *adapter); |
| extern void e1000_reset(struct e1000_adapter *adapter); |
| extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx); |
| extern int e1000_setup_all_rx_resources(struct e1000_adapter *adapter); |
| extern int e1000_setup_all_tx_resources(struct e1000_adapter *adapter); |
| extern void e1000_free_all_rx_resources(struct e1000_adapter *adapter); |
| extern void e1000_free_all_tx_resources(struct e1000_adapter *adapter); |
| extern void e1000_update_stats(struct e1000_adapter *adapter); |
| |
| struct e1000_stats { |
| char stat_string[ETH_GSTRING_LEN]; |
| int sizeof_stat; |
| int stat_offset; |
| }; |
| |
| #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \ |
| offsetof(struct e1000_adapter, m) |
| static const struct e1000_stats e1000_gstrings_stats[] = { |
| { "rx_packets", E1000_STAT(net_stats.rx_packets) }, |
| { "tx_packets", E1000_STAT(net_stats.tx_packets) }, |
| { "rx_bytes", E1000_STAT(net_stats.rx_bytes) }, |
| { "tx_bytes", E1000_STAT(net_stats.tx_bytes) }, |
| { "rx_errors", E1000_STAT(net_stats.rx_errors) }, |
| { "tx_errors", E1000_STAT(net_stats.tx_errors) }, |
| { "rx_dropped", E1000_STAT(net_stats.rx_dropped) }, |
| { "tx_dropped", E1000_STAT(net_stats.tx_dropped) }, |
| { "multicast", E1000_STAT(net_stats.multicast) }, |
| { "collisions", E1000_STAT(net_stats.collisions) }, |
| { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) }, |
| { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) }, |
| { "rx_crc_errors", E1000_STAT(net_stats.rx_crc_errors) }, |
| { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) }, |
| { "rx_fifo_errors", E1000_STAT(net_stats.rx_fifo_errors) }, |
| { "rx_no_buffer_count", E1000_STAT(stats.rnbc) }, |
| { "rx_missed_errors", E1000_STAT(net_stats.rx_missed_errors) }, |
| { "tx_aborted_errors", E1000_STAT(net_stats.tx_aborted_errors) }, |
| { "tx_carrier_errors", E1000_STAT(net_stats.tx_carrier_errors) }, |
| { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) }, |
| { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) }, |
| { "tx_window_errors", E1000_STAT(net_stats.tx_window_errors) }, |
| { "tx_abort_late_coll", E1000_STAT(stats.latecol) }, |
| { "tx_deferred_ok", E1000_STAT(stats.dc) }, |
| { "tx_single_coll_ok", E1000_STAT(stats.scc) }, |
| { "tx_multi_coll_ok", E1000_STAT(stats.mcc) }, |
| { "rx_long_length_errors", E1000_STAT(stats.roc) }, |
| { "rx_short_length_errors", E1000_STAT(stats.ruc) }, |
| { "rx_align_errors", E1000_STAT(stats.algnerrc) }, |
| { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) }, |
| { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) }, |
| { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) }, |
| { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) }, |
| { "tx_flow_control_xon", E1000_STAT(stats.xontxc) }, |
| { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) }, |
| { "rx_long_byte_count", E1000_STAT(stats.gorcl) }, |
| { "rx_csum_offload_good", E1000_STAT(hw_csum_good) }, |
| { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) }, |
| { "rx_header_split", E1000_STAT(rx_hdr_split) }, |
| }; |
| #define E1000_STATS_LEN \ |
| sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats) |
| static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = { |
| "Register test (offline)", "Eeprom test (offline)", |
| "Interrupt test (offline)", "Loopback test (offline)", |
| "Link test (on/offline)" |
| }; |
| #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN |
| |
| static int |
| e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| |
| if(hw->media_type == e1000_media_type_copper) { |
| |
| ecmd->supported = (SUPPORTED_10baseT_Half | |
| SUPPORTED_10baseT_Full | |
| SUPPORTED_100baseT_Half | |
| SUPPORTED_100baseT_Full | |
| SUPPORTED_1000baseT_Full| |
| SUPPORTED_Autoneg | |
| SUPPORTED_TP); |
| |
| ecmd->advertising = ADVERTISED_TP; |
| |
| if(hw->autoneg == 1) { |
| ecmd->advertising |= ADVERTISED_Autoneg; |
| |
| /* the e1000 autoneg seems to match ethtool nicely */ |
| |
| ecmd->advertising |= hw->autoneg_advertised; |
| } |
| |
| ecmd->port = PORT_TP; |
| ecmd->phy_address = hw->phy_addr; |
| |
| if(hw->mac_type == e1000_82543) |
| ecmd->transceiver = XCVR_EXTERNAL; |
| else |
| ecmd->transceiver = XCVR_INTERNAL; |
| |
| } else { |
| ecmd->supported = (SUPPORTED_1000baseT_Full | |
| SUPPORTED_FIBRE | |
| SUPPORTED_Autoneg); |
| |
| ecmd->advertising = (ADVERTISED_1000baseT_Full | |
| ADVERTISED_FIBRE | |
| ADVERTISED_Autoneg); |
| |
| ecmd->port = PORT_FIBRE; |
| |
| if(hw->mac_type >= e1000_82545) |
| ecmd->transceiver = XCVR_INTERNAL; |
| else |
| ecmd->transceiver = XCVR_EXTERNAL; |
| } |
| |
| if(netif_carrier_ok(adapter->netdev)) { |
| |
| e1000_get_speed_and_duplex(hw, &adapter->link_speed, |
| &adapter->link_duplex); |
| ecmd->speed = adapter->link_speed; |
| |
| /* unfortunatly FULL_DUPLEX != DUPLEX_FULL |
| * and HALF_DUPLEX != DUPLEX_HALF */ |
| |
| if(adapter->link_duplex == FULL_DUPLEX) |
| ecmd->duplex = DUPLEX_FULL; |
| else |
| ecmd->duplex = DUPLEX_HALF; |
| } else { |
| ecmd->speed = -1; |
| ecmd->duplex = -1; |
| } |
| |
| ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) || |
| hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; |
| return 0; |
| } |
| |
| static int |
| e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| |
| if(ecmd->autoneg == AUTONEG_ENABLE) { |
| hw->autoneg = 1; |
| if(hw->media_type == e1000_media_type_fiber) |
| hw->autoneg_advertised = ADVERTISED_1000baseT_Full | |
| ADVERTISED_FIBRE | |
| ADVERTISED_Autoneg; |
| else |
| hw->autoneg_advertised = ADVERTISED_10baseT_Half | |
| ADVERTISED_10baseT_Full | |
| ADVERTISED_100baseT_Half | |
| ADVERTISED_100baseT_Full | |
| ADVERTISED_1000baseT_Full| |
| ADVERTISED_Autoneg | |
| ADVERTISED_TP; |
| ecmd->advertising = hw->autoneg_advertised; |
| } else |
| if(e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) |
| return -EINVAL; |
| |
| /* reset the link */ |
| |
| if(netif_running(adapter->netdev)) { |
| e1000_down(adapter); |
| e1000_reset(adapter); |
| e1000_up(adapter); |
| } else |
| e1000_reset(adapter); |
| |
| return 0; |
| } |
| |
| static void |
| e1000_get_pauseparam(struct net_device *netdev, |
| struct ethtool_pauseparam *pause) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| |
| pause->autoneg = |
| (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); |
| |
| if(hw->fc == e1000_fc_rx_pause) |
| pause->rx_pause = 1; |
| else if(hw->fc == e1000_fc_tx_pause) |
| pause->tx_pause = 1; |
| else if(hw->fc == e1000_fc_full) { |
| pause->rx_pause = 1; |
| pause->tx_pause = 1; |
| } |
| } |
| |
| static int |
| e1000_set_pauseparam(struct net_device *netdev, |
| struct ethtool_pauseparam *pause) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| |
| adapter->fc_autoneg = pause->autoneg; |
| |
| if(pause->rx_pause && pause->tx_pause) |
| hw->fc = e1000_fc_full; |
| else if(pause->rx_pause && !pause->tx_pause) |
| hw->fc = e1000_fc_rx_pause; |
| else if(!pause->rx_pause && pause->tx_pause) |
| hw->fc = e1000_fc_tx_pause; |
| else if(!pause->rx_pause && !pause->tx_pause) |
| hw->fc = e1000_fc_none; |
| |
| hw->original_fc = hw->fc; |
| |
| if(adapter->fc_autoneg == AUTONEG_ENABLE) { |
| if(netif_running(adapter->netdev)) { |
| e1000_down(adapter); |
| e1000_up(adapter); |
| } else |
| e1000_reset(adapter); |
| } |
| else |
| return ((hw->media_type == e1000_media_type_fiber) ? |
| e1000_setup_link(hw) : e1000_force_mac_fc(hw)); |
| |
| return 0; |
| } |
| |
| static uint32_t |
| e1000_get_rx_csum(struct net_device *netdev) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| return adapter->rx_csum; |
| } |
| |
| static int |
| e1000_set_rx_csum(struct net_device *netdev, uint32_t data) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| adapter->rx_csum = data; |
| |
| if(netif_running(netdev)) { |
| e1000_down(adapter); |
| e1000_up(adapter); |
| } else |
| e1000_reset(adapter); |
| return 0; |
| } |
| |
| static uint32_t |
| e1000_get_tx_csum(struct net_device *netdev) |
| { |
| return (netdev->features & NETIF_F_HW_CSUM) != 0; |
| } |
| |
| static int |
| e1000_set_tx_csum(struct net_device *netdev, uint32_t data) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| |
| if(adapter->hw.mac_type < e1000_82543) { |
| if (!data) |
| return -EINVAL; |
| return 0; |
| } |
| |
| if (data) |
| netdev->features |= NETIF_F_HW_CSUM; |
| else |
| netdev->features &= ~NETIF_F_HW_CSUM; |
| |
| return 0; |
| } |
| |
| #ifdef NETIF_F_TSO |
| static int |
| e1000_set_tso(struct net_device *netdev, uint32_t data) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| if((adapter->hw.mac_type < e1000_82544) || |
| (adapter->hw.mac_type == e1000_82547)) |
| return data ? -EINVAL : 0; |
| |
| if (data) |
| netdev->features |= NETIF_F_TSO; |
| else |
| netdev->features &= ~NETIF_F_TSO; |
| return 0; |
| } |
| #endif /* NETIF_F_TSO */ |
| |
| static uint32_t |
| e1000_get_msglevel(struct net_device *netdev) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| return adapter->msg_enable; |
| } |
| |
| static void |
| e1000_set_msglevel(struct net_device *netdev, uint32_t data) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| adapter->msg_enable = data; |
| } |
| |
| static int |
| e1000_get_regs_len(struct net_device *netdev) |
| { |
| #define E1000_REGS_LEN 32 |
| return E1000_REGS_LEN * sizeof(uint32_t); |
| } |
| |
| static void |
| e1000_get_regs(struct net_device *netdev, |
| struct ethtool_regs *regs, void *p) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| uint32_t *regs_buff = p; |
| uint16_t phy_data; |
| |
| memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t)); |
| |
| regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id; |
| |
| regs_buff[0] = E1000_READ_REG(hw, CTRL); |
| regs_buff[1] = E1000_READ_REG(hw, STATUS); |
| |
| regs_buff[2] = E1000_READ_REG(hw, RCTL); |
| regs_buff[3] = E1000_READ_REG(hw, RDLEN); |
| regs_buff[4] = E1000_READ_REG(hw, RDH); |
| regs_buff[5] = E1000_READ_REG(hw, RDT); |
| regs_buff[6] = E1000_READ_REG(hw, RDTR); |
| |
| regs_buff[7] = E1000_READ_REG(hw, TCTL); |
| regs_buff[8] = E1000_READ_REG(hw, TDLEN); |
| regs_buff[9] = E1000_READ_REG(hw, TDH); |
| regs_buff[10] = E1000_READ_REG(hw, TDT); |
| regs_buff[11] = E1000_READ_REG(hw, TIDV); |
| |
| regs_buff[12] = adapter->hw.phy_type; /* PHY type (IGP=1, M88=0) */ |
| if(hw->phy_type == e1000_phy_igp) { |
| e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, |
| IGP01E1000_PHY_AGC_A); |
| e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A & |
| IGP01E1000_PHY_PAGE_SELECT, &phy_data); |
| regs_buff[13] = (uint32_t)phy_data; /* cable length */ |
| e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, |
| IGP01E1000_PHY_AGC_B); |
| e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B & |
| IGP01E1000_PHY_PAGE_SELECT, &phy_data); |
| regs_buff[14] = (uint32_t)phy_data; /* cable length */ |
| e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, |
| IGP01E1000_PHY_AGC_C); |
| e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C & |
| IGP01E1000_PHY_PAGE_SELECT, &phy_data); |
| regs_buff[15] = (uint32_t)phy_data; /* cable length */ |
| e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, |
| IGP01E1000_PHY_AGC_D); |
| e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D & |
| IGP01E1000_PHY_PAGE_SELECT, &phy_data); |
| regs_buff[16] = (uint32_t)phy_data; /* cable length */ |
| regs_buff[17] = 0; /* extended 10bt distance (not needed) */ |
| e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0); |
| e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS & |
| IGP01E1000_PHY_PAGE_SELECT, &phy_data); |
| regs_buff[18] = (uint32_t)phy_data; /* cable polarity */ |
| e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, |
| IGP01E1000_PHY_PCS_INIT_REG); |
| e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG & |
| IGP01E1000_PHY_PAGE_SELECT, &phy_data); |
| regs_buff[19] = (uint32_t)phy_data; /* cable polarity */ |
| regs_buff[20] = 0; /* polarity correction enabled (always) */ |
| regs_buff[22] = 0; /* phy receive errors (unavailable) */ |
| regs_buff[23] = regs_buff[18]; /* mdix mode */ |
| e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0); |
| } else { |
| e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); |
| regs_buff[13] = (uint32_t)phy_data; /* cable length */ |
| regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */ |
| regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */ |
| regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */ |
| e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
| regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */ |
| regs_buff[18] = regs_buff[13]; /* cable polarity */ |
| regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */ |
| regs_buff[20] = regs_buff[17]; /* polarity correction */ |
| /* phy receive errors */ |
| regs_buff[22] = adapter->phy_stats.receive_errors; |
| regs_buff[23] = regs_buff[13]; /* mdix mode */ |
| } |
| regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */ |
| e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); |
| regs_buff[24] = (uint32_t)phy_data; /* phy local receiver status */ |
| regs_buff[25] = regs_buff[24]; /* phy remote receiver status */ |
| if(hw->mac_type >= e1000_82540 && |
| hw->media_type == e1000_media_type_copper) { |
| regs_buff[26] = E1000_READ_REG(hw, MANC); |
| } |
| } |
| |
| static int |
| e1000_get_eeprom_len(struct net_device *netdev) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| return adapter->hw.eeprom.word_size * 2; |
| } |
| |
| static int |
| e1000_get_eeprom(struct net_device *netdev, |
| struct ethtool_eeprom *eeprom, uint8_t *bytes) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| uint16_t *eeprom_buff; |
| int first_word, last_word; |
| int ret_val = 0; |
| uint16_t i; |
| |
| if(eeprom->len == 0) |
| return -EINVAL; |
| |
| eeprom->magic = hw->vendor_id | (hw->device_id << 16); |
| |
| first_word = eeprom->offset >> 1; |
| last_word = (eeprom->offset + eeprom->len - 1) >> 1; |
| |
| eeprom_buff = kmalloc(sizeof(uint16_t) * |
| (last_word - first_word + 1), GFP_KERNEL); |
| if(!eeprom_buff) |
| return -ENOMEM; |
| |
| if(hw->eeprom.type == e1000_eeprom_spi) |
| ret_val = e1000_read_eeprom(hw, first_word, |
| last_word - first_word + 1, |
| eeprom_buff); |
| else { |
| for (i = 0; i < last_word - first_word + 1; i++) |
| if((ret_val = e1000_read_eeprom(hw, first_word + i, 1, |
| &eeprom_buff[i]))) |
| break; |
| } |
| |
| /* Device's eeprom is always little-endian, word addressable */ |
| for (i = 0; i < last_word - first_word + 1; i++) |
| le16_to_cpus(&eeprom_buff[i]); |
| |
| memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1), |
| eeprom->len); |
| kfree(eeprom_buff); |
| |
| return ret_val; |
| } |
| |
| static int |
| e1000_set_eeprom(struct net_device *netdev, |
| struct ethtool_eeprom *eeprom, uint8_t *bytes) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| uint16_t *eeprom_buff; |
| void *ptr; |
| int max_len, first_word, last_word, ret_val = 0; |
| uint16_t i; |
| |
| if(eeprom->len == 0) |
| return -EOPNOTSUPP; |
| |
| if(eeprom->magic != (hw->vendor_id | (hw->device_id << 16))) |
| return -EFAULT; |
| |
| max_len = hw->eeprom.word_size * 2; |
| |
| first_word = eeprom->offset >> 1; |
| last_word = (eeprom->offset + eeprom->len - 1) >> 1; |
| eeprom_buff = kmalloc(max_len, GFP_KERNEL); |
| if(!eeprom_buff) |
| return -ENOMEM; |
| |
| ptr = (void *)eeprom_buff; |
| |
| if(eeprom->offset & 1) { |
| /* need read/modify/write of first changed EEPROM word */ |
| /* only the second byte of the word is being modified */ |
| ret_val = e1000_read_eeprom(hw, first_word, 1, |
| &eeprom_buff[0]); |
| ptr++; |
| } |
| if(((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) { |
| /* need read/modify/write of last changed EEPROM word */ |
| /* only the first byte of the word is being modified */ |
| ret_val = e1000_read_eeprom(hw, last_word, 1, |
| &eeprom_buff[last_word - first_word]); |
| } |
| |
| /* Device's eeprom is always little-endian, word addressable */ |
| for (i = 0; i < last_word - first_word + 1; i++) |
| le16_to_cpus(&eeprom_buff[i]); |
| |
| memcpy(ptr, bytes, eeprom->len); |
| |
| for (i = 0; i < last_word - first_word + 1; i++) |
| eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]); |
| |
| ret_val = e1000_write_eeprom(hw, first_word, |
| last_word - first_word + 1, eeprom_buff); |
| |
| /* Update the checksum over the first part of the EEPROM if needed |
| * and flush shadow RAM for 82573 conrollers */ |
| if((ret_val == 0) && ((first_word <= EEPROM_CHECKSUM_REG) || |
| (hw->mac_type == e1000_82573))) |
| e1000_update_eeprom_checksum(hw); |
| |
| kfree(eeprom_buff); |
| return ret_val; |
| } |
| |
| static void |
| e1000_get_drvinfo(struct net_device *netdev, |
| struct ethtool_drvinfo *drvinfo) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| |
| strncpy(drvinfo->driver, e1000_driver_name, 32); |
| strncpy(drvinfo->version, e1000_driver_version, 32); |
| strncpy(drvinfo->fw_version, "N/A", 32); |
| strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32); |
| drvinfo->n_stats = E1000_STATS_LEN; |
| drvinfo->testinfo_len = E1000_TEST_LEN; |
| drvinfo->regdump_len = e1000_get_regs_len(netdev); |
| drvinfo->eedump_len = e1000_get_eeprom_len(netdev); |
| } |
| |
| static void |
| e1000_get_ringparam(struct net_device *netdev, |
| struct ethtool_ringparam *ring) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| e1000_mac_type mac_type = adapter->hw.mac_type; |
| struct e1000_tx_ring *txdr = adapter->tx_ring; |
| struct e1000_rx_ring *rxdr = adapter->rx_ring; |
| |
| ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD : |
| E1000_MAX_82544_RXD; |
| ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD : |
| E1000_MAX_82544_TXD; |
| ring->rx_mini_max_pending = 0; |
| ring->rx_jumbo_max_pending = 0; |
| ring->rx_pending = rxdr->count; |
| ring->tx_pending = txdr->count; |
| ring->rx_mini_pending = 0; |
| ring->rx_jumbo_pending = 0; |
| } |
| |
| static int |
| e1000_set_ringparam(struct net_device *netdev, |
| struct ethtool_ringparam *ring) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| e1000_mac_type mac_type = adapter->hw.mac_type; |
| struct e1000_tx_ring *txdr, *tx_old, *tx_new; |
| struct e1000_rx_ring *rxdr, *rx_old, *rx_new; |
| int i, err, tx_ring_size, rx_ring_size; |
| |
| tx_ring_size = sizeof(struct e1000_tx_ring) * adapter->num_queues; |
| rx_ring_size = sizeof(struct e1000_rx_ring) * adapter->num_queues; |
| |
| if (netif_running(adapter->netdev)) |
| e1000_down(adapter); |
| |
| tx_old = adapter->tx_ring; |
| rx_old = adapter->rx_ring; |
| |
| adapter->tx_ring = kmalloc(tx_ring_size, GFP_KERNEL); |
| if (!adapter->tx_ring) { |
| err = -ENOMEM; |
| goto err_setup_rx; |
| } |
| memset(adapter->tx_ring, 0, tx_ring_size); |
| |
| adapter->rx_ring = kmalloc(rx_ring_size, GFP_KERNEL); |
| if (!adapter->rx_ring) { |
| kfree(adapter->tx_ring); |
| err = -ENOMEM; |
| goto err_setup_rx; |
| } |
| memset(adapter->rx_ring, 0, rx_ring_size); |
| |
| txdr = adapter->tx_ring; |
| rxdr = adapter->rx_ring; |
| |
| if((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) |
| return -EINVAL; |
| |
| rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD); |
| rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ? |
| E1000_MAX_RXD : E1000_MAX_82544_RXD)); |
| E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE); |
| |
| txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD); |
| txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ? |
| E1000_MAX_TXD : E1000_MAX_82544_TXD)); |
| E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE); |
| |
| for (i = 0; i < adapter->num_queues; i++) { |
| txdr[i].count = txdr->count; |
| rxdr[i].count = rxdr->count; |
| } |
| |
| if(netif_running(adapter->netdev)) { |
| /* Try to get new resources before deleting old */ |
| if ((err = e1000_setup_all_rx_resources(adapter))) |
| goto err_setup_rx; |
| if ((err = e1000_setup_all_tx_resources(adapter))) |
| goto err_setup_tx; |
| |
| /* save the new, restore the old in order to free it, |
| * then restore the new back again */ |
| |
| rx_new = adapter->rx_ring; |
| tx_new = adapter->tx_ring; |
| adapter->rx_ring = rx_old; |
| adapter->tx_ring = tx_old; |
| e1000_free_all_rx_resources(adapter); |
| e1000_free_all_tx_resources(adapter); |
| kfree(tx_old); |
| kfree(rx_old); |
| adapter->rx_ring = rx_new; |
| adapter->tx_ring = tx_new; |
| if((err = e1000_up(adapter))) |
| return err; |
| } |
| |
| return 0; |
| err_setup_tx: |
| e1000_free_all_rx_resources(adapter); |
| err_setup_rx: |
| adapter->rx_ring = rx_old; |
| adapter->tx_ring = tx_old; |
| e1000_up(adapter); |
| return err; |
| } |
| |
| #define REG_PATTERN_TEST(R, M, W) \ |
| { \ |
| uint32_t pat, value; \ |
| uint32_t test[] = \ |
| {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; \ |
| for(pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) { \ |
| E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W)); \ |
| value = E1000_READ_REG(&adapter->hw, R); \ |
| if(value != (test[pat] & W & M)) { \ |
| DPRINTK(DRV, ERR, "pattern test reg %04X failed: got " \ |
| "0x%08X expected 0x%08X\n", \ |
| E1000_##R, value, (test[pat] & W & M)); \ |
| *data = (adapter->hw.mac_type < e1000_82543) ? \ |
| E1000_82542_##R : E1000_##R; \ |
| return 1; \ |
| } \ |
| } \ |
| } |
| |
| #define REG_SET_AND_CHECK(R, M, W) \ |
| { \ |
| uint32_t value; \ |
| E1000_WRITE_REG(&adapter->hw, R, W & M); \ |
| value = E1000_READ_REG(&adapter->hw, R); \ |
| if((W & M) != (value & M)) { \ |
| DPRINTK(DRV, ERR, "set/check reg %04X test failed: got 0x%08X "\ |
| "expected 0x%08X\n", E1000_##R, (value & M), (W & M)); \ |
| *data = (adapter->hw.mac_type < e1000_82543) ? \ |
| E1000_82542_##R : E1000_##R; \ |
| return 1; \ |
| } \ |
| } |
| |
| static int |
| e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data) |
| { |
| uint32_t value, before, after; |
| uint32_t i, toggle; |
| |
| /* The status register is Read Only, so a write should fail. |
| * Some bits that get toggled are ignored. |
| */ |
| switch (adapter->hw.mac_type) { |
| /* there are several bits on newer hardware that are r/w */ |
| case e1000_82571: |
| case e1000_82572: |
| toggle = 0x7FFFF3FF; |
| break; |
| case e1000_82573: |
| toggle = 0x7FFFF033; |
| break; |
| default: |
| toggle = 0xFFFFF833; |
| break; |
| } |
| |
| before = E1000_READ_REG(&adapter->hw, STATUS); |
| value = (E1000_READ_REG(&adapter->hw, STATUS) & toggle); |
| E1000_WRITE_REG(&adapter->hw, STATUS, toggle); |
| after = E1000_READ_REG(&adapter->hw, STATUS) & toggle; |
| if(value != after) { |
| DPRINTK(DRV, ERR, "failed STATUS register test got: " |
| "0x%08X expected: 0x%08X\n", after, value); |
| *data = 1; |
| return 1; |
| } |
| /* restore previous status */ |
| E1000_WRITE_REG(&adapter->hw, STATUS, before); |
| |
| REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF); |
| REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF); |
| REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF); |
| REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF); |
| REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF); |
| REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF); |
| REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF); |
| REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF); |
| REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF); |
| REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8); |
| REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF); |
| REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF); |
| REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF); |
| REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF); |
| |
| REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000); |
| REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0x003FFFFB); |
| REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000); |
| |
| if(adapter->hw.mac_type >= e1000_82543) { |
| |
| REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0xFFFFFFFF); |
| REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF); |
| REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF); |
| REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF); |
| REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF); |
| |
| for(i = 0; i < E1000_RAR_ENTRIES; i++) { |
| REG_PATTERN_TEST(RA + ((i << 1) << 2), 0xFFFFFFFF, |
| 0xFFFFFFFF); |
| REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF, |
| 0xFFFFFFFF); |
| } |
| |
| } else { |
| |
| REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF); |
| REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF); |
| REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF); |
| REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF); |
| |
| } |
| |
| for(i = 0; i < E1000_MC_TBL_SIZE; i++) |
| REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF); |
| |
| *data = 0; |
| return 0; |
| } |
| |
| static int |
| e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data) |
| { |
| uint16_t temp; |
| uint16_t checksum = 0; |
| uint16_t i; |
| |
| *data = 0; |
| /* Read and add up the contents of the EEPROM */ |
| for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { |
| if((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) { |
| *data = 1; |
| break; |
| } |
| checksum += temp; |
| } |
| |
| /* If Checksum is not Correct return error else test passed */ |
| if((checksum != (uint16_t) EEPROM_SUM) && !(*data)) |
| *data = 2; |
| |
| return *data; |
| } |
| |
| static irqreturn_t |
| e1000_test_intr(int irq, |
| void *data, |
| struct pt_regs *regs) |
| { |
| struct net_device *netdev = (struct net_device *) data; |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| |
| adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int |
| e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data) |
| { |
| struct net_device *netdev = adapter->netdev; |
| uint32_t mask, i=0, shared_int = TRUE; |
| uint32_t irq = adapter->pdev->irq; |
| |
| *data = 0; |
| |
| /* Hook up test interrupt handler just for this test */ |
| if(!request_irq(irq, &e1000_test_intr, 0, netdev->name, netdev)) { |
| shared_int = FALSE; |
| } else if(request_irq(irq, &e1000_test_intr, SA_SHIRQ, |
| netdev->name, netdev)){ |
| *data = 1; |
| return -1; |
| } |
| |
| /* Disable all the interrupts */ |
| E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF); |
| msec_delay(10); |
| |
| /* Test each interrupt */ |
| for(; i < 10; i++) { |
| |
| /* Interrupt to test */ |
| mask = 1 << i; |
| |
| if(!shared_int) { |
| /* Disable the interrupt to be reported in |
| * the cause register and then force the same |
| * interrupt and see if one gets posted. If |
| * an interrupt was posted to the bus, the |
| * test failed. |
| */ |
| adapter->test_icr = 0; |
| E1000_WRITE_REG(&adapter->hw, IMC, mask); |
| E1000_WRITE_REG(&adapter->hw, ICS, mask); |
| msec_delay(10); |
| |
| if(adapter->test_icr & mask) { |
| *data = 3; |
| break; |
| } |
| } |
| |
| /* Enable the interrupt to be reported in |
| * the cause register and then force the same |
| * interrupt and see if one gets posted. If |
| * an interrupt was not posted to the bus, the |
| * test failed. |
| */ |
| adapter->test_icr = 0; |
| E1000_WRITE_REG(&adapter->hw, IMS, mask); |
| E1000_WRITE_REG(&adapter->hw, ICS, mask); |
| msec_delay(10); |
| |
| if(!(adapter->test_icr & mask)) { |
| *data = 4; |
| break; |
| } |
| |
| if(!shared_int) { |
| /* Disable the other interrupts to be reported in |
| * the cause register and then force the other |
| * interrupts and see if any get posted. If |
| * an interrupt was posted to the bus, the |
| * test failed. |
| */ |
| adapter->test_icr = 0; |
| E1000_WRITE_REG(&adapter->hw, IMC, ~mask & 0x00007FFF); |
| E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF); |
| msec_delay(10); |
| |
| if(adapter->test_icr) { |
| *data = 5; |
| break; |
| } |
| } |
| } |
| |
| /* Disable all the interrupts */ |
| E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF); |
| msec_delay(10); |
| |
| /* Unhook test interrupt handler */ |
| free_irq(irq, netdev); |
| |
| return *data; |
| } |
| |
| static void |
| e1000_free_desc_rings(struct e1000_adapter *adapter) |
| { |
| struct e1000_tx_ring *txdr = &adapter->test_tx_ring; |
| struct e1000_rx_ring *rxdr = &adapter->test_rx_ring; |
| struct pci_dev *pdev = adapter->pdev; |
| int i; |
| |
| if(txdr->desc && txdr->buffer_info) { |
| for(i = 0; i < txdr->count; i++) { |
| if(txdr->buffer_info[i].dma) |
| pci_unmap_single(pdev, txdr->buffer_info[i].dma, |
| txdr->buffer_info[i].length, |
| PCI_DMA_TODEVICE); |
| if(txdr->buffer_info[i].skb) |
| dev_kfree_skb(txdr->buffer_info[i].skb); |
| } |
| } |
| |
| if(rxdr->desc && rxdr->buffer_info) { |
| for(i = 0; i < rxdr->count; i++) { |
| if(rxdr->buffer_info[i].dma) |
| pci_unmap_single(pdev, rxdr->buffer_info[i].dma, |
| rxdr->buffer_info[i].length, |
| PCI_DMA_FROMDEVICE); |
| if(rxdr->buffer_info[i].skb) |
| dev_kfree_skb(rxdr->buffer_info[i].skb); |
| } |
| } |
| |
| if(txdr->desc) |
| pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma); |
| if(rxdr->desc) |
| pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma); |
| |
| if(txdr->buffer_info) |
| kfree(txdr->buffer_info); |
| if(rxdr->buffer_info) |
| kfree(rxdr->buffer_info); |
| |
| return; |
| } |
| |
| static int |
| e1000_setup_desc_rings(struct e1000_adapter *adapter) |
| { |
| struct e1000_tx_ring *txdr = &adapter->test_tx_ring; |
| struct e1000_rx_ring *rxdr = &adapter->test_rx_ring; |
| struct pci_dev *pdev = adapter->pdev; |
| uint32_t rctl; |
| int size, i, ret_val; |
| |
| /* Setup Tx descriptor ring and Tx buffers */ |
| |
| if(!txdr->count) |
| txdr->count = E1000_DEFAULT_TXD; |
| |
| size = txdr->count * sizeof(struct e1000_buffer); |
| if(!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) { |
| ret_val = 1; |
| goto err_nomem; |
| } |
| memset(txdr->buffer_info, 0, size); |
| |
| txdr->size = txdr->count * sizeof(struct e1000_tx_desc); |
| E1000_ROUNDUP(txdr->size, 4096); |
| if(!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) { |
| ret_val = 2; |
| goto err_nomem; |
| } |
| memset(txdr->desc, 0, txdr->size); |
| txdr->next_to_use = txdr->next_to_clean = 0; |
| |
| E1000_WRITE_REG(&adapter->hw, TDBAL, |
| ((uint64_t) txdr->dma & 0x00000000FFFFFFFF)); |
| E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32)); |
| E1000_WRITE_REG(&adapter->hw, TDLEN, |
| txdr->count * sizeof(struct e1000_tx_desc)); |
| E1000_WRITE_REG(&adapter->hw, TDH, 0); |
| E1000_WRITE_REG(&adapter->hw, TDT, 0); |
| E1000_WRITE_REG(&adapter->hw, TCTL, |
| E1000_TCTL_PSP | E1000_TCTL_EN | |
| E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | |
| E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT); |
| |
| for(i = 0; i < txdr->count; i++) { |
| struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i); |
| struct sk_buff *skb; |
| unsigned int size = 1024; |
| |
| if(!(skb = alloc_skb(size, GFP_KERNEL))) { |
| ret_val = 3; |
| goto err_nomem; |
| } |
| skb_put(skb, size); |
| txdr->buffer_info[i].skb = skb; |
| txdr->buffer_info[i].length = skb->len; |
| txdr->buffer_info[i].dma = |
| pci_map_single(pdev, skb->data, skb->len, |
| PCI_DMA_TODEVICE); |
| tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma); |
| tx_desc->lower.data = cpu_to_le32(skb->len); |
| tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | |
| E1000_TXD_CMD_IFCS | |
| E1000_TXD_CMD_RPS); |
| tx_desc->upper.data = 0; |
| } |
| |
| /* Setup Rx descriptor ring and Rx buffers */ |
| |
| if(!rxdr->count) |
| rxdr->count = E1000_DEFAULT_RXD; |
| |
| size = rxdr->count * sizeof(struct e1000_buffer); |
| if(!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) { |
| ret_val = 4; |
| goto err_nomem; |
| } |
| memset(rxdr->buffer_info, 0, size); |
| |
| rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc); |
| if(!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) { |
| ret_val = 5; |
| goto err_nomem; |
| } |
| memset(rxdr->desc, 0, rxdr->size); |
| rxdr->next_to_use = rxdr->next_to_clean = 0; |
| |
| rctl = E1000_READ_REG(&adapter->hw, RCTL); |
| E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN); |
| E1000_WRITE_REG(&adapter->hw, RDBAL, |
| ((uint64_t) rxdr->dma & 0xFFFFFFFF)); |
| E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32)); |
| E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size); |
| E1000_WRITE_REG(&adapter->hw, RDH, 0); |
| E1000_WRITE_REG(&adapter->hw, RDT, 0); |
| rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | |
| E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | |
| (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT); |
| E1000_WRITE_REG(&adapter->hw, RCTL, rctl); |
| |
| for(i = 0; i < rxdr->count; i++) { |
| struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i); |
| struct sk_buff *skb; |
| |
| if(!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN, |
| GFP_KERNEL))) { |
| ret_val = 6; |
| goto err_nomem; |
| } |
| skb_reserve(skb, NET_IP_ALIGN); |
| rxdr->buffer_info[i].skb = skb; |
| rxdr->buffer_info[i].length = E1000_RXBUFFER_2048; |
| rxdr->buffer_info[i].dma = |
| pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048, |
| PCI_DMA_FROMDEVICE); |
| rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma); |
| memset(skb->data, 0x00, skb->len); |
| } |
| |
| return 0; |
| |
| err_nomem: |
| e1000_free_desc_rings(adapter); |
| return ret_val; |
| } |
| |
| static void |
| e1000_phy_disable_receiver(struct e1000_adapter *adapter) |
| { |
| /* Write out to PHY registers 29 and 30 to disable the Receiver. */ |
| e1000_write_phy_reg(&adapter->hw, 29, 0x001F); |
| e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC); |
| e1000_write_phy_reg(&adapter->hw, 29, 0x001A); |
| e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0); |
| } |
| |
| static void |
| e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter) |
| { |
| uint16_t phy_reg; |
| |
| /* Because we reset the PHY above, we need to re-force TX_CLK in the |
| * Extended PHY Specific Control Register to 25MHz clock. This |
| * value defaults back to a 2.5MHz clock when the PHY is reset. |
| */ |
| e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg); |
| phy_reg |= M88E1000_EPSCR_TX_CLK_25; |
| e1000_write_phy_reg(&adapter->hw, |
| M88E1000_EXT_PHY_SPEC_CTRL, phy_reg); |
| |
| /* In addition, because of the s/w reset above, we need to enable |
| * CRS on TX. This must be set for both full and half duplex |
| * operation. |
| */ |
| e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg); |
| phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX; |
| e1000_write_phy_reg(&adapter->hw, |
| M88E1000_PHY_SPEC_CTRL, phy_reg); |
| } |
| |
| static int |
| e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter) |
| { |
| uint32_t ctrl_reg; |
| uint16_t phy_reg; |
| |
| /* Setup the Device Control Register for PHY loopback test. */ |
| |
| ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL); |
| ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */ |
| E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ |
| E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ |
| E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */ |
| E1000_CTRL_FD); /* Force Duplex to FULL */ |
| |
| E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg); |
| |
| /* Read the PHY Specific Control Register (0x10) */ |
| e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg); |
| |
| /* Clear Auto-Crossover bits in PHY Specific Control Register |
| * (bits 6:5). |
| */ |
| phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE; |
| e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg); |
| |
| /* Perform software reset on the PHY */ |
| e1000_phy_reset(&adapter->hw); |
| |
| /* Have to setup TX_CLK and TX_CRS after software reset */ |
| e1000_phy_reset_clk_and_crs(adapter); |
| |
| e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100); |
| |
| /* Wait for reset to complete. */ |
| udelay(500); |
| |
| /* Have to setup TX_CLK and TX_CRS after software reset */ |
| e1000_phy_reset_clk_and_crs(adapter); |
| |
| /* Write out to PHY registers 29 and 30 to disable the Receiver. */ |
| e1000_phy_disable_receiver(adapter); |
| |
| /* Set the loopback bit in the PHY control register. */ |
| e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg); |
| phy_reg |= MII_CR_LOOPBACK; |
| e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg); |
| |
| /* Setup TX_CLK and TX_CRS one more time. */ |
| e1000_phy_reset_clk_and_crs(adapter); |
| |
| /* Check Phy Configuration */ |
| e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg); |
| if(phy_reg != 0x4100) |
| return 9; |
| |
| e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg); |
| if(phy_reg != 0x0070) |
| return 10; |
| |
| e1000_read_phy_reg(&adapter->hw, 29, &phy_reg); |
| if(phy_reg != 0x001A) |
| return 11; |
| |
| return 0; |
| } |
| |
| static int |
| e1000_integrated_phy_loopback(struct e1000_adapter *adapter) |
| { |
| uint32_t ctrl_reg = 0; |
| uint32_t stat_reg = 0; |
| |
| adapter->hw.autoneg = FALSE; |
| |
| if(adapter->hw.phy_type == e1000_phy_m88) { |
| /* Auto-MDI/MDIX Off */ |
| e1000_write_phy_reg(&adapter->hw, |
| M88E1000_PHY_SPEC_CTRL, 0x0808); |
| /* reset to update Auto-MDI/MDIX */ |
| e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140); |
| /* autoneg off */ |
| e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140); |
| } |
| /* force 1000, set loopback */ |
| e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140); |
| |
| /* Now set up the MAC to the same speed/duplex as the PHY. */ |
| ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL); |
| ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ |
| ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ |
| E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ |
| E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ |
| E1000_CTRL_FD); /* Force Duplex to FULL */ |
| |
| if(adapter->hw.media_type == e1000_media_type_copper && |
| adapter->hw.phy_type == e1000_phy_m88) { |
| ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ |
| } else { |
| /* Set the ILOS bit on the fiber Nic is half |
| * duplex link is detected. */ |
| stat_reg = E1000_READ_REG(&adapter->hw, STATUS); |
| if((stat_reg & E1000_STATUS_FD) == 0) |
| ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); |
| } |
| |
| E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg); |
| |
| /* Disable the receiver on the PHY so when a cable is plugged in, the |
| * PHY does not begin to autoneg when a cable is reconnected to the NIC. |
| */ |
| if(adapter->hw.phy_type == e1000_phy_m88) |
| e1000_phy_disable_receiver(adapter); |
| |
| udelay(500); |
| |
| return 0; |
| } |
| |
| static int |
| e1000_set_phy_loopback(struct e1000_adapter *adapter) |
| { |
| uint16_t phy_reg = 0; |
| uint16_t count = 0; |
| |
| switch (adapter->hw.mac_type) { |
| case e1000_82543: |
| if(adapter->hw.media_type == e1000_media_type_copper) { |
| /* Attempt to setup Loopback mode on Non-integrated PHY. |
| * Some PHY registers get corrupted at random, so |
| * attempt this 10 times. |
| */ |
| while(e1000_nonintegrated_phy_loopback(adapter) && |
| count++ < 10); |
| if(count < 11) |
| return 0; |
| } |
| break; |
| |
| case e1000_82544: |
| case e1000_82540: |
| case e1000_82545: |
| case e1000_82545_rev_3: |
| case e1000_82546: |
| case e1000_82546_rev_3: |
| case e1000_82541: |
| case e1000_82541_rev_2: |
| case e1000_82547: |
| case e1000_82547_rev_2: |
| case e1000_82571: |
| case e1000_82572: |
| case e1000_82573: |
| return e1000_integrated_phy_loopback(adapter); |
| break; |
| |
| default: |
| /* Default PHY loopback work is to read the MII |
| * control register and assert bit 14 (loopback mode). |
| */ |
| e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg); |
| phy_reg |= MII_CR_LOOPBACK; |
| e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg); |
| return 0; |
| break; |
| } |
| |
| return 8; |
| } |
| |
| static int |
| e1000_setup_loopback_test(struct e1000_adapter *adapter) |
| { |
| uint32_t rctl; |
| |
| if(adapter->hw.media_type == e1000_media_type_fiber || |
| adapter->hw.media_type == e1000_media_type_internal_serdes) { |
| if(adapter->hw.mac_type == e1000_82545 || |
| adapter->hw.mac_type == e1000_82546 || |
| adapter->hw.mac_type == e1000_82545_rev_3 || |
| adapter->hw.mac_type == e1000_82546_rev_3) |
| return e1000_set_phy_loopback(adapter); |
| else { |
| rctl = E1000_READ_REG(&adapter->hw, RCTL); |
| rctl |= E1000_RCTL_LBM_TCVR; |
| E1000_WRITE_REG(&adapter->hw, RCTL, rctl); |
| return 0; |
| } |
| } else if(adapter->hw.media_type == e1000_media_type_copper) |
| return e1000_set_phy_loopback(adapter); |
| |
| return 7; |
| } |
| |
| static void |
| e1000_loopback_cleanup(struct e1000_adapter *adapter) |
| { |
| uint32_t rctl; |
| uint16_t phy_reg; |
| |
| rctl = E1000_READ_REG(&adapter->hw, RCTL); |
| rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); |
| E1000_WRITE_REG(&adapter->hw, RCTL, rctl); |
| |
| if(adapter->hw.media_type == e1000_media_type_copper || |
| ((adapter->hw.media_type == e1000_media_type_fiber || |
| adapter->hw.media_type == e1000_media_type_internal_serdes) && |
| (adapter->hw.mac_type == e1000_82545 || |
| adapter->hw.mac_type == e1000_82546 || |
| adapter->hw.mac_type == e1000_82545_rev_3 || |
| adapter->hw.mac_type == e1000_82546_rev_3))) { |
| adapter->hw.autoneg = TRUE; |
| e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg); |
| if(phy_reg & MII_CR_LOOPBACK) { |
| phy_reg &= ~MII_CR_LOOPBACK; |
| e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg); |
| e1000_phy_reset(&adapter->hw); |
| } |
| } |
| } |
| |
| static void |
| e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size) |
| { |
| memset(skb->data, 0xFF, frame_size); |
| frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size; |
| memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); |
| memset(&skb->data[frame_size / 2 + 10], 0xBE, 1); |
| memset(&skb->data[frame_size / 2 + 12], 0xAF, 1); |
| } |
| |
| static int |
| e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size) |
| { |
| frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size; |
| if(*(skb->data + 3) == 0xFF) { |
| if((*(skb->data + frame_size / 2 + 10) == 0xBE) && |
| (*(skb->data + frame_size / 2 + 12) == 0xAF)) { |
| return 0; |
| } |
| } |
| return 13; |
| } |
| |
| static int |
| e1000_run_loopback_test(struct e1000_adapter *adapter) |
| { |
| struct e1000_tx_ring *txdr = &adapter->test_tx_ring; |
| struct e1000_rx_ring *rxdr = &adapter->test_rx_ring; |
| struct pci_dev *pdev = adapter->pdev; |
| int i, j, k, l, lc, good_cnt, ret_val=0; |
| unsigned long time; |
| |
| E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1); |
| |
| /* Calculate the loop count based on the largest descriptor ring |
| * The idea is to wrap the largest ring a number of times using 64 |
| * send/receive pairs during each loop |
| */ |
| |
| if(rxdr->count <= txdr->count) |
| lc = ((txdr->count / 64) * 2) + 1; |
| else |
| lc = ((rxdr->count / 64) * 2) + 1; |
| |
| k = l = 0; |
| for(j = 0; j <= lc; j++) { /* loop count loop */ |
| for(i = 0; i < 64; i++) { /* send the packets */ |
| e1000_create_lbtest_frame(txdr->buffer_info[i].skb, |
| 1024); |
| pci_dma_sync_single_for_device(pdev, |
| txdr->buffer_info[k].dma, |
| txdr->buffer_info[k].length, |
| PCI_DMA_TODEVICE); |
| if(unlikely(++k == txdr->count)) k = 0; |
| } |
| E1000_WRITE_REG(&adapter->hw, TDT, k); |
| msec_delay(200); |
| time = jiffies; /* set the start time for the receive */ |
| good_cnt = 0; |
| do { /* receive the sent packets */ |
| pci_dma_sync_single_for_cpu(pdev, |
| rxdr->buffer_info[l].dma, |
| rxdr->buffer_info[l].length, |
| PCI_DMA_FROMDEVICE); |
| |
| ret_val = e1000_check_lbtest_frame( |
| rxdr->buffer_info[l].skb, |
| 1024); |
| if(!ret_val) |
| good_cnt++; |
| if(unlikely(++l == rxdr->count)) l = 0; |
| /* time + 20 msecs (200 msecs on 2.4) is more than |
| * enough time to complete the receives, if it's |
| * exceeded, break and error off |
| */ |
| } while (good_cnt < 64 && jiffies < (time + 20)); |
| if(good_cnt != 64) { |
| ret_val = 13; /* ret_val is the same as mis-compare */ |
| break; |
| } |
| if(jiffies >= (time + 2)) { |
| ret_val = 14; /* error code for time out error */ |
| break; |
| } |
| } /* end loop count loop */ |
| return ret_val; |
| } |
| |
| static int |
| e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data) |
| { |
| if((*data = e1000_setup_desc_rings(adapter))) goto err_loopback; |
| if((*data = e1000_setup_loopback_test(adapter))) goto err_loopback; |
| *data = e1000_run_loopback_test(adapter); |
| e1000_loopback_cleanup(adapter); |
| e1000_free_desc_rings(adapter); |
| err_loopback: |
| return *data; |
| } |
| |
| static int |
| e1000_link_test(struct e1000_adapter *adapter, uint64_t *data) |
| { |
| *data = 0; |
| if (adapter->hw.media_type == e1000_media_type_internal_serdes) { |
| int i = 0; |
| adapter->hw.serdes_link_down = TRUE; |
| |
| /* On some blade server designs, link establishment |
| * could take as long as 2-3 minutes */ |
| do { |
| e1000_check_for_link(&adapter->hw); |
| if (adapter->hw.serdes_link_down == FALSE) |
| return *data; |
| msec_delay(20); |
| } while (i++ < 3750); |
| |
| *data = 1; |
| } else { |
| e1000_check_for_link(&adapter->hw); |
| if(adapter->hw.autoneg) /* if auto_neg is set wait for it */ |
| msec_delay(4000); |
| |
| if(!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) { |
| *data = 1; |
| } |
| } |
| return *data; |
| } |
| |
| static int |
| e1000_diag_test_count(struct net_device *netdev) |
| { |
| return E1000_TEST_LEN; |
| } |
| |
| static void |
| e1000_diag_test(struct net_device *netdev, |
| struct ethtool_test *eth_test, uint64_t *data) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| boolean_t if_running = netif_running(netdev); |
| |
| if(eth_test->flags == ETH_TEST_FL_OFFLINE) { |
| /* Offline tests */ |
| |
| /* save speed, duplex, autoneg settings */ |
| uint16_t autoneg_advertised = adapter->hw.autoneg_advertised; |
| uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex; |
| uint8_t autoneg = adapter->hw.autoneg; |
| |
| /* Link test performed before hardware reset so autoneg doesn't |
| * interfere with test result */ |
| if(e1000_link_test(adapter, &data[4])) |
| eth_test->flags |= ETH_TEST_FL_FAILED; |
| |
| if(if_running) |
| e1000_down(adapter); |
| else |
| e1000_reset(adapter); |
| |
| if(e1000_reg_test(adapter, &data[0])) |
| eth_test->flags |= ETH_TEST_FL_FAILED; |
| |
| e1000_reset(adapter); |
| if(e1000_eeprom_test(adapter, &data[1])) |
| eth_test->flags |= ETH_TEST_FL_FAILED; |
| |
| e1000_reset(adapter); |
| if(e1000_intr_test(adapter, &data[2])) |
| eth_test->flags |= ETH_TEST_FL_FAILED; |
| |
| e1000_reset(adapter); |
| if(e1000_loopback_test(adapter, &data[3])) |
| eth_test->flags |= ETH_TEST_FL_FAILED; |
| |
| /* restore speed, duplex, autoneg settings */ |
| adapter->hw.autoneg_advertised = autoneg_advertised; |
| adapter->hw.forced_speed_duplex = forced_speed_duplex; |
| adapter->hw.autoneg = autoneg; |
| |
| e1000_reset(adapter); |
| if(if_running) |
| e1000_up(adapter); |
| } else { |
| /* Online tests */ |
| if(e1000_link_test(adapter, &data[4])) |
| eth_test->flags |= ETH_TEST_FL_FAILED; |
| |
| /* Offline tests aren't run; pass by default */ |
| data[0] = 0; |
| data[1] = 0; |
| data[2] = 0; |
| data[3] = 0; |
| } |
| msleep_interruptible(4 * 1000); |
| } |
| |
| static void |
| e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| |
| switch(adapter->hw.device_id) { |
| case E1000_DEV_ID_82542: |
| case E1000_DEV_ID_82543GC_FIBER: |
| case E1000_DEV_ID_82543GC_COPPER: |
| case E1000_DEV_ID_82544EI_FIBER: |
| case E1000_DEV_ID_82546EB_QUAD_COPPER: |
| case E1000_DEV_ID_82545EM_FIBER: |
| case E1000_DEV_ID_82545EM_COPPER: |
| wol->supported = 0; |
| wol->wolopts = 0; |
| return; |
| |
| case E1000_DEV_ID_82546EB_FIBER: |
| case E1000_DEV_ID_82546GB_FIBER: |
| /* Wake events only supported on port A for dual fiber */ |
| if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) { |
| wol->supported = 0; |
| wol->wolopts = 0; |
| return; |
| } |
| /* Fall Through */ |
| |
| default: |
| wol->supported = WAKE_UCAST | WAKE_MCAST | |
| WAKE_BCAST | WAKE_MAGIC; |
| |
| wol->wolopts = 0; |
| if(adapter->wol & E1000_WUFC_EX) |
| wol->wolopts |= WAKE_UCAST; |
| if(adapter->wol & E1000_WUFC_MC) |
| wol->wolopts |= WAKE_MCAST; |
| if(adapter->wol & E1000_WUFC_BC) |
| wol->wolopts |= WAKE_BCAST; |
| if(adapter->wol & E1000_WUFC_MAG) |
| wol->wolopts |= WAKE_MAGIC; |
| return; |
| } |
| } |
| |
| static int |
| e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| |
| switch(adapter->hw.device_id) { |
| case E1000_DEV_ID_82542: |
| case E1000_DEV_ID_82543GC_FIBER: |
| case E1000_DEV_ID_82543GC_COPPER: |
| case E1000_DEV_ID_82544EI_FIBER: |
| case E1000_DEV_ID_82546EB_QUAD_COPPER: |
| case E1000_DEV_ID_82545EM_FIBER: |
| case E1000_DEV_ID_82545EM_COPPER: |
| return wol->wolopts ? -EOPNOTSUPP : 0; |
| |
| case E1000_DEV_ID_82546EB_FIBER: |
| case E1000_DEV_ID_82546GB_FIBER: |
| /* Wake events only supported on port A for dual fiber */ |
| if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) |
| return wol->wolopts ? -EOPNOTSUPP : 0; |
| /* Fall Through */ |
| |
| default: |
| if(wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE)) |
| return -EOPNOTSUPP; |
| |
| adapter->wol = 0; |
| |
| if(wol->wolopts & WAKE_UCAST) |
| adapter->wol |= E1000_WUFC_EX; |
| if(wol->wolopts & WAKE_MCAST) |
| adapter->wol |= E1000_WUFC_MC; |
| if(wol->wolopts & WAKE_BCAST) |
| adapter->wol |= E1000_WUFC_BC; |
| if(wol->wolopts & WAKE_MAGIC) |
| adapter->wol |= E1000_WUFC_MAG; |
| } |
| |
| return 0; |
| } |
| |
| /* toggle LED 4 times per second = 2 "blinks" per second */ |
| #define E1000_ID_INTERVAL (HZ/4) |
| |
| /* bit defines for adapter->led_status */ |
| #define E1000_LED_ON 0 |
| |
| static void |
| e1000_led_blink_callback(unsigned long data) |
| { |
| struct e1000_adapter *adapter = (struct e1000_adapter *) data; |
| |
| if(test_and_change_bit(E1000_LED_ON, &adapter->led_status)) |
| e1000_led_off(&adapter->hw); |
| else |
| e1000_led_on(&adapter->hw); |
| |
| mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL); |
| } |
| |
| static int |
| e1000_phys_id(struct net_device *netdev, uint32_t data) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| |
| if(!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ)) |
| data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ); |
| |
| if(adapter->hw.mac_type < e1000_82571) { |
| if(!adapter->blink_timer.function) { |
| init_timer(&adapter->blink_timer); |
| adapter->blink_timer.function = e1000_led_blink_callback; |
| adapter->blink_timer.data = (unsigned long) adapter; |
| } |
| e1000_setup_led(&adapter->hw); |
| mod_timer(&adapter->blink_timer, jiffies); |
| msleep_interruptible(data * 1000); |
| del_timer_sync(&adapter->blink_timer); |
| } |
| else { |
| E1000_WRITE_REG(&adapter->hw, LEDCTL, (E1000_LEDCTL_LED2_BLINK_RATE | |
| E1000_LEDCTL_LED1_BLINK | E1000_LEDCTL_LED2_BLINK | |
| (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) | |
| (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED1_MODE_SHIFT) | |
| (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED0_MODE_SHIFT))); |
| msleep_interruptible(data * 1000); |
| } |
| |
| e1000_led_off(&adapter->hw); |
| clear_bit(E1000_LED_ON, &adapter->led_status); |
| e1000_cleanup_led(&adapter->hw); |
| |
| return 0; |
| } |
| |
| static int |
| e1000_nway_reset(struct net_device *netdev) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| if(netif_running(netdev)) { |
| e1000_down(adapter); |
| e1000_up(adapter); |
| } |
| return 0; |
| } |
| |
| static int |
| e1000_get_stats_count(struct net_device *netdev) |
| { |
| return E1000_STATS_LEN; |
| } |
| |
| static void |
| e1000_get_ethtool_stats(struct net_device *netdev, |
| struct ethtool_stats *stats, uint64_t *data) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| int i; |
| |
| e1000_update_stats(adapter); |
| for(i = 0; i < E1000_STATS_LEN; i++) { |
| char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset; |
| data[i] = (e1000_gstrings_stats[i].sizeof_stat == |
| sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p; |
| } |
| } |
| |
| static void |
| e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data) |
| { |
| int i; |
| |
| switch(stringset) { |
| case ETH_SS_TEST: |
| memcpy(data, *e1000_gstrings_test, |
| E1000_TEST_LEN*ETH_GSTRING_LEN); |
| break; |
| case ETH_SS_STATS: |
| for (i=0; i < E1000_STATS_LEN; i++) { |
| memcpy(data + i * ETH_GSTRING_LEN, |
| e1000_gstrings_stats[i].stat_string, |
| ETH_GSTRING_LEN); |
| } |
| break; |
| } |
| } |
| |
| struct ethtool_ops e1000_ethtool_ops = { |
| .get_settings = e1000_get_settings, |
| .set_settings = e1000_set_settings, |
| .get_drvinfo = e1000_get_drvinfo, |
| .get_regs_len = e1000_get_regs_len, |
| .get_regs = e1000_get_regs, |
| .get_wol = e1000_get_wol, |
| .set_wol = e1000_set_wol, |
| .get_msglevel = e1000_get_msglevel, |
| .set_msglevel = e1000_set_msglevel, |
| .nway_reset = e1000_nway_reset, |
| .get_link = ethtool_op_get_link, |
| .get_eeprom_len = e1000_get_eeprom_len, |
| .get_eeprom = e1000_get_eeprom, |
| .set_eeprom = e1000_set_eeprom, |
| .get_ringparam = e1000_get_ringparam, |
| .set_ringparam = e1000_set_ringparam, |
| .get_pauseparam = e1000_get_pauseparam, |
| .set_pauseparam = e1000_set_pauseparam, |
| .get_rx_csum = e1000_get_rx_csum, |
| .set_rx_csum = e1000_set_rx_csum, |
| .get_tx_csum = e1000_get_tx_csum, |
| .set_tx_csum = e1000_set_tx_csum, |
| .get_sg = ethtool_op_get_sg, |
| .set_sg = ethtool_op_set_sg, |
| #ifdef NETIF_F_TSO |
| .get_tso = ethtool_op_get_tso, |
| .set_tso = e1000_set_tso, |
| #endif |
| .self_test_count = e1000_diag_test_count, |
| .self_test = e1000_diag_test, |
| .get_strings = e1000_get_strings, |
| .phys_id = e1000_phys_id, |
| .get_stats_count = e1000_get_stats_count, |
| .get_ethtool_stats = e1000_get_ethtool_stats, |
| .get_perm_addr = ethtool_op_get_perm_addr, |
| }; |
| |
| void e1000_set_ethtool_ops(struct net_device *netdev) |
| { |
| SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops); |
| } |