| /* |
| * Copyright © 2006-2007 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER |
| * DEALINGS IN THE SOFTWARE. |
| * |
| * Authors: |
| * Eric Anholt <eric@anholt.net> |
| */ |
| |
| #include <linux/dmi.h> |
| #include <linux/module.h> |
| #include <linux/input.h> |
| #include <linux/i2c.h> |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include <linux/vgaarb.h> |
| #include <drm/drm_edid.h> |
| #include <drm/drmP.h> |
| #include "intel_drv.h" |
| #include <drm/i915_drm.h> |
| #include "i915_drv.h" |
| #include "i915_trace.h" |
| #include <drm/drm_dp_helper.h> |
| #include <drm/drm_crtc_helper.h> |
| #include <drm/drm_plane_helper.h> |
| #include <drm/drm_rect.h> |
| #include <linux/dma_remapping.h> |
| |
| /* Primary plane formats supported by all gen */ |
| #define COMMON_PRIMARY_FORMATS \ |
| DRM_FORMAT_C8, \ |
| DRM_FORMAT_RGB565, \ |
| DRM_FORMAT_XRGB8888, \ |
| DRM_FORMAT_ARGB8888 |
| |
| /* Primary plane formats for gen <= 3 */ |
| static const uint32_t intel_primary_formats_gen2[] = { |
| COMMON_PRIMARY_FORMATS, |
| DRM_FORMAT_XRGB1555, |
| DRM_FORMAT_ARGB1555, |
| }; |
| |
| /* Primary plane formats for gen >= 4 */ |
| static const uint32_t intel_primary_formats_gen4[] = { |
| COMMON_PRIMARY_FORMATS, \ |
| DRM_FORMAT_XBGR8888, |
| DRM_FORMAT_ABGR8888, |
| DRM_FORMAT_XRGB2101010, |
| DRM_FORMAT_ARGB2101010, |
| DRM_FORMAT_XBGR2101010, |
| DRM_FORMAT_ABGR2101010, |
| }; |
| |
| /* Cursor formats */ |
| static const uint32_t intel_cursor_formats[] = { |
| DRM_FORMAT_ARGB8888, |
| }; |
| |
| static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on); |
| |
| static void i9xx_crtc_clock_get(struct intel_crtc *crtc, |
| struct intel_crtc_config *pipe_config); |
| static void ironlake_pch_clock_get(struct intel_crtc *crtc, |
| struct intel_crtc_config *pipe_config); |
| |
| static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode, |
| int x, int y, struct drm_framebuffer *old_fb); |
| static int intel_framebuffer_init(struct drm_device *dev, |
| struct intel_framebuffer *ifb, |
| struct drm_mode_fb_cmd2 *mode_cmd, |
| struct drm_i915_gem_object *obj); |
| static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc); |
| static void intel_set_pipe_timings(struct intel_crtc *intel_crtc); |
| static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc, |
| struct intel_link_m_n *m_n, |
| struct intel_link_m_n *m2_n2); |
| static void ironlake_set_pipeconf(struct drm_crtc *crtc); |
| static void haswell_set_pipeconf(struct drm_crtc *crtc); |
| static void intel_set_pipe_csc(struct drm_crtc *crtc); |
| static void vlv_prepare_pll(struct intel_crtc *crtc, |
| const struct intel_crtc_config *pipe_config); |
| static void chv_prepare_pll(struct intel_crtc *crtc, |
| const struct intel_crtc_config *pipe_config); |
| |
| static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe) |
| { |
| if (!connector->mst_port) |
| return connector->encoder; |
| else |
| return &connector->mst_port->mst_encoders[pipe]->base; |
| } |
| |
| typedef struct { |
| int min, max; |
| } intel_range_t; |
| |
| typedef struct { |
| int dot_limit; |
| int p2_slow, p2_fast; |
| } intel_p2_t; |
| |
| typedef struct intel_limit intel_limit_t; |
| struct intel_limit { |
| intel_range_t dot, vco, n, m, m1, m2, p, p1; |
| intel_p2_t p2; |
| }; |
| |
| int |
| intel_pch_rawclk(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| WARN_ON(!HAS_PCH_SPLIT(dev)); |
| |
| return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK; |
| } |
| |
| static inline u32 /* units of 100MHz */ |
| intel_fdi_link_freq(struct drm_device *dev) |
| { |
| if (IS_GEN5(dev)) { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2; |
| } else |
| return 27; |
| } |
| |
| static const intel_limit_t intel_limits_i8xx_dac = { |
| .dot = { .min = 25000, .max = 350000 }, |
| .vco = { .min = 908000, .max = 1512000 }, |
| .n = { .min = 2, .max = 16 }, |
| .m = { .min = 96, .max = 140 }, |
| .m1 = { .min = 18, .max = 26 }, |
| .m2 = { .min = 6, .max = 16 }, |
| .p = { .min = 4, .max = 128 }, |
| .p1 = { .min = 2, .max = 33 }, |
| .p2 = { .dot_limit = 165000, |
| .p2_slow = 4, .p2_fast = 2 }, |
| }; |
| |
| static const intel_limit_t intel_limits_i8xx_dvo = { |
| .dot = { .min = 25000, .max = 350000 }, |
| .vco = { .min = 908000, .max = 1512000 }, |
| .n = { .min = 2, .max = 16 }, |
| .m = { .min = 96, .max = 140 }, |
| .m1 = { .min = 18, .max = 26 }, |
| .m2 = { .min = 6, .max = 16 }, |
| .p = { .min = 4, .max = 128 }, |
| .p1 = { .min = 2, .max = 33 }, |
| .p2 = { .dot_limit = 165000, |
| .p2_slow = 4, .p2_fast = 4 }, |
| }; |
| |
| static const intel_limit_t intel_limits_i8xx_lvds = { |
| .dot = { .min = 25000, .max = 350000 }, |
| .vco = { .min = 908000, .max = 1512000 }, |
| .n = { .min = 2, .max = 16 }, |
| .m = { .min = 96, .max = 140 }, |
| .m1 = { .min = 18, .max = 26 }, |
| .m2 = { .min = 6, .max = 16 }, |
| .p = { .min = 4, .max = 128 }, |
| .p1 = { .min = 1, .max = 6 }, |
| .p2 = { .dot_limit = 165000, |
| .p2_slow = 14, .p2_fast = 7 }, |
| }; |
| |
| static const intel_limit_t intel_limits_i9xx_sdvo = { |
| .dot = { .min = 20000, .max = 400000 }, |
| .vco = { .min = 1400000, .max = 2800000 }, |
| .n = { .min = 1, .max = 6 }, |
| .m = { .min = 70, .max = 120 }, |
| .m1 = { .min = 8, .max = 18 }, |
| .m2 = { .min = 3, .max = 7 }, |
| .p = { .min = 5, .max = 80 }, |
| .p1 = { .min = 1, .max = 8 }, |
| .p2 = { .dot_limit = 200000, |
| .p2_slow = 10, .p2_fast = 5 }, |
| }; |
| |
| static const intel_limit_t intel_limits_i9xx_lvds = { |
| .dot = { .min = 20000, .max = 400000 }, |
| .vco = { .min = 1400000, .max = 2800000 }, |
| .n = { .min = 1, .max = 6 }, |
| .m = { .min = 70, .max = 120 }, |
| .m1 = { .min = 8, .max = 18 }, |
| .m2 = { .min = 3, .max = 7 }, |
| .p = { .min = 7, .max = 98 }, |
| .p1 = { .min = 1, .max = 8 }, |
| .p2 = { .dot_limit = 112000, |
| .p2_slow = 14, .p2_fast = 7 }, |
| }; |
| |
| |
| static const intel_limit_t intel_limits_g4x_sdvo = { |
| .dot = { .min = 25000, .max = 270000 }, |
| .vco = { .min = 1750000, .max = 3500000}, |
| .n = { .min = 1, .max = 4 }, |
| .m = { .min = 104, .max = 138 }, |
| .m1 = { .min = 17, .max = 23 }, |
| .m2 = { .min = 5, .max = 11 }, |
| .p = { .min = 10, .max = 30 }, |
| .p1 = { .min = 1, .max = 3}, |
| .p2 = { .dot_limit = 270000, |
| .p2_slow = 10, |
| .p2_fast = 10 |
| }, |
| }; |
| |
| static const intel_limit_t intel_limits_g4x_hdmi = { |
| .dot = { .min = 22000, .max = 400000 }, |
| .vco = { .min = 1750000, .max = 3500000}, |
| .n = { .min = 1, .max = 4 }, |
| .m = { .min = 104, .max = 138 }, |
| .m1 = { .min = 16, .max = 23 }, |
| .m2 = { .min = 5, .max = 11 }, |
| .p = { .min = 5, .max = 80 }, |
| .p1 = { .min = 1, .max = 8}, |
| .p2 = { .dot_limit = 165000, |
| .p2_slow = 10, .p2_fast = 5 }, |
| }; |
| |
| static const intel_limit_t intel_limits_g4x_single_channel_lvds = { |
| .dot = { .min = 20000, .max = 115000 }, |
| .vco = { .min = 1750000, .max = 3500000 }, |
| .n = { .min = 1, .max = 3 }, |
| .m = { .min = 104, .max = 138 }, |
| .m1 = { .min = 17, .max = 23 }, |
| .m2 = { .min = 5, .max = 11 }, |
| .p = { .min = 28, .max = 112 }, |
| .p1 = { .min = 2, .max = 8 }, |
| .p2 = { .dot_limit = 0, |
| .p2_slow = 14, .p2_fast = 14 |
| }, |
| }; |
| |
| static const intel_limit_t intel_limits_g4x_dual_channel_lvds = { |
| .dot = { .min = 80000, .max = 224000 }, |
| .vco = { .min = 1750000, .max = 3500000 }, |
| .n = { .min = 1, .max = 3 }, |
| .m = { .min = 104, .max = 138 }, |
| .m1 = { .min = 17, .max = 23 }, |
| .m2 = { .min = 5, .max = 11 }, |
| .p = { .min = 14, .max = 42 }, |
| .p1 = { .min = 2, .max = 6 }, |
| .p2 = { .dot_limit = 0, |
| .p2_slow = 7, .p2_fast = 7 |
| }, |
| }; |
| |
| static const intel_limit_t intel_limits_pineview_sdvo = { |
| .dot = { .min = 20000, .max = 400000}, |
| .vco = { .min = 1700000, .max = 3500000 }, |
| /* Pineview's Ncounter is a ring counter */ |
| .n = { .min = 3, .max = 6 }, |
| .m = { .min = 2, .max = 256 }, |
| /* Pineview only has one combined m divider, which we treat as m2. */ |
| .m1 = { .min = 0, .max = 0 }, |
| .m2 = { .min = 0, .max = 254 }, |
| .p = { .min = 5, .max = 80 }, |
| .p1 = { .min = 1, .max = 8 }, |
| .p2 = { .dot_limit = 200000, |
| .p2_slow = 10, .p2_fast = 5 }, |
| }; |
| |
| static const intel_limit_t intel_limits_pineview_lvds = { |
| .dot = { .min = 20000, .max = 400000 }, |
| .vco = { .min = 1700000, .max = 3500000 }, |
| .n = { .min = 3, .max = 6 }, |
| .m = { .min = 2, .max = 256 }, |
| .m1 = { .min = 0, .max = 0 }, |
| .m2 = { .min = 0, .max = 254 }, |
| .p = { .min = 7, .max = 112 }, |
| .p1 = { .min = 1, .max = 8 }, |
| .p2 = { .dot_limit = 112000, |
| .p2_slow = 14, .p2_fast = 14 }, |
| }; |
| |
| /* Ironlake / Sandybridge |
| * |
| * We calculate clock using (register_value + 2) for N/M1/M2, so here |
| * the range value for them is (actual_value - 2). |
| */ |
| static const intel_limit_t intel_limits_ironlake_dac = { |
| .dot = { .min = 25000, .max = 350000 }, |
| .vco = { .min = 1760000, .max = 3510000 }, |
| .n = { .min = 1, .max = 5 }, |
| .m = { .min = 79, .max = 127 }, |
| .m1 = { .min = 12, .max = 22 }, |
| .m2 = { .min = 5, .max = 9 }, |
| .p = { .min = 5, .max = 80 }, |
| .p1 = { .min = 1, .max = 8 }, |
| .p2 = { .dot_limit = 225000, |
| .p2_slow = 10, .p2_fast = 5 }, |
| }; |
| |
| static const intel_limit_t intel_limits_ironlake_single_lvds = { |
| .dot = { .min = 25000, .max = 350000 }, |
| .vco = { .min = 1760000, .max = 3510000 }, |
| .n = { .min = 1, .max = 3 }, |
| .m = { .min = 79, .max = 118 }, |
| .m1 = { .min = 12, .max = 22 }, |
| .m2 = { .min = 5, .max = 9 }, |
| .p = { .min = 28, .max = 112 }, |
| .p1 = { .min = 2, .max = 8 }, |
| .p2 = { .dot_limit = 225000, |
| .p2_slow = 14, .p2_fast = 14 }, |
| }; |
| |
| static const intel_limit_t intel_limits_ironlake_dual_lvds = { |
| .dot = { .min = 25000, .max = 350000 }, |
| .vco = { .min = 1760000, .max = 3510000 }, |
| .n = { .min = 1, .max = 3 }, |
| .m = { .min = 79, .max = 127 }, |
| .m1 = { .min = 12, .max = 22 }, |
| .m2 = { .min = 5, .max = 9 }, |
| .p = { .min = 14, .max = 56 }, |
| .p1 = { .min = 2, .max = 8 }, |
| .p2 = { .dot_limit = 225000, |
| .p2_slow = 7, .p2_fast = 7 }, |
| }; |
| |
| /* LVDS 100mhz refclk limits. */ |
| static const intel_limit_t intel_limits_ironlake_single_lvds_100m = { |
| .dot = { .min = 25000, .max = 350000 }, |
| .vco = { .min = 1760000, .max = 3510000 }, |
| .n = { .min = 1, .max = 2 }, |
| .m = { .min = 79, .max = 126 }, |
| .m1 = { .min = 12, .max = 22 }, |
| .m2 = { .min = 5, .max = 9 }, |
| .p = { .min = 28, .max = 112 }, |
| .p1 = { .min = 2, .max = 8 }, |
| .p2 = { .dot_limit = 225000, |
| .p2_slow = 14, .p2_fast = 14 }, |
| }; |
| |
| static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = { |
| .dot = { .min = 25000, .max = 350000 }, |
| .vco = { .min = 1760000, .max = 3510000 }, |
| .n = { .min = 1, .max = 3 }, |
| .m = { .min = 79, .max = 126 }, |
| .m1 = { .min = 12, .max = 22 }, |
| .m2 = { .min = 5, .max = 9 }, |
| .p = { .min = 14, .max = 42 }, |
| .p1 = { .min = 2, .max = 6 }, |
| .p2 = { .dot_limit = 225000, |
| .p2_slow = 7, .p2_fast = 7 }, |
| }; |
| |
| static const intel_limit_t intel_limits_vlv = { |
| /* |
| * These are the data rate limits (measured in fast clocks) |
| * since those are the strictest limits we have. The fast |
| * clock and actual rate limits are more relaxed, so checking |
| * them would make no difference. |
| */ |
| .dot = { .min = 25000 * 5, .max = 270000 * 5 }, |
| .vco = { .min = 4000000, .max = 6000000 }, |
| .n = { .min = 1, .max = 7 }, |
| .m1 = { .min = 2, .max = 3 }, |
| .m2 = { .min = 11, .max = 156 }, |
| .p1 = { .min = 2, .max = 3 }, |
| .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */ |
| }; |
| |
| static const intel_limit_t intel_limits_chv = { |
| /* |
| * These are the data rate limits (measured in fast clocks) |
| * since those are the strictest limits we have. The fast |
| * clock and actual rate limits are more relaxed, so checking |
| * them would make no difference. |
| */ |
| .dot = { .min = 25000 * 5, .max = 540000 * 5}, |
| .vco = { .min = 4860000, .max = 6700000 }, |
| .n = { .min = 1, .max = 1 }, |
| .m1 = { .min = 2, .max = 2 }, |
| .m2 = { .min = 24 << 22, .max = 175 << 22 }, |
| .p1 = { .min = 2, .max = 4 }, |
| .p2 = { .p2_slow = 1, .p2_fast = 14 }, |
| }; |
| |
| static void vlv_clock(int refclk, intel_clock_t *clock) |
| { |
| clock->m = clock->m1 * clock->m2; |
| clock->p = clock->p1 * clock->p2; |
| if (WARN_ON(clock->n == 0 || clock->p == 0)) |
| return; |
| clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n); |
| clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); |
| } |
| |
| /** |
| * Returns whether any output on the specified pipe is of the specified type |
| */ |
| bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct intel_encoder *encoder; |
| |
| for_each_encoder_on_crtc(dev, &crtc->base, encoder) |
| if (encoder->type == type) |
| return true; |
| |
| return false; |
| } |
| |
| /** |
| * Returns whether any output on the specified pipe will have the specified |
| * type after a staged modeset is complete, i.e., the same as |
| * intel_pipe_has_type() but looking at encoder->new_crtc instead of |
| * encoder->crtc. |
| */ |
| static bool intel_pipe_will_have_type(struct intel_crtc *crtc, int type) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct intel_encoder *encoder; |
| |
| for_each_intel_encoder(dev, encoder) |
| if (encoder->new_crtc == crtc && encoder->type == type) |
| return true; |
| |
| return false; |
| } |
| |
| static const intel_limit_t *intel_ironlake_limit(struct intel_crtc *crtc, |
| int refclk) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| const intel_limit_t *limit; |
| |
| if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) { |
| if (intel_is_dual_link_lvds(dev)) { |
| if (refclk == 100000) |
| limit = &intel_limits_ironlake_dual_lvds_100m; |
| else |
| limit = &intel_limits_ironlake_dual_lvds; |
| } else { |
| if (refclk == 100000) |
| limit = &intel_limits_ironlake_single_lvds_100m; |
| else |
| limit = &intel_limits_ironlake_single_lvds; |
| } |
| } else |
| limit = &intel_limits_ironlake_dac; |
| |
| return limit; |
| } |
| |
| static const intel_limit_t *intel_g4x_limit(struct intel_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| const intel_limit_t *limit; |
| |
| if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) { |
| if (intel_is_dual_link_lvds(dev)) |
| limit = &intel_limits_g4x_dual_channel_lvds; |
| else |
| limit = &intel_limits_g4x_single_channel_lvds; |
| } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI) || |
| intel_pipe_will_have_type(crtc, INTEL_OUTPUT_ANALOG)) { |
| limit = &intel_limits_g4x_hdmi; |
| } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO)) { |
| limit = &intel_limits_g4x_sdvo; |
| } else /* The option is for other outputs */ |
| limit = &intel_limits_i9xx_sdvo; |
| |
| return limit; |
| } |
| |
| static const intel_limit_t *intel_limit(struct intel_crtc *crtc, int refclk) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| const intel_limit_t *limit; |
| |
| if (HAS_PCH_SPLIT(dev)) |
| limit = intel_ironlake_limit(crtc, refclk); |
| else if (IS_G4X(dev)) { |
| limit = intel_g4x_limit(crtc); |
| } else if (IS_PINEVIEW(dev)) { |
| if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) |
| limit = &intel_limits_pineview_lvds; |
| else |
| limit = &intel_limits_pineview_sdvo; |
| } else if (IS_CHERRYVIEW(dev)) { |
| limit = &intel_limits_chv; |
| } else if (IS_VALLEYVIEW(dev)) { |
| limit = &intel_limits_vlv; |
| } else if (!IS_GEN2(dev)) { |
| if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) |
| limit = &intel_limits_i9xx_lvds; |
| else |
| limit = &intel_limits_i9xx_sdvo; |
| } else { |
| if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) |
| limit = &intel_limits_i8xx_lvds; |
| else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO)) |
| limit = &intel_limits_i8xx_dvo; |
| else |
| limit = &intel_limits_i8xx_dac; |
| } |
| return limit; |
| } |
| |
| /* m1 is reserved as 0 in Pineview, n is a ring counter */ |
| static void pineview_clock(int refclk, intel_clock_t *clock) |
| { |
| clock->m = clock->m2 + 2; |
| clock->p = clock->p1 * clock->p2; |
| if (WARN_ON(clock->n == 0 || clock->p == 0)) |
| return; |
| clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n); |
| clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); |
| } |
| |
| static uint32_t i9xx_dpll_compute_m(struct dpll *dpll) |
| { |
| return 5 * (dpll->m1 + 2) + (dpll->m2 + 2); |
| } |
| |
| static void i9xx_clock(int refclk, intel_clock_t *clock) |
| { |
| clock->m = i9xx_dpll_compute_m(clock); |
| clock->p = clock->p1 * clock->p2; |
| if (WARN_ON(clock->n + 2 == 0 || clock->p == 0)) |
| return; |
| clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2); |
| clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); |
| } |
| |
| static void chv_clock(int refclk, intel_clock_t *clock) |
| { |
| clock->m = clock->m1 * clock->m2; |
| clock->p = clock->p1 * clock->p2; |
| if (WARN_ON(clock->n == 0 || clock->p == 0)) |
| return; |
| clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m, |
| clock->n << 22); |
| clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); |
| } |
| |
| #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0) |
| /** |
| * Returns whether the given set of divisors are valid for a given refclk with |
| * the given connectors. |
| */ |
| |
| static bool intel_PLL_is_valid(struct drm_device *dev, |
| const intel_limit_t *limit, |
| const intel_clock_t *clock) |
| { |
| if (clock->n < limit->n.min || limit->n.max < clock->n) |
| INTELPllInvalid("n out of range\n"); |
| if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1) |
| INTELPllInvalid("p1 out of range\n"); |
| if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2) |
| INTELPllInvalid("m2 out of range\n"); |
| if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1) |
| INTELPllInvalid("m1 out of range\n"); |
| |
| if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev)) |
| if (clock->m1 <= clock->m2) |
| INTELPllInvalid("m1 <= m2\n"); |
| |
| if (!IS_VALLEYVIEW(dev)) { |
| if (clock->p < limit->p.min || limit->p.max < clock->p) |
| INTELPllInvalid("p out of range\n"); |
| if (clock->m < limit->m.min || limit->m.max < clock->m) |
| INTELPllInvalid("m out of range\n"); |
| } |
| |
| if (clock->vco < limit->vco.min || limit->vco.max < clock->vco) |
| INTELPllInvalid("vco out of range\n"); |
| /* XXX: We may need to be checking "Dot clock" depending on the multiplier, |
| * connector, etc., rather than just a single range. |
| */ |
| if (clock->dot < limit->dot.min || limit->dot.max < clock->dot) |
| INTELPllInvalid("dot out of range\n"); |
| |
| return true; |
| } |
| |
| static bool |
| i9xx_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc, |
| int target, int refclk, intel_clock_t *match_clock, |
| intel_clock_t *best_clock) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| intel_clock_t clock; |
| int err = target; |
| |
| if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) { |
| /* |
| * For LVDS just rely on its current settings for dual-channel. |
| * We haven't figured out how to reliably set up different |
| * single/dual channel state, if we even can. |
| */ |
| if (intel_is_dual_link_lvds(dev)) |
| clock.p2 = limit->p2.p2_fast; |
| else |
| clock.p2 = limit->p2.p2_slow; |
| } else { |
| if (target < limit->p2.dot_limit) |
| clock.p2 = limit->p2.p2_slow; |
| else |
| clock.p2 = limit->p2.p2_fast; |
| } |
| |
| memset(best_clock, 0, sizeof(*best_clock)); |
| |
| for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; |
| clock.m1++) { |
| for (clock.m2 = limit->m2.min; |
| clock.m2 <= limit->m2.max; clock.m2++) { |
| if (clock.m2 >= clock.m1) |
| break; |
| for (clock.n = limit->n.min; |
| clock.n <= limit->n.max; clock.n++) { |
| for (clock.p1 = limit->p1.min; |
| clock.p1 <= limit->p1.max; clock.p1++) { |
| int this_err; |
| |
| i9xx_clock(refclk, &clock); |
| if (!intel_PLL_is_valid(dev, limit, |
| &clock)) |
| continue; |
| if (match_clock && |
| clock.p != match_clock->p) |
| continue; |
| |
| this_err = abs(clock.dot - target); |
| if (this_err < err) { |
| *best_clock = clock; |
| err = this_err; |
| } |
| } |
| } |
| } |
| } |
| |
| return (err != target); |
| } |
| |
| static bool |
| pnv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc, |
| int target, int refclk, intel_clock_t *match_clock, |
| intel_clock_t *best_clock) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| intel_clock_t clock; |
| int err = target; |
| |
| if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) { |
| /* |
| * For LVDS just rely on its current settings for dual-channel. |
| * We haven't figured out how to reliably set up different |
| * single/dual channel state, if we even can. |
| */ |
| if (intel_is_dual_link_lvds(dev)) |
| clock.p2 = limit->p2.p2_fast; |
| else |
| clock.p2 = limit->p2.p2_slow; |
| } else { |
| if (target < limit->p2.dot_limit) |
| clock.p2 = limit->p2.p2_slow; |
| else |
| clock.p2 = limit->p2.p2_fast; |
| } |
| |
| memset(best_clock, 0, sizeof(*best_clock)); |
| |
| for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; |
| clock.m1++) { |
| for (clock.m2 = limit->m2.min; |
| clock.m2 <= limit->m2.max; clock.m2++) { |
| for (clock.n = limit->n.min; |
| clock.n <= limit->n.max; clock.n++) { |
| for (clock.p1 = limit->p1.min; |
| clock.p1 <= limit->p1.max; clock.p1++) { |
| int this_err; |
| |
| pineview_clock(refclk, &clock); |
| if (!intel_PLL_is_valid(dev, limit, |
| &clock)) |
| continue; |
| if (match_clock && |
| clock.p != match_clock->p) |
| continue; |
| |
| this_err = abs(clock.dot - target); |
| if (this_err < err) { |
| *best_clock = clock; |
| err = this_err; |
| } |
| } |
| } |
| } |
| } |
| |
| return (err != target); |
| } |
| |
| static bool |
| g4x_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc, |
| int target, int refclk, intel_clock_t *match_clock, |
| intel_clock_t *best_clock) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| intel_clock_t clock; |
| int max_n; |
| bool found; |
| /* approximately equals target * 0.00585 */ |
| int err_most = (target >> 8) + (target >> 9); |
| found = false; |
| |
| if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) { |
| if (intel_is_dual_link_lvds(dev)) |
| clock.p2 = limit->p2.p2_fast; |
| else |
| clock.p2 = limit->p2.p2_slow; |
| } else { |
| if (target < limit->p2.dot_limit) |
| clock.p2 = limit->p2.p2_slow; |
| else |
| clock.p2 = limit->p2.p2_fast; |
| } |
| |
| memset(best_clock, 0, sizeof(*best_clock)); |
| max_n = limit->n.max; |
| /* based on hardware requirement, prefer smaller n to precision */ |
| for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) { |
| /* based on hardware requirement, prefere larger m1,m2 */ |
| for (clock.m1 = limit->m1.max; |
| clock.m1 >= limit->m1.min; clock.m1--) { |
| for (clock.m2 = limit->m2.max; |
| clock.m2 >= limit->m2.min; clock.m2--) { |
| for (clock.p1 = limit->p1.max; |
| clock.p1 >= limit->p1.min; clock.p1--) { |
| int this_err; |
| |
| i9xx_clock(refclk, &clock); |
| if (!intel_PLL_is_valid(dev, limit, |
| &clock)) |
| continue; |
| |
| this_err = abs(clock.dot - target); |
| if (this_err < err_most) { |
| *best_clock = clock; |
| err_most = this_err; |
| max_n = clock.n; |
| found = true; |
| } |
| } |
| } |
| } |
| } |
| return found; |
| } |
| |
| static bool |
| vlv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc, |
| int target, int refclk, intel_clock_t *match_clock, |
| intel_clock_t *best_clock) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| intel_clock_t clock; |
| unsigned int bestppm = 1000000; |
| /* min update 19.2 MHz */ |
| int max_n = min(limit->n.max, refclk / 19200); |
| bool found = false; |
| |
| target *= 5; /* fast clock */ |
| |
| memset(best_clock, 0, sizeof(*best_clock)); |
| |
| /* based on hardware requirement, prefer smaller n to precision */ |
| for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) { |
| for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) { |
| for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow; |
| clock.p2 -= clock.p2 > 10 ? 2 : 1) { |
| clock.p = clock.p1 * clock.p2; |
| /* based on hardware requirement, prefer bigger m1,m2 values */ |
| for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) { |
| unsigned int ppm, diff; |
| |
| clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n, |
| refclk * clock.m1); |
| |
| vlv_clock(refclk, &clock); |
| |
| if (!intel_PLL_is_valid(dev, limit, |
| &clock)) |
| continue; |
| |
| diff = abs(clock.dot - target); |
| ppm = div_u64(1000000ULL * diff, target); |
| |
| if (ppm < 100 && clock.p > best_clock->p) { |
| bestppm = 0; |
| *best_clock = clock; |
| found = true; |
| } |
| |
| if (bestppm >= 10 && ppm < bestppm - 10) { |
| bestppm = ppm; |
| *best_clock = clock; |
| found = true; |
| } |
| } |
| } |
| } |
| } |
| |
| return found; |
| } |
| |
| static bool |
| chv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc, |
| int target, int refclk, intel_clock_t *match_clock, |
| intel_clock_t *best_clock) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| intel_clock_t clock; |
| uint64_t m2; |
| int found = false; |
| |
| memset(best_clock, 0, sizeof(*best_clock)); |
| |
| /* |
| * Based on hardware doc, the n always set to 1, and m1 always |
| * set to 2. If requires to support 200Mhz refclk, we need to |
| * revisit this because n may not 1 anymore. |
| */ |
| clock.n = 1, clock.m1 = 2; |
| target *= 5; /* fast clock */ |
| |
| for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) { |
| for (clock.p2 = limit->p2.p2_fast; |
| clock.p2 >= limit->p2.p2_slow; |
| clock.p2 -= clock.p2 > 10 ? 2 : 1) { |
| |
| clock.p = clock.p1 * clock.p2; |
| |
| m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p * |
| clock.n) << 22, refclk * clock.m1); |
| |
| if (m2 > INT_MAX/clock.m1) |
| continue; |
| |
| clock.m2 = m2; |
| |
| chv_clock(refclk, &clock); |
| |
| if (!intel_PLL_is_valid(dev, limit, &clock)) |
| continue; |
| |
| /* based on hardware requirement, prefer bigger p |
| */ |
| if (clock.p > best_clock->p) { |
| *best_clock = clock; |
| found = true; |
| } |
| } |
| } |
| |
| return found; |
| } |
| |
| bool intel_crtc_active(struct drm_crtc *crtc) |
| { |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| |
| /* Be paranoid as we can arrive here with only partial |
| * state retrieved from the hardware during setup. |
| * |
| * We can ditch the adjusted_mode.crtc_clock check as soon |
| * as Haswell has gained clock readout/fastboot support. |
| * |
| * We can ditch the crtc->primary->fb check as soon as we can |
| * properly reconstruct framebuffers. |
| */ |
| return intel_crtc->active && crtc->primary->fb && |
| intel_crtc->config.adjusted_mode.crtc_clock; |
| } |
| |
| enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv, |
| enum pipe pipe) |
| { |
| struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe]; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| |
| return intel_crtc->config.cpu_transcoder; |
| } |
| |
| static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 reg = PIPEDSL(pipe); |
| u32 line1, line2; |
| u32 line_mask; |
| |
| if (IS_GEN2(dev)) |
| line_mask = DSL_LINEMASK_GEN2; |
| else |
| line_mask = DSL_LINEMASK_GEN3; |
| |
| line1 = I915_READ(reg) & line_mask; |
| mdelay(5); |
| line2 = I915_READ(reg) & line_mask; |
| |
| return line1 == line2; |
| } |
| |
| /* |
| * intel_wait_for_pipe_off - wait for pipe to turn off |
| * @crtc: crtc whose pipe to wait for |
| * |
| * After disabling a pipe, we can't wait for vblank in the usual way, |
| * spinning on the vblank interrupt status bit, since we won't actually |
| * see an interrupt when the pipe is disabled. |
| * |
| * On Gen4 and above: |
| * wait for the pipe register state bit to turn off |
| * |
| * Otherwise: |
| * wait for the display line value to settle (it usually |
| * ends up stopping at the start of the next frame). |
| * |
| */ |
| static void intel_wait_for_pipe_off(struct intel_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| enum transcoder cpu_transcoder = crtc->config.cpu_transcoder; |
| enum pipe pipe = crtc->pipe; |
| |
| if (INTEL_INFO(dev)->gen >= 4) { |
| int reg = PIPECONF(cpu_transcoder); |
| |
| /* Wait for the Pipe State to go off */ |
| if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0, |
| 100)) |
| WARN(1, "pipe_off wait timed out\n"); |
| } else { |
| /* Wait for the display line to settle */ |
| if (wait_for(pipe_dsl_stopped(dev, pipe), 100)) |
| WARN(1, "pipe_off wait timed out\n"); |
| } |
| } |
| |
| /* |
| * ibx_digital_port_connected - is the specified port connected? |
| * @dev_priv: i915 private structure |
| * @port: the port to test |
| * |
| * Returns true if @port is connected, false otherwise. |
| */ |
| bool ibx_digital_port_connected(struct drm_i915_private *dev_priv, |
| struct intel_digital_port *port) |
| { |
| u32 bit; |
| |
| if (HAS_PCH_IBX(dev_priv->dev)) { |
| switch (port->port) { |
| case PORT_B: |
| bit = SDE_PORTB_HOTPLUG; |
| break; |
| case PORT_C: |
| bit = SDE_PORTC_HOTPLUG; |
| break; |
| case PORT_D: |
| bit = SDE_PORTD_HOTPLUG; |
| break; |
| default: |
| return true; |
| } |
| } else { |
| switch (port->port) { |
| case PORT_B: |
| bit = SDE_PORTB_HOTPLUG_CPT; |
| break; |
| case PORT_C: |
| bit = SDE_PORTC_HOTPLUG_CPT; |
| break; |
| case PORT_D: |
| bit = SDE_PORTD_HOTPLUG_CPT; |
| break; |
| default: |
| return true; |
| } |
| } |
| |
| return I915_READ(SDEISR) & bit; |
| } |
| |
| static const char *state_string(bool enabled) |
| { |
| return enabled ? "on" : "off"; |
| } |
| |
| /* Only for pre-ILK configs */ |
| void assert_pll(struct drm_i915_private *dev_priv, |
| enum pipe pipe, bool state) |
| { |
| int reg; |
| u32 val; |
| bool cur_state; |
| |
| reg = DPLL(pipe); |
| val = I915_READ(reg); |
| cur_state = !!(val & DPLL_VCO_ENABLE); |
| WARN(cur_state != state, |
| "PLL state assertion failure (expected %s, current %s)\n", |
| state_string(state), state_string(cur_state)); |
| } |
| |
| /* XXX: the dsi pll is shared between MIPI DSI ports */ |
| static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state) |
| { |
| u32 val; |
| bool cur_state; |
| |
| mutex_lock(&dev_priv->dpio_lock); |
| val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL); |
| mutex_unlock(&dev_priv->dpio_lock); |
| |
| cur_state = val & DSI_PLL_VCO_EN; |
| WARN(cur_state != state, |
| "DSI PLL state assertion failure (expected %s, current %s)\n", |
| state_string(state), state_string(cur_state)); |
| } |
| #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true) |
| #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false) |
| |
| struct intel_shared_dpll * |
| intel_crtc_to_shared_dpll(struct intel_crtc *crtc) |
| { |
| struct drm_i915_private *dev_priv = crtc->base.dev->dev_private; |
| |
| if (crtc->config.shared_dpll < 0) |
| return NULL; |
| |
| return &dev_priv->shared_dplls[crtc->config.shared_dpll]; |
| } |
| |
| /* For ILK+ */ |
| void assert_shared_dpll(struct drm_i915_private *dev_priv, |
| struct intel_shared_dpll *pll, |
| bool state) |
| { |
| bool cur_state; |
| struct intel_dpll_hw_state hw_state; |
| |
| if (WARN (!pll, |
| "asserting DPLL %s with no DPLL\n", state_string(state))) |
| return; |
| |
| cur_state = pll->get_hw_state(dev_priv, pll, &hw_state); |
| WARN(cur_state != state, |
| "%s assertion failure (expected %s, current %s)\n", |
| pll->name, state_string(state), state_string(cur_state)); |
| } |
| |
| static void assert_fdi_tx(struct drm_i915_private *dev_priv, |
| enum pipe pipe, bool state) |
| { |
| int reg; |
| u32 val; |
| bool cur_state; |
| enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, |
| pipe); |
| |
| if (HAS_DDI(dev_priv->dev)) { |
| /* DDI does not have a specific FDI_TX register */ |
| reg = TRANS_DDI_FUNC_CTL(cpu_transcoder); |
| val = I915_READ(reg); |
| cur_state = !!(val & TRANS_DDI_FUNC_ENABLE); |
| } else { |
| reg = FDI_TX_CTL(pipe); |
| val = I915_READ(reg); |
| cur_state = !!(val & FDI_TX_ENABLE); |
| } |
| WARN(cur_state != state, |
| "FDI TX state assertion failure (expected %s, current %s)\n", |
| state_string(state), state_string(cur_state)); |
| } |
| #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true) |
| #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false) |
| |
| static void assert_fdi_rx(struct drm_i915_private *dev_priv, |
| enum pipe pipe, bool state) |
| { |
| int reg; |
| u32 val; |
| bool cur_state; |
| |
| reg = FDI_RX_CTL(pipe); |
| val = I915_READ(reg); |
| cur_state = !!(val & FDI_RX_ENABLE); |
| WARN(cur_state != state, |
| "FDI RX state assertion failure (expected %s, current %s)\n", |
| state_string(state), state_string(cur_state)); |
| } |
| #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true) |
| #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false) |
| |
| static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv, |
| enum pipe pipe) |
| { |
| int reg; |
| u32 val; |
| |
| /* ILK FDI PLL is always enabled */ |
| if (INTEL_INFO(dev_priv->dev)->gen == 5) |
| return; |
| |
| /* On Haswell, DDI ports are responsible for the FDI PLL setup */ |
| if (HAS_DDI(dev_priv->dev)) |
| return; |
| |
| reg = FDI_TX_CTL(pipe); |
| val = I915_READ(reg); |
| WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n"); |
| } |
| |
| void assert_fdi_rx_pll(struct drm_i915_private *dev_priv, |
| enum pipe pipe, bool state) |
| { |
| int reg; |
| u32 val; |
| bool cur_state; |
| |
| reg = FDI_RX_CTL(pipe); |
| val = I915_READ(reg); |
| cur_state = !!(val & FDI_RX_PLL_ENABLE); |
| WARN(cur_state != state, |
| "FDI RX PLL assertion failure (expected %s, current %s)\n", |
| state_string(state), state_string(cur_state)); |
| } |
| |
| void assert_panel_unlocked(struct drm_i915_private *dev_priv, |
| enum pipe pipe) |
| { |
| struct drm_device *dev = dev_priv->dev; |
| int pp_reg; |
| u32 val; |
| enum pipe panel_pipe = PIPE_A; |
| bool locked = true; |
| |
| if (WARN_ON(HAS_DDI(dev))) |
| return; |
| |
| if (HAS_PCH_SPLIT(dev)) { |
| u32 port_sel; |
| |
| pp_reg = PCH_PP_CONTROL; |
| port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK; |
| |
| if (port_sel == PANEL_PORT_SELECT_LVDS && |
| I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT) |
| panel_pipe = PIPE_B; |
| /* XXX: else fix for eDP */ |
| } else if (IS_VALLEYVIEW(dev)) { |
| /* presumably write lock depends on pipe, not port select */ |
| pp_reg = VLV_PIPE_PP_CONTROL(pipe); |
| panel_pipe = pipe; |
| } else { |
| pp_reg = PP_CONTROL; |
| if (I915_READ(LVDS) & LVDS_PIPEB_SELECT) |
| panel_pipe = PIPE_B; |
| } |
| |
| val = I915_READ(pp_reg); |
| if (!(val & PANEL_POWER_ON) || |
| ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS)) |
| locked = false; |
| |
| WARN(panel_pipe == pipe && locked, |
| "panel assertion failure, pipe %c regs locked\n", |
| pipe_name(pipe)); |
| } |
| |
| static void assert_cursor(struct drm_i915_private *dev_priv, |
| enum pipe pipe, bool state) |
| { |
| struct drm_device *dev = dev_priv->dev; |
| bool cur_state; |
| |
| if (IS_845G(dev) || IS_I865G(dev)) |
| cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE; |
| else |
| cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE; |
| |
| WARN(cur_state != state, |
| "cursor on pipe %c assertion failure (expected %s, current %s)\n", |
| pipe_name(pipe), state_string(state), state_string(cur_state)); |
| } |
| #define assert_cursor_enabled(d, p) assert_cursor(d, p, true) |
| #define assert_cursor_disabled(d, p) assert_cursor(d, p, false) |
| |
| void assert_pipe(struct drm_i915_private *dev_priv, |
| enum pipe pipe, bool state) |
| { |
| int reg; |
| u32 val; |
| bool cur_state; |
| enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, |
| pipe); |
| |
| /* if we need the pipe quirk it must be always on */ |
| if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) || |
| (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)) |
| state = true; |
| |
| if (!intel_display_power_is_enabled(dev_priv, |
| POWER_DOMAIN_TRANSCODER(cpu_transcoder))) { |
| cur_state = false; |
| } else { |
| reg = PIPECONF(cpu_transcoder); |
| val = I915_READ(reg); |
| cur_state = !!(val & PIPECONF_ENABLE); |
| } |
| |
| WARN(cur_state != state, |
| "pipe %c assertion failure (expected %s, current %s)\n", |
| pipe_name(pipe), state_string(state), state_string(cur_state)); |
| } |
| |
| static void assert_plane(struct drm_i915_private *dev_priv, |
| enum plane plane, bool state) |
| { |
| int reg; |
| u32 val; |
| bool cur_state; |
| |
| reg = DSPCNTR(plane); |
| val = I915_READ(reg); |
| cur_state = !!(val & DISPLAY_PLANE_ENABLE); |
| WARN(cur_state != state, |
| "plane %c assertion failure (expected %s, current %s)\n", |
| plane_name(plane), state_string(state), state_string(cur_state)); |
| } |
| |
| #define assert_plane_enabled(d, p) assert_plane(d, p, true) |
| #define assert_plane_disabled(d, p) assert_plane(d, p, false) |
| |
| static void assert_planes_disabled(struct drm_i915_private *dev_priv, |
| enum pipe pipe) |
| { |
| struct drm_device *dev = dev_priv->dev; |
| int reg, i; |
| u32 val; |
| int cur_pipe; |
| |
| /* Primary planes are fixed to pipes on gen4+ */ |
| if (INTEL_INFO(dev)->gen >= 4) { |
| reg = DSPCNTR(pipe); |
| val = I915_READ(reg); |
| WARN(val & DISPLAY_PLANE_ENABLE, |
| "plane %c assertion failure, should be disabled but not\n", |
| plane_name(pipe)); |
| return; |
| } |
| |
| /* Need to check both planes against the pipe */ |
| for_each_pipe(dev_priv, i) { |
| reg = DSPCNTR(i); |
| val = I915_READ(reg); |
| cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >> |
| DISPPLANE_SEL_PIPE_SHIFT; |
| WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe, |
| "plane %c assertion failure, should be off on pipe %c but is still active\n", |
| plane_name(i), pipe_name(pipe)); |
| } |
| } |
| |
| static void assert_sprites_disabled(struct drm_i915_private *dev_priv, |
| enum pipe pipe) |
| { |
| struct drm_device *dev = dev_priv->dev; |
| int reg, sprite; |
| u32 val; |
| |
| if (INTEL_INFO(dev)->gen >= 9) { |
| for_each_sprite(pipe, sprite) { |
| val = I915_READ(PLANE_CTL(pipe, sprite)); |
| WARN(val & PLANE_CTL_ENABLE, |
| "plane %d assertion failure, should be off on pipe %c but is still active\n", |
| sprite, pipe_name(pipe)); |
| } |
| } else if (IS_VALLEYVIEW(dev)) { |
| for_each_sprite(pipe, sprite) { |
| reg = SPCNTR(pipe, sprite); |
| val = I915_READ(reg); |
| WARN(val & SP_ENABLE, |
| "sprite %c assertion failure, should be off on pipe %c but is still active\n", |
| sprite_name(pipe, sprite), pipe_name(pipe)); |
| } |
| } else if (INTEL_INFO(dev)->gen >= 7) { |
| reg = SPRCTL(pipe); |
| val = I915_READ(reg); |
| WARN(val & SPRITE_ENABLE, |
| "sprite %c assertion failure, should be off on pipe %c but is still active\n", |
| plane_name(pipe), pipe_name(pipe)); |
| } else if (INTEL_INFO(dev)->gen >= 5) { |
| reg = DVSCNTR(pipe); |
| val = I915_READ(reg); |
| WARN(val & DVS_ENABLE, |
| "sprite %c assertion failure, should be off on pipe %c but is still active\n", |
| plane_name(pipe), pipe_name(pipe)); |
| } |
| } |
| |
| static void assert_vblank_disabled(struct drm_crtc *crtc) |
| { |
| if (WARN_ON(drm_crtc_vblank_get(crtc) == 0)) |
| drm_crtc_vblank_put(crtc); |
| } |
| |
| static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv) |
| { |
| u32 val; |
| bool enabled; |
| |
| WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev))); |
| |
| val = I915_READ(PCH_DREF_CONTROL); |
| enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK | |
| DREF_SUPERSPREAD_SOURCE_MASK)); |
| WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n"); |
| } |
| |
| static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv, |
| enum pipe pipe) |
| { |
| int reg; |
| u32 val; |
| bool enabled; |
| |
| reg = PCH_TRANSCONF(pipe); |
| val = I915_READ(reg); |
| enabled = !!(val & TRANS_ENABLE); |
| WARN(enabled, |
| "transcoder assertion failed, should be off on pipe %c but is still active\n", |
| pipe_name(pipe)); |
| } |
| |
| static bool dp_pipe_enabled(struct drm_i915_private *dev_priv, |
| enum pipe pipe, u32 port_sel, u32 val) |
| { |
| if ((val & DP_PORT_EN) == 0) |
| return false; |
| |
| if (HAS_PCH_CPT(dev_priv->dev)) { |
| u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe); |
| u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg); |
| if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel) |
| return false; |
| } else if (IS_CHERRYVIEW(dev_priv->dev)) { |
| if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe)) |
| return false; |
| } else { |
| if ((val & DP_PIPE_MASK) != (pipe << 30)) |
| return false; |
| } |
| return true; |
| } |
| |
| static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv, |
| enum pipe pipe, u32 val) |
| { |
| if ((val & SDVO_ENABLE) == 0) |
| return false; |
| |
| if (HAS_PCH_CPT(dev_priv->dev)) { |
| if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe)) |
| return false; |
| } else if (IS_CHERRYVIEW(dev_priv->dev)) { |
| if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe)) |
| return false; |
| } else { |
| if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe)) |
| return false; |
| } |
| return true; |
| } |
| |
| static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv, |
| enum pipe pipe, u32 val) |
| { |
| if ((val & LVDS_PORT_EN) == 0) |
| return false; |
| |
| if (HAS_PCH_CPT(dev_priv->dev)) { |
| if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe)) |
| return false; |
| } else { |
| if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe)) |
| return false; |
| } |
| return true; |
| } |
| |
| static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv, |
| enum pipe pipe, u32 val) |
| { |
| if ((val & ADPA_DAC_ENABLE) == 0) |
| return false; |
| if (HAS_PCH_CPT(dev_priv->dev)) { |
| if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe)) |
| return false; |
| } else { |
| if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe)) |
| return false; |
| } |
| return true; |
| } |
| |
| static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv, |
| enum pipe pipe, int reg, u32 port_sel) |
| { |
| u32 val = I915_READ(reg); |
| WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val), |
| "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n", |
| reg, pipe_name(pipe)); |
| |
| WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0 |
| && (val & DP_PIPEB_SELECT), |
| "IBX PCH dp port still using transcoder B\n"); |
| } |
| |
| static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv, |
| enum pipe pipe, int reg) |
| { |
| u32 val = I915_READ(reg); |
| WARN(hdmi_pipe_enabled(dev_priv, pipe, val), |
| "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n", |
| reg, pipe_name(pipe)); |
| |
| WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0 |
| && (val & SDVO_PIPE_B_SELECT), |
| "IBX PCH hdmi port still using transcoder B\n"); |
| } |
| |
| static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv, |
| enum pipe pipe) |
| { |
| int reg; |
| u32 val; |
| |
| assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B); |
| assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C); |
| assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D); |
| |
| reg = PCH_ADPA; |
| val = I915_READ(reg); |
| WARN(adpa_pipe_enabled(dev_priv, pipe, val), |
| "PCH VGA enabled on transcoder %c, should be disabled\n", |
| pipe_name(pipe)); |
| |
| reg = PCH_LVDS; |
| val = I915_READ(reg); |
| WARN(lvds_pipe_enabled(dev_priv, pipe, val), |
| "PCH LVDS enabled on transcoder %c, should be disabled\n", |
| pipe_name(pipe)); |
| |
| assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB); |
| assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC); |
| assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID); |
| } |
| |
| static void intel_init_dpio(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| if (!IS_VALLEYVIEW(dev)) |
| return; |
| |
| /* |
| * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C), |
| * CHV x1 PHY (DP/HDMI D) |
| * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C) |
| */ |
| if (IS_CHERRYVIEW(dev)) { |
| DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2; |
| DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO; |
| } else { |
| DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO; |
| } |
| } |
| |
| static void vlv_enable_pll(struct intel_crtc *crtc, |
| const struct intel_crtc_config *pipe_config) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int reg = DPLL(crtc->pipe); |
| u32 dpll = pipe_config->dpll_hw_state.dpll; |
| |
| assert_pipe_disabled(dev_priv, crtc->pipe); |
| |
| /* No really, not for ILK+ */ |
| BUG_ON(!IS_VALLEYVIEW(dev_priv->dev)); |
| |
| /* PLL is protected by panel, make sure we can write it */ |
| if (IS_MOBILE(dev_priv->dev)) |
| assert_panel_unlocked(dev_priv, crtc->pipe); |
| |
| I915_WRITE(reg, dpll); |
| POSTING_READ(reg); |
| udelay(150); |
| |
| if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1)) |
| DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe); |
| |
| I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md); |
| POSTING_READ(DPLL_MD(crtc->pipe)); |
| |
| /* We do this three times for luck */ |
| I915_WRITE(reg, dpll); |
| POSTING_READ(reg); |
| udelay(150); /* wait for warmup */ |
| I915_WRITE(reg, dpll); |
| POSTING_READ(reg); |
| udelay(150); /* wait for warmup */ |
| I915_WRITE(reg, dpll); |
| POSTING_READ(reg); |
| udelay(150); /* wait for warmup */ |
| } |
| |
| static void chv_enable_pll(struct intel_crtc *crtc, |
| const struct intel_crtc_config *pipe_config) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int pipe = crtc->pipe; |
| enum dpio_channel port = vlv_pipe_to_channel(pipe); |
| u32 tmp; |
| |
| assert_pipe_disabled(dev_priv, crtc->pipe); |
| |
| BUG_ON(!IS_CHERRYVIEW(dev_priv->dev)); |
| |
| mutex_lock(&dev_priv->dpio_lock); |
| |
| /* Enable back the 10bit clock to display controller */ |
| tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)); |
| tmp |= DPIO_DCLKP_EN; |
| vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp); |
| |
| /* |
| * Need to wait > 100ns between dclkp clock enable bit and PLL enable. |
| */ |
| udelay(1); |
| |
| /* Enable PLL */ |
| I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll); |
| |
| /* Check PLL is locked */ |
| if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1)) |
| DRM_ERROR("PLL %d failed to lock\n", pipe); |
| |
| /* not sure when this should be written */ |
| I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md); |
| POSTING_READ(DPLL_MD(pipe)); |
| |
| mutex_unlock(&dev_priv->dpio_lock); |
| } |
| |
| static int intel_num_dvo_pipes(struct drm_device *dev) |
| { |
| struct intel_crtc *crtc; |
| int count = 0; |
| |
| for_each_intel_crtc(dev, crtc) |
| count += crtc->active && |
| intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO); |
| |
| return count; |
| } |
| |
| static void i9xx_enable_pll(struct intel_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int reg = DPLL(crtc->pipe); |
| u32 dpll = crtc->config.dpll_hw_state.dpll; |
| |
| assert_pipe_disabled(dev_priv, crtc->pipe); |
| |
| /* No really, not for ILK+ */ |
| BUG_ON(INTEL_INFO(dev)->gen >= 5); |
| |
| /* PLL is protected by panel, make sure we can write it */ |
| if (IS_MOBILE(dev) && !IS_I830(dev)) |
| assert_panel_unlocked(dev_priv, crtc->pipe); |
| |
| /* Enable DVO 2x clock on both PLLs if necessary */ |
| if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) { |
| /* |
| * It appears to be important that we don't enable this |
| * for the current pipe before otherwise configuring the |
| * PLL. No idea how this should be handled if multiple |
| * DVO outputs are enabled simultaneosly. |
| */ |
| dpll |= DPLL_DVO_2X_MODE; |
| I915_WRITE(DPLL(!crtc->pipe), |
| I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE); |
| } |
| |
| /* Wait for the clocks to stabilize. */ |
| POSTING_READ(reg); |
| udelay(150); |
| |
| if (INTEL_INFO(dev)->gen >= 4) { |
| I915_WRITE(DPLL_MD(crtc->pipe), |
| crtc->config.dpll_hw_state.dpll_md); |
| } else { |
| /* The pixel multiplier can only be updated once the |
| * DPLL is enabled and the clocks are stable. |
| * |
| * So write it again. |
| */ |
| I915_WRITE(reg, dpll); |
| } |
| |
| /* We do this three times for luck */ |
| I915_WRITE(reg, dpll); |
| POSTING_READ(reg); |
| udelay(150); /* wait for warmup */ |
| I915_WRITE(reg, dpll); |
| POSTING_READ(reg); |
| udelay(150); /* wait for warmup */ |
| I915_WRITE(reg, dpll); |
| POSTING_READ(reg); |
| udelay(150); /* wait for warmup */ |
| } |
| |
| /** |
| * i9xx_disable_pll - disable a PLL |
| * @dev_priv: i915 private structure |
| * @pipe: pipe PLL to disable |
| * |
| * Disable the PLL for @pipe, making sure the pipe is off first. |
| * |
| * Note! This is for pre-ILK only. |
| */ |
| static void i9xx_disable_pll(struct intel_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| enum pipe pipe = crtc->pipe; |
| |
| /* Disable DVO 2x clock on both PLLs if necessary */ |
| if (IS_I830(dev) && |
| intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) && |
| intel_num_dvo_pipes(dev) == 1) { |
| I915_WRITE(DPLL(PIPE_B), |
| I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE); |
| I915_WRITE(DPLL(PIPE_A), |
| I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE); |
| } |
| |
| /* Don't disable pipe or pipe PLLs if needed */ |
| if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) || |
| (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)) |
| return; |
| |
| /* Make sure the pipe isn't still relying on us */ |
| assert_pipe_disabled(dev_priv, pipe); |
| |
| I915_WRITE(DPLL(pipe), 0); |
| POSTING_READ(DPLL(pipe)); |
| } |
| |
| static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe) |
| { |
| u32 val = 0; |
| |
| /* Make sure the pipe isn't still relying on us */ |
| assert_pipe_disabled(dev_priv, pipe); |
| |
| /* |
| * Leave integrated clock source and reference clock enabled for pipe B. |
| * The latter is needed for VGA hotplug / manual detection. |
| */ |
| if (pipe == PIPE_B) |
| val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV; |
| I915_WRITE(DPLL(pipe), val); |
| POSTING_READ(DPLL(pipe)); |
| |
| } |
| |
| static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe) |
| { |
| enum dpio_channel port = vlv_pipe_to_channel(pipe); |
| u32 val; |
| |
| /* Make sure the pipe isn't still relying on us */ |
| assert_pipe_disabled(dev_priv, pipe); |
| |
| /* Set PLL en = 0 */ |
| val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV; |
| if (pipe != PIPE_A) |
| val |= DPLL_INTEGRATED_CRI_CLK_VLV; |
| I915_WRITE(DPLL(pipe), val); |
| POSTING_READ(DPLL(pipe)); |
| |
| mutex_lock(&dev_priv->dpio_lock); |
| |
| /* Disable 10bit clock to display controller */ |
| val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)); |
| val &= ~DPIO_DCLKP_EN; |
| vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val); |
| |
| /* disable left/right clock distribution */ |
| if (pipe != PIPE_B) { |
| val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0); |
| val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK); |
| vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val); |
| } else { |
| val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1); |
| val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK); |
| vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val); |
| } |
| |
| mutex_unlock(&dev_priv->dpio_lock); |
| } |
| |
| void vlv_wait_port_ready(struct drm_i915_private *dev_priv, |
| struct intel_digital_port *dport) |
| { |
| u32 port_mask; |
| int dpll_reg; |
| |
| switch (dport->port) { |
| case PORT_B: |
| port_mask = DPLL_PORTB_READY_MASK; |
| dpll_reg = DPLL(0); |
| break; |
| case PORT_C: |
| port_mask = DPLL_PORTC_READY_MASK; |
| dpll_reg = DPLL(0); |
| break; |
| case PORT_D: |
| port_mask = DPLL_PORTD_READY_MASK; |
| dpll_reg = DPIO_PHY_STATUS; |
| break; |
| default: |
| BUG(); |
| } |
| |
| if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000)) |
| WARN(1, "timed out waiting for port %c ready: 0x%08x\n", |
| port_name(dport->port), I915_READ(dpll_reg)); |
| } |
| |
| static void intel_prepare_shared_dpll(struct intel_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc); |
| |
| if (WARN_ON(pll == NULL)) |
| return; |
| |
| WARN_ON(!pll->config.crtc_mask); |
| if (pll->active == 0) { |
| DRM_DEBUG_DRIVER("setting up %s\n", pll->name); |
| WARN_ON(pll->on); |
| assert_shared_dpll_disabled(dev_priv, pll); |
| |
| pll->mode_set(dev_priv, pll); |
| } |
| } |
| |
| /** |
| * intel_enable_shared_dpll - enable PCH PLL |
| * @dev_priv: i915 private structure |
| * @pipe: pipe PLL to enable |
| * |
| * The PCH PLL needs to be enabled before the PCH transcoder, since it |
| * drives the transcoder clock. |
| */ |
| static void intel_enable_shared_dpll(struct intel_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc); |
| |
| if (WARN_ON(pll == NULL)) |
| return; |
| |
| if (WARN_ON(pll->config.crtc_mask == 0)) |
| return; |
| |
| DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n", |
| pll->name, pll->active, pll->on, |
| crtc->base.base.id); |
| |
| if (pll->active++) { |
| WARN_ON(!pll->on); |
| assert_shared_dpll_enabled(dev_priv, pll); |
| return; |
| } |
| WARN_ON(pll->on); |
| |
| intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS); |
| |
| DRM_DEBUG_KMS("enabling %s\n", pll->name); |
| pll->enable(dev_priv, pll); |
| pll->on = true; |
| } |
| |
| static void intel_disable_shared_dpll(struct intel_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc); |
| |
| /* PCH only available on ILK+ */ |
| BUG_ON(INTEL_INFO(dev)->gen < 5); |
| if (WARN_ON(pll == NULL)) |
| return; |
| |
| if (WARN_ON(pll->config.crtc_mask == 0)) |
| return; |
| |
| DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n", |
| pll->name, pll->active, pll->on, |
| crtc->base.base.id); |
| |
| if (WARN_ON(pll->active == 0)) { |
| assert_shared_dpll_disabled(dev_priv, pll); |
| return; |
| } |
| |
| assert_shared_dpll_enabled(dev_priv, pll); |
| WARN_ON(!pll->on); |
| if (--pll->active) |
| return; |
| |
| DRM_DEBUG_KMS("disabling %s\n", pll->name); |
| pll->disable(dev_priv, pll); |
| pll->on = false; |
| |
| intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS); |
| } |
| |
| static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv, |
| enum pipe pipe) |
| { |
| struct drm_device *dev = dev_priv->dev; |
| struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe]; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| uint32_t reg, val, pipeconf_val; |
| |
| /* PCH only available on ILK+ */ |
| BUG_ON(!HAS_PCH_SPLIT(dev)); |
| |
| /* Make sure PCH DPLL is enabled */ |
| assert_shared_dpll_enabled(dev_priv, |
| intel_crtc_to_shared_dpll(intel_crtc)); |
| |
| /* FDI must be feeding us bits for PCH ports */ |
| assert_fdi_tx_enabled(dev_priv, pipe); |
| assert_fdi_rx_enabled(dev_priv, pipe); |
| |
| if (HAS_PCH_CPT(dev)) { |
| /* Workaround: Set the timing override bit before enabling the |
| * pch transcoder. */ |
| reg = TRANS_CHICKEN2(pipe); |
| val = I915_READ(reg); |
| val |= TRANS_CHICKEN2_TIMING_OVERRIDE; |
| I915_WRITE(reg, val); |
| } |
| |
| reg = PCH_TRANSCONF(pipe); |
| val = I915_READ(reg); |
| pipeconf_val = I915_READ(PIPECONF(pipe)); |
| |
| if (HAS_PCH_IBX(dev_priv->dev)) { |
| /* |
| * make the BPC in transcoder be consistent with |
| * that in pipeconf reg. |
| */ |
| val &= ~PIPECONF_BPC_MASK; |
| val |= pipeconf_val & PIPECONF_BPC_MASK; |
| } |
| |
| val &= ~TRANS_INTERLACE_MASK; |
| if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK) |
| if (HAS_PCH_IBX(dev_priv->dev) && |
| intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO)) |
| val |= TRANS_LEGACY_INTERLACED_ILK; |
| else |
| val |= TRANS_INTERLACED; |
| else |
| val |= TRANS_PROGRESSIVE; |
| |
| I915_WRITE(reg, val | TRANS_ENABLE); |
| if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100)) |
| DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe)); |
| } |
| |
| static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv, |
| enum transcoder cpu_transcoder) |
| { |
| u32 val, pipeconf_val; |
| |
| /* PCH only available on ILK+ */ |
| BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev)); |
| |
| /* FDI must be feeding us bits for PCH ports */ |
| assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder); |
| assert_fdi_rx_enabled(dev_priv, TRANSCODER_A); |
| |
| /* Workaround: set timing override bit. */ |
| val = I915_READ(_TRANSA_CHICKEN2); |
| val |= TRANS_CHICKEN2_TIMING_OVERRIDE; |
| I915_WRITE(_TRANSA_CHICKEN2, val); |
| |
| val = TRANS_ENABLE; |
| pipeconf_val = I915_READ(PIPECONF(cpu_transcoder)); |
| |
| if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) == |
| PIPECONF_INTERLACED_ILK) |
| val |= TRANS_INTERLACED; |
| else |
| val |= TRANS_PROGRESSIVE; |
| |
| I915_WRITE(LPT_TRANSCONF, val); |
| if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100)) |
| DRM_ERROR("Failed to enable PCH transcoder\n"); |
| } |
| |
| static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv, |
| enum pipe pipe) |
| { |
| struct drm_device *dev = dev_priv->dev; |
| uint32_t reg, val; |
| |
| /* FDI relies on the transcoder */ |
| assert_fdi_tx_disabled(dev_priv, pipe); |
| assert_fdi_rx_disabled(dev_priv, pipe); |
| |
| /* Ports must be off as well */ |
| assert_pch_ports_disabled(dev_priv, pipe); |
| |
| reg = PCH_TRANSCONF(pipe); |
| val = I915_READ(reg); |
| val &= ~TRANS_ENABLE; |
| I915_WRITE(reg, val); |
| /* wait for PCH transcoder off, transcoder state */ |
| if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50)) |
| DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe)); |
| |
| if (!HAS_PCH_IBX(dev)) { |
| /* Workaround: Clear the timing override chicken bit again. */ |
| reg = TRANS_CHICKEN2(pipe); |
| val = I915_READ(reg); |
| val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE; |
| I915_WRITE(reg, val); |
| } |
| } |
| |
| static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv) |
| { |
| u32 val; |
| |
| val = I915_READ(LPT_TRANSCONF); |
| val &= ~TRANS_ENABLE; |
| I915_WRITE(LPT_TRANSCONF, val); |
| /* wait for PCH transcoder off, transcoder state */ |
| if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50)) |
| DRM_ERROR("Failed to disable PCH transcoder\n"); |
| |
| /* Workaround: clear timing override bit. */ |
| val = I915_READ(_TRANSA_CHICKEN2); |
| val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE; |
| I915_WRITE(_TRANSA_CHICKEN2, val); |
| } |
| |
| /** |
| * intel_enable_pipe - enable a pipe, asserting requirements |
| * @crtc: crtc responsible for the pipe |
| * |
| * Enable @crtc's pipe, making sure that various hardware specific requirements |
| * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc. |
| */ |
| static void intel_enable_pipe(struct intel_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| enum pipe pipe = crtc->pipe; |
| enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, |
| pipe); |
| enum pipe pch_transcoder; |
| int reg; |
| u32 val; |
| |
| assert_planes_disabled(dev_priv, pipe); |
| assert_cursor_disabled(dev_priv, pipe); |
| assert_sprites_disabled(dev_priv, pipe); |
| |
| if (HAS_PCH_LPT(dev_priv->dev)) |
| pch_transcoder = TRANSCODER_A; |
| else |
| pch_transcoder = pipe; |
| |
| /* |
| * A pipe without a PLL won't actually be able to drive bits from |
| * a plane. On ILK+ the pipe PLLs are integrated, so we don't |
| * need the check. |
| */ |
| if (!HAS_PCH_SPLIT(dev_priv->dev)) |
| if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI)) |
| assert_dsi_pll_enabled(dev_priv); |
| else |
| assert_pll_enabled(dev_priv, pipe); |
| else { |
| if (crtc->config.has_pch_encoder) { |
| /* if driving the PCH, we need FDI enabled */ |
| assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder); |
| assert_fdi_tx_pll_enabled(dev_priv, |
| (enum pipe) cpu_transcoder); |
| } |
| /* FIXME: assert CPU port conditions for SNB+ */ |
| } |
| |
| reg = PIPECONF(cpu_transcoder); |
| val = I915_READ(reg); |
| if (val & PIPECONF_ENABLE) { |
| WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) || |
| (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))); |
| return; |
| } |
| |
| I915_WRITE(reg, val | PIPECONF_ENABLE); |
| POSTING_READ(reg); |
| } |
| |
| /** |
| * intel_disable_pipe - disable a pipe, asserting requirements |
| * @crtc: crtc whose pipes is to be disabled |
| * |
| * Disable the pipe of @crtc, making sure that various hardware |
| * specific requirements are met, if applicable, e.g. plane |
| * disabled, panel fitter off, etc. |
| * |
| * Will wait until the pipe has shut down before returning. |
| */ |
| static void intel_disable_pipe(struct intel_crtc *crtc) |
| { |
| struct drm_i915_private *dev_priv = crtc->base.dev->dev_private; |
| enum transcoder cpu_transcoder = crtc->config.cpu_transcoder; |
| enum pipe pipe = crtc->pipe; |
| int reg; |
| u32 val; |
| |
| /* |
| * Make sure planes won't keep trying to pump pixels to us, |
| * or we might hang the display. |
| */ |
| assert_planes_disabled(dev_priv, pipe); |
| assert_cursor_disabled(dev_priv, pipe); |
| assert_sprites_disabled(dev_priv, pipe); |
| |
| reg = PIPECONF(cpu_transcoder); |
| val = I915_READ(reg); |
| if ((val & PIPECONF_ENABLE) == 0) |
| return; |
| |
| /* |
| * Double wide has implications for planes |
| * so best keep it disabled when not needed. |
| */ |
| if (crtc->config.double_wide) |
| val &= ~PIPECONF_DOUBLE_WIDE; |
| |
| /* Don't disable pipe or pipe PLLs if needed */ |
| if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) && |
| !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)) |
| val &= ~PIPECONF_ENABLE; |
| |
| I915_WRITE(reg, val); |
| if ((val & PIPECONF_ENABLE) == 0) |
| intel_wait_for_pipe_off(crtc); |
| } |
| |
| /* |
| * Plane regs are double buffered, going from enabled->disabled needs a |
| * trigger in order to latch. The display address reg provides this. |
| */ |
| void intel_flush_primary_plane(struct drm_i915_private *dev_priv, |
| enum plane plane) |
| { |
| struct drm_device *dev = dev_priv->dev; |
| u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane); |
| |
| I915_WRITE(reg, I915_READ(reg)); |
| POSTING_READ(reg); |
| } |
| |
| /** |
| * intel_enable_primary_hw_plane - enable the primary plane on a given pipe |
| * @plane: plane to be enabled |
| * @crtc: crtc for the plane |
| * |
| * Enable @plane on @crtc, making sure that the pipe is running first. |
| */ |
| static void intel_enable_primary_hw_plane(struct drm_plane *plane, |
| struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = plane->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| |
| /* If the pipe isn't enabled, we can't pump pixels and may hang */ |
| assert_pipe_enabled(dev_priv, intel_crtc->pipe); |
| |
| if (intel_crtc->primary_enabled) |
| return; |
| |
| intel_crtc->primary_enabled = true; |
| |
| dev_priv->display.update_primary_plane(crtc, plane->fb, |
| crtc->x, crtc->y); |
| |
| /* |
| * BDW signals flip done immediately if the plane |
| * is disabled, even if the plane enable is already |
| * armed to occur at the next vblank :( |
| */ |
| if (IS_BROADWELL(dev)) |
| intel_wait_for_vblank(dev, intel_crtc->pipe); |
| } |
| |
| /** |
| * intel_disable_primary_hw_plane - disable the primary hardware plane |
| * @plane: plane to be disabled |
| * @crtc: crtc for the plane |
| * |
| * Disable @plane on @crtc, making sure that the pipe is running first. |
| */ |
| static void intel_disable_primary_hw_plane(struct drm_plane *plane, |
| struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = plane->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| |
| assert_pipe_enabled(dev_priv, intel_crtc->pipe); |
| |
| if (!intel_crtc->primary_enabled) |
| return; |
| |
| intel_crtc->primary_enabled = false; |
| |
| dev_priv->display.update_primary_plane(crtc, plane->fb, |
| crtc->x, crtc->y); |
| } |
| |
| static bool need_vtd_wa(struct drm_device *dev) |
| { |
| #ifdef CONFIG_INTEL_IOMMU |
| if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped) |
| return true; |
| #endif |
| return false; |
| } |
| |
| static int intel_align_height(struct drm_device *dev, int height, bool tiled) |
| { |
| int tile_height; |
| |
| tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1; |
| return ALIGN(height, tile_height); |
| } |
| |
| int |
| intel_pin_and_fence_fb_obj(struct drm_plane *plane, |
| struct drm_framebuffer *fb, |
| struct intel_engine_cs *pipelined) |
| { |
| struct drm_device *dev = fb->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_i915_gem_object *obj = intel_fb_obj(fb); |
| u32 alignment; |
| int ret; |
| |
| WARN_ON(!mutex_is_locked(&dev->struct_mutex)); |
| |
| switch (obj->tiling_mode) { |
| case I915_TILING_NONE: |
| if (INTEL_INFO(dev)->gen >= 9) |
| alignment = 256 * 1024; |
| else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev)) |
| alignment = 128 * 1024; |
| else if (INTEL_INFO(dev)->gen >= 4) |
| alignment = 4 * 1024; |
| else |
| alignment = 64 * 1024; |
| break; |
| case I915_TILING_X: |
| if (INTEL_INFO(dev)->gen >= 9) |
| alignment = 256 * 1024; |
| else { |
| /* pin() will align the object as required by fence */ |
| alignment = 0; |
| } |
| break; |
| case I915_TILING_Y: |
| WARN(1, "Y tiled bo slipped through, driver bug!\n"); |
| return -EINVAL; |
| default: |
| BUG(); |
| } |
| |
| /* Note that the w/a also requires 64 PTE of padding following the |
| * bo. We currently fill all unused PTE with the shadow page and so |
| * we should always have valid PTE following the scanout preventing |
| * the VT-d warning. |
| */ |
| if (need_vtd_wa(dev) && alignment < 256 * 1024) |
| alignment = 256 * 1024; |
| |
| /* |
| * Global gtt pte registers are special registers which actually forward |
| * writes to a chunk of system memory. Which means that there is no risk |
| * that the register values disappear as soon as we call |
| * intel_runtime_pm_put(), so it is correct to wrap only the |
| * pin/unpin/fence and not more. |
| */ |
| intel_runtime_pm_get(dev_priv); |
| |
| dev_priv->mm.interruptible = false; |
| ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined); |
| if (ret) |
| goto err_interruptible; |
| |
| /* Install a fence for tiled scan-out. Pre-i965 always needs a |
| * fence, whereas 965+ only requires a fence if using |
| * framebuffer compression. For simplicity, we always install |
| * a fence as the cost is not that onerous. |
| */ |
| ret = i915_gem_object_get_fence(obj); |
| if (ret) |
| goto err_unpin; |
| |
| i915_gem_object_pin_fence(obj); |
| |
| dev_priv->mm.interruptible = true; |
| intel_runtime_pm_put(dev_priv); |
| return 0; |
| |
| err_unpin: |
| i915_gem_object_unpin_from_display_plane(obj); |
| err_interruptible: |
| dev_priv->mm.interruptible = true; |
| intel_runtime_pm_put(dev_priv); |
| return ret; |
| } |
| |
| void intel_unpin_fb_obj(struct drm_i915_gem_object *obj) |
| { |
| WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex)); |
| |
| i915_gem_object_unpin_fence(obj); |
| i915_gem_object_unpin_from_display_plane(obj); |
| } |
| |
| /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel |
| * is assumed to be a power-of-two. */ |
| unsigned long intel_gen4_compute_page_offset(int *x, int *y, |
| unsigned int tiling_mode, |
| unsigned int cpp, |
| unsigned int pitch) |
| { |
| if (tiling_mode != I915_TILING_NONE) { |
| unsigned int tile_rows, tiles; |
| |
| tile_rows = *y / 8; |
| *y %= 8; |
| |
| tiles = *x / (512/cpp); |
| *x %= 512/cpp; |
| |
| return tile_rows * pitch * 8 + tiles * 4096; |
| } else { |
| unsigned int offset; |
| |
| offset = *y * pitch + *x * cpp; |
| *y = 0; |
| *x = (offset & 4095) / cpp; |
| return offset & -4096; |
| } |
| } |
| |
| int intel_format_to_fourcc(int format) |
| { |
| switch (format) { |
| case DISPPLANE_8BPP: |
| return DRM_FORMAT_C8; |
| case DISPPLANE_BGRX555: |
| return DRM_FORMAT_XRGB1555; |
| case DISPPLANE_BGRX565: |
| return DRM_FORMAT_RGB565; |
| default: |
| case DISPPLANE_BGRX888: |
| return DRM_FORMAT_XRGB8888; |
| case DISPPLANE_RGBX888: |
| return DRM_FORMAT_XBGR8888; |
| case DISPPLANE_BGRX101010: |
| return DRM_FORMAT_XRGB2101010; |
| case DISPPLANE_RGBX101010: |
| return DRM_FORMAT_XBGR2101010; |
| } |
| } |
| |
| static bool intel_alloc_plane_obj(struct intel_crtc *crtc, |
| struct intel_plane_config *plane_config) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_gem_object *obj = NULL; |
| struct drm_mode_fb_cmd2 mode_cmd = { 0 }; |
| u32 base = plane_config->base; |
| |
| if (plane_config->size == 0) |
| return false; |
| |
| obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base, |
| plane_config->size); |
| if (!obj) |
| return false; |
| |
| if (plane_config->tiled) { |
| obj->tiling_mode = I915_TILING_X; |
| obj->stride = crtc->base.primary->fb->pitches[0]; |
| } |
| |
| mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format; |
| mode_cmd.width = crtc->base.primary->fb->width; |
| mode_cmd.height = crtc->base.primary->fb->height; |
| mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0]; |
| |
| mutex_lock(&dev->struct_mutex); |
| |
| if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb), |
| &mode_cmd, obj)) { |
| DRM_DEBUG_KMS("intel fb init failed\n"); |
| goto out_unref_obj; |
| } |
| |
| obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe); |
| mutex_unlock(&dev->struct_mutex); |
| |
| DRM_DEBUG_KMS("plane fb obj %p\n", obj); |
| return true; |
| |
| out_unref_obj: |
| drm_gem_object_unreference(&obj->base); |
| mutex_unlock(&dev->struct_mutex); |
| return false; |
| } |
| |
| static void intel_find_plane_obj(struct intel_crtc *intel_crtc, |
| struct intel_plane_config *plane_config) |
| { |
| struct drm_device *dev = intel_crtc->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_crtc *c; |
| struct intel_crtc *i; |
| struct drm_i915_gem_object *obj; |
| |
| if (!intel_crtc->base.primary->fb) |
| return; |
| |
| if (intel_alloc_plane_obj(intel_crtc, plane_config)) |
| return; |
| |
| kfree(intel_crtc->base.primary->fb); |
| intel_crtc->base.primary->fb = NULL; |
| |
| /* |
| * Failed to alloc the obj, check to see if we should share |
| * an fb with another CRTC instead |
| */ |
| for_each_crtc(dev, c) { |
| i = to_intel_crtc(c); |
| |
| if (c == &intel_crtc->base) |
| continue; |
| |
| if (!i->active) |
| continue; |
| |
| obj = intel_fb_obj(c->primary->fb); |
| if (obj == NULL) |
| continue; |
| |
| if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) { |
| if (obj->tiling_mode != I915_TILING_NONE) |
| dev_priv->preserve_bios_swizzle = true; |
| |
| drm_framebuffer_reference(c->primary->fb); |
| intel_crtc->base.primary->fb = c->primary->fb; |
| obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe); |
| break; |
| } |
| } |
| } |
| |
| static void i9xx_update_primary_plane(struct drm_crtc *crtc, |
| struct drm_framebuffer *fb, |
| int x, int y) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| struct drm_i915_gem_object *obj; |
| int plane = intel_crtc->plane; |
| unsigned long linear_offset; |
| u32 dspcntr; |
| u32 reg = DSPCNTR(plane); |
| int pixel_size; |
| |
| if (!intel_crtc->primary_enabled) { |
| I915_WRITE(reg, 0); |
| if (INTEL_INFO(dev)->gen >= 4) |
| I915_WRITE(DSPSURF(plane), 0); |
| else |
| I915_WRITE(DSPADDR(plane), 0); |
| POSTING_READ(reg); |
| return; |
| } |
| |
| obj = intel_fb_obj(fb); |
| if (WARN_ON(obj == NULL)) |
| return; |
| |
| pixel_size = drm_format_plane_cpp(fb->pixel_format, 0); |
| |
| dspcntr = DISPPLANE_GAMMA_ENABLE; |
| |
| dspcntr |= DISPLAY_PLANE_ENABLE; |
| |
| if (INTEL_INFO(dev)->gen < 4) { |
| if (intel_crtc->pipe == PIPE_B) |
| dspcntr |= DISPPLANE_SEL_PIPE_B; |
| |
| /* pipesrc and dspsize control the size that is scaled from, |
| * which should always be the user's requested size. |
| */ |
| I915_WRITE(DSPSIZE(plane), |
| ((intel_crtc->config.pipe_src_h - 1) << 16) | |
| (intel_crtc->config.pipe_src_w - 1)); |
| I915_WRITE(DSPPOS(plane), 0); |
| } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) { |
| I915_WRITE(PRIMSIZE(plane), |
| ((intel_crtc->config.pipe_src_h - 1) << 16) | |
| (intel_crtc->config.pipe_src_w - 1)); |
| I915_WRITE(PRIMPOS(plane), 0); |
| I915_WRITE(PRIMCNSTALPHA(plane), 0); |
| } |
| |
| switch (fb->pixel_format) { |
| case DRM_FORMAT_C8: |
| dspcntr |= DISPPLANE_8BPP; |
| break; |
| case DRM_FORMAT_XRGB1555: |
| case DRM_FORMAT_ARGB1555: |
| dspcntr |= DISPPLANE_BGRX555; |
| break; |
| case DRM_FORMAT_RGB565: |
| dspcntr |= DISPPLANE_BGRX565; |
| break; |
| case DRM_FORMAT_XRGB8888: |
| case DRM_FORMAT_ARGB8888: |
| dspcntr |= DISPPLANE_BGRX888; |
| break; |
| case DRM_FORMAT_XBGR8888: |
| case DRM_FORMAT_ABGR8888: |
| dspcntr |= DISPPLANE_RGBX888; |
| break; |
| case DRM_FORMAT_XRGB2101010: |
| case DRM_FORMAT_ARGB2101010: |
| dspcntr |= DISPPLANE_BGRX101010; |
| break; |
| case DRM_FORMAT_XBGR2101010: |
| case DRM_FORMAT_ABGR2101010: |
| dspcntr |= DISPPLANE_RGBX101010; |
| break; |
| default: |
| BUG(); |
| } |
| |
| if (INTEL_INFO(dev)->gen >= 4 && |
| obj->tiling_mode != I915_TILING_NONE) |
| dspcntr |= DISPPLANE_TILED; |
| |
| if (IS_G4X(dev)) |
| dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE; |
| |
| linear_offset = y * fb->pitches[0] + x * pixel_size; |
| |
| if (INTEL_INFO(dev)->gen >= 4) { |
| intel_crtc->dspaddr_offset = |
| intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode, |
| pixel_size, |
| fb->pitches[0]); |
| linear_offset -= intel_crtc->dspaddr_offset; |
| } else { |
| intel_crtc->dspaddr_offset = linear_offset; |
| } |
| |
| if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) { |
| dspcntr |= DISPPLANE_ROTATE_180; |
| |
| x += (intel_crtc->config.pipe_src_w - 1); |
| y += (intel_crtc->config.pipe_src_h - 1); |
| |
| /* Finding the last pixel of the last line of the display |
| data and adding to linear_offset*/ |
| linear_offset += |
| (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] + |
| (intel_crtc->config.pipe_src_w - 1) * pixel_size; |
| } |
| |
| I915_WRITE(reg, dspcntr); |
| |
| DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n", |
| i915_gem_obj_ggtt_offset(obj), linear_offset, x, y, |
| fb->pitches[0]); |
| I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]); |
| if (INTEL_INFO(dev)->gen >= 4) { |
| I915_WRITE(DSPSURF(plane), |
| i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset); |
| I915_WRITE(DSPTILEOFF(plane), (y << 16) | x); |
| I915_WRITE(DSPLINOFF(plane), linear_offset); |
| } else |
| I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset); |
| POSTING_READ(reg); |
| } |
| |
| static void ironlake_update_primary_plane(struct drm_crtc *crtc, |
| struct drm_framebuffer *fb, |
| int x, int y) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| struct drm_i915_gem_object *obj; |
| int plane = intel_crtc->plane; |
| unsigned long linear_offset; |
| u32 dspcntr; |
| u32 reg = DSPCNTR(plane); |
| int pixel_size; |
| |
| if (!intel_crtc->primary_enabled) { |
| I915_WRITE(reg, 0); |
| I915_WRITE(DSPSURF(plane), 0); |
| POSTING_READ(reg); |
| return; |
| } |
| |
| obj = intel_fb_obj(fb); |
| if (WARN_ON(obj == NULL)) |
| return; |
| |
| pixel_size = drm_format_plane_cpp(fb->pixel_format, 0); |
| |
| dspcntr = DISPPLANE_GAMMA_ENABLE; |
| |
| dspcntr |= DISPLAY_PLANE_ENABLE; |
| |
| if (IS_HASWELL(dev) || IS_BROADWELL(dev)) |
| dspcntr |= DISPPLANE_PIPE_CSC_ENABLE; |
| |
| switch (fb->pixel_format) { |
| case DRM_FORMAT_C8: |
| dspcntr |= DISPPLANE_8BPP; |
| break; |
| case DRM_FORMAT_RGB565: |
| dspcntr |= DISPPLANE_BGRX565; |
| break; |
| case DRM_FORMAT_XRGB8888: |
| case DRM_FORMAT_ARGB8888: |
| dspcntr |= DISPPLANE_BGRX888; |
| break; |
| case DRM_FORMAT_XBGR8888: |
| case DRM_FORMAT_ABGR8888: |
| dspcntr |= DISPPLANE_RGBX888; |
| break; |
| case DRM_FORMAT_XRGB2101010: |
| case DRM_FORMAT_ARGB2101010: |
| dspcntr |= DISPPLANE_BGRX101010; |
| break; |
| case DRM_FORMAT_XBGR2101010: |
| case DRM_FORMAT_ABGR2101010: |
| dspcntr |= DISPPLANE_RGBX101010; |
| break; |
| default: |
| BUG(); |
| } |
| |
| if (obj->tiling_mode != I915_TILING_NONE) |
| dspcntr |= DISPPLANE_TILED; |
| |
| if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) |
| dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE; |
| |
| linear_offset = y * fb->pitches[0] + x * pixel_size; |
| intel_crtc->dspaddr_offset = |
| intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode, |
| pixel_size, |
| fb->pitches[0]); |
| linear_offset -= intel_crtc->dspaddr_offset; |
| if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) { |
| dspcntr |= DISPPLANE_ROTATE_180; |
| |
| if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) { |
| x += (intel_crtc->config.pipe_src_w - 1); |
| y += (intel_crtc->config.pipe_src_h - 1); |
| |
| /* Finding the last pixel of the last line of the display |
| data and adding to linear_offset*/ |
| linear_offset += |
| (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] + |
| (intel_crtc->config.pipe_src_w - 1) * pixel_size; |
| } |
| } |
| |
| I915_WRITE(reg, dspcntr); |
| |
| DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n", |
| i915_gem_obj_ggtt_offset(obj), linear_offset, x, y, |
| fb->pitches[0]); |
| I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]); |
| I915_WRITE(DSPSURF(plane), |
| i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset); |
| if (IS_HASWELL(dev) || IS_BROADWELL(dev)) { |
| I915_WRITE(DSPOFFSET(plane), (y << 16) | x); |
| } else { |
| I915_WRITE(DSPTILEOFF(plane), (y << 16) | x); |
| I915_WRITE(DSPLINOFF(plane), linear_offset); |
| } |
| POSTING_READ(reg); |
| } |
| |
| static void skylake_update_primary_plane(struct drm_crtc *crtc, |
| struct drm_framebuffer *fb, |
| int x, int y) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| struct intel_framebuffer *intel_fb; |
| struct drm_i915_gem_object *obj; |
| int pipe = intel_crtc->pipe; |
| u32 plane_ctl, stride; |
| |
| if (!intel_crtc->primary_enabled) { |
| I915_WRITE(PLANE_CTL(pipe, 0), 0); |
| I915_WRITE(PLANE_SURF(pipe, 0), 0); |
| POSTING_READ(PLANE_CTL(pipe, 0)); |
| return; |
| } |
| |
| plane_ctl = PLANE_CTL_ENABLE | |
| PLANE_CTL_PIPE_GAMMA_ENABLE | |
| PLANE_CTL_PIPE_CSC_ENABLE; |
| |
| switch (fb->pixel_format) { |
| case DRM_FORMAT_RGB565: |
| plane_ctl |= PLANE_CTL_FORMAT_RGB_565; |
| break; |
| case DRM_FORMAT_XRGB8888: |
| plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888; |
| break; |
| case DRM_FORMAT_XBGR8888: |
| plane_ctl |= PLANE_CTL_ORDER_RGBX; |
| plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888; |
| break; |
| case DRM_FORMAT_XRGB2101010: |
| plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010; |
| break; |
| case DRM_FORMAT_XBGR2101010: |
| plane_ctl |= PLANE_CTL_ORDER_RGBX; |
| plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010; |
| break; |
| default: |
| BUG(); |
| } |
| |
| intel_fb = to_intel_framebuffer(fb); |
| obj = intel_fb->obj; |
| |
| /* |
| * The stride is either expressed as a multiple of 64 bytes chunks for |
| * linear buffers or in number of tiles for tiled buffers. |
| */ |
| switch (obj->tiling_mode) { |
| case I915_TILING_NONE: |
| stride = fb->pitches[0] >> 6; |
| break; |
| case I915_TILING_X: |
| plane_ctl |= PLANE_CTL_TILED_X; |
| stride = fb->pitches[0] >> 9; |
| break; |
| default: |
| BUG(); |
| } |
| |
| plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE; |
| if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) |
| plane_ctl |= PLANE_CTL_ROTATE_180; |
| |
| I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl); |
| |
| DRM_DEBUG_KMS("Writing base %08lX %d,%d,%d,%d pitch=%d\n", |
| i915_gem_obj_ggtt_offset(obj), |
| x, y, fb->width, fb->height, |
| fb->pitches[0]); |
| |
| I915_WRITE(PLANE_POS(pipe, 0), 0); |
| I915_WRITE(PLANE_OFFSET(pipe, 0), (y << 16) | x); |
| I915_WRITE(PLANE_SIZE(pipe, 0), |
| (intel_crtc->config.pipe_src_h - 1) << 16 | |
| (intel_crtc->config.pipe_src_w - 1)); |
| I915_WRITE(PLANE_STRIDE(pipe, 0), stride); |
| I915_WRITE(PLANE_SURF(pipe, 0), i915_gem_obj_ggtt_offset(obj)); |
| |
| POSTING_READ(PLANE_SURF(pipe, 0)); |
| } |
| |
| /* Assume fb object is pinned & idle & fenced and just update base pointers */ |
| static int |
| intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb, |
| int x, int y, enum mode_set_atomic state) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| if (dev_priv->display.disable_fbc) |
| dev_priv->display.disable_fbc(dev); |
| |
| dev_priv->display.update_primary_plane(crtc, fb, x, y); |
| |
| return 0; |
| } |
| |
| static void intel_complete_page_flips(struct drm_device *dev) |
| { |
| struct drm_crtc *crtc; |
| |
| for_each_crtc(dev, crtc) { |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| enum plane plane = intel_crtc->plane; |
| |
| intel_prepare_page_flip(dev, plane); |
| intel_finish_page_flip_plane(dev, plane); |
| } |
| } |
| |
| static void intel_update_primary_planes(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_crtc *crtc; |
| |
| for_each_crtc(dev, crtc) { |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| |
| drm_modeset_lock(&crtc->mutex, NULL); |
| /* |
| * FIXME: Once we have proper support for primary planes (and |
| * disabling them without disabling the entire crtc) allow again |
| * a NULL crtc->primary->fb. |
| */ |
| if (intel_crtc->active && crtc->primary->fb) |
| dev_priv->display.update_primary_plane(crtc, |
| crtc->primary->fb, |
| crtc->x, |
| crtc->y); |
| drm_modeset_unlock(&crtc->mutex); |
| } |
| } |
| |
| void intel_prepare_reset(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_crtc *crtc; |
| |
| /* no reset support for gen2 */ |
| if (IS_GEN2(dev)) |
| return; |
| |
| /* reset doesn't touch the display */ |
| if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) |
| return; |
| |
| drm_modeset_lock_all(dev); |
| |
| /* |
| * Disabling the crtcs gracefully seems nicer. Also the |
| * g33 docs say we should at least disable all the planes. |
| */ |
| for_each_intel_crtc(dev, crtc) { |
| if (crtc->active) |
| dev_priv->display.crtc_disable(&crtc->base); |
| } |
| } |
| |
| void intel_finish_reset(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| |
| /* |
| * Flips in the rings will be nuked by the reset, |
| * so complete all pending flips so that user space |
| * will get its events and not get stuck. |
| */ |
| intel_complete_page_flips(dev); |
| |
| /* no reset support for gen2 */ |
| if (IS_GEN2(dev)) |
| return; |
| |
| /* reset doesn't touch the display */ |
| if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) { |
| /* |
| * Flips in the rings have been nuked by the reset, |
| * so update the base address of all primary |
| * planes to the the last fb to make sure we're |
| * showing the correct fb after a reset. |
| */ |
| intel_update_primary_planes(dev); |
| return; |
| } |
| |
| /* |
| * The display has been reset as well, |
| * so need a full re-initialization. |
| */ |
| intel_runtime_pm_disable_interrupts(dev_priv); |
| intel_runtime_pm_enable_interrupts(dev_priv); |
| |
| intel_modeset_init_hw(dev); |
| |
| spin_lock_irq(&dev_priv->irq_lock); |
| if (dev_priv->display.hpd_irq_setup) |
| dev_priv->display.hpd_irq_setup(dev); |
| spin_unlock_irq(&dev_priv->irq_lock); |
| |
| intel_modeset_setup_hw_state(dev, true); |
| |
| intel_hpd_init(dev_priv); |
| |
| drm_modeset_unlock_all(dev); |
| } |
| |
| static int |
| intel_finish_fb(struct drm_framebuffer *old_fb) |
| { |
| struct drm_i915_gem_object *obj = intel_fb_obj(old_fb); |
| struct drm_i915_private *dev_priv = obj->base.dev->dev_private; |
| bool was_interruptible = dev_priv->mm.interruptible; |
| int ret; |
| |
| /* Big Hammer, we also need to ensure that any pending |
| * MI_WAIT_FOR_EVENT inside a user batch buffer on the |
| * current scanout is retired before unpinning the old |
| * framebuffer. |
| * |
| * This should only fail upon a hung GPU, in which case we |
| * can safely continue. |
| */ |
| dev_priv->mm.interruptible = false; |
| ret = i915_gem_object_finish_gpu(obj); |
| dev_priv->mm.interruptible = was_interruptible; |
| |
| return ret; |
| } |
| |
| static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| bool pending; |
| |
| if (i915_reset_in_progress(&dev_priv->gpu_error) || |
| intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) |
| return false; |
| |
| spin_lock_irq(&dev->event_lock); |
| pending = to_intel_crtc(crtc)->unpin_work != NULL; |
| spin_unlock_irq(&dev->event_lock); |
| |
| return pending; |
| } |
| |
| static void intel_update_pipe_size(struct intel_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| const struct drm_display_mode *adjusted_mode; |
| |
| if (!i915.fastboot) |
| return; |
| |
| /* |
| * Update pipe size and adjust fitter if needed: the reason for this is |
| * that in compute_mode_changes we check the native mode (not the pfit |
| * mode) to see if we can flip rather than do a full mode set. In the |
| * fastboot case, we'll flip, but if we don't update the pipesrc and |
| * pfit state, we'll end up with a big fb scanned out into the wrong |
| * sized surface. |
| * |
| * To fix this properly, we need to hoist the checks up into |
| * compute_mode_changes (or above), check the actual pfit state and |
| * whether the platform allows pfit disable with pipe active, and only |
| * then update the pipesrc and pfit state, even on the flip path. |
| */ |
| |
| adjusted_mode = &crtc->config.adjusted_mode; |
| |
| I915_WRITE(PIPESRC(crtc->pipe), |
| ((adjusted_mode->crtc_hdisplay - 1) << 16) | |
| (adjusted_mode->crtc_vdisplay - 1)); |
| if (!crtc->config.pch_pfit.enabled && |
| (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || |
| intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) { |
| I915_WRITE(PF_CTL(crtc->pipe), 0); |
| I915_WRITE(PF_WIN_POS(crtc->pipe), 0); |
| I915_WRITE(PF_WIN_SZ(crtc->pipe), 0); |
| } |
| crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay; |
| crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay; |
| } |
| |
| static int |
| intel_pipe_set_base(struct drm_crtc *crtc, int x, int y, |
| struct drm_framebuffer *fb) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| enum pipe pipe = intel_crtc->pipe; |
| struct drm_framebuffer *old_fb = crtc->primary->fb; |
| struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb); |
| int ret; |
| |
| if (intel_crtc_has_pending_flip(crtc)) { |
| DRM_ERROR("pipe is still busy with an old pageflip\n"); |
| return -EBUSY; |
| } |
| |
| /* no fb bound */ |
| if (!fb) { |
| DRM_ERROR("No FB bound\n"); |
| return 0; |
| } |
| |
| if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) { |
| DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n", |
| plane_name(intel_crtc->plane), |
| INTEL_INFO(dev)->num_pipes); |
| return -EINVAL; |
| } |
| |
| mutex_lock(&dev->struct_mutex); |
| ret = intel_pin_and_fence_fb_obj(crtc->primary, fb, NULL); |
| if (ret == 0) |
| i915_gem_track_fb(old_obj, intel_fb_obj(fb), |
| INTEL_FRONTBUFFER_PRIMARY(pipe)); |
| mutex_unlock(&dev->struct_mutex); |
| if (ret != 0) { |
| DRM_ERROR("pin & fence failed\n"); |
| return ret; |
| } |
| |
| dev_priv->display.update_primary_plane(crtc, fb, x, y); |
| |
| if (intel_crtc->active) |
| intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe)); |
| |
| crtc->primary->fb = fb; |
| crtc->x = x; |
| crtc->y = y; |
| |
| if (old_fb) { |
| if (intel_crtc->active && old_fb != fb) |
| intel_wait_for_vblank(dev, intel_crtc->pipe); |
| mutex_lock(&dev->struct_mutex); |
| intel_unpin_fb_obj(old_obj); |
| mutex_unlock(&dev->struct_mutex); |
| } |
| |
| mutex_lock(&dev->struct_mutex); |
| intel_update_fbc(dev); |
| mutex_unlock(&dev->struct_mutex); |
| |
| return 0; |
| } |
| |
| static void intel_fdi_normal_train(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| u32 reg, temp; |
| |
| /* enable normal train */ |
| reg = FDI_TX_CTL(pipe); |
| temp = I915_READ(reg); |
| if (IS_IVYBRIDGE(dev)) { |
| temp &= ~FDI_LINK_TRAIN_NONE_IVB; |
| temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE; |
| } else { |
| temp &= ~FDI_LINK_TRAIN_NONE; |
| temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE; |
| } |
| I915_WRITE(reg, temp); |
| |
| reg = FDI_RX_CTL(pipe); |
| temp = I915_READ(reg); |
| if (HAS_PCH_CPT(dev)) { |
| temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; |
| temp |= FDI_LINK_TRAIN_NORMAL_CPT; |
| } else { |
| temp &= ~FDI_LINK_TRAIN_NONE; |
| temp |= FDI_LINK_TRAIN_NONE; |
| } |
| I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE); |
| |
| /* wait one idle pattern time */ |
| POSTING_READ(reg); |
| udelay(1000); |
| |
| /* IVB wants error correction enabled */ |
| if (IS_IVYBRIDGE(dev)) |
| I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE | |
| FDI_FE_ERRC_ENABLE); |
| } |
| |
| static bool pipe_has_enabled_pch(struct intel_crtc *crtc) |
| { |
| return crtc->base.enabled && crtc->active && |
| crtc->config.has_pch_encoder; |
| } |
| |
| static void ivb_modeset_global_resources(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *pipe_B_crtc = |
| to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]); |
| struct intel_crtc *pipe_C_crtc = |
| to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]); |
| uint32_t temp; |
| |
| /* |
| * When everything is off disable fdi C so that we could enable fdi B |
| * with all lanes. Note that we don't care about enabled pipes without |
| * an enabled pch encoder. |
| */ |
| if (!pipe_has_enabled_pch(pipe_B_crtc) && |
| !pipe_has_enabled_pch(pipe_C_crtc)) { |
| WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE); |
| WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE); |
| |
| temp = I915_READ(SOUTH_CHICKEN1); |
| temp &= ~FDI_BC_BIFURCATION_SELECT; |
| DRM_DEBUG_KMS("disabling fdi C rx\n"); |
| I915_WRITE(SOUTH_CHICKEN1, temp); |
| } |
| } |
| |
| /* The FDI link training functions for ILK/Ibexpeak. */ |
| static void ironlake_fdi_link_train(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| u32 reg, temp, tries; |
| |
| /* FDI needs bits from pipe first */ |
| assert_pipe_enabled(dev_priv, pipe); |
| |
| /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit |
| for train result */ |
| reg = FDI_RX_IMR(pipe); |
| temp = I915_READ(reg); |
| temp &= ~FDI_RX_SYMBOL_LOCK; |
| temp &= ~FDI_RX_BIT_LOCK; |
| I915_WRITE(reg, temp); |
| I915_READ(reg); |
| udelay(150); |
| |
| /* enable CPU FDI TX and PCH FDI RX */ |
| reg = FDI_TX_CTL(pipe); |
| temp = I915_READ(reg); |
| temp &= ~FDI_DP_PORT_WIDTH_MASK; |
| temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes); |
| temp &= ~FDI_LINK_TRAIN_NONE; |
| temp |= FDI_LINK_TRAIN_PATTERN_1; |
| I915_WRITE(reg, temp | FDI_TX_ENABLE); |
| |
| reg = FDI_RX_CTL(pipe); |
| temp = I915_READ(reg); |
| temp &= ~FDI_LINK_TRAIN_NONE; |
| temp |= FDI_LINK_TRAIN_PATTERN_1; |
| I915_WRITE(reg, temp | FDI_RX_ENABLE); |
| |
| POSTING_READ(reg); |
| udelay(150); |
| |
| /* Ironlake workaround, enable clock pointer after FDI enable*/ |
| I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR); |
| I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR | |
| FDI_RX_PHASE_SYNC_POINTER_EN); |
| |
| reg = FDI_RX_IIR(pipe); |
| for (tries = 0; tries < 5; tries++) { |
| temp = I915_READ(reg); |
| DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); |
| |
| if ((temp & FDI_RX_BIT_LOCK)) { |
| DRM_DEBUG_KMS("FDI train 1 done.\n"); |
| I915_WRITE(reg, temp | FDI_RX_BIT_LOCK); |
| break; |
| } |
| } |
| if (tries == 5) |
| DRM_ERROR("FDI train 1 fail!\n"); |
| |
| /* Train 2 */ |
| reg = FDI_TX_CTL(pipe); |
| temp = I915_READ(reg); |
| temp &= ~FDI_LINK_TRAIN_NONE; |
| temp |= FDI_LINK_TRAIN_PATTERN_2; |
| I915_WRITE(reg, temp); |
| |
| reg = FDI_RX_CTL(pipe); |
| temp = I915_READ(reg); |
| temp &= ~FDI_LINK_TRAIN_NONE; |
| temp |= FDI_LINK_TRAIN_PATTERN_2; |
| I915_WRITE(reg, temp); |
| |
| POSTING_READ(reg); |
| udelay(150); |
| |
| reg = FDI_RX_IIR(pipe); |
| for (tries = 0; tries < 5; tries++) { |
| temp = I915_READ(reg); |
| DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); |
| |
| if (temp & FDI_RX_SYMBOL_LOCK) { |
| I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK); |
| DRM_DEBUG_KMS("FDI train 2 done.\n"); |
| break; |
| } |
| } |
| if (tries == 5) |
| DRM_ERROR("FDI train 2 fail!\n"); |
| |
| DRM_DEBUG_KMS("FDI train done\n"); |
| |
| } |
| |
| static const int snb_b_fdi_train_param[] = { |
| FDI_LINK_TRAIN_400MV_0DB_SNB_B, |
| FDI_LINK_TRAIN_400MV_6DB_SNB_B, |
| FDI_LINK_TRAIN_600MV_3_5DB_SNB_B, |
| FDI_LINK_TRAIN_800MV_0DB_SNB_B, |
| }; |
| |
| /* The FDI link training functions for SNB/Cougarpoint. */ |
| static void gen6_fdi_link_train(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| u32 reg, temp, i, retry; |
| |
| /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit |
| for train result */ |
| reg = FDI_RX_IMR(pipe); |
| temp = I915_READ(reg); |
| temp &= ~FDI_RX_SYMBOL_LOCK; |
| temp &= ~FDI_RX_BIT_LOCK; |
| I915_WRITE(reg, temp); |
| |
| POSTING_READ(reg); |
| udelay(150); |
| |
| /* enable CPU FDI TX and PCH FDI RX */ |
| reg = FDI_TX_CTL(pipe); |
| temp = I915_READ(reg); |
| temp &= ~FDI_DP_PORT_WIDTH_MASK; |
| temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes); |
| temp &= ~FDI_LINK_TRAIN_NONE; |
| temp |= FDI_LINK_TRAIN_PATTERN_1; |
| temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; |
| /* SNB-B */ |
| temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B; |
| I915_WRITE(reg, temp | FDI_TX_ENABLE); |
| |
| I915_WRITE(FDI_RX_MISC(pipe), |
| FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90); |
| |
| reg = FDI_RX_CTL(pipe); |
| temp = I915_READ(reg); |
| if (HAS_PCH_CPT(dev)) { |
| temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; |
| temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; |
| } else { |
| temp &= ~FDI_LINK_TRAIN_NONE; |
| temp |= FDI_LINK_TRAIN_PATTERN_1; |
| } |
| I915_WRITE(reg, temp | FDI_RX_ENABLE); |
| |
| POSTING_READ(reg); |
| udelay(150); |
| |
| for (i = 0; i < 4; i++) { |
| reg = FDI_TX_CTL(pipe); |
| temp = I915_READ(reg); |
| temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; |
| temp |= snb_b_fdi_train_param[i]; |
| I915_WRITE(reg, temp); |
| |
| POSTING_READ(reg); |
| udelay(500); |
| |
| for (retry = 0; retry < 5; retry++) { |
| reg = FDI_RX_IIR(pipe); |
| temp = I915_READ(reg); |
| DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); |
| if (temp & FDI_RX_BIT_LOCK) { |
| I915_WRITE(reg, temp | FDI_RX_BIT_LOCK); |
| DRM_DEBUG_KMS("FDI train 1 done.\n"); |
| break; |
| } |
| udelay(50); |
| } |
| if (retry < 5) |
| break; |
| } |
| if (i == 4) |
| DRM_ERROR("FDI train 1 fail!\n"); |
| |
| /* Train 2 */ |
| reg = FDI_TX_CTL(pipe); |
| temp = I915_READ(reg); |
| temp &= ~FDI_LINK_TRAIN_NONE; |
| temp |= FDI_LINK_TRAIN_PATTERN_2; |
| if (IS_GEN6(dev)) { |
| temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; |
| /* SNB-B */ |
| temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B; |
| } |
| I915_WRITE(reg, temp); |
| |
| reg = FDI_RX_CTL(pipe); |
| temp = I915_READ(reg); |
| if (HAS_PCH_CPT(dev)) { |
| temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; |
| temp |= FDI_LINK_TRAIN_PATTERN_2_CPT; |
| } else { |
| temp &= ~FDI_LINK_TRAIN_NONE; |
| temp |= FDI_LINK_TRAIN_PATTERN_2; |
| } |
| I915_WRITE(reg, temp); |
| |
| POSTING_READ(reg); |
| udelay(150); |
| |
| for (i = 0; i < 4; i++) { |
| reg = FDI_TX_CTL(pipe); |
| temp = I915_READ(reg); |
| temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; |
| temp |= snb_b_fdi_train_param[i]; |
| I915_WRITE(reg, temp); |
| |
| POSTING_READ(reg); |
| udelay(500); |
| |
| for (retry = 0; retry < 5; retry++) { |
| reg = FDI_RX_IIR(pipe); |
| temp = I915_READ(reg); |
| DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); |
| if (temp & FDI_RX_SYMBOL_LOCK) { |
| I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK); |
| DRM_DEBUG_KMS("FDI train 2 done.\n"); |
| break; |
| } |
| udelay(50); |
| } |
| if (retry < 5) |
| break; |
| } |
| if (i == 4) |
| DRM_ERROR("FDI train 2 fail!\n"); |
| |
| DRM_DEBUG_KMS("FDI train done.\n"); |
| } |
| |
| /* Manual link training for Ivy Bridge A0 parts */ |
| static void ivb_manual_fdi_link_train(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| u32 reg, temp, i, j; |
| |
| /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit |
| for train result */ |
| reg = FDI_RX_IMR(pipe); |
| temp = I915_READ(reg); |
| temp &= ~FDI_RX_SYMBOL_LOCK; |
| temp &= ~FDI_RX_BIT_LOCK; |
| I915_WRITE(reg, temp); |
| |
| POSTING_READ(reg); |
| udelay(150); |
| |
| DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n", |
| I915_READ(FDI_RX_IIR(pipe))); |
| |
| /* Try each vswing and preemphasis setting twice before moving on */ |
| for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) { |
| /* disable first in case we need to retry */ |
| reg = FDI_TX_CTL(pipe); |
| temp = I915_READ(reg); |
| temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB); |
| temp &= ~FDI_TX_ENABLE; |
| I915_WRITE(reg, temp); |
| |
| reg = FDI_RX_CTL(pipe); |
| temp = I915_READ(reg); |
| temp &= ~FDI_LINK_TRAIN_AUTO; |
| temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; |
| temp &= ~FDI_RX_ENABLE; |
| I915_WRITE(reg, temp); |
| |
| /* enable CPU FDI TX and PCH FDI RX */ |
| reg = FDI_TX_CTL(pipe); |
| temp = I915_READ(reg); |
| temp &= ~FDI_DP_PORT_WIDTH_MASK; |
| temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes); |
| temp |= FDI_LINK_TRAIN_PATTERN_1_IVB; |
| temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; |
| temp |= snb_b_fdi_train_param[j/2]; |
| temp |= FDI_COMPOSITE_SYNC; |
| I915_WRITE(reg, temp | FDI_TX_ENABLE); |
| |
| I915_WRITE(FDI_RX_MISC(pipe), |
| FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90); |
| |
| reg = FDI_RX_CTL(pipe); |
| temp = I915_READ(reg); |
| temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; |
| temp |= FDI_COMPOSITE_SYNC; |
| I915_WRITE(reg, temp | FDI_RX_ENABLE); |
| |
| POSTING_READ(reg); |
| udelay(1); /* should be 0.5us */ |
| |
| for (i = 0; i < 4; i++) { |
| reg = FDI_RX_IIR(pipe); |
| temp = I915_READ(reg); |
| DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); |
| |
| if (temp & FDI_RX_BIT_LOCK || |
| (I915_READ(reg) & FDI_RX_BIT_LOCK)) { |
| I915_WRITE(reg, temp | FDI_RX_BIT_LOCK); |
| DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", |
| i); |
| break; |
| } |
| udelay(1); /* should be 0.5us */ |
| } |
| if (i == 4) { |
| DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2); |
| continue; |
| } |
| |
| /* Train 2 */ |
| reg = FDI_TX_CTL(pipe); |
| temp = I915_READ(reg); |
| temp &= ~FDI_LINK_TRAIN_NONE_IVB; |
| temp |= FDI_LINK_TRAIN_PATTERN_2_IVB; |
| I915_WRITE(reg, temp); |
| |
| reg = FDI_RX_CTL(pipe); |
| temp = I915_READ(reg); |
| temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; |
| temp |= FDI_LINK_TRAIN_PATTERN_2_CPT; |
| I915_WRITE(reg, temp); |
| |
| POSTING_READ(reg); |
| udelay(2); /* should be 1.5us */ |
| |
| for (i = 0; i < 4; i++) { |
| reg = FDI_RX_IIR(pipe); |
| temp = I915_READ(reg); |
| DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); |
| |
| if (temp & FDI_RX_SYMBOL_LOCK || |
| (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) { |
| I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK); |
| DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", |
| i); |
| goto train_done; |
| } |
| udelay(2); /* should be 1.5us */ |
| } |
| if (i == 4) |
| DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2); |
| } |
| |
| train_done: |
| DRM_DEBUG_KMS("FDI train done.\n"); |
| } |
| |
| static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc) |
| { |
| struct drm_device *dev = intel_crtc->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int pipe = intel_crtc->pipe; |
| u32 reg, temp; |
| |
| |
| /* enable PCH FDI RX PLL, wait warmup plus DMI latency */ |
| reg = FDI_RX_CTL(pipe); |
| temp = I915_READ(reg); |
| temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16)); |
| temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes); |
| temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11; |
| I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE); |
| |
| POSTING_READ(reg); |
| udelay(200); |
| |
| /* Switch from Rawclk to PCDclk */ |
| temp = I915_READ(reg); |
| I915_WRITE(reg, temp | FDI_PCDCLK); |
| |
| POSTING_READ(reg); |
| udelay(200); |
| |
| /* Enable CPU FDI TX PLL, always on for Ironlake */ |
| reg = FDI_TX_CTL(pipe); |
| temp = I915_READ(reg); |
| if ((temp & FDI_TX_PLL_ENABLE) == 0) { |
| I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE); |
| |
| POSTING_READ(reg); |
| udelay(100); |
| } |
| } |
| |
| static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc) |
| { |
| struct drm_device *dev = intel_crtc->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int pipe = intel_crtc->pipe; |
| u32 reg, temp; |
| |
| /* Switch from PCDclk to Rawclk */ |
| reg = FDI_RX_CTL(pipe); |
| temp = I915_READ(reg); |
| I915_WRITE(reg, temp & ~FDI_PCDCLK); |
| |
| /* Disable CPU FDI TX PLL */ |
| reg = FDI_TX_CTL(pipe); |
| temp = I915_READ(reg); |
| I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE); |
| |
| POSTING_READ(reg); |
| udelay(100); |
| |
| reg = FDI_RX_CTL(pipe); |
| temp = I915_READ(reg); |
| I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE); |
| |
| /* Wait for the clocks to turn off. */ |
| POSTING_READ(reg); |
| udelay(100); |
| } |
| |
| static void ironlake_fdi_disable(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| u32 reg, temp; |
| |
| /* disable CPU FDI tx and PCH FDI rx */ |
| reg = FDI_TX_CTL(pipe); |
| temp = I915_READ(reg); |
| I915_WRITE(reg, temp & ~FDI_TX_ENABLE); |
| POSTING_READ(reg); |
| |
| reg = FDI_RX_CTL(pipe); |
| temp = I915_READ(reg); |
| temp &= ~(0x7 << 16); |
| temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11; |
| I915_WRITE(reg, temp & ~FDI_RX_ENABLE); |
| |
| POSTING_READ(reg); |
| udelay(100); |
| |
| /* Ironlake workaround, disable clock pointer after downing FDI */ |
| if (HAS_PCH_IBX(dev)) |
| I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR); |
| |
| /* still set train pattern 1 */ |
| reg = FDI_TX_CTL(pipe); |
| temp = I915_READ(reg); |
| temp &= ~FDI_LINK_TRAIN_NONE; |
| temp |= FDI_LINK_TRAIN_PATTERN_1; |
| I915_WRITE(reg, temp); |
| |
| reg = FDI_RX_CTL(pipe); |
| temp = I915_READ(reg); |
| if (HAS_PCH_CPT(dev)) { |
| temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; |
| temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; |
| } else { |
| temp &= ~FDI_LINK_TRAIN_NONE; |
| temp |= FDI_LINK_TRAIN_PATTERN_1; |
| } |
| /* BPC in FDI rx is consistent with that in PIPECONF */ |
| temp &= ~(0x07 << 16); |
| temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11; |
| I915_WRITE(reg, temp); |
| |
| POSTING_READ(reg); |
| udelay(100); |
| } |
| |
| bool intel_has_pending_fb_unpin(struct drm_device *dev) |
| { |
| struct intel_crtc *crtc; |
| |
| /* Note that we don't need to be called with mode_config.lock here |
| * as our list of CRTC objects is static for the lifetime of the |
| * device and so cannot disappear as we iterate. Similarly, we can |
| * happily treat the predicates as racy, atomic checks as userspace |
| * cannot claim and pin a new fb without at least acquring the |
| * struct_mutex and so serialising with us. |
| */ |
| for_each_intel_crtc(dev, crtc) { |
| if (atomic_read(&crtc->unpin_work_count) == 0) |
| continue; |
| |
| if (crtc->unpin_work) |
| intel_wait_for_vblank(dev, crtc->pipe); |
| |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static void page_flip_completed(struct intel_crtc *intel_crtc) |
| { |
| struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev); |
| struct intel_unpin_work *work = intel_crtc->unpin_work; |
| |
| /* ensure that the unpin work is consistent wrt ->pending. */ |
| smp_rmb(); |
| intel_crtc->unpin_work = NULL; |
| |
| if (work->event) |
| drm_send_vblank_event(intel_crtc->base.dev, |
| intel_crtc->pipe, |
| work->event); |
| |
| drm_crtc_vblank_put(&intel_crtc->base); |
| |
| wake_up_all(&dev_priv->pending_flip_queue); |
| queue_work(dev_priv->wq, &work->work); |
| |
| trace_i915_flip_complete(intel_crtc->plane, |
| work->pending_flip_obj); |
| } |
| |
| void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue)); |
| if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue, |
| !intel_crtc_has_pending_flip(crtc), |
| 60*HZ) == 0)) { |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| |
| spin_lock_irq(&dev->event_lock); |
| if (intel_crtc->unpin_work) { |
| WARN_ONCE(1, "Removing stuck page flip\n"); |
| page_flip_completed(intel_crtc); |
| } |
| spin_unlock_irq(&dev->event_lock); |
| } |
| |
| if (crtc->primary->fb) { |
| mutex_lock(&dev->struct_mutex); |
| intel_finish_fb(crtc->primary->fb); |
| mutex_unlock(&dev->struct_mutex); |
| } |
| } |
| |
| /* Program iCLKIP clock to the desired frequency */ |
| static void lpt_program_iclkip(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock; |
| u32 divsel, phaseinc, auxdiv, phasedir = 0; |
| u32 temp; |
| |
| mutex_lock(&dev_priv->dpio_lock); |
| |
| /* It is necessary to ungate the pixclk gate prior to programming |
| * the divisors, and gate it back when it is done. |
| */ |
| I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE); |
| |
| /* Disable SSCCTL */ |
| intel_sbi_write(dev_priv, SBI_SSCCTL6, |
| intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) | |
| SBI_SSCCTL_DISABLE, |
| SBI_ICLK); |
| |
| /* 20MHz is a corner case which is out of range for the 7-bit divisor */ |
| if (clock == 20000) { |
| auxdiv = 1; |
| divsel = 0x41; |
| phaseinc = 0x20; |
| } else { |
| /* The iCLK virtual clock root frequency is in MHz, |
| * but the adjusted_mode->crtc_clock in in KHz. To get the |
| * divisors, it is necessary to divide one by another, so we |
| * convert the virtual clock precision to KHz here for higher |
| * precision. |
| */ |
| u32 iclk_virtual_root_freq = 172800 * 1000; |
| u32 iclk_pi_range = 64; |
| u32 desired_divisor, msb_divisor_value, pi_value; |
| |
| desired_divisor = (iclk_virtual_root_freq / clock); |
| msb_divisor_value = desired_divisor / iclk_pi_range; |
| pi_value = desired_divisor % iclk_pi_range; |
| |
| auxdiv = 0; |
| divsel = msb_divisor_value - 2; |
| phaseinc = pi_value; |
| } |
| |
| /* This should not happen with any sane values */ |
| WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) & |
| ~SBI_SSCDIVINTPHASE_DIVSEL_MASK); |
| WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) & |
| ~SBI_SSCDIVINTPHASE_INCVAL_MASK); |
| |
| DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n", |
| clock, |
| auxdiv, |
| divsel, |
| phasedir, |
| phaseinc); |
| |
| /* Program SSCDIVINTPHASE6 */ |
| temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK); |
| temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK; |
| temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel); |
| temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK; |
| temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc); |
| temp |= SBI_SSCDIVINTPHASE_DIR(phasedir); |
| temp |= SBI_SSCDIVINTPHASE_PROPAGATE; |
| intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK); |
| |
| /* Program SSCAUXDIV */ |
| temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK); |
| temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1); |
| temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv); |
| intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK); |
| |
| /* Enable modulator and associated divider */ |
| temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); |
| temp &= ~SBI_SSCCTL_DISABLE; |
| intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK); |
| |
| /* Wait for initialization time */ |
| udelay(24); |
| |
| I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE); |
| |
| mutex_unlock(&dev_priv->dpio_lock); |
| } |
| |
| static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc, |
| enum pipe pch_transcoder) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| enum transcoder cpu_transcoder = crtc->config.cpu_transcoder; |
| |
| I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder), |
| I915_READ(HTOTAL(cpu_transcoder))); |
| I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder), |
| I915_READ(HBLANK(cpu_transcoder))); |
| I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder), |
| I915_READ(HSYNC(cpu_transcoder))); |
| |
| I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder), |
| I915_READ(VTOTAL(cpu_transcoder))); |
| I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder), |
| I915_READ(VBLANK(cpu_transcoder))); |
| I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder), |
| I915_READ(VSYNC(cpu_transcoder))); |
| I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder), |
| I915_READ(VSYNCSHIFT(cpu_transcoder))); |
| } |
| |
| static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| uint32_t temp; |
| |
| temp = I915_READ(SOUTH_CHICKEN1); |
| if (temp & FDI_BC_BIFURCATION_SELECT) |
| return; |
| |
| WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE); |
| WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE); |
| |
| temp |= FDI_BC_BIFURCATION_SELECT; |
| DRM_DEBUG_KMS("enabling fdi C rx\n"); |
| I915_WRITE(SOUTH_CHICKEN1, temp); |
| POSTING_READ(SOUTH_CHICKEN1); |
| } |
| |
| static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc) |
| { |
| struct drm_device *dev = intel_crtc->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| switch (intel_crtc->pipe) { |
| case PIPE_A: |
| break; |
| case PIPE_B: |
| if (intel_crtc->config.fdi_lanes > 2) |
| WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT); |
| else |
| cpt_enable_fdi_bc_bifurcation(dev); |
| |
| break; |
| case PIPE_C: |
| cpt_enable_fdi_bc_bifurcation(dev); |
| |
| break; |
| default: |
| BUG(); |
| } |
| } |
| |
| /* |
| * Enable PCH resources required for PCH ports: |
| * - PCH PLLs |
| * - FDI training & RX/TX |
| * - update transcoder timings |
| * - DP transcoding bits |
| * - transcoder |
| */ |
| static void ironlake_pch_enable(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| u32 reg, temp; |
| |
| assert_pch_transcoder_disabled(dev_priv, pipe); |
| |
| if (IS_IVYBRIDGE(dev)) |
| ivybridge_update_fdi_bc_bifurcation(intel_crtc); |
| |
| /* Write the TU size bits before fdi link training, so that error |
| * detection works. */ |
| I915_WRITE(FDI_RX_TUSIZE1(pipe), |
| I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK); |
| |
| /* For PCH output, training FDI link */ |
| dev_priv->display.fdi_link_train(crtc); |
| |
| /* We need to program the right clock selection before writing the pixel |
| * mutliplier into the DPLL. */ |
| if (HAS_PCH_CPT(dev)) { |
| u32 sel; |
| |
| temp = I915_READ(PCH_DPLL_SEL); |
| temp |= TRANS_DPLL_ENABLE(pipe); |
| sel = TRANS_DPLLB_SEL(pipe); |
| if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B) |
| temp |= sel; |
| else |
| temp &= ~sel; |
| I915_WRITE(PCH_DPLL_SEL, temp); |
| } |
| |
| /* XXX: pch pll's can be enabled any time before we enable the PCH |
| * transcoder, and we actually should do this to not upset any PCH |
| * transcoder that already use the clock when we share it. |
| * |
| * Note that enable_shared_dpll tries to do the right thing, but |
| * get_shared_dpll unconditionally resets the pll - we need that to have |
| * the right LVDS enable sequence. */ |
| intel_enable_shared_dpll(intel_crtc); |
| |
| /* set transcoder timing, panel must allow it */ |
| assert_panel_unlocked(dev_priv, pipe); |
| ironlake_pch_transcoder_set_timings(intel_crtc, pipe); |
| |
| intel_fdi_normal_train(crtc); |
| |
| /* For PCH DP, enable TRANS_DP_CTL */ |
| if (HAS_PCH_CPT(dev) && intel_crtc->config.has_dp_encoder) { |
| u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5; |
| reg = TRANS_DP_CTL(pipe); |
| temp = I915_READ(reg); |
| temp &= ~(TRANS_DP_PORT_SEL_MASK | |
| TRANS_DP_SYNC_MASK | |
| TRANS_DP_BPC_MASK); |
| temp |= (TRANS_DP_OUTPUT_ENABLE | |
| TRANS_DP_ENH_FRAMING); |
| temp |= bpc << 9; /* same format but at 11:9 */ |
| |
| if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC) |
| temp |= TRANS_DP_HSYNC_ACTIVE_HIGH; |
| if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC) |
| temp |= TRANS_DP_VSYNC_ACTIVE_HIGH; |
| |
| switch (intel_trans_dp_port_sel(crtc)) { |
| case PCH_DP_B: |
| temp |= TRANS_DP_PORT_SEL_B; |
| break; |
| case PCH_DP_C: |
| temp |= TRANS_DP_PORT_SEL_C; |
| break; |
| case PCH_DP_D: |
| temp |= TRANS_DP_PORT_SEL_D; |
| break; |
| default: |
| BUG(); |
| } |
| |
| I915_WRITE(reg, temp); |
| } |
| |
| ironlake_enable_pch_transcoder(dev_priv, pipe); |
| } |
| |
| static void lpt_pch_enable(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder; |
| |
| assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A); |
| |
| lpt_program_iclkip(crtc); |
| |
| /* Set transcoder timing. */ |
| ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A); |
| |
| lpt_enable_pch_transcoder(dev_priv, cpu_transcoder); |
| } |
| |
| void intel_put_shared_dpll(struct intel_crtc *crtc) |
| { |
| struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc); |
| |
| if (pll == NULL) |
| return; |
| |
| if (!(pll->config.crtc_mask & (1 << crtc->pipe))) { |
| WARN(1, "bad %s crtc mask\n", pll->name); |
| return; |
| } |
| |
| pll->config.crtc_mask &= ~(1 << crtc->pipe); |
| if (pll->config.crtc_mask == 0) { |
| WARN_ON(pll->on); |
| WARN_ON(pll->active); |
| } |
| |
| crtc->config.shared_dpll = DPLL_ID_PRIVATE; |
| } |
| |
| struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc) |
| { |
| struct drm_i915_private *dev_priv = crtc->base.dev->dev_private; |
| struct intel_shared_dpll *pll; |
| enum intel_dpll_id i; |
| |
| if (HAS_PCH_IBX(dev_priv->dev)) { |
| /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */ |
| i = (enum intel_dpll_id) crtc->pipe; |
| pll = &dev_priv->shared_dplls[i]; |
| |
| DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n", |
| crtc->base.base.id, pll->name); |
| |
| WARN_ON(pll->new_config->crtc_mask); |
| |
| goto found; |
| } |
| |
| for (i = 0; i < dev_priv->num_shared_dpll; i++) { |
| pll = &dev_priv->shared_dplls[i]; |
| |
| /* Only want to check enabled timings first */ |
| if (pll->new_config->crtc_mask == 0) |
| continue; |
| |
| if (memcmp(&crtc->new_config->dpll_hw_state, |
| &pll->new_config->hw_state, |
| sizeof(pll->new_config->hw_state)) == 0) { |
| DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n", |
| crtc->base.base.id, pll->name, |
| pll->new_config->crtc_mask, |
| pll->active); |
| goto found; |
| } |
| } |
| |
| /* Ok no matching timings, maybe there's a free one? */ |
| for (i = 0; i < dev_priv->num_shared_dpll; i++) { |
| pll = &dev_priv->shared_dplls[i]; |
| if (pll->new_config->crtc_mask == 0) { |
| DRM_DEBUG_KMS("CRTC:%d allocated %s\n", |
| crtc->base.base.id, pll->name); |
| goto found; |
| } |
| } |
| |
| return NULL; |
| |
| found: |
| if (pll->new_config->crtc_mask == 0) |
| pll->new_config->hw_state = crtc->new_config->dpll_hw_state; |
| |
| crtc->new_config->shared_dpll = i; |
| DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name, |
| pipe_name(crtc->pipe)); |
| |
| pll->new_config->crtc_mask |= 1 << crtc->pipe; |
| |
| return pll; |
| } |
| |
| /** |
| * intel_shared_dpll_start_config - start a new PLL staged config |
| * @dev_priv: DRM device |
| * @clear_pipes: mask of pipes that will have their PLLs freed |
| * |
| * Starts a new PLL staged config, copying the current config but |
| * releasing the references of pipes specified in clear_pipes. |
| */ |
| static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv, |
| unsigned clear_pipes) |
| { |
| struct intel_shared_dpll *pll; |
| enum intel_dpll_id i; |
| |
| for (i = 0; i < dev_priv->num_shared_dpll; i++) { |
| pll = &dev_priv->shared_dplls[i]; |
| |
| pll->new_config = kmemdup(&pll->config, sizeof pll->config, |
| GFP_KERNEL); |
| if (!pll->new_config) |
| goto cleanup; |
| |
| pll->new_config->crtc_mask &= ~clear_pipes; |
| } |
| |
| return 0; |
| |
| cleanup: |
| while (--i >= 0) { |
| pll = &dev_priv->shared_dplls[i]; |
| kfree(pll->new_config); |
| pll->new_config = NULL; |
| } |
| |
| return -ENOMEM; |
| } |
| |
| static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv) |
| { |
| struct intel_shared_dpll *pll; |
| enum intel_dpll_id i; |
| |
| for (i = 0; i < dev_priv->num_shared_dpll; i++) { |
| pll = &dev_priv->shared_dplls[i]; |
| |
| WARN_ON(pll->new_config == &pll->config); |
| |
| pll->config = *pll->new_config; |
| kfree(pll->new_config); |
| pll->new_config = NULL; |
| } |
| } |
| |
| static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv) |
| { |
| struct intel_shared_dpll *pll; |
| enum intel_dpll_id i; |
| |
| for (i = 0; i < dev_priv->num_shared_dpll; i++) { |
| pll = &dev_priv->shared_dplls[i]; |
| |
| WARN_ON(pll->new_config == &pll->config); |
| |
| kfree(pll->new_config); |
| pll->new_config = NULL; |
| } |
| } |
| |
| static void cpt_verify_modeset(struct drm_device *dev, int pipe) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int dslreg = PIPEDSL(pipe); |
| u32 temp; |
| |
| temp = I915_READ(dslreg); |
| udelay(500); |
| if (wait_for(I915_READ(dslreg) != temp, 5)) { |
| if (wait_for(I915_READ(dslreg) != temp, 5)) |
| DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe)); |
| } |
| } |
| |
| static void skylake_pfit_enable(struct intel_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int pipe = crtc->pipe; |
| |
| if (crtc->config.pch_pfit.enabled) { |
| I915_WRITE(PS_CTL(pipe), PS_ENABLE); |
| I915_WRITE(PS_WIN_POS(pipe), crtc->config.pch_pfit.pos); |
| I915_WRITE(PS_WIN_SZ(pipe), crtc->config.pch_pfit.size); |
| } |
| } |
| |
| static void ironlake_pfit_enable(struct intel_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int pipe = crtc->pipe; |
| |
| if (crtc->config.pch_pfit.enabled) { |
| /* Force use of hard-coded filter coefficients |
| * as some pre-programmed values are broken, |
| * e.g. x201. |
| */ |
| if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) |
| I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 | |
| PF_PIPE_SEL_IVB(pipe)); |
| else |
| I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3); |
| I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos); |
| I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size); |
| } |
| } |
| |
| static void intel_enable_planes(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| enum pipe pipe = to_intel_crtc(crtc)->pipe; |
| struct drm_plane *plane; |
| struct intel_plane *intel_plane; |
| |
| drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) { |
| intel_plane = to_intel_plane(plane); |
| if (intel_plane->pipe == pipe) |
| intel_plane_restore(&intel_plane->base); |
| } |
| } |
| |
| static void intel_disable_planes(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| enum pipe pipe = to_intel_crtc(crtc)->pipe; |
| struct drm_plane *plane; |
| struct intel_plane *intel_plane; |
| |
| drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) { |
| intel_plane = to_intel_plane(plane); |
| if (intel_plane->pipe == pipe) |
| intel_plane_disable(&intel_plane->base); |
| } |
| } |
| |
| void hsw_enable_ips(struct intel_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| if (!crtc->config.ips_enabled) |
| return; |
| |
| /* We can only enable IPS after we enable a plane and wait for a vblank */ |
| intel_wait_for_vblank(dev, crtc->pipe); |
| |
| assert_plane_enabled(dev_priv, crtc->plane); |
| if (IS_BROADWELL(dev)) { |
| mutex_lock(&dev_priv->rps.hw_lock); |
| WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000)); |
| mutex_unlock(&dev_priv->rps.hw_lock); |
| /* Quoting Art Runyan: "its not safe to expect any particular |
| * value in IPS_CTL bit 31 after enabling IPS through the |
| * mailbox." Moreover, the mailbox may return a bogus state, |
| * so we need to just enable it and continue on. |
| */ |
| } else { |
| I915_WRITE(IPS_CTL, IPS_ENABLE); |
| /* The bit only becomes 1 in the next vblank, so this wait here |
| * is essentially intel_wait_for_vblank. If we don't have this |
| * and don't wait for vblanks until the end of crtc_enable, then |
| * the HW state readout code will complain that the expected |
| * IPS_CTL value is not the one we read. */ |
| if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50)) |
| DRM_ERROR("Timed out waiting for IPS enable\n"); |
| } |
| } |
| |
| void hsw_disable_ips(struct intel_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| if (!crtc->config.ips_enabled) |
| return; |
| |
| assert_plane_enabled(dev_priv, crtc->plane); |
| if (IS_BROADWELL(dev)) { |
| mutex_lock(&dev_priv->rps.hw_lock); |
| WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0)); |
| mutex_unlock(&dev_priv->rps.hw_lock); |
| /* wait for pcode to finish disabling IPS, which may take up to 42ms */ |
| if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42)) |
| DRM_ERROR("Timed out waiting for IPS disable\n"); |
| } else { |
| I915_WRITE(IPS_CTL, 0); |
| POSTING_READ(IPS_CTL); |
| } |
| |
| /* We need to wait for a vblank before we can disable the plane. */ |
| intel_wait_for_vblank(dev, crtc->pipe); |
| } |
| |
| /** Loads the palette/gamma unit for the CRTC with the prepared values */ |
| static void intel_crtc_load_lut(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| enum pipe pipe = intel_crtc->pipe; |
| int palreg = PALETTE(pipe); |
| int i; |
| bool reenable_ips = false; |
| |
| /* The clocks have to be on to load the palette. */ |
| if (!crtc->enabled || !intel_crtc->active) |
| return; |
| |
| if (!HAS_PCH_SPLIT(dev_priv->dev)) { |
| if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) |
| assert_dsi_pll_enabled(dev_priv); |
| else |
| assert_pll_enabled(dev_priv, pipe); |
| } |
| |
| /* use legacy palette for Ironlake */ |
| if (!HAS_GMCH_DISPLAY(dev)) |
| palreg = LGC_PALETTE(pipe); |
| |
| /* Workaround : Do not read or write the pipe palette/gamma data while |
| * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled. |
| */ |
| if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled && |
| ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) == |
| GAMMA_MODE_MODE_SPLIT)) { |
| hsw_disable_ips(intel_crtc); |
| reenable_ips = true; |
| } |
| |
| for (i = 0; i < 256; i++) { |
| I915_WRITE(palreg + 4 * i, |
| (intel_crtc->lut_r[i] << 16) | |
| (intel_crtc->lut_g[i] << 8) | |
| intel_crtc->lut_b[i]); |
| } |
| |
| if (reenable_ips) |
| hsw_enable_ips(intel_crtc); |
| } |
| |
| static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable) |
| { |
| if (!enable && intel_crtc->overlay) { |
| struct drm_device *dev = intel_crtc->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| mutex_lock(&dev->struct_mutex); |
| dev_priv->mm.interruptible = false; |
| (void) intel_overlay_switch_off(intel_crtc->overlay); |
| dev_priv->mm.interruptible = true; |
| mutex_unlock(&dev->struct_mutex); |
| } |
| |
| /* Let userspace switch the overlay on again. In most cases userspace |
| * has to recompute where to put it anyway. |
| */ |
| } |
| |
| static void intel_crtc_enable_planes(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| |
| intel_enable_primary_hw_plane(crtc->primary, crtc); |
| intel_enable_planes(crtc); |
| intel_crtc_update_cursor(crtc, true); |
| intel_crtc_dpms_overlay(intel_crtc, true); |
| |
| hsw_enable_ips(intel_crtc); |
| |
| mutex_lock(&dev->struct_mutex); |
| intel_update_fbc(dev); |
| mutex_unlock(&dev->struct_mutex); |
| |
| /* |
| * FIXME: Once we grow proper nuclear flip support out of this we need |
| * to compute the mask of flip planes precisely. For the time being |
| * consider this a flip from a NULL plane. |
| */ |
| intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe)); |
| } |
| |
| static void intel_crtc_disable_planes(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| int plane = intel_crtc->plane; |
| |
| intel_crtc_wait_for_pending_flips(crtc); |
| |
| if (dev_priv->fbc.plane == plane) |
| intel_disable_fbc(dev); |
| |
| hsw_disable_ips(intel_crtc); |
| |
| intel_crtc_dpms_overlay(intel_crtc, false); |
| intel_crtc_update_cursor(crtc, false); |
| intel_disable_planes(crtc); |
| intel_disable_primary_hw_plane(crtc->primary, crtc); |
| |
| /* |
| * FIXME: Once we grow proper nuclear flip support out of this we need |
| * to compute the mask of flip planes precisely. For the time being |
| * consider this a flip to a NULL plane. |
| */ |
| intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe)); |
| } |
| |
| static void ironlake_crtc_enable(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| struct intel_encoder *encoder; |
| int pipe = intel_crtc->pipe; |
| |
| WARN_ON(!crtc->enabled); |
| |
| if (intel_crtc->active) |
| return; |
| |
| if (intel_crtc->config.has_pch_encoder) |
| intel_prepare_shared_dpll(intel_crtc); |
| |
| if (intel_crtc->config.has_dp_encoder) |
| intel_dp_set_m_n(intel_crtc); |
| |
| intel_set_pipe_timings(intel_crtc); |
| |
| if (intel_crtc->config.has_pch_encoder) { |
| intel_cpu_transcoder_set_m_n(intel_crtc, |
| &intel_crtc->config.fdi_m_n, NULL); |
| } |
| |
| ironlake_set_pipeconf(crtc); |
| |
| intel_crtc->active = true; |
| |
| intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); |
| intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true); |
| |
| for_each_encoder_on_crtc(dev, crtc, encoder) |
| if (encoder->pre_enable) |
| encoder->pre_enable(encoder); |
| |
| if (intel_crtc->config.has_pch_encoder) { |
| /* Note: FDI PLL enabling _must_ be done before we enable the |
| * cpu pipes, hence this is separate from all the other fdi/pch |
| * enabling. */ |
| ironlake_fdi_pll_enable(intel_crtc); |
| } else { |
| assert_fdi_tx_disabled(dev_priv, pipe); |
| assert_fdi_rx_disabled(dev_priv, pipe); |
| } |
| |
| ironlake_pfit_enable(intel_crtc); |
| |
| /* |
| * On ILK+ LUT must be loaded before the pipe is running but with |
| * clocks enabled |
| */ |
| intel_crtc_load_lut(crtc); |
| |
| intel_update_watermarks(crtc); |
| intel_enable_pipe(intel_crtc); |
| |
| if (intel_crtc->config.has_pch_encoder) |
| ironlake_pch_enable(crtc); |
| |
| for_each_encoder_on_crtc(dev, crtc, encoder) |
| encoder->enable(encoder); |
| |
| if (HAS_PCH_CPT(dev)) |
| cpt_verify_modeset(dev, intel_crtc->pipe); |
| |
| assert_vblank_disabled(crtc); |
| drm_crtc_vblank_on(crtc); |
| |
| intel_crtc_enable_planes(crtc); |
| } |
| |
| /* IPS only exists on ULT machines and is tied to pipe A. */ |
| static bool hsw_crtc_supports_ips(struct intel_crtc *crtc) |
| { |
| return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A; |
| } |
| |
| /* |
| * This implements the workaround described in the "notes" section of the mode |
| * set sequence documentation. When going from no pipes or single pipe to |
| * multiple pipes, and planes are enabled after the pipe, we need to wait at |
| * least 2 vblanks on the first pipe before enabling planes on the second pipe. |
| */ |
| static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct intel_crtc *crtc_it, *other_active_crtc = NULL; |
| |
| /* We want to get the other_active_crtc only if there's only 1 other |
| * active crtc. */ |
| for_each_intel_crtc(dev, crtc_it) { |
| if (!crtc_it->active || crtc_it == crtc) |
| continue; |
| |
| if (other_active_crtc) |
| return; |
| |
| other_active_crtc = crtc_it; |
| } |
| if (!other_active_crtc) |
| return; |
| |
| intel_wait_for_vblank(dev, other_active_crtc->pipe); |
| intel_wait_for_vblank(dev, other_active_crtc->pipe); |
| } |
| |
| static void haswell_crtc_enable(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| struct intel_encoder *encoder; |
| int pipe = intel_crtc->pipe; |
| |
| WARN_ON(!crtc->enabled); |
| |
| if (intel_crtc->active) |
| return; |
| |
| if (intel_crtc_to_shared_dpll(intel_crtc)) |
| intel_enable_shared_dpll(intel_crtc); |
| |
| if (intel_crtc->config.has_dp_encoder) |
| intel_dp_set_m_n(intel_crtc); |
| |
| intel_set_pipe_timings(intel_crtc); |
| |
| if (intel_crtc->config.cpu_transcoder != TRANSCODER_EDP) { |
| I915_WRITE(PIPE_MULT(intel_crtc->config.cpu_transcoder), |
| intel_crtc->config.pixel_multiplier - 1); |
| } |
| |
| if (intel_crtc->config.has_pch_encoder) { |
| intel_cpu_transcoder_set_m_n(intel_crtc, |
| &intel_crtc->config.fdi_m_n, NULL); |
| } |
| |
| haswell_set_pipeconf(crtc); |
| |
| intel_set_pipe_csc(crtc); |
| |
| intel_crtc->active = true; |
| |
| intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); |
| for_each_encoder_on_crtc(dev, crtc, encoder) |
| if (encoder->pre_enable) |
| encoder->pre_enable(encoder); |
| |
| if (intel_crtc->config.has_pch_encoder) { |
| intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A, |
| true); |
| dev_priv->display.fdi_link_train(crtc); |
| } |
| |
| intel_ddi_enable_pipe_clock(intel_crtc); |
| |
| if (IS_SKYLAKE(dev)) |
| skylake_pfit_enable(intel_crtc); |
| else |
| ironlake_pfit_enable(intel_crtc); |
| |
| /* |
| * On ILK+ LUT must be loaded before the pipe is running but with |
| * clocks enabled |
| */ |
| intel_crtc_load_lut(crtc); |
| |
| intel_ddi_set_pipe_settings(crtc); |
| intel_ddi_enable_transcoder_func(crtc); |
| |
| intel_update_watermarks(crtc); |
| intel_enable_pipe(intel_crtc); |
| |
| if (intel_crtc->config.has_pch_encoder) |
| lpt_pch_enable(crtc); |
| |
| if (intel_crtc->config.dp_encoder_is_mst) |
| intel_ddi_set_vc_payload_alloc(crtc, true); |
| |
| for_each_encoder_on_crtc(dev, crtc, encoder) { |
| encoder->enable(encoder); |
| intel_opregion_notify_encoder(encoder, true); |
| } |
| |
| assert_vblank_disabled(crtc); |
| drm_crtc_vblank_on(crtc); |
| |
| /* If we change the relative order between pipe/planes enabling, we need |
| * to change the workaround. */ |
| haswell_mode_set_planes_workaround(intel_crtc); |
| intel_crtc_enable_planes(crtc); |
| } |
| |
| static void skylake_pfit_disable(struct intel_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int pipe = crtc->pipe; |
| |
| /* To avoid upsetting the power well on haswell only disable the pfit if |
| * it's in use. The hw state code will make sure we get this right. */ |
| if (crtc->config.pch_pfit.enabled) { |
| I915_WRITE(PS_CTL(pipe), 0); |
| I915_WRITE(PS_WIN_POS(pipe), 0); |
| I915_WRITE(PS_WIN_SZ(pipe), 0); |
| } |
| } |
| |
| static void ironlake_pfit_disable(struct intel_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int pipe = crtc->pipe; |
| |
| /* To avoid upsetting the power well on haswell only disable the pfit if |
| * it's in use. The hw state code will make sure we get this right. */ |
| if (crtc->config.pch_pfit.enabled) { |
| I915_WRITE(PF_CTL(pipe), 0); |
| I915_WRITE(PF_WIN_POS(pipe), 0); |
| I915_WRITE(PF_WIN_SZ(pipe), 0); |
| } |
| } |
| |
| static void ironlake_crtc_disable(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| struct intel_encoder *encoder; |
| int pipe = intel_crtc->pipe; |
| u32 reg, temp; |
| |
| if (!intel_crtc->active) |
| return; |
| |
| intel_crtc_disable_planes(crtc); |
| |
| drm_crtc_vblank_off(crtc); |
| assert_vblank_disabled(crtc); |
| |
| for_each_encoder_on_crtc(dev, crtc, encoder) |
| encoder->disable(encoder); |
| |
| if (intel_crtc->config.has_pch_encoder) |
| intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false); |
| |
| intel_disable_pipe(intel_crtc); |
| |
| ironlake_pfit_disable(intel_crtc); |
| |
| for_each_encoder_on_crtc(dev, crtc, encoder) |
| if (encoder->post_disable) |
| encoder->post_disable(encoder); |
| |
| if (intel_crtc->config.has_pch_encoder) { |
| ironlake_fdi_disable(crtc); |
| |
| ironlake_disable_pch_transcoder(dev_priv, pipe); |
| intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true); |
| |
| if (HAS_PCH_CPT(dev)) { |
| /* disable TRANS_DP_CTL */ |
| reg = TRANS_DP_CTL(pipe); |
| temp = I915_READ(reg); |
| temp &= ~(TRANS_DP_OUTPUT_ENABLE | |
| TRANS_DP_PORT_SEL_MASK); |
| temp |= TRANS_DP_PORT_SEL_NONE; |
| I915_WRITE(reg, temp); |
| |
| /* disable DPLL_SEL */ |
| temp = I915_READ(PCH_DPLL_SEL); |
| temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe)); |
| I915_WRITE(PCH_DPLL_SEL, temp); |
| } |
| |
| /* disable PCH DPLL */ |
| intel_disable_shared_dpll(intel_crtc); |
| |
| ironlake_fdi_pll_disable(intel_crtc); |
| } |
| |
| intel_crtc->active = false; |
| intel_update_watermarks(crtc); |
| |
| mutex_lock(&dev->struct_mutex); |
| intel_update_fbc(dev); |
| mutex_unlock(&dev->struct_mutex); |
| } |
| |
| static void haswell_crtc_disable(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| struct intel_encoder *encoder; |
| enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder; |
| |
| if (!intel_crtc->active) |
| return; |
| |
| intel_crtc_disable_planes(crtc); |
| |
| drm_crtc_vblank_off(crtc); |
| assert_vblank_disabled(crtc); |
| |
| for_each_encoder_on_crtc(dev, crtc, encoder) { |
| intel_opregion_notify_encoder(encoder, false); |
| encoder->disable(encoder); |
| } |
| |
| if (intel_crtc->config.has_pch_encoder) |
| intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A, |
| false); |
| intel_disable_pipe(intel_crtc); |
| |
| if (intel_crtc->config.dp_encoder_is_mst) |
| intel_ddi_set_vc_payload_alloc(crtc, false); |
| |
| intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder); |
| |
| if (IS_SKYLAKE(dev)) |
| skylake_pfit_disable(intel_crtc); |
| else |
| ironlake_pfit_disable(intel_crtc); |
| |
| intel_ddi_disable_pipe_clock(intel_crtc); |
| |
| if (intel_crtc->config.has_pch_encoder) { |
| lpt_disable_pch_transcoder(dev_priv); |
| intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A, |
| true); |
| intel_ddi_fdi_disable(crtc); |
| } |
| |
| for_each_encoder_on_crtc(dev, crtc, encoder) |
| if (encoder->post_disable) |
| encoder->post_disable(encoder); |
| |
| intel_crtc->active = false; |
| intel_update_watermarks(crtc); |
| |
| mutex_lock(&dev->struct_mutex); |
| intel_update_fbc(dev); |
| mutex_unlock(&dev->struct_mutex); |
| |
| if (intel_crtc_to_shared_dpll(intel_crtc)) |
| intel_disable_shared_dpll(intel_crtc); |
| } |
| |
| static void ironlake_crtc_off(struct drm_crtc *crtc) |
| { |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| intel_put_shared_dpll(intel_crtc); |
| } |
| |
| |
| static void i9xx_pfit_enable(struct intel_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc_config *pipe_config = &crtc->config; |
| |
| if (!crtc->config.gmch_pfit.control) |
| return; |
| |
| /* |
| * The panel fitter should only be adjusted whilst the pipe is disabled, |
| * according to register description and PRM. |
| */ |
| WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE); |
| assert_pipe_disabled(dev_priv, crtc->pipe); |
| |
| I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios); |
| I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control); |
| |
| /* Border color in case we don't scale up to the full screen. Black by |
| * default, change to something else for debugging. */ |
| I915_WRITE(BCLRPAT(crtc->pipe), 0); |
| } |
| |
| static enum intel_display_power_domain port_to_power_domain(enum port port) |
| { |
| switch (port) { |
| case PORT_A: |
| return POWER_DOMAIN_PORT_DDI_A_4_LANES; |
| case PORT_B: |
| return POWER_DOMAIN_PORT_DDI_B_4_LANES; |
| case PORT_C: |
| return POWER_DOMAIN_PORT_DDI_C_4_LANES; |
| case PORT_D: |
| return POWER_DOMAIN_PORT_DDI_D_4_LANES; |
| default: |
| WARN_ON_ONCE(1); |
| return POWER_DOMAIN_PORT_OTHER; |
| } |
| } |
| |
| #define for_each_power_domain(domain, mask) \ |
| for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \ |
| if ((1 << (domain)) & (mask)) |
| |
| enum intel_display_power_domain |
| intel_display_port_power_domain(struct intel_encoder *intel_encoder) |
| { |
| struct drm_device *dev = intel_encoder->base.dev; |
| struct intel_digital_port *intel_dig_port; |
| |
| switch (intel_encoder->type) { |
| case INTEL_OUTPUT_UNKNOWN: |
| /* Only DDI platforms should ever use this output type */ |
| WARN_ON_ONCE(!HAS_DDI(dev)); |
| case INTEL_OUTPUT_DISPLAYPORT: |
| case INTEL_OUTPUT_HDMI: |
| case INTEL_OUTPUT_EDP: |
| intel_dig_port = enc_to_dig_port(&intel_encoder->base); |
| return port_to_power_domain(intel_dig_port->port); |
| case INTEL_OUTPUT_DP_MST: |
| intel_dig_port = enc_to_mst(&intel_encoder->base)->primary; |
| return port_to_power_domain(intel_dig_port->port); |
| case INTEL_OUTPUT_ANALOG: |
| return POWER_DOMAIN_PORT_CRT; |
| case INTEL_OUTPUT_DSI: |
| return POWER_DOMAIN_PORT_DSI; |
| default: |
| return POWER_DOMAIN_PORT_OTHER; |
| } |
| } |
| |
| static unsigned long get_crtc_power_domains(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct intel_encoder *intel_encoder; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| enum pipe pipe = intel_crtc->pipe; |
| unsigned long mask; |
| enum transcoder transcoder; |
| |
| transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe); |
| |
| mask = BIT(POWER_DOMAIN_PIPE(pipe)); |
| mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder)); |
| if (intel_crtc->config.pch_pfit.enabled || |
| intel_crtc->config.pch_pfit.force_thru) |
| mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe)); |
| |
| for_each_encoder_on_crtc(dev, crtc, intel_encoder) |
| mask |= BIT(intel_display_port_power_domain(intel_encoder)); |
| |
| return mask; |
| } |
| |
| static void modeset_update_crtc_power_domains(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| unsigned long pipe_domains[I915_MAX_PIPES] = { 0, }; |
| struct intel_crtc *crtc; |
| |
| /* |
| * First get all needed power domains, then put all unneeded, to avoid |
| * any unnecessary toggling of the power wells. |
| */ |
| for_each_intel_crtc(dev, crtc) { |
| enum intel_display_power_domain domain; |
| |
| if (!crtc->base.enabled) |
| continue; |
| |
| pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base); |
| |
| for_each_power_domain(domain, pipe_domains[crtc->pipe]) |
| intel_display_power_get(dev_priv, domain); |
| } |
| |
| if (dev_priv->display.modeset_global_resources) |
| dev_priv->display.modeset_global_resources(dev); |
| |
| for_each_intel_crtc(dev, crtc) { |
| enum intel_display_power_domain domain; |
| |
| for_each_power_domain(domain, crtc->enabled_power_domains) |
| intel_display_power_put(dev_priv, domain); |
| |
| crtc->enabled_power_domains = pipe_domains[crtc->pipe]; |
| } |
| |
| intel_display_set_init_power(dev_priv, false); |
| } |
| |
| /* returns HPLL frequency in kHz */ |
| static int valleyview_get_vco(struct drm_i915_private *dev_priv) |
| { |
| int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 }; |
| |
| /* Obtain SKU information */ |
| mutex_lock(&dev_priv->dpio_lock); |
| hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) & |
| CCK_FUSE_HPLL_FREQ_MASK; |
| mutex_unlock(&dev_priv->dpio_lock); |
| |
| return vco_freq[hpll_freq] * 1000; |
| } |
| |
| static void vlv_update_cdclk(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev); |
| DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n", |
| dev_priv->vlv_cdclk_freq); |
| |
| /* |
| * Program the gmbus_freq based on the cdclk frequency. |
| * BSpec erroneously claims we should aim for 4MHz, but |
| * in fact 1MHz is the correct frequency. |
| */ |
| I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->vlv_cdclk_freq, 1000)); |
| } |
| |
| /* Adjust CDclk dividers to allow high res or save power if possible */ |
| static void valleyview_set_cdclk(struct drm_device *dev, int cdclk) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 val, cmd; |
| |
| WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq); |
| |
| if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */ |
| cmd = 2; |
| else if (cdclk == 266667) |
| cmd = 1; |
| else |
| cmd = 0; |
| |
| mutex_lock(&dev_priv->rps.hw_lock); |
| val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ); |
| val &= ~DSPFREQGUAR_MASK; |
| val |= (cmd << DSPFREQGUAR_SHIFT); |
| vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val); |
| if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & |
| DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT), |
| 50)) { |
| DRM_ERROR("timed out waiting for CDclk change\n"); |
| } |
| mutex_unlock(&dev_priv->rps.hw_lock); |
| |
| if (cdclk == 400000) { |
| u32 divider; |
| |
| divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1; |
| |
| mutex_lock(&dev_priv->dpio_lock); |
| /* adjust cdclk divider */ |
| val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL); |
| val &= ~DISPLAY_FREQUENCY_VALUES; |
| val |= divider; |
| vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val); |
| |
| if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) & |
| DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT), |
| 50)) |
| DRM_ERROR("timed out waiting for CDclk change\n"); |
| mutex_unlock(&dev_priv->dpio_lock); |
| } |
| |
| mutex_lock(&dev_priv->dpio_lock); |
| /* adjust self-refresh exit latency value */ |
| val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC); |
| val &= ~0x7f; |
| |
| /* |
| * For high bandwidth configs, we set a higher latency in the bunit |
| * so that the core display fetch happens in time to avoid underruns. |
| */ |
| if (cdclk == 400000) |
| val |= 4500 / 250; /* 4.5 usec */ |
| else |
| val |= 3000 / 250; /* 3.0 usec */ |
| vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val); |
| mutex_unlock(&dev_priv->dpio_lock); |
| |
| vlv_update_cdclk(dev); |
| } |
| |
| static void cherryview_set_cdclk(struct drm_device *dev, int cdclk) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 val, cmd; |
| |
| WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq); |
| |
| switch (cdclk) { |
| case 400000: |
| cmd = 3; |
| break; |
| case 333333: |
| case 320000: |
| cmd = 2; |
| break; |
| case 266667: |
| cmd = 1; |
| break; |
| case 200000: |
| cmd = 0; |
| break; |
| default: |
| WARN_ON(1); |
| return; |
| } |
| |
| mutex_lock(&dev_priv->rps.hw_lock); |
| val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ); |
| val &= ~DSPFREQGUAR_MASK_CHV; |
| val |= (cmd << DSPFREQGUAR_SHIFT_CHV); |
| vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val); |
| if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & |
| DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV), |
| 50)) { |
| DRM_ERROR("timed out waiting for CDclk change\n"); |
| } |
| mutex_unlock(&dev_priv->rps.hw_lock); |
| |
| vlv_update_cdclk(dev); |
| } |
| |
| static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv, |
| int max_pixclk) |
| { |
| int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000; |
| |
| /* FIXME: Punit isn't quite ready yet */ |
| if (IS_CHERRYVIEW(dev_priv->dev)) |
| return 400000; |
| |
| /* |
| * Really only a few cases to deal with, as only 4 CDclks are supported: |
| * 200MHz |
| * 267MHz |
| * 320/333MHz (depends on HPLL freq) |
| * 400MHz |
| * So we check to see whether we're above 90% of the lower bin and |
| * adjust if needed. |
| * |
| * We seem to get an unstable or solid color picture at 200MHz. |
| * Not sure what's wrong. For now use 200MHz only when all pipes |
| * are off. |
| */ |
| if (max_pixclk > freq_320*9/10) |
| return 400000; |
| else if (max_pixclk > 266667*9/10) |
| return freq_320; |
| else if (max_pixclk > 0) |
| return 266667; |
| else |
| return 200000; |
| } |
| |
| /* compute the max pixel clock for new configuration */ |
| static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv) |
| { |
| struct drm_device *dev = dev_priv->dev; |
| struct intel_crtc *intel_crtc; |
| int max_pixclk = 0; |
| |
| for_each_intel_crtc(dev, intel_crtc) { |
| if (intel_crtc->new_enabled) |
| max_pixclk = max(max_pixclk, |
| intel_crtc->new_config->adjusted_mode.crtc_clock); |
| } |
| |
| return max_pixclk; |
| } |
| |
| static void valleyview_modeset_global_pipes(struct drm_device *dev, |
| unsigned *prepare_pipes) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc; |
| int max_pixclk = intel_mode_max_pixclk(dev_priv); |
| |
| if (valleyview_calc_cdclk(dev_priv, max_pixclk) == |
| dev_priv->vlv_cdclk_freq) |
| return; |
| |
| /* disable/enable all currently active pipes while we change cdclk */ |
| for_each_intel_crtc(dev, intel_crtc) |
| if (intel_crtc->base.enabled) |
| *prepare_pipes |= (1 << intel_crtc->pipe); |
| } |
| |
| static void valleyview_modeset_global_resources(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int max_pixclk = intel_mode_max_pixclk(dev_priv); |
| int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk); |
| |
| if (req_cdclk != dev_priv->vlv_cdclk_freq) { |
| /* |
| * FIXME: We can end up here with all power domains off, yet |
| * with a CDCLK frequency other than the minimum. To account |
| * for this take the PIPE-A power domain, which covers the HW |
| * blocks needed for the following programming. This can be |
| * removed once it's guaranteed that we get here either with |
| * the minimum CDCLK set, or the required power domains |
| * enabled. |
| */ |
| intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A); |
| |
| if (IS_CHERRYVIEW(dev)) |
| cherryview_set_cdclk(dev, req_cdclk); |
| else |
| valleyview_set_cdclk(dev, req_cdclk); |
| |
| intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A); |
| } |
| } |
| |
| static void valleyview_crtc_enable(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| struct intel_encoder *encoder; |
| int pipe = intel_crtc->pipe; |
| bool is_dsi; |
| |
| WARN_ON(!crtc->enabled); |
| |
| if (intel_crtc->active) |
| return; |
| |
| is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI); |
| |
| if (!is_dsi) { |
| if (IS_CHERRYVIEW(dev)) |
| chv_prepare_pll(intel_crtc, &intel_crtc->config); |
| else |
| vlv_prepare_pll(intel_crtc, &intel_crtc->config); |
| } |
| |
| if (intel_crtc->config.has_dp_encoder) |
| intel_dp_set_m_n(intel_crtc); |
| |
| intel_set_pipe_timings(intel_crtc); |
| |
| if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY); |
| I915_WRITE(CHV_CANVAS(pipe), 0); |
| } |
| |
| i9xx_set_pipeconf(intel_crtc); |
| |
| intel_crtc->active = true; |
| |
| intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); |
| |
| for_each_encoder_on_crtc(dev, crtc, encoder) |
| if (encoder->pre_pll_enable) |
| encoder->pre_pll_enable(encoder); |
| |
| if (!is_dsi) { |
| if (IS_CHERRYVIEW(dev)) |
| chv_enable_pll(intel_crtc, &intel_crtc->config); |
| else |
| vlv_enable_pll(intel_crtc, &intel_crtc->config); |
| } |
| |
| for_each_encoder_on_crtc(dev, crtc, encoder) |
| if (encoder->pre_enable) |
| encoder->pre_enable(encoder); |
| |
| i9xx_pfit_enable(intel_crtc); |
| |
| intel_crtc_load_lut(crtc); |
| |
| intel_update_watermarks(crtc); |
| intel_enable_pipe(intel_crtc); |
| |
| for_each_encoder_on_crtc(dev, crtc, encoder) |
| encoder->enable(encoder); |
| |
| assert_vblank_disabled(crtc); |
| drm_crtc_vblank_on(crtc); |
| |
| intel_crtc_enable_planes(crtc); |
| |
| /* Underruns don't raise interrupts, so check manually. */ |
| i9xx_check_fifo_underruns(dev_priv); |
| } |
| |
| static void i9xx_set_pll_dividers(struct intel_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0); |
| I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1); |
| } |
| |
| static void i9xx_crtc_enable(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| struct intel_encoder *encoder; |
| int pipe = intel_crtc->pipe; |
| |
| WARN_ON(!crtc->enabled); |
| |
| if (intel_crtc->active) |
| return; |
| |
| i9xx_set_pll_dividers(intel_crtc); |
| |
| if (intel_crtc->config.has_dp_encoder) |
| intel_dp_set_m_n(intel_crtc); |
| |
| intel_set_pipe_timings(intel_crtc); |
| |
| i9xx_set_pipeconf(intel_crtc); |
| |
| intel_crtc->active = true; |
| |
| if (!IS_GEN2(dev)) |
| intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); |
| |
| for_each_encoder_on_crtc(dev, crtc, encoder) |
| if (encoder->pre_enable) |
| encoder->pre_enable(encoder); |
| |
| i9xx_enable_pll(intel_crtc); |
| |
| i9xx_pfit_enable(intel_crtc); |
| |
| intel_crtc_load_lut(crtc); |
| |
| intel_update_watermarks(crtc); |
| intel_enable_pipe(intel_crtc); |
| |
| for_each_encoder_on_crtc(dev, crtc, encoder) |
| encoder->enable(encoder); |
| |
| assert_vblank_disabled(crtc); |
| drm_crtc_vblank_on(crtc); |
| |
| intel_crtc_enable_planes(crtc); |
| |
| /* |
| * Gen2 reports pipe underruns whenever all planes are disabled. |
| * So don't enable underrun reporting before at least some planes |
| * are enabled. |
| * FIXME: Need to fix the logic to work when we turn off all planes |
| * but leave the pipe running. |
| */ |
| if (IS_GEN2(dev)) |
| intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); |
| |
| /* Underruns don't raise interrupts, so check manually. */ |
| i9xx_check_fifo_underruns(dev_priv); |
| } |
| |
| static void i9xx_pfit_disable(struct intel_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| if (!crtc->config.gmch_pfit.control) |
| return; |
| |
| assert_pipe_disabled(dev_priv, crtc->pipe); |
| |
| DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n", |
| I915_READ(PFIT_CONTROL)); |
| I915_WRITE(PFIT_CONTROL, 0); |
| } |
| |
| static void i9xx_crtc_disable(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| struct intel_encoder *encoder; |
| int pipe = intel_crtc->pipe; |
| |
| if (!intel_crtc->active) |
| return; |
| |
| /* |
| * Gen2 reports pipe underruns whenever all planes are disabled. |
| * So diasble underrun reporting before all the planes get disabled. |
| * FIXME: Need to fix the logic to work when we turn off all planes |
| * but leave the pipe running. |
| */ |
| if (IS_GEN2(dev)) |
| intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); |
| |
| /* |
| * Vblank time updates from the shadow to live plane control register |
| * are blocked if the memory self-refresh mode is active at that |
| * moment. So to make sure the plane gets truly disabled, disable |
| * first the self-refresh mode. The self-refresh enable bit in turn |
| * will be checked/applied by the HW only at the next frame start |
| * event which is after the vblank start event, so we need to have a |
| * wait-for-vblank between disabling the plane and the pipe. |
| */ |
| intel_set_memory_cxsr(dev_priv, false); |
| intel_crtc_disable_planes(crtc); |
| |
| /* |
| * On gen2 planes are double buffered but the pipe isn't, so we must |
| * wait for planes to fully turn off before disabling the pipe. |
| * We also need to wait on all gmch platforms because of the |
| * self-refresh mode constraint explained above. |
| */ |
| intel_wait_for_vblank(dev, pipe); |
| |
| drm_crtc_vblank_off(crtc); |
| assert_vblank_disabled(crtc); |
| |
| for_each_encoder_on_crtc(dev, crtc, encoder) |
| encoder->disable(encoder); |
| |
| intel_disable_pipe(intel_crtc); |
| |
| i9xx_pfit_disable(intel_crtc); |
| |
| for_each_encoder_on_crtc(dev, crtc, encoder) |
| if (encoder->post_disable) |
| encoder->post_disable(encoder); |
| |
| if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) { |
| if (IS_CHERRYVIEW(dev)) |
| chv_disable_pll(dev_priv, pipe); |
| else if (IS_VALLEYVIEW(dev)) |
| vlv_disable_pll(dev_priv, pipe); |
| else |
| i9xx_disable_pll(intel_crtc); |
| } |
| |
| if (!IS_GEN2(dev)) |
| intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); |
| |
| intel_crtc->active = false; |
| intel_update_watermarks(crtc); |
| |
| mutex_lock(&dev->struct_mutex); |
| intel_update_fbc(dev); |
| mutex_unlock(&dev->struct_mutex); |
| } |
| |
| static void i9xx_crtc_off(struct drm_crtc *crtc) |
| { |
| } |
| |
| /* Master function to enable/disable CRTC and corresponding power wells */ |
| void intel_crtc_control(struct drm_crtc *crtc, bool enable) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| enum intel_display_power_domain domain; |
| unsigned long domains; |
| |
| if (enable) { |
| if (!intel_crtc->active) { |
| domains = get_crtc_power_domains(crtc); |
| for_each_power_domain(domain, domains) |
| intel_display_power_get(dev_priv, domain); |
| intel_crtc->enabled_power_domains = domains; |
| |
| dev_priv->display.crtc_enable(crtc); |
| } |
| } else { |
| if (intel_crtc->active) { |
| dev_priv->display.crtc_disable(crtc); |
| |
| domains = intel_crtc->enabled_power_domains; |
| for_each_power_domain(domain, domains) |
| intel_display_power_put(dev_priv, domain); |
| intel_crtc->enabled_power_domains = 0; |
| } |
| } |
| } |
| |
| /** |
| * Sets the power management mode of the pipe and plane. |
| */ |
| void intel_crtc_update_dpms(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct intel_encoder *intel_encoder; |
| bool enable = false; |
| |
| for_each_encoder_on_crtc(dev, crtc, intel_encoder) |
| enable |= intel_encoder->connectors_active; |
| |
| intel_crtc_control(crtc, enable); |
| } |
| |
| static void intel_crtc_disable(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_connector *connector; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_i915_gem_object *old_obj = intel_fb_obj(crtc->primary->fb); |
| enum pipe pipe = to_intel_crtc(crtc)->pipe; |
| |
| /* crtc should still be enabled when we disable it. */ |
| WARN_ON(!crtc->enabled); |
| |
| dev_priv->display.crtc_disable(crtc); |
| dev_priv->display.off(crtc); |
| |
| if (crtc->primary->fb) { |
| mutex_lock(&dev->struct_mutex); |
| intel_unpin_fb_obj(old_obj); |
| i915_gem_track_fb(old_obj, NULL, |
| INTEL_FRONTBUFFER_PRIMARY(pipe)); |
| mutex_unlock(&dev->struct_mutex); |
| crtc->primary->fb = NULL; |
| } |
| |
| /* Update computed state. */ |
| list_for_each_entry(connector, &dev->mode_config.connector_list, head) { |
| if (!connector->encoder || !connector->encoder->crtc) |
| continue; |
| |
| if (connector->encoder->crtc != crtc) |
| continue; |
| |
| connector->dpms = DRM_MODE_DPMS_OFF; |
| to_intel_encoder(connector->encoder)->connectors_active = false; |
| } |
| } |
| |
| void intel_encoder_destroy(struct drm_encoder *encoder) |
| { |
| struct intel_encoder *intel_encoder = to_intel_encoder(encoder); |
| |
| drm_encoder_cleanup(encoder); |
| kfree(intel_encoder); |
| } |
| |
| /* Simple dpms helper for encoders with just one connector, no cloning and only |
| * one kind of off state. It clamps all !ON modes to fully OFF and changes the |
| * state of the entire output pipe. */ |
| static void intel_encoder_dpms(struct intel_encoder *encoder, int mode) |
| { |
| if (mode == DRM_MODE_DPMS_ON) { |
| encoder->connectors_active = true; |
| |
| intel_crtc_update_dpms(encoder->base.crtc); |
| } else { |
| encoder->connectors_active = false; |
| |
| intel_crtc_update_dpms(encoder->base.crtc); |
| } |
| } |
| |
| /* Cross check the actual hw state with our own modeset state tracking (and it's |
| * internal consistency). */ |
| static void intel_connector_check_state(struct intel_connector *connector) |
| { |
| if (connector->get_hw_state(connector)) { |
| struct intel_encoder *encoder = connector->encoder; |
| struct drm_crtc *crtc; |
| bool encoder_enabled; |
| enum pipe pipe; |
| |
| DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", |
| connector->base.base.id, |
| connector->base.name); |
| |
| /* there is no real hw state for MST connectors */ |
| if (connector->mst_port) |
| return; |
| |
| WARN(connector->base.dpms == DRM_MODE_DPMS_OFF, |
| "wrong connector dpms state\n"); |
| WARN(connector->base.encoder != &encoder->base, |
| "active connector not linked to encoder\n"); |
| |
| if (encoder) { |
| WARN(!encoder->connectors_active, |
| "encoder->connectors_active not set\n"); |
| |
| encoder_enabled = encoder->get_hw_state(encoder, &pipe); |
| WARN(!encoder_enabled, "encoder not enabled\n"); |
| if (WARN_ON(!encoder->base.crtc)) |
| return; |
| |
| crtc = encoder->base.crtc; |
| |
| WARN(!crtc->enabled, "crtc not enabled\n"); |
| WARN(!to_intel_crtc(crtc)->active, "crtc not active\n"); |
| WARN(pipe != to_intel_crtc(crtc)->pipe, |
| "encoder active on the wrong pipe\n"); |
| } |
| } |
| } |
| |
| /* Even simpler default implementation, if there's really no special case to |
| * consider. */ |
| void intel_connector_dpms(struct drm_connector *connector, int mode) |
| { |
| /* All the simple cases only support two dpms states. */ |
| if (mode != DRM_MODE_DPMS_ON) |
| mode = DRM_MODE_DPMS_OFF; |
| |
| if (mode == connector->dpms) |
| return; |
| |
| connector->dpms = mode; |
| |
| /* Only need to change hw state when actually enabled */ |
| if (connector->encoder) |
| intel_encoder_dpms(to_intel_encoder(connector->encoder), mode); |
| |
| intel_modeset_check_state(connector->dev); |
| } |
| |
| /* Simple connector->get_hw_state implementation for encoders that support only |
| * one connector and no cloning and hence the encoder state determines the state |
| * of the connector. */ |
| bool intel_connector_get_hw_state(struct intel_connector *connector) |
| { |
| enum pipe pipe = 0; |
| struct intel_encoder *encoder = connector->encoder; |
| |
| return encoder->get_hw_state(encoder, &pipe); |
| } |
| |
| static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe, |
| struct intel_crtc_config *pipe_config) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *pipe_B_crtc = |
| to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]); |
| |
| DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n", |
| pipe_name(pipe), pipe_config->fdi_lanes); |
| if (pipe_config->fdi_lanes > 4) { |
| DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n", |
| pipe_name(pipe), pipe_config->fdi_lanes); |
| return false; |
| } |
| |
| if (IS_HASWELL(dev) || IS_BROADWELL(dev)) { |
| if (pipe_config->fdi_lanes > 2) { |
| DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n", |
| pipe_config->fdi_lanes); |
| return false; |
| } else { |
| return true; |
| } |
| } |
| |
| if (INTEL_INFO(dev)->num_pipes == 2) |
| return true; |
| |
| /* Ivybridge 3 pipe is really complicated */ |
| switch (pipe) { |
| case PIPE_A: |
| return true; |
| case PIPE_B: |
| if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled && |
| pipe_config->fdi_lanes > 2) { |
| DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n", |
| pipe_name(pipe), pipe_config->fdi_lanes); |
| return false; |
| } |
| return true; |
| case PIPE_C: |
| if (!pipe_has_enabled_pch(pipe_B_crtc) || |
| pipe_B_crtc->config.fdi_lanes <= 2) { |
| if (pipe_config->fdi_lanes > 2) { |
| DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n", |
| pipe_name(pipe), pipe_config->fdi_lanes); |
| return false; |
| } |
| } else { |
| DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n"); |
| return false; |
| } |
| return true; |
| default: |
| BUG(); |
| } |
| } |
| |
| #define RETRY 1 |
| static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc, |
| struct intel_crtc_config *pipe_config) |
| { |
| struct drm_device *dev = intel_crtc->base.dev; |
| struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode; |
| int lane, link_bw, fdi_dotclock; |
| bool setup_ok, needs_recompute = false; |
| |
| retry: |
| /* FDI is a binary signal running at ~2.7GHz, encoding |
| * each output octet as 10 bits. The actual frequency |
| * is stored as a divider into a 100MHz clock, and the |
| * mode pixel clock is stored in units of 1KHz. |
| * Hence the bw of each lane in terms of the mode signal |
| * is: |
| */ |
| link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10; |
| |
| fdi_dotclock = adjusted_mode->crtc_clock; |
| |
| lane = ironlake_get_lanes_required(fdi_dotclock, link_bw, |
| pipe_config->pipe_bpp); |
| |
| pipe_config->fdi_lanes = lane; |
| |
| intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock, |
| link_bw, &pipe_config->fdi_m_n); |
| |
| setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev, |
| intel_crtc->pipe, pipe_config); |
| if (!setup_ok && pipe_config->pipe_bpp > 6*3) { |
| pipe_config->pipe_bpp -= 2*3; |
| DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n", |
| pipe_config->pipe_bpp); |
| needs_recompute = true; |
| pipe_config->bw_constrained = true; |
| |
| goto retry; |
| } |
| |
| if (needs_recompute) |
| return RETRY; |
| |
| return setup_ok ? 0 : -EINVAL; |
| } |
| |
| static void hsw_compute_ips_config(struct intel_crtc *crtc, |
| struct intel_crtc_config *pipe_config) |
| { |
| pipe_config->ips_enabled = i915.enable_ips && |
| hsw_crtc_supports_ips(crtc) && |
| pipe_config->pipe_bpp <= 24; |
| } |
| |
| static int intel_crtc_compute_config(struct intel_crtc *crtc, |
| struct intel_crtc_config *pipe_config) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode; |
| |
| /* FIXME should check pixel clock limits on all platforms */ |
| if (INTEL_INFO(dev)->gen < 4) { |
| int clock_limit = |
| dev_priv->display.get_display_clock_speed(dev); |
| |
| /* |
| * Enable pixel doubling when the dot clock |
| * is > 90% of the (display) core speed. |
| * |
| * GDG double wide on either pipe, |
| * otherwise pipe A only. |
| */ |
| if ((crtc->pipe == PIPE_A || IS_I915G(dev)) && |
| adjusted_mode->crtc_clock > clock_limit * 9 / 10) { |
| clock_limit *= 2; |
| pipe_config->double_wide = true; |
| } |
| |
| if (adjusted_mode->crtc_clock > clock_limit * 9 / 10) |
| return -EINVAL; |
| } |
| |
| /* |
| * Pipe horizontal size must be even in: |
| * - DVO ganged mode |
| * - LVDS dual channel mode |
| * - Double wide pipe |
| */ |
| if ((intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) && |
| intel_is_dual_link_lvds(dev)) || pipe_config->double_wide) |
| pipe_config->pipe_src_w &= ~1; |
| |
| /* Cantiga+ cannot handle modes with a hsync front porch of 0. |
| * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw. |
| */ |
| if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) && |
| adjusted_mode->hsync_start == adjusted_mode->hdisplay) |
| return -EINVAL; |
| |
| if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) { |
| pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */ |
| } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) { |
| /* only a 8bpc pipe, with 6bpc dither through the panel fitter |
| * for lvds. */ |
| pipe_config->pipe_bpp = 8*3; |
| } |
| |
| if (HAS_IPS(dev)) |
| hsw_compute_ips_config(crtc, pipe_config); |
| |
| if (pipe_config->has_pch_encoder) |
| return ironlake_fdi_compute_config(crtc, pipe_config); |
| |
| return 0; |
| } |
| |
| static int valleyview_get_display_clock_speed(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 val; |
| int divider; |
| |
| /* FIXME: Punit isn't quite ready yet */ |
| if (IS_CHERRYVIEW(dev)) |
| return 400000; |
| |
| if (dev_priv->hpll_freq == 0) |
| dev_priv->hpll_freq = valleyview_get_vco(dev_priv); |
| |
| mutex_lock(&dev_priv->dpio_lock); |
| val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL); |
| mutex_unlock(&dev_priv->dpio_lock); |
| |
| divider = val & DISPLAY_FREQUENCY_VALUES; |
| |
| WARN((val & DISPLAY_FREQUENCY_STATUS) != |
| (divider << DISPLAY_FREQUENCY_STATUS_SHIFT), |
| "cdclk change in progress\n"); |
| |
| return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1); |
| } |
| |
| static int i945_get_display_clock_speed(struct drm_device *dev) |
| { |
| return 400000; |
| } |
| |
| static int i915_get_display_clock_speed(struct drm_device *dev) |
| { |
| return 333000; |
| } |
| |
| static int i9xx_misc_get_display_clock_speed(struct drm_device *dev) |
| { |
| return 200000; |
| } |
| |
| static int pnv_get_display_clock_speed(struct drm_device *dev) |
| { |
| u16 gcfgc = 0; |
| |
| pci_read_config_word(dev->pdev, GCFGC, &gcfgc); |
| |
| switch (gcfgc & GC_DISPLAY_CLOCK_MASK) { |
| case GC_DISPLAY_CLOCK_267_MHZ_PNV: |
| return 267000; |
| case GC_DISPLAY_CLOCK_333_MHZ_PNV: |
| return 333000; |
| case GC_DISPLAY_CLOCK_444_MHZ_PNV: |
| return 444000; |
| case GC_DISPLAY_CLOCK_200_MHZ_PNV: |
| return 200000; |
| default: |
| DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc); |
| case GC_DISPLAY_CLOCK_133_MHZ_PNV: |
| return 133000; |
| case GC_DISPLAY_CLOCK_167_MHZ_PNV: |
| return 167000; |
| } |
| } |
| |
| static int i915gm_get_display_clock_speed(struct drm_device *dev) |
| { |
| u16 gcfgc = 0; |
| |
| pci_read_config_word(dev->pdev, GCFGC, &gcfgc); |
| |
| if (gcfgc & GC_LOW_FREQUENCY_ENABLE) |
| return 133000; |
| else { |
| switch (gcfgc & GC_DISPLAY_CLOCK_MASK) { |
| case GC_DISPLAY_CLOCK_333_MHZ: |
| return 333000; |
| default: |
| case GC_DISPLAY_CLOCK_190_200_MHZ: |
| return 190000; |
| } |
| } |
| } |
| |
| static int i865_get_display_clock_speed(struct drm_device *dev) |
| { |
| return 266000; |
| } |
| |
| static int i855_get_display_clock_speed(struct drm_device *dev) |
| { |
| u16 hpllcc = 0; |
| /* Assume that the hardware is in the high speed state. This |
| * should be the default. |
| */ |
| switch (hpllcc & GC_CLOCK_CONTROL_MASK) { |
| case GC_CLOCK_133_200: |
| case GC_CLOCK_100_200: |
| return 200000; |
| case GC_CLOCK_166_250: |
| return 250000; |
| case GC_CLOCK_100_133: |
| return 133000; |
| } |
| |
| /* Shouldn't happen */ |
| return 0; |
| } |
| |
| static int i830_get_display_clock_speed(struct drm_device *dev) |
| { |
| return 133000; |
| } |
| |
| static void |
| intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den) |
| { |
| while (*num > DATA_LINK_M_N_MASK || |
| *den > DATA_LINK_M_N_MASK) { |
| *num >>= 1; |
| *den >>= 1; |
| } |
| } |
| |
| static void compute_m_n(unsigned int m, unsigned int n, |
| uint32_t *ret_m, uint32_t *ret_n) |
| { |
| *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX); |
| *ret_m = div_u64((uint64_t) m * *ret_n, n); |
| intel_reduce_m_n_ratio(ret_m, ret_n); |
| } |
| |
| void |
| intel_link_compute_m_n(int bits_per_pixel, int nlanes, |
| int pixel_clock, int link_clock, |
| struct intel_link_m_n *m_n) |
| { |
| m_n->tu = 64; |
| |
| compute_m_n(bits_per_pixel * pixel_clock, |
| link_clock * nlanes * 8, |
| &m_n->gmch_m, &m_n->gmch_n); |
| |
| compute_m_n(pixel_clock, link_clock, |
| &m_n->link_m, &m_n->link_n); |
| } |
| |
| static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv) |
| { |
| if (i915.panel_use_ssc >= 0) |
| return i915.panel_use_ssc != 0; |
| return dev_priv->vbt.lvds_use_ssc |
| && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE); |
| } |
| |
| static int i9xx_get_refclk(struct intel_crtc *crtc, int num_connectors) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int refclk; |
| |
| if (IS_VALLEYVIEW(dev)) { |
| refclk = 100000; |
| } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) && |
| intel_panel_use_ssc(dev_priv) && num_connectors < 2) { |
| refclk = dev_priv->vbt.lvds_ssc_freq; |
| DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk); |
| } else if (!IS_GEN2(dev)) { |
| refclk = 96000; |
| } else { |
| refclk = 48000; |
| } |
| |
| return refclk; |
| } |
| |
| static uint32_t pnv_dpll_compute_fp(struct dpll *dpll) |
| { |
| return (1 << dpll->n) << 16 | dpll->m2; |
| } |
| |
| static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll) |
| { |
| return dpll->n << 16 | dpll->m1 << 8 | dpll->m2; |
| } |
| |
| static void i9xx_update_pll_dividers(struct intel_crtc *crtc, |
| intel_clock_t *reduced_clock) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| u32 fp, fp2 = 0; |
| |
| if (IS_PINEVIEW(dev)) { |
| fp = pnv_dpll_compute_fp(&crtc->new_config->dpll); |
| if (reduced_clock) |
| fp2 = pnv_dpll_compute_fp(reduced_clock); |
| } else { |
| fp = i9xx_dpll_compute_fp(&crtc->new_config->dpll); |
| if (reduced_clock) |
| fp2 = i9xx_dpll_compute_fp(reduced_clock); |
| } |
| |
| crtc->new_config->dpll_hw_state.fp0 = fp; |
| |
| crtc->lowfreq_avail = false; |
| if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) && |
| reduced_clock && i915.powersave) { |
| crtc->new_config->dpll_hw_state.fp1 = fp2; |
| crtc->lowfreq_avail = true; |
| } else { |
| crtc->new_config->dpll_hw_state.fp1 = fp; |
| } |
| } |
| |
| static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe |
| pipe) |
| { |
| u32 reg_val; |
| |
| /* |
| * PLLB opamp always calibrates to max value of 0x3f, force enable it |
| * and set it to a reasonable value instead. |
| */ |
| reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1)); |
| reg_val &= 0xffffff00; |
| reg_val |= 0x00000030; |
| vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val); |
| |
| reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13); |
| reg_val &= 0x8cffffff; |
| reg_val = 0x8c000000; |
| vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val); |
| |
| reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1)); |
| reg_val &= 0xffffff00; |
| vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val); |
| |
| reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13); |
| reg_val &= 0x00ffffff; |
| reg_val |= 0xb0000000; |
| vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val); |
| } |
| |
| static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc, |
| struct intel_link_m_n *m_n) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int pipe = crtc->pipe; |
| |
| I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m); |
| I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n); |
| I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m); |
| I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n); |
| } |
| |
| static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc, |
| struct intel_link_m_n *m_n, |
| struct intel_link_m_n *m2_n2) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int pipe = crtc->pipe; |
| enum transcoder transcoder = crtc->config.cpu_transcoder; |
| |
| if (INTEL_INFO(dev)->gen >= 5) { |
| I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m); |
| I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n); |
| I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m); |
| I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n); |
| /* M2_N2 registers to be set only for gen < 8 (M2_N2 available |
| * for gen < 8) and if DRRS is supported (to make sure the |
| * registers are not unnecessarily accessed). |
| */ |
| if (m2_n2 && INTEL_INFO(dev)->gen < 8 && |
| crtc->config.has_drrs) { |
| I915_WRITE(PIPE_DATA_M2(transcoder), |
| TU_SIZE(m2_n2->tu) | m2_n2->gmch_m); |
| I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n); |
| I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m); |
| I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n); |
| } |
| } else { |
| I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m); |
| I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n); |
| I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m); |
| I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n); |
| } |
| } |
| |
| void intel_dp_set_m_n(struct intel_crtc *crtc) |
| { |
| if (crtc->config.has_pch_encoder) |
| intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n); |
| else |
| intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n, |
| &crtc->config.dp_m2_n2); |
| } |
| |
| static void vlv_update_pll(struct intel_crtc *crtc, |
| struct intel_crtc_config *pipe_config) |
| { |
| u32 dpll, dpll_md; |
| |
| /* |
| * Enable DPIO clock input. We should never disable the reference |
| * clock for pipe B, since VGA hotplug / manual detection depends |
| * on it. |
| */ |
| dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV | |
| DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV; |
| /* We should never disable this, set it here for state tracking */ |
| if (crtc->pipe == PIPE_B) |
| dpll |= DPLL_INTEGRATED_CRI_CLK_VLV; |
| dpll |= DPLL_VCO_ENABLE; |
| pipe_config->dpll_hw_state.dpll = dpll; |
| |
| dpll_md = (pipe_config->pixel_multiplier - 1) |
| << DPLL_MD_UDI_MULTIPLIER_SHIFT; |
| pipe_config->dpll_hw_state.dpll_md = dpll_md; |
| } |
| |
| static void vlv_prepare_pll(struct intel_crtc *crtc, |
| const struct intel_crtc_config *pipe_config) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int pipe = crtc->pipe; |
| u32 mdiv; |
| u32 bestn, bestm1, bestm2, bestp1, bestp2; |
| u32 coreclk, reg_val; |
| |
| mutex_lock(&dev_priv->dpio_lock); |
| |
| bestn = pipe_config->dpll.n; |
| bestm1 = pipe_config->dpll.m1; |
| bestm2 = pipe_config->dpll.m2; |
| bestp1 = pipe_config->dpll.p1; |
| bestp2 = pipe_config->dpll.p2; |
| |
| /* See eDP HDMI DPIO driver vbios notes doc */ |
| |
| /* PLL B needs special handling */ |
| if (pipe == PIPE_B) |
| vlv_pllb_recal_opamp(dev_priv, pipe); |
| |
| /* Set up Tx target for periodic Rcomp update */ |
| vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f); |
| |
| /* Disable target IRef on PLL */ |
| reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe)); |
| reg_val &= 0x00ffffff; |
| vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val); |
| |
| /* Disable fast lock */ |
| vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610); |
| |
| /* Set idtafcrecal before PLL is enabled */ |
| mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK)); |
| mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT)); |
| mdiv |= ((bestn << DPIO_N_SHIFT)); |
| mdiv |= (1 << DPIO_K_SHIFT); |
| |
| /* |
| * Post divider depends on pixel clock rate, DAC vs digital (and LVDS, |
| * but we don't support that). |
| * Note: don't use the DAC post divider as it seems unstable. |
| */ |
| mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT); |
| vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv); |
| |
| mdiv |= DPIO_ENABLE_CALIBRATION; |
| vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv); |
| |
| /* Set HBR and RBR LPF coefficients */ |
| if (pipe_config->port_clock == 162000 || |
| intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) || |
| intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) |
| vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe), |
| 0x009f0003); |
| else |
| vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe), |
| 0x00d0000f); |
| |
| if (crtc->config.has_dp_encoder) { |
| /* Use SSC source */ |
| if (pipe == PIPE_A) |
| vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), |
| 0x0df40000); |
| else |
| vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), |
| 0x0df70000); |
| } else { /* HDMI or VGA */ |
| /* Use bend source */ |
| if (pipe == PIPE_A) |
| vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), |
| 0x0df70000); |
| else |
| vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), |
| 0x0df40000); |
| } |
| |
| coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe)); |
| coreclk = (coreclk & 0x0000ff00) | 0x01c00000; |
| if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) || |
| intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) |
| coreclk |= 0x01000000; |
| vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk); |
| |
| vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000); |
| mutex_unlock(&dev_priv->dpio_lock); |
| } |
| |
| static void chv_update_pll(struct intel_crtc *crtc, |
| struct intel_crtc_config *pipe_config) |
| { |
| pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV | |
| DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS | |
| DPLL_VCO_ENABLE; |
| if (crtc->pipe != PIPE_A) |
| pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV; |
| |
| pipe_config->dpll_hw_state.dpll_md = |
| (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT; |
| } |
| |
| static void chv_prepare_pll(struct intel_crtc *crtc, |
| const struct intel_crtc_config *pipe_config) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int pipe = crtc->pipe; |
| int dpll_reg = DPLL(crtc->pipe); |
| enum dpio_channel port = vlv_pipe_to_channel(pipe); |
| u32 loopfilter, intcoeff; |
| u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac; |
| int refclk; |
| |
| bestn = pipe_config->dpll.n; |
| bestm2_frac = pipe_config->dpll.m2 & 0x3fffff; |
| bestm1 = pipe_config->dpll.m1; |
| bestm2 = pipe_config->dpll.m2 >> 22; |
| bestp1 = pipe_config->dpll.p1; |
| bestp2 = pipe_config->dpll.p2; |
| |
| /* |
| * Enable Refclk and SSC |
| */ |
| I915_WRITE(dpll_reg, |
| pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE); |
| |
| mutex_lock(&dev_priv->dpio_lock); |
| |
| /* p1 and p2 divider */ |
| vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port), |
| 5 << DPIO_CHV_S1_DIV_SHIFT | |
| bestp1 << DPIO_CHV_P1_DIV_SHIFT | |
| bestp2 << DPIO_CHV_P2_DIV_SHIFT | |
| 1 << DPIO_CHV_K_DIV_SHIFT); |
| |
| /* Feedback post-divider - m2 */ |
| vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2); |
| |
| /* Feedback refclk divider - n and m1 */ |
| vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port), |
| DPIO_CHV_M1_DIV_BY_2 | |
| 1 << DPIO_CHV_N_DIV_SHIFT); |
| |
| /* M2 fraction division */ |
| vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac); |
| |
| /* M2 fraction division enable */ |
| vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), |
| DPIO_CHV_FRAC_DIV_EN | |
| (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT)); |
| |
| /* Loop filter */ |
| refclk = i9xx_get_refclk(crtc, 0); |
| loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT | |
| 2 << DPIO_CHV_GAIN_CTRL_SHIFT; |
| if (refclk == 100000) |
| intcoeff = 11; |
| else if (refclk == 38400) |
| intcoeff = 10; |
| else |
| intcoeff = 9; |
| loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT; |
| vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter); |
| |
| /* AFC Recal */ |
| vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), |
| vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) | |
| DPIO_AFC_RECAL); |
| |
| mutex_unlock(&dev_priv->dpio_lock); |
| } |
| |
| /** |
| * vlv_force_pll_on - forcibly enable just the PLL |
| * @dev_priv: i915 private structure |
| * @pipe: pipe PLL to enable |
| * @dpll: PLL configuration |
| * |
| * Enable the PLL for @pipe using the supplied @dpll config. To be used |
| * in cases where we need the PLL enabled even when @pipe is not going to |
| * be enabled. |
| */ |
| void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe, |
| const struct dpll *dpll) |
| { |
| struct intel_crtc *crtc = |
| to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe)); |
| struct intel_crtc_config pipe_config = { |
| .pixel_multiplier = 1, |
| .dpll = *dpll, |
| }; |
| |
| if (IS_CHERRYVIEW(dev)) { |
| chv_update_pll(crtc, &pipe_config); |
| chv_prepare_pll(crtc, &pipe_config); |
| chv_enable_pll(crtc, &pipe_config); |
| } else { |
| vlv_update_pll(crtc, &pipe_config); |
| vlv_prepare_pll(crtc, &pipe_config); |
| vlv_enable_pll(crtc, &pipe_config); |
| } |
| } |
| |
| /** |
| * vlv_force_pll_off - forcibly disable just the PLL |
| * @dev_priv: i915 private structure |
| * @pipe: pipe PLL to disable |
| * |
| * Disable the PLL for @pipe. To be used in cases where we need |
| * the PLL enabled even when @pipe is not going to be enabled. |
| */ |
| void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe) |
| { |
| if (IS_CHERRYVIEW(dev)) |
| chv_disable_pll(to_i915(dev), pipe); |
| else |
| vlv_disable_pll(to_i915(dev), pipe); |
| } |
| |
| static void i9xx_update_pll(struct intel_crtc *crtc, |
| intel_clock_t *reduced_clock, |
| int num_connectors) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 dpll; |
| bool is_sdvo; |
| struct dpll *clock = &crtc->new_config->dpll; |
| |
| i9xx_update_pll_dividers(crtc, reduced_clock); |
| |
| is_sdvo = intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO) || |
| intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI); |
| |
| dpll = DPLL_VGA_MODE_DIS; |
| |
| if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) |
| dpll |= DPLLB_MODE_LVDS; |
| else |
| dpll |= DPLLB_MODE_DAC_SERIAL; |
| |
| if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) { |
| dpll |= (crtc->new_config->pixel_multiplier - 1) |
| << SDVO_MULTIPLIER_SHIFT_HIRES; |
| } |
| |
| if (is_sdvo) |
| dpll |= DPLL_SDVO_HIGH_SPEED; |
| |
| if (crtc->new_config->has_dp_encoder) |
| dpll |= DPLL_SDVO_HIGH_SPEED; |
| |
| /* compute bitmask from p1 value */ |
| if (IS_PINEVIEW(dev)) |
| dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW; |
| else { |
| dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; |
| if (IS_G4X(dev) && reduced_clock) |
| dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; |
| } |
| switch (clock->p2) { |
| case 5: |
| dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; |
| break; |
| case 7: |
| dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; |
| break; |
| case 10: |
| dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; |
| break; |
| case 14: |
| dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; |
| break; |
| } |
| if (INTEL_INFO(dev)->gen >= 4) |
| dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT); |
| |
| if (crtc->new_config->sdvo_tv_clock) |
| dpll |= PLL_REF_INPUT_TVCLKINBC; |
| else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) && |
| intel_panel_use_ssc(dev_priv) && num_connectors < 2) |
| dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; |
| else |
| dpll |= PLL_REF_INPUT_DREFCLK; |
| |
| dpll |= DPLL_VCO_ENABLE; |
| crtc->new_config->dpll_hw_state.dpll = dpll; |
| |
| if (INTEL_INFO(dev)->gen >= 4) { |
| u32 dpll_md = (crtc->new_config->pixel_multiplier - 1) |
| << DPLL_MD_UDI_MULTIPLIER_SHIFT; |
| crtc->new_config->dpll_hw_state.dpll_md = dpll_md; |
| } |
| } |
| |
| static void i8xx_update_pll(struct intel_crtc *crtc, |
| intel_clock_t *reduced_clock, |
| int num_connectors) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 dpll; |
| struct dpll *clock = &crtc->new_config->dpll; |
| |
| i9xx_update_pll_dividers(crtc, reduced_clock); |
| |
| dpll = DPLL_VGA_MODE_DIS; |
| |
| if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) { |
| dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; |
| } else { |
| if (clock->p1 == 2) |
| dpll |= PLL_P1_DIVIDE_BY_TWO; |
| else |
| dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT; |
| if (clock->p2 == 4) |
| dpll |= PLL_P2_DIVIDE_BY_4; |
| } |
| |
| if (!IS_I830(dev) && intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO)) |
| dpll |= DPLL_DVO_2X_MODE; |
| |
| if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) && |
| intel_panel_use_ssc(dev_priv) && num_connectors < 2) |
| dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; |
| else |
| dpll |= PLL_REF_INPUT_DREFCLK; |
| |
| dpll |= DPLL_VCO_ENABLE; |
| crtc->new_config->dpll_hw_state.dpll = dpll; |
| } |
| |
| static void intel_set_pipe_timings(struct intel_crtc *intel_crtc) |
| { |
| struct drm_device *dev = intel_crtc->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| enum pipe pipe = intel_crtc->pipe; |
| enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder; |
| struct drm_display_mode *adjusted_mode = |
| &intel_crtc->config.adjusted_mode; |
| uint32_t crtc_vtotal, crtc_vblank_end; |
| int vsyncshift = 0; |
| |
| /* We need to be careful not to changed the adjusted mode, for otherwise |
| * the hw state checker will get angry at the mismatch. */ |
| crtc_vtotal = adjusted_mode->crtc_vtotal; |
| crtc_vblank_end = adjusted_mode->crtc_vblank_end; |
| |
| if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) { |
| /* the chip adds 2 halflines automatically */ |
| crtc_vtotal -= 1; |
| crtc_vblank_end -= 1; |
| |
| if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO)) |
| vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2; |
| else |
| vsyncshift = adjusted_mode->crtc_hsync_start - |
| adjusted_mode->crtc_htotal / 2; |
| if (vsyncshift < 0) |
| vsyncshift += adjusted_mode->crtc_htotal; |
| } |
| |
| if (INTEL_INFO(dev)->gen > 3) |
| I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift); |
| |
| I915_WRITE(HTOTAL(cpu_transcoder), |
| (adjusted_mode->crtc_hdisplay - 1) | |
| ((adjusted_mode->crtc_htotal - 1) << 16)); |
| I915_WRITE(HBLANK(cpu_transcoder), |
| (adjusted_mode->crtc_hblank_start - 1) | |
| ((adjusted_mode->crtc_hblank_end - 1) << 16)); |
| I915_WRITE(HSYNC(cpu_transcoder), |
| (adjusted_mode->crtc_hsync_start - 1) | |
| ((adjusted_mode->crtc_hsync_end - 1) << 16)); |
| |
| I915_WRITE(VTOTAL(cpu_transcoder), |
| (adjusted_mode->crtc_vdisplay - 1) | |
| ((crtc_vtotal - 1) << 16)); |
| I915_WRITE(VBLANK(cpu_transcoder), |
| (adjusted_mode->crtc_vblank_start - 1) | |
| ((crtc_vblank_end - 1) << 16)); |
| I915_WRITE(VSYNC(cpu_transcoder), |
| (adjusted_mode->crtc_vsync_start - 1) | |
| ((adjusted_mode->crtc_vsync_end - 1) << 16)); |
| |
| /* Workaround: when the EDP input selection is B, the VTOTAL_B must be |
| * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is |
| * documented on the DDI_FUNC_CTL register description, EDP Input Select |
| * bits. */ |
| if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP && |
| (pipe == PIPE_B || pipe == PIPE_C)) |
| I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder))); |
| |
| /* pipesrc controls the size that is scaled from, which should |
| * always be the user's requested size. |
| */ |
| I915_WRITE(PIPESRC(pipe), |
| ((intel_crtc->config.pipe_src_w - 1) << 16) | |
| (intel_crtc->config.pipe_src_h - 1)); |
| } |
| |
| static void intel_get_pipe_timings(struct intel_crtc *crtc, |
| struct intel_crtc_config *pipe_config) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| enum transcoder cpu_transcoder = pipe_config->cpu_transcoder; |
| uint32_t tmp; |
| |
| tmp = I915_READ(HTOTAL(cpu_transcoder)); |
| pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1; |
| pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1; |
| tmp = I915_READ(HBLANK(cpu_transcoder)); |
| pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1; |
| pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1; |
| tmp = I915_READ(HSYNC(cpu_transcoder)); |
| pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1; |
| pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1; |
| |
| tmp = I915_READ(VTOTAL(cpu_transcoder)); |
| pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1; |
| pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1; |
| tmp = I915_READ(VBLANK(cpu_transcoder)); |
| pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1; |
| pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1; |
| tmp = I915_READ(VSYNC(cpu_transcoder)); |
| pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1; |
| pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1; |
| |
| if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) { |
| pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE; |
| pipe_config->adjusted_mode.crtc_vtotal += 1; |
| pipe_config->adjusted_mode.crtc_vblank_end += 1; |
| } |
| |
| tmp = I915_READ(PIPESRC(crtc->pipe)); |
| pipe_config->pipe_src_h = (tmp & 0xffff) + 1; |
| pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1; |
| |
| pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h; |
| pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w; |
| } |
| |
| void intel_mode_from_pipe_config(struct drm_display_mode *mode, |
| struct intel_crtc_config *pipe_config) |
| { |
| mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay; |
| mode->htotal = pipe_config->adjusted_mode.crtc_htotal; |
| mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start; |
| mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end; |
| |
| mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay; |
| mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal; |
| mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start; |
| mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end; |
| |
| mode->flags = pipe_config->adjusted_mode.flags; |
| |
| mode->clock = pipe_config->adjusted_mode.crtc_clock; |
| mode->flags |= pipe_config->adjusted_mode.flags; |
| } |
| |
| static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc) |
| { |
| struct drm_device *dev = intel_crtc->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| uint32_t pipeconf; |
| |
| pipeconf = 0; |
| |
| if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) || |
| (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)) |
| pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE; |
| |
| if (intel_crtc->config.double_wide) |
| pipeconf |= PIPECONF_DOUBLE_WIDE; |
| |
| /* only g4x and later have fancy bpc/dither controls */ |
| if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) { |
| /* Bspec claims that we can't use dithering for 30bpp pipes. */ |
| if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30) |
| pipeconf |= PIPECONF_DITHER_EN | |
| PIPECONF_DITHER_TYPE_SP; |
| |
| switch (intel_crtc->config.pipe_bpp) { |
| case 18: |
| pipeconf |= PIPECONF_6BPC; |
| break; |
| case 24: |
| pipeconf |= PIPECONF_8BPC; |
| break; |
| case 30: |
| pipeconf |= PIPECONF_10BPC; |
| break; |
| default: |
| /* Case prevented by intel_choose_pipe_bpp_dither. */ |
| BUG(); |
| } |
| } |
| |
| if (HAS_PIPE_CXSR(dev)) { |
| if (intel_crtc->lowfreq_avail) { |
| DRM_DEBUG_KMS("enabling CxSR downclocking\n"); |
| pipeconf |= PIPECONF_CXSR_DOWNCLOCK; |
| } else { |
| DRM_DEBUG_KMS("disabling CxSR downclocking\n"); |
| } |
| } |
| |
| if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) { |
| if (INTEL_INFO(dev)->gen < 4 || |
| intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO)) |
| pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION; |
| else |
| pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT; |
| } else |
| pipeconf |= PIPECONF_PROGRESSIVE; |
| |
| if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range) |
| pipeconf |= PIPECONF_COLOR_RANGE_SELECT; |
| |
| I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf); |
| POSTING_READ(PIPECONF(intel_crtc->pipe)); |
| } |
| |
| static int i9xx_crtc_compute_clock(struct intel_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int refclk, num_connectors = 0; |
| intel_clock_t clock, reduced_clock; |
| bool ok, has_reduced_clock = false; |
| bool is_lvds = false, is_dsi = false; |
| struct intel_encoder *encoder; |
| const intel_limit_t *limit; |
| |
| for_each_intel_encoder(dev, encoder) { |
| if (encoder->new_crtc != crtc) |
| continue; |
| |
| switch (encoder->type) { |
| case INTEL_OUTPUT_LVDS: |
| is_lvds = true; |
| break; |
| case INTEL_OUTPUT_DSI: |
| is_dsi = true; |
| break; |
| default: |
| break; |
| } |
| |
| num_connectors++; |
| } |
| |
| if (is_dsi) |
| return 0; |
| |
| if (!crtc->new_config->clock_set) { |
| refclk = i9xx_get_refclk(crtc, num_connectors); |
| |
| /* |
| * Returns a set of divisors for the desired target clock with |
| * the given refclk, or FALSE. The returned values represent |
| * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + |
| * 2) / p1 / p2. |
| */ |
| limit = intel_limit(crtc, refclk); |
| ok = dev_priv->display.find_dpll(limit, crtc, |
| crtc->new_config->port_clock, |
| refclk, NULL, &clock); |
| if (!ok) { |
| DRM_ERROR("Couldn't find PLL settings for mode!\n"); |
| return -EINVAL; |
| } |
| |
| if (is_lvds && dev_priv->lvds_downclock_avail) { |
| /* |
| * Ensure we match the reduced clock's P to the target |
| * clock. If the clocks don't match, we can't switch |
| * the display clock by using the FP0/FP1. In such case |
| * we will disable the LVDS downclock feature. |
| */ |
| has_reduced_clock = |
| dev_priv->display.find_dpll(limit, crtc, |
| dev_priv->lvds_downclock, |
| refclk, &clock, |
| &reduced_clock); |
| } |
| /* Compat-code for transition, will disappear. */ |
| crtc->new_config->dpll.n = clock.n; |
| crtc->new_config->dpll.m1 = clock.m1; |
| crtc->new_config->dpll.m2 = clock.m2; |
| crtc->new_config->dpll.p1 = clock.p1; |
| crtc->new_config->dpll.p2 = clock.p2; |
| } |
| |
| if (IS_GEN2(dev)) { |
| i8xx_update_pll(crtc, |
| has_reduced_clock ? &reduced_clock : NULL, |
| num_connectors); |
| } else if (IS_CHERRYVIEW(dev)) { |
| chv_update_pll(crtc, crtc->new_config); |
| } else if (IS_VALLEYVIEW(dev)) { |
| vlv_update_pll(crtc, crtc->new_config); |
| } else { |
| i9xx_update_pll(crtc, |
| has_reduced_clock ? &reduced_clock : NULL, |
| num_connectors); |
| } |
| |
| return 0; |
| } |
| |
| static void i9xx_get_pfit_config(struct intel_crtc *crtc, |
| struct intel_crtc_config *pipe_config) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| uint32_t tmp; |
| |
| if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev))) |
| return; |
| |
| tmp = I915_READ(PFIT_CONTROL); |
| if (!(tmp & PFIT_ENABLE)) |
| return; |
| |
| /* Check whether the pfit is attached to our pipe. */ |
| if (INTEL_INFO(dev)->gen < 4) { |
| if (crtc->pipe != PIPE_B) |
| return; |
| } else { |
| if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT)) |
| return; |
| } |
| |
| pipe_config->gmch_pfit.control = tmp; |
| pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS); |
| if (INTEL_INFO(dev)->gen < 5) |
| pipe_config->gmch_pfit.lvds_border_bits = |
| I915_READ(LVDS) & LVDS_BORDER_ENABLE; |
| } |
| |
| static void vlv_crtc_clock_get(struct intel_crtc *crtc, |
| struct intel_crtc_config *pipe_config) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int pipe = pipe_config->cpu_transcoder; |
| intel_clock_t clock; |
| u32 mdiv; |
| int refclk = 100000; |
| |
| /* In case of MIPI DPLL will not even be used */ |
| if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)) |
| return; |
| |
| mutex_lock(&dev_priv->dpio_lock); |
| mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe)); |
| mutex_unlock(&dev_priv->dpio_lock); |
| |
| clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7; |
| clock.m2 = mdiv & DPIO_M2DIV_MASK; |
| clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf; |
| clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7; |
| clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f; |
| |
| vlv_clock(refclk, &clock); |
| |
| /* clock.dot is the fast clock */ |
| pipe_config->port_clock = clock.dot / 5; |
| } |
| |
| static void i9xx_get_plane_config(struct intel_crtc *crtc, |
| struct intel_plane_config *plane_config) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 val, base, offset; |
| int pipe = crtc->pipe, plane = crtc->plane; |
| int fourcc, pixel_format; |
| int aligned_height; |
| |
| crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL); |
| if (!crtc->base.primary->fb) { |
| DRM_DEBUG_KMS("failed to alloc fb\n"); |
| return; |
| } |
| |
| val = I915_READ(DSPCNTR(plane)); |
| |
| if (INTEL_INFO(dev)->gen >= 4) |
| if (val & DISPPLANE_TILED) |
| plane_config->tiled = true; |
| |
| pixel_format = val & DISPPLANE_PIXFORMAT_MASK; |
| fourcc = intel_format_to_fourcc(pixel_format); |
| crtc->base.primary->fb->pixel_format = fourcc; |
| crtc->base.primary->fb->bits_per_pixel = |
| drm_format_plane_cpp(fourcc, 0) * 8; |
| |
| if (INTEL_INFO(dev)->gen >= 4) { |
| if (plane_config->tiled) |
| offset = I915_READ(DSPTILEOFF(plane)); |
| else |
| offset = I915_READ(DSPLINOFF(plane)); |
| base = I915_READ(DSPSURF(plane)) & 0xfffff000; |
| } else { |
| base = I915_READ(DSPADDR(plane)); |
| } |
| plane_config->base = base; |
| |
| val = I915_READ(PIPESRC(pipe)); |
| crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1; |
| crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1; |
| |
| val = I915_READ(DSPSTRIDE(pipe)); |
| crtc->base.primary->fb->pitches[0] = val & 0xffffffc0; |
| |
| aligned_height = intel_align_height(dev, crtc->base.primary->fb->height, |
| plane_config->tiled); |
| |
| plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] * |
| aligned_height); |
| |
| DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n", |
| pipe, plane, crtc->base.primary->fb->width, |
| crtc->base.primary->fb->height, |
| crtc->base.primary->fb->bits_per_pixel, base, |
| crtc->base.primary->fb->pitches[0], |
| plane_config->size); |
| |
| } |
| |
| static void chv_crtc_clock_get(struct intel_crtc *crtc, |
| struct intel_crtc_config *pipe_config) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int pipe = pipe_config->cpu_transcoder; |
| enum dpio_channel port = vlv_pipe_to_channel(pipe); |
| intel_clock_t clock; |
| u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2; |
| int refclk = 100000; |
| |
| mutex_lock(&dev_priv->dpio_lock); |
| cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port)); |
| pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port)); |
| pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port)); |
| pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port)); |
| mutex_unlock(&dev_priv->dpio_lock); |
| |
| clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0; |
| clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff); |
| clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf; |
| clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7; |
| clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f; |
| |
| chv_clock(refclk, &clock); |
| |
| /* clock.dot is the fast clock */ |
| pipe_config->port_clock = clock.dot / 5; |
| } |
| |
| static bool i9xx_get_pipe_config(struct intel_crtc *crtc, |
| struct intel_crtc_config *pipe_config) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| uint32_t tmp; |
| |
| if (!intel_display_power_is_enabled(dev_priv, |
| POWER_DOMAIN_PIPE(crtc->pipe))) |
| return false; |
| |
| pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; |
| pipe_config->shared_dpll = DPLL_ID_PRIVATE; |
| |
| tmp = I915_READ(PIPECONF(crtc->pipe)); |
| if (!(tmp & PIPECONF_ENABLE)) |
| return false; |
| |
| if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) { |
| switch (tmp & PIPECONF_BPC_MASK) { |
| case PIPECONF_6BPC: |
| pipe_config->pipe_bpp = 18; |
| break; |
| case PIPECONF_8BPC: |
| pipe_config->pipe_bpp = 24; |
| break; |
| case PIPECONF_10BPC: |
| pipe_config->pipe_bpp = 30; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT)) |
| pipe_config->limited_color_range = true; |
| |
| if (INTEL_INFO(dev)->gen < 4) |
| pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE; |
| |
| intel_get_pipe_timings(crtc, pipe_config); |
| |
| i9xx_get_pfit_config(crtc, pipe_config); |
| |
| if (INTEL_INFO(dev)->gen >= 4) { |
| tmp = I915_READ(DPLL_MD(crtc->pipe)); |
| pipe_config->pixel_multiplier = |
| ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK) |
| >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1; |
| pipe_config->dpll_hw_state.dpll_md = tmp; |
| } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) { |
| tmp = I915_READ(DPLL(crtc->pipe)); |
| pipe_config->pixel_multiplier = |
| ((tmp & SDVO_MULTIPLIER_MASK) |
| >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1; |
| } else { |
| /* Note that on i915G/GM the pixel multiplier is in the sdvo |
| * port and will be fixed up in the encoder->get_config |
| * function. */ |
| pipe_config->pixel_multiplier = 1; |
| } |
| pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe)); |
| if (!IS_VALLEYVIEW(dev)) { |
| /* |
| * DPLL_DVO_2X_MODE must be enabled for both DPLLs |
| * on 830. Filter it out here so that we don't |
| * report errors due to that. |
| */ |
| if (IS_I830(dev)) |
| pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE; |
| |
| pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe)); |
| pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe)); |
| } else { |
| /* Mask out read-only status bits. */ |
| pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV | |
| DPLL_PORTC_READY_MASK | |
| DPLL_PORTB_READY_MASK); |
| } |
| |
| if (IS_CHERRYVIEW(dev)) |
| chv_crtc_clock_get(crtc, pipe_config); |
| else if (IS_VALLEYVIEW(dev)) |
| vlv_crtc_clock_get(crtc, pipe_config); |
| else |
| i9xx_crtc_clock_get(crtc, pipe_config); |
| |
| return true; |
| } |
| |
| static void ironlake_init_pch_refclk(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_encoder *encoder; |
| u32 val, final; |
| bool has_lvds = false; |
| bool has_cpu_edp = false; |
| bool has_panel = false; |
| bool has_ck505 = false; |
| bool can_ssc = false; |
| |
| /* We need to take the global config into account */ |
| for_each_intel_encoder(dev, encoder) { |
| switch (encoder->type) { |
| case INTEL_OUTPUT_LVDS: |
| has_panel = true; |
| has_lvds = true; |
| break; |
| case INTEL_OUTPUT_EDP: |
| has_panel = true; |
| if (enc_to_dig_port(&encoder->base)->port == PORT_A) |
| has_cpu_edp = true; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| if (HAS_PCH_IBX(dev)) { |
| has_ck505 = dev_priv->vbt.display_clock_mode; |
| can_ssc = has_ck505; |
| } else { |
| has_ck505 = false; |
| can_ssc = true; |
| } |
| |
| DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n", |
| has_panel, has_lvds, has_ck505); |
| |
| /* Ironlake: try to setup display ref clock before DPLL |
| * enabling. This is only under driver's control after |
| * PCH B stepping, previous chipset stepping should be |
| * ignoring this setting. |
| */ |
| val = I915_READ(PCH_DREF_CONTROL); |
| |
| /* As we must carefully and slowly disable/enable each source in turn, |
| * compute the final state we want first and check if we need to |
| * make any changes at all. |
| */ |
| final = val; |
| final &= ~DREF_NONSPREAD_SOURCE_MASK; |
| if (has_ck505) |
| final |= DREF_NONSPREAD_CK505_ENABLE; |
| else |
| final |= DREF_NONSPREAD_SOURCE_ENABLE; |
| |
| final &= ~DREF_SSC_SOURCE_MASK; |
| final &= ~DREF_CPU_SOURCE_OUTPUT_MASK; |
| final &= ~DREF_SSC1_ENABLE; |
| |
| if (has_panel) { |
| final |= DREF_SSC_SOURCE_ENABLE; |
| |
| if (intel_panel_use_ssc(dev_priv) && can_ssc) |
| final |= DREF_SSC1_ENABLE; |
| |
| if (has_cpu_edp) { |
| if (intel_panel_use_ssc(dev_priv) && can_ssc) |
| final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; |
| else |
| final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; |
| } else |
| final |= DREF_CPU_SOURCE_OUTPUT_DISABLE; |
| } else { |
| final |= DREF_SSC_SOURCE_DISABLE; |
| final |= DREF_CPU_SOURCE_OUTPUT_DISABLE; |
| } |
| |
| if (final == val) |
| return; |
| |
| /* Always enable nonspread source */ |
| val &= ~DREF_NONSPREAD_SOURCE_MASK; |
| |
| if (has_ck505) |
| val |= DREF_NONSPREAD_CK505_ENABLE; |
| else |
| val |= DREF_NONSPREAD_SOURCE_ENABLE; |
| |
| if (has_panel) { |
| val &= ~DREF_SSC_SOURCE_MASK; |
| val |= DREF_SSC_SOURCE_ENABLE; |
| |
| /* SSC must be turned on before enabling the CPU output */ |
| if (intel_panel_use_ssc(dev_priv) && can_ssc) { |
| DRM_DEBUG_KMS("Using SSC on panel\n"); |
| val |= DREF_SSC1_ENABLE; |
| } else |
| val &= ~DREF_SSC1_ENABLE; |
| |
| /* Get SSC going before enabling the outputs */ |
| I915_WRITE(PCH_DREF_CONTROL, val); |
| POSTING_READ(PCH_DREF_CONTROL); |
| udelay(200); |
| |
| val &= ~DREF_CPU_SOURCE_OUTPUT_MASK; |
| |
| /* Enable CPU source on CPU attached eDP */ |
| if (has_cpu_edp) { |
| if (intel_panel_use_ssc(dev_priv) && can_ssc) { |
| DRM_DEBUG_KMS("Using SSC on eDP\n"); |
| val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; |
| } else |
| val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; |
| } else |
| val |= DREF_CPU_SOURCE_OUTPUT_DISABLE; |
| |
| I915_WRITE(PCH_DREF_CONTROL, val); |
| POSTING_READ(PCH_DREF_CONTROL); |
| udelay(200); |
| } else { |
| DRM_DEBUG_KMS("Disabling SSC entirely\n"); |
| |
| val &= ~DREF_CPU_SOURCE_OUTPUT_MASK; |
| |
| /* Turn off CPU output */ |
| val |= DREF_CPU_SOURCE_OUTPUT_DISABLE; |
| |
| I915_WRITE(PCH_DREF_CONTROL, val); |
| POSTING_READ(PCH_DREF_CONTROL); |
| udelay(200); |
| |
| /* Turn off the SSC source */ |
| val &= ~DREF_SSC_SOURCE_MASK; |
| val |= DREF_SSC_SOURCE_DISABLE; |
| |
| /* Turn off SSC1 */ |
| val &= ~DREF_SSC1_ENABLE; |
| |
| I915_WRITE(PCH_DREF_CONTROL, val); |
| POSTING_READ(PCH_DREF_CONTROL); |
| udelay(200); |
| } |
| |
| BUG_ON(val != final); |
| } |
| |
| static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv) |
| { |
| uint32_t tmp; |
| |
| tmp = I915_READ(SOUTH_CHICKEN2); |
| tmp |= FDI_MPHY_IOSFSB_RESET_CTL; |
| I915_WRITE(SOUTH_CHICKEN2, tmp); |
| |
| if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) & |
| FDI_MPHY_IOSFSB_RESET_STATUS, 100)) |
| DRM_ERROR("FDI mPHY reset assert timeout\n"); |
| |
| tmp = I915_READ(SOUTH_CHICKEN2); |
| tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL; |
| I915_WRITE(SOUTH_CHICKEN2, tmp); |
| |
| if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) & |
| FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100)) |
| DRM_ERROR("FDI mPHY reset de-assert timeout\n"); |
| } |
| |
| /* WaMPhyProgramming:hsw */ |
| static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv) |
| { |
| uint32_t tmp; |
| |
| tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY); |
| tmp &= ~(0xFF << 24); |
| tmp |= (0x12 << 24); |
| intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY); |
| |
| tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY); |
| tmp |= (1 << 11); |
| intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY); |
| |
| tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY); |
| tmp |= (1 << 11); |
| intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY); |
| |
| tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY); |
| tmp |= (1 << 24) | (1 << 21) | (1 << 18); |
| intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY); |
| |
| tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY); |
| tmp |= (1 << 24) | (1 << 21) | (1 << 18); |
| intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY); |
| |
| tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY); |
| tmp &= ~(7 << 13); |
| tmp |= (5 << 13); |
| intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY); |
| |
| tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY); |
| tmp &= ~(7 << 13); |
| tmp |= (5 << 13); |
| intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY); |
| |
| tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY); |
| tmp &= ~0xFF; |
| tmp |= 0x1C; |
| intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY); |
| |
| tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY); |
| tmp &= ~0xFF; |
| tmp |= 0x1C; |
| intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY); |
| |
| tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY); |
| tmp &= ~(0xFF << 16); |
| tmp |= (0x1C << 16); |
| intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY); |
| |
| tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY); |
| tmp &= ~(0xFF << 16); |
| tmp |= (0x1C << 16); |
| intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY); |
| |
| tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY); |
| tmp |= (1 << 27); |
| intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY); |
| |
| tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY); |
| tmp |= (1 << 27); |
| intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY); |
| |
| tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY); |
| tmp &= ~(0xF << 28); |
| tmp |= (4 << 28); |
| intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY); |
| |
| tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY); |
| tmp &= ~(0xF << 28); |
| tmp |= (4 << 28); |
| intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY); |
| } |
| |
| /* Implements 3 different sequences from BSpec chapter "Display iCLK |
| * Programming" based on the parameters passed: |
| * - Sequence to enable CLKOUT_DP |
| * - Sequence to enable CLKOUT_DP without spread |
| * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O |
| */ |
| static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread, |
| bool with_fdi) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| uint32_t reg, tmp; |
| |
| if (WARN(with_fdi && !with_spread, "FDI requires downspread\n")) |
| with_spread = true; |
| if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE && |
| with_fdi, "LP PCH doesn't have FDI\n")) |
| with_fdi = false; |
| |
| mutex_lock(&dev_priv->dpio_lock); |
| |
| tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); |
| tmp &= ~SBI_SSCCTL_DISABLE; |
| tmp |= SBI_SSCCTL_PATHALT; |
| intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); |
| |
| udelay(24); |
| |
| if (with_spread) { |
| tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); |
| tmp &= ~SBI_SSCCTL_PATHALT; |
| intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); |
| |
| if (with_fdi) { |
| lpt_reset_fdi_mphy(dev_priv); |
| lpt_program_fdi_mphy(dev_priv); |
| } |
| } |
| |
| reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ? |
| SBI_GEN0 : SBI_DBUFF0; |
| tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK); |
| tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE; |
| intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK); |
| |
| mutex_unlock(&dev_priv->dpio_lock); |
| } |
| |
| /* Sequence to disable CLKOUT_DP */ |
| static void lpt_disable_clkout_dp(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| uint32_t reg, tmp; |
| |
| mutex_lock(&dev_priv->dpio_lock); |
| |
| reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ? |
| SBI_GEN0 : SBI_DBUFF0; |
| tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK); |
| tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE; |
| intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK); |
| |
| tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); |
| if (!(tmp & SBI_SSCCTL_DISABLE)) { |
| if (!(tmp & SBI_SSCCTL_PATHALT)) { |
| tmp |= SBI_SSCCTL_PATHALT; |
| intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); |
| udelay(32); |
| } |
| tmp |= SBI_SSCCTL_DISABLE; |
| intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); |
| } |
| |
| mutex_unlock(&dev_priv->dpio_lock); |
| } |
| |
| static void lpt_init_pch_refclk(struct drm_device *dev) |
| { |
| struct intel_encoder *encoder; |
| bool has_vga = false; |
| |
| for_each_intel_encoder(dev, encoder) { |
| switch (encoder->type) { |
| case INTEL_OUTPUT_ANALOG: |
| has_vga = true; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| if (has_vga) |
| lpt_enable_clkout_dp(dev, true, true); |
| else |
| lpt_disable_clkout_dp(dev); |
| } |
| |
| /* |
| * Initialize reference clocks when the driver loads |
| */ |
| void intel_init_pch_refclk(struct drm_device *dev) |
| { |
| if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) |
| ironlake_init_pch_refclk(dev); |
| else if (HAS_PCH_LPT(dev)) |
| lpt_init_pch_refclk(dev); |
| } |
| |
| static int ironlake_get_refclk(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_encoder *encoder; |
| int num_connectors = 0; |
| bool is_lvds = false; |
| |
| for_each_intel_encoder(dev, encoder) { |
| if (encoder->new_crtc != to_intel_crtc(crtc)) |
| continue; |
| |
| switch (encoder->type) { |
| case INTEL_OUTPUT_LVDS: |
| is_lvds = true; |
| break; |
| default: |
| break; |
| } |
| num_connectors++; |
| } |
| |
| if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) { |
| DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", |
| dev_priv->vbt.lvds_ssc_freq); |
| return dev_priv->vbt.lvds_ssc_freq; |
| } |
| |
| return 120000; |
| } |
| |
| static void ironlake_set_pipeconf(struct drm_crtc *crtc) |
| { |
| struct drm_i915_private *dev_priv = crtc->dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| uint32_t val; |
| |
| val = 0; |
| |
| switch (intel_crtc->config.pipe_bpp) { |
| case 18: |
| val |= PIPECONF_6BPC; |
| break; |
| case 24: |
| val |= PIPECONF_8BPC; |
| break; |
| case 30: |
| val |= PIPECONF_10BPC; |
| break; |
| case 36: |
| val |= PIPECONF_12BPC; |
| break; |
| default: |
| /* Case prevented by intel_choose_pipe_bpp_dither. */ |
| BUG(); |
| } |
| |
| if (intel_crtc->config.dither) |
| val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP); |
| |
| if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) |
| val |= PIPECONF_INTERLACED_ILK; |
| else |
| val |= PIPECONF_PROGRESSIVE; |
| |
| if (intel_crtc->config.limited_color_range) |
| val |= PIPECONF_COLOR_RANGE_SELECT; |
| |
| I915_WRITE(PIPECONF(pipe), val); |
| POSTING_READ(PIPECONF(pipe)); |
| } |
| |
| /* |
| * Set up the pipe CSC unit. |
| * |
| * Currently only full range RGB to limited range RGB conversion |
| * is supported, but eventually this should handle various |
| * RGB<->YCbCr scenarios as well. |
| */ |
| static void intel_set_pipe_csc(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| uint16_t coeff = 0x7800; /* 1.0 */ |
| |
| /* |
| * TODO: Check what kind of values actually come out of the pipe |
| * with these coeff/postoff values and adjust to get the best |
| * accuracy. Perhaps we even need to take the bpc value into |
| * consideration. |
| */ |
| |
| if (intel_crtc->config.limited_color_range) |
| coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */ |
| |
| /* |
| * GY/GU and RY/RU should be the other way around according |
| * to BSpec, but reality doesn't agree. Just set them up in |
| * a way that results in the correct picture. |
| */ |
| I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16); |
| I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0); |
| |
| I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff); |
| I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0); |
| |
| I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0); |
| I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16); |
| |
| I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0); |
| I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0); |
| I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0); |
| |
| if (INTEL_INFO(dev)->gen > 6) { |
| uint16_t postoff = 0; |
| |
| if (intel_crtc->config.limited_color_range) |
| postoff = (16 * (1 << 12) / 255) & 0x1fff; |
| |
| I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff); |
| I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff); |
| I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff); |
| |
| I915_WRITE(PIPE_CSC_MODE(pipe), 0); |
| } else { |
| uint32_t mode = CSC_MODE_YUV_TO_RGB; |
| |
| if (intel_crtc->config.limited_color_range) |
| mode |= CSC_BLACK_SCREEN_OFFSET; |
| |
| I915_WRITE(PIPE_CSC_MODE(pipe), mode); |
| } |
| } |
| |
| static void haswell_set_pipeconf(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| enum pipe pipe = intel_crtc->pipe; |
| enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder; |
| uint32_t val; |
| |
| val = 0; |
| |
| if (IS_HASWELL(dev) && intel_crtc->config.dither) |
| val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP); |
| |
| if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) |
| val |= PIPECONF_INTERLACED_ILK; |
| else |
| val |= PIPECONF_PROGRESSIVE; |
| |
| I915_WRITE(PIPECONF(cpu_transcoder), val); |
| POSTING_READ(PIPECONF(cpu_transcoder)); |
| |
| I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT); |
| POSTING_READ(GAMMA_MODE(intel_crtc->pipe)); |
| |
| if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) { |
| val = 0; |
| |
| switch (intel_crtc->config.pipe_bpp) { |
| case 18: |
| val |= PIPEMISC_DITHER_6_BPC; |
| break; |
| case 24: |
| val |= PIPEMISC_DITHER_8_BPC; |
| break; |
| case 30: |
| val |= PIPEMISC_DITHER_10_BPC; |
| break; |
| case 36: |
| val |= PIPEMISC_DITHER_12_BPC; |
| break; |
| default: |
| /* Case prevented by pipe_config_set_bpp. */ |
| BUG(); |
| } |
| |
| if (intel_crtc->config.dither) |
| val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP; |
| |
| I915_WRITE(PIPEMISC(pipe), val); |
| } |
| } |
| |
| static bool ironlake_compute_clocks(struct drm_crtc *crtc, |
| intel_clock_t *clock, |
| bool *has_reduced_clock, |
| intel_clock_t *reduced_clock) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int refclk; |
| const intel_limit_t *limit; |
| bool ret, is_lvds = false; |
| |
| is_lvds = intel_pipe_will_have_type(intel_crtc, INTEL_OUTPUT_LVDS); |
| |
| refclk = ironlake_get_refclk(crtc); |
| |
| /* |
| * Returns a set of divisors for the desired target clock with the given |
| * refclk, or FALSE. The returned values represent the clock equation: |
| * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. |
| */ |
| limit = intel_limit(intel_crtc, refclk); |
| ret = dev_priv->display.find_dpll(limit, intel_crtc, |
| intel_crtc->new_config->port_clock, |
| refclk, NULL, clock); |
| if (!ret) |
| return false; |
| |
| if (is_lvds && dev_priv->lvds_downclock_avail) { |
| /* |
| * Ensure we match the reduced clock's P to the target clock. |
| * If the clocks don't match, we can't switch the display clock |
| * by using the FP0/FP1. In such case we will disable the LVDS |
| * downclock feature. |
| */ |
| *has_reduced_clock = |
| dev_priv->display.find_dpll(limit, intel_crtc, |
| dev_priv->lvds_downclock, |
| refclk, clock, |
| reduced_clock); |
| } |
| |
| return true; |
| } |
| |
| int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp) |
| { |
| /* |
| * Account for spread spectrum to avoid |
| * oversubscribing the link. Max center spread |
| * is 2.5%; use 5% for safety's sake. |
| */ |
| u32 bps = target_clock * bpp * 21 / 20; |
| return DIV_ROUND_UP(bps, link_bw * 8); |
| } |
| |
| static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor) |
| { |
| return i9xx_dpll_compute_m(dpll) < factor * dpll->n; |
| } |
| |
| static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc, |
| u32 *fp, |
| intel_clock_t *reduced_clock, u32 *fp2) |
| { |
| struct drm_crtc *crtc = &intel_crtc->base; |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_encoder *intel_encoder; |
| uint32_t dpll; |
| int factor, num_connectors = 0; |
| bool is_lvds = false, is_sdvo = false; |
| |
| for_each_intel_encoder(dev, intel_encoder) { |
| if (intel_encoder->new_crtc != to_intel_crtc(crtc)) |
| continue; |
| |
| switch (intel_encoder->type) { |
| case INTEL_OUTPUT_LVDS: |
| is_lvds = true; |
| break; |
| case INTEL_OUTPUT_SDVO: |
| case INTEL_OUTPUT_HDMI: |
| is_sdvo = true; |
| break; |
| default: |
| break; |
| } |
| |
| num_connectors++; |
| } |
| |
| /* Enable autotuning of the PLL clock (if permissible) */ |
| factor = 21; |
| if (is_lvds) { |
| if ((intel_panel_use_ssc(dev_priv) && |
| dev_priv->vbt.lvds_ssc_freq == 100000) || |
| (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev))) |
| factor = 25; |
| } else if (intel_crtc->new_config->sdvo_tv_clock) |
| factor = 20; |
| |
| if (ironlake_needs_fb_cb_tune(&intel_crtc->new_config->dpll, factor)) |
| *fp |= FP_CB_TUNE; |
| |
| if (fp2 && (reduced_clock->m < factor * reduced_clock->n)) |
| *fp2 |= FP_CB_TUNE; |
| |
| dpll = 0; |
| |
| if (is_lvds) |
| dpll |= DPLLB_MODE_LVDS; |
| else |
| dpll |= DPLLB_MODE_DAC_SERIAL; |
| |
| dpll |= (intel_crtc->new_config->pixel_multiplier - 1) |
| << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT; |
| |
| if (is_sdvo) |
| dpll |= DPLL_SDVO_HIGH_SPEED; |
| if (intel_crtc->new_config->has_dp_encoder) |
| dpll |= DPLL_SDVO_HIGH_SPEED; |
| |
| /* compute bitmask from p1 value */ |
| dpll |= (1 << (intel_crtc->new_config->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; |
| /* also FPA1 */ |
| dpll |= (1 << (intel_crtc->new_config->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; |
| |
| switch (intel_crtc->new_config->dpll.p2) { |
| case 5: |
| dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; |
| break; |
| case 7: |
| dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; |
| break; |
| case 10: |
| dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; |
| break; |
| case 14: |
| dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; |
| break; |
| } |
| |
| if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) |
| dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; |
| else |
| dpll |= PLL_REF_INPUT_DREFCLK; |
| |
| return dpll | DPLL_VCO_ENABLE; |
| } |
| |
| static int ironlake_crtc_compute_clock(struct intel_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| intel_clock_t clock, reduced_clock; |
| u32 dpll = 0, fp = 0, fp2 = 0; |
| bool ok, has_reduced_clock = false; |
| bool is_lvds = false; |
| struct intel_shared_dpll *pll; |
| |
| is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS); |
| |
| WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)), |
| "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev)); |
| |
| ok = ironlake_compute_clocks(&crtc->base, &clock, |
| &has_reduced_clock, &reduced_clock); |
| if (!ok && !crtc->new_config->clock_set) { |
| DRM_ERROR("Couldn't find PLL settings for mode!\n"); |
| return -EINVAL; |
| } |
| /* Compat-code for transition, will disappear. */ |
| if (!crtc->new_config->clock_set) { |
| crtc->new_config->dpll.n = clock.n; |
| crtc->new_config->dpll.m1 = clock.m1; |
| crtc->new_config->dpll.m2 = clock.m2; |
| crtc->new_config->dpll.p1 = clock.p1; |
| crtc->new_config->dpll.p2 = clock.p2; |
| } |
| |
| /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */ |
| if (crtc->new_config->has_pch_encoder) { |
| fp = i9xx_dpll_compute_fp(&crtc->new_config->dpll); |
| if (has_reduced_clock) |
| fp2 = i9xx_dpll_compute_fp(&reduced_clock); |
| |
| dpll = ironlake_compute_dpll(crtc, |
| &fp, &reduced_clock, |
| has_reduced_clock ? &fp2 : NULL); |
| |
| crtc->new_config->dpll_hw_state.dpll = dpll; |
| crtc->new_config->dpll_hw_state.fp0 = fp; |
| if (has_reduced_clock) |
| crtc->new_config->dpll_hw_state.fp1 = fp2; |
| else |
| crtc->new_config->dpll_hw_state.fp1 = fp; |
| |
| pll = intel_get_shared_dpll(crtc); |
| if (pll == NULL) { |
| DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n", |
| pipe_name(crtc->pipe)); |
| return -EINVAL; |
| } |
| } |
| |
| if (is_lvds && has_reduced_clock && i915.powersave) |
| crtc->lowfreq_avail = true; |
| else |
| crtc->lowfreq_avail = false; |
| |
| return 0; |
| } |
| |
| static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc, |
| struct intel_link_m_n *m_n) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| enum pipe pipe = crtc->pipe; |
| |
| m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe)); |
| m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe)); |
| m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe)) |
| & ~TU_SIZE_MASK; |
| m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe)); |
| m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe)) |
| & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; |
| } |
| |
| static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc, |
| enum transcoder transcoder, |
| struct intel_link_m_n *m_n, |
| struct intel_link_m_n *m2_n2) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| enum pipe pipe = crtc->pipe; |
| |
| if (INTEL_INFO(dev)->gen >= 5) { |
| m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder)); |
| m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder)); |
| m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder)) |
| & ~TU_SIZE_MASK; |
| m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder)); |
| m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder)) |
| & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; |
| /* Read M2_N2 registers only for gen < 8 (M2_N2 available for |
| * gen < 8) and if DRRS is supported (to make sure the |
| * registers are not unnecessarily read). |
| */ |
| if (m2_n2 && INTEL_INFO(dev)->gen < 8 && |
| crtc->config.has_drrs) { |
| m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder)); |
| m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder)); |
| m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder)) |
| & ~TU_SIZE_MASK; |
| m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder)); |
| m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder)) |
| & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; |
| } |
| } else { |
| m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe)); |
| m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe)); |
| m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe)) |
| & ~TU_SIZE_MASK; |
| m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe)); |
| m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe)) |
| & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; |
| } |
| } |
| |
| void intel_dp_get_m_n(struct intel_crtc *crtc, |
| struct intel_crtc_config *pipe_config) |
| { |
| if (crtc->config.has_pch_encoder) |
| intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n); |
| else |
| intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder, |
| &pipe_config->dp_m_n, |
| &pipe_config->dp_m2_n2); |
| } |
| |
| static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc, |
| struct intel_crtc_config *pipe_config) |
| { |
| intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder, |
| &pipe_config->fdi_m_n, NULL); |
| } |
| |
| static void skylake_get_pfit_config(struct intel_crtc *crtc, |
| struct intel_crtc_config *pipe_config) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| uint32_t tmp; |
| |
| tmp = I915_READ(PS_CTL(crtc->pipe)); |
| |
| if (tmp & PS_ENABLE) { |
| pipe_config->pch_pfit.enabled = true; |
| pipe_config->pch_pfit.pos = I915_READ(PS_WIN_POS(crtc->pipe)); |
| pipe_config->pch_pfit.size = I915_READ(PS_WIN_SZ(crtc->pipe)); |
| } |
| } |
| |
| static void ironlake_get_pfit_config(struct intel_crtc *crtc, |
| struct intel_crtc_config *pipe_config) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| uint32_t tmp; |
| |
| tmp = I915_READ(PF_CTL(crtc->pipe)); |
| |
| if (tmp & PF_ENABLE) { |
| pipe_config->pch_pfit.enabled = true; |
| pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe)); |
| pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe)); |
| |
| /* We currently do not free assignements of panel fitters on |
| * ivb/hsw (since we don't use the higher upscaling modes which |
| * differentiates them) so just WARN about this case for now. */ |
| if (IS_GEN7(dev)) { |
| WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) != |
| PF_PIPE_SEL_IVB(crtc->pipe)); |
| } |
| } |
| } |
| |
| static void ironlake_get_plane_config(struct intel_crtc *crtc, |
| struct intel_plane_config *plane_config) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 val, base, offset; |
| int pipe = crtc->pipe, plane = crtc->plane; |
| int fourcc, pixel_format; |
| int aligned_height; |
| |
| crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL); |
| if (!crtc->base.primary->fb) { |
| DRM_DEBUG_KMS("failed to alloc fb\n"); |
| return; |
| } |
| |
| val = I915_READ(DSPCNTR(plane)); |
| |
| if (INTEL_INFO(dev)->gen >= 4) |
| if (val & DISPPLANE_TILED) |
| plane_config->tiled = true; |
| |
| pixel_format = val & DISPPLANE_PIXFORMAT_MASK; |
| fourcc = intel_format_to_fourcc(pixel_format); |
| crtc->base.primary->fb->pixel_format = fourcc; |
| crtc->base.primary->fb->bits_per_pixel = |
| drm_format_plane_cpp(fourcc, 0) * 8; |
| |
| base = I915_READ(DSPSURF(plane)) & 0xfffff000; |
| if (IS_HASWELL(dev) || IS_BROADWELL(dev)) { |
| offset = I915_READ(DSPOFFSET(plane)); |
| } else { |
| if (plane_config->tiled) |
| offset = I915_READ(DSPTILEOFF(plane)); |
| else |
| offset = I915_READ(DSPLINOFF(plane)); |
| } |
| plane_config->base = base; |
| |
| val = I915_READ(PIPESRC(pipe)); |
| crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1; |
| crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1; |
| |
| val = I915_READ(DSPSTRIDE(pipe)); |
| crtc->base.primary->fb->pitches[0] = val & 0xffffffc0; |
| |
| aligned_height = intel_align_height(dev, crtc->base.primary->fb->height, |
| plane_config->tiled); |
| |
| plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] * |
| aligned_height); |
| |
| DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n", |
| pipe, plane, crtc->base.primary->fb->width, |
| crtc->base.primary->fb->height, |
| crtc->base.primary->fb->bits_per_pixel, base, |
| crtc->base.primary->fb->pitches[0], |
| plane_config->size); |
| } |
| |
| static bool ironlake_get_pipe_config(struct intel_crtc *crtc, |
| struct intel_crtc_config *pipe_config) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| uint32_t tmp; |
| |
| if (!intel_display_power_is_enabled(dev_priv, |
| POWER_DOMAIN_PIPE(crtc->pipe))) |
| return false; |
| |
| pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; |
| pipe_config->shared_dpll = DPLL_ID_PRIVATE; |
| |
| tmp = I915_READ(PIPECONF(crtc->pipe)); |
| if (!(tmp & PIPECONF_ENABLE)) |
| return false; |
| |
| switch (tmp & PIPECONF_BPC_MASK) { |
| case PIPECONF_6BPC: |
| pipe_config->pipe_bpp = 18; |
| break; |
| case PIPECONF_8BPC: |
| pipe_config->pipe_bpp = 24; |
| break; |
| case PIPECONF_10BPC: |
| pipe_config->pipe_bpp = 30; |
| break; |
| case PIPECONF_12BPC: |
| pipe_config->pipe_bpp = 36; |
| break; |
| default: |
| break; |
| } |
| |
| if (tmp & PIPECONF_COLOR_RANGE_SELECT) |
| pipe_config->limited_color_range = true; |
| |
| if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) { |
| struct intel_shared_dpll *pll; |
| |
| pipe_config->has_pch_encoder = true; |
| |
| tmp = I915_READ(FDI_RX_CTL(crtc->pipe)); |
| pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >> |
| FDI_DP_PORT_WIDTH_SHIFT) + 1; |
| |
| ironlake_get_fdi_m_n_config(crtc, pipe_config); |
| |
| if (HAS_PCH_IBX(dev_priv->dev)) { |
| pipe_config->shared_dpll = |
| (enum intel_dpll_id) crtc->pipe; |
| } else { |
| tmp = I915_READ(PCH_DPLL_SEL); |
| if (tmp & TRANS_DPLLB_SEL(crtc->pipe)) |
| pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B; |
| else |
| pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A; |
| } |
| |
| pll = &dev_priv->shared_dplls[pipe_config->shared_dpll]; |
| |
| WARN_ON(!pll->get_hw_state(dev_priv, pll, |
| &pipe_config->dpll_hw_state)); |
| |
| tmp = pipe_config->dpll_hw_state.dpll; |
| pipe_config->pixel_multiplier = |
| ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK) |
| >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1; |
| |
| ironlake_pch_clock_get(crtc, pipe_config); |
| } else { |
| pipe_config->pixel_multiplier = 1; |
| } |
| |
| intel_get_pipe_timings(crtc, pipe_config); |
| |
| ironlake_get_pfit_config(crtc, pipe_config); |
| |
| return true; |
| } |
| |
| static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv) |
| { |
| struct drm_device *dev = dev_priv->dev; |
| struct intel_crtc *crtc; |
| |
| for_each_intel_crtc(dev, crtc) |
| WARN(crtc->active, "CRTC for pipe %c enabled\n", |
| pipe_name(crtc->pipe)); |
| |
| WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n"); |
| WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n"); |
| WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n"); |
| WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n"); |
| WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n"); |
| WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE, |
| "CPU PWM1 enabled\n"); |
| if (IS_HASWELL(dev)) |
| WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE, |
| "CPU PWM2 enabled\n"); |
| WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE, |
| "PCH PWM1 enabled\n"); |
| WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE, |
| "Utility pin enabled\n"); |
| WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n"); |
| |
| /* |
| * In theory we can still leave IRQs enabled, as long as only the HPD |
| * interrupts remain enabled. We used to check for that, but since it's |
| * gen-specific and since we only disable LCPLL after we fully disable |
| * the interrupts, the check below should be enough. |
| */ |
| WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n"); |
| } |
| |
| static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv) |
| { |
| struct drm_device *dev = dev_priv->dev; |
| |
| if (IS_HASWELL(dev)) |
| return I915_READ(D_COMP_HSW); |
| else |
| return I915_READ(D_COMP_BDW); |
| } |
| |
| static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val) |
| { |
| struct drm_device *dev = dev_priv->dev; |
| |
| if (IS_HASWELL(dev)) { |
| mutex_lock(&dev_priv->rps.hw_lock); |
| if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, |
| val)) |
| DRM_ERROR("Failed to write to D_COMP\n"); |
| mutex_unlock(&dev_priv->rps.hw_lock); |
| } else { |
| I915_WRITE(D_COMP_BDW, val); |
| POSTING_READ(D_COMP_BDW); |
| } |
| } |
| |
| /* |
| * This function implements pieces of two sequences from BSpec: |
| * - Sequence for display software to disable LCPLL |
| * - Sequence for display software to allow package C8+ |
| * The steps implemented here are just the steps that actually touch the LCPLL |
| * register. Callers should take care of disabling all the display engine |
| * functions, doing the mode unset, fixing interrupts, etc. |
| */ |
| static void hsw_disable_lcpll(struct drm_i915_private *dev_priv, |
| bool switch_to_fclk, bool allow_power_down) |
| { |
| uint32_t val; |
| |
| assert_can_disable_lcpll(dev_priv); |
| |
| val = I915_READ(LCPLL_CTL); |
| |
| if (switch_to_fclk) { |
| val |= LCPLL_CD_SOURCE_FCLK; |
| I915_WRITE(LCPLL_CTL, val); |
| |
| if (wait_for_atomic_us(I915_READ(LCPLL_CTL) & |
| LCPLL_CD_SOURCE_FCLK_DONE, 1)) |
| DRM_ERROR("Switching to FCLK failed\n"); |
| |
| val = I915_READ(LCPLL_CTL); |
| } |
| |
| val |= LCPLL_PLL_DISABLE; |
| I915_WRITE(LCPLL_CTL, val); |
| POSTING_READ(LCPLL_CTL); |
| |
| if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1)) |
| DRM_ERROR("LCPLL still locked\n"); |
| |
| val = hsw_read_dcomp(dev_priv); |
| val |= D_COMP_COMP_DISABLE; |
| hsw_write_dcomp(dev_priv, val); |
| ndelay(100); |
| |
| if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0, |
| 1)) |
| DRM_ERROR("D_COMP RCOMP still in progress\n"); |
| |
| if (allow_power_down) { |
| val = I915_READ(LCPLL_CTL); |
| val |= LCPLL_POWER_DOWN_ALLOW; |
| I915_WRITE(LCPLL_CTL, val); |
| POSTING_READ(LCPLL_CTL); |
| } |
| } |
| |
| /* |
| * Fully restores LCPLL, disallowing power down and switching back to LCPLL |
| * source. |
| */ |
| static void hsw_restore_lcpll(struct drm_i915_private *dev_priv) |
| { |
| uint32_t val; |
| |
| val = I915_READ(LCPLL_CTL); |
| |
| if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK | |
| LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK) |
| return; |
| |
| /* |
| * Make sure we're not on PC8 state before disabling PC8, otherwise |
| * we'll hang the machine. To prevent PC8 state, just enable force_wake. |
| * |
| * The other problem is that hsw_restore_lcpll() is called as part of |
| * the runtime PM resume sequence, so we can't just call |
| * gen6_gt_force_wake_get() because that function calls |
| * intel_runtime_pm_get(), and we can't change the runtime PM refcount |
| * while we are on the resume sequence. So to solve this problem we have |
| * to call special forcewake code that doesn't touch runtime PM and |
| * doesn't enable the forcewake delayed work. |
| */ |
| spin_lock_irq(&dev_priv->uncore.lock); |
| if (dev_priv->uncore.forcewake_count++ == 0) |
| dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL); |
| spin_unlock_irq(&dev_priv->uncore.lock); |
| |
| if (val & LCPLL_POWER_DOWN_ALLOW) { |
| val &= ~LCPLL_POWER_DOWN_ALLOW; |
| I915_WRITE(LCPLL_CTL, val); |
| POSTING_READ(LCPLL_CTL); |
| } |
| |
| val = hsw_read_dcomp(dev_priv); |
| val |= D_COMP_COMP_FORCE; |
| val &= ~D_COMP_COMP_DISABLE; |
| hsw_write_dcomp(dev_priv, val); |
| |
| val = I915_READ(LCPLL_CTL); |
| val &= ~LCPLL_PLL_DISABLE; |
| I915_WRITE(LCPLL_CTL, val); |
| |
| if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5)) |
| DRM_ERROR("LCPLL not locked yet\n"); |
| |
| if (val & LCPLL_CD_SOURCE_FCLK) { |
| val = I915_READ(LCPLL_CTL); |
| val &= ~LCPLL_CD_SOURCE_FCLK; |
| I915_WRITE(LCPLL_CTL, val); |
| |
| if (wait_for_atomic_us((I915_READ(LCPLL_CTL) & |
| LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1)) |
| DRM_ERROR("Switching back to LCPLL failed\n"); |
| } |
| |
| /* See the big comment above. */ |
| spin_lock_irq(&dev_priv->uncore.lock); |
| if (--dev_priv->uncore.forcewake_count == 0) |
| dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL); |
| spin_unlock_irq(&dev_priv->uncore.lock); |
| } |
| |
| /* |
| * Package states C8 and deeper are really deep PC states that can only be |
| * reached when all the devices on the system allow it, so even if the graphics |
| * device allows PC8+, it doesn't mean the system will actually get to these |
| * states. Our driver only allows PC8+ when going into runtime PM. |
| * |
| * The requirements for PC8+ are that all the outputs are disabled, the power |
| * well is disabled and most interrupts are disabled, and these are also |
| * requirements for runtime PM. When these conditions are met, we manually do |
| * the other conditions: disable the interrupts, clocks and switch LCPLL refclk |
| * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard |
| * hang the machine. |
| * |
| * When we really reach PC8 or deeper states (not just when we allow it) we lose |
| * the state of some registers, so when we come back from PC8+ we need to |
| * restore this state. We don't get into PC8+ if we're not in RC6, so we don't |
| * need to take care of the registers kept by RC6. Notice that this happens even |
| * if we don't put the device in PCI D3 state (which is what currently happens |
| * because of the runtime PM support). |
| * |
| * For more, read "Display Sequences for Package C8" on the hardware |
| * documentation. |
| */ |
| void hsw_enable_pc8(struct drm_i915_private *dev_priv) |
| { |
| struct drm_device *dev = dev_priv->dev; |
| uint32_t val; |
| |
| DRM_DEBUG_KMS("Enabling package C8+\n"); |
| |
| if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) { |
| val = I915_READ(SOUTH_DSPCLK_GATE_D); |
| val &= ~PCH_LP_PARTITION_LEVEL_DISABLE; |
| I915_WRITE(SOUTH_DSPCLK_GATE_D, val); |
| } |
| |
| lpt_disable_clkout_dp(dev); |
| hsw_disable_lcpll(dev_priv, true, true); |
| } |
| |
| void hsw_disable_pc8(struct drm_i915_private *dev_priv) |
| { |
| struct drm_device *dev = dev_priv->dev; |
| uint32_t val; |
| |
| DRM_DEBUG_KMS("Disabling package C8+\n"); |
| |
| hsw_restore_lcpll(dev_priv); |
| lpt_init_pch_refclk(dev); |
| |
| if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) { |
| val = I915_READ(SOUTH_DSPCLK_GATE_D); |
| val |= PCH_LP_PARTITION_LEVEL_DISABLE; |
| I915_WRITE(SOUTH_DSPCLK_GATE_D, val); |
| } |
| |
| intel_prepare_ddi(dev); |
| } |
| |
| static int haswell_crtc_compute_clock(struct intel_crtc *crtc) |
| { |
| if (!intel_ddi_pll_select(crtc)) |
| return -EINVAL; |
| |
| crtc->lowfreq_avail = false; |
| |
| return 0; |
| } |
| |
| static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv, |
| enum port port, |
| struct intel_crtc_config *pipe_config) |
| { |
| u32 temp, dpll_ctl1; |
| |
| temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port); |
| pipe_config->ddi_pll_sel = temp >> (port * 3 + 1); |
| |
| switch (pipe_config->ddi_pll_sel) { |
| case SKL_DPLL0: |
| /* |
| * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part |
| * of the shared DPLL framework and thus needs to be read out |
| * separately |
| */ |
| dpll_ctl1 = I915_READ(DPLL_CTRL1); |
| pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f; |
| break; |
| case SKL_DPLL1: |
| pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1; |
| break; |
| case SKL_DPLL2: |
| pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2; |
| break; |
| case SKL_DPLL3: |
| pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3; |
| break; |
| } |
| } |
| |
| static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv, |
| enum port port, |
| struct intel_crtc_config *pipe_config) |
| { |
| pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port)); |
| |
| switch (pipe_config->ddi_pll_sel) { |
| case PORT_CLK_SEL_WRPLL1: |
| pipe_config->shared_dpll = DPLL_ID_WRPLL1; |
| break; |
| case PORT_CLK_SEL_WRPLL2: |
| pipe_config->shared_dpll = DPLL_ID_WRPLL2; |
| break; |
| } |
| } |
| |
| static void haswell_get_ddi_port_state(struct intel_crtc *crtc, |
| struct intel_crtc_config *pipe_config) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_shared_dpll *pll; |
| enum port port; |
| uint32_t tmp; |
| |
| tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder)); |
| |
| port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT; |
| |
| if (IS_SKYLAKE(dev)) |
| skylake_get_ddi_pll(dev_priv, port, pipe_config); |
| else |
| haswell_get_ddi_pll(dev_priv, port, pipe_config); |
| |
| if (pipe_config->shared_dpll >= 0) { |
| pll = &dev_priv->shared_dplls[pipe_config->shared_dpll]; |
| |
| WARN_ON(!pll->get_hw_state(dev_priv, pll, |
| &pipe_config->dpll_hw_state)); |
| } |
| |
| /* |
| * Haswell has only FDI/PCH transcoder A. It is which is connected to |
| * DDI E. So just check whether this pipe is wired to DDI E and whether |
| * the PCH transcoder is on. |
| */ |
| if (INTEL_INFO(dev)->gen < 9 && |
| (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) { |
| pipe_config->has_pch_encoder = true; |
| |
| tmp = I915_READ(FDI_RX_CTL(PIPE_A)); |
| pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >> |
| FDI_DP_PORT_WIDTH_SHIFT) + 1; |
| |
| ironlake_get_fdi_m_n_config(crtc, pipe_config); |
| } |
| } |
| |
| static bool haswell_get_pipe_config(struct intel_crtc *crtc, |
| struct intel_crtc_config *pipe_config) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| enum intel_display_power_domain pfit_domain; |
| uint32_t tmp; |
| |
| if (!intel_display_power_is_enabled(dev_priv, |
| POWER_DOMAIN_PIPE(crtc->pipe))) |
| return false; |
| |
| pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; |
| pipe_config->shared_dpll = DPLL_ID_PRIVATE; |
| |
| tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP)); |
| if (tmp & TRANS_DDI_FUNC_ENABLE) { |
| enum pipe trans_edp_pipe; |
| switch (tmp & TRANS_DDI_EDP_INPUT_MASK) { |
| default: |
| WARN(1, "unknown pipe linked to edp transcoder\n"); |
| case TRANS_DDI_EDP_INPUT_A_ONOFF: |
| case TRANS_DDI_EDP_INPUT_A_ON: |
| trans_edp_pipe = PIPE_A; |
| break; |
| case TRANS_DDI_EDP_INPUT_B_ONOFF: |
| trans_edp_pipe = PIPE_B; |
| break; |
| case TRANS_DDI_EDP_INPUT_C_ONOFF: |
| trans_edp_pipe = PIPE_C; |
| break; |
| } |
| |
| if (trans_edp_pipe == crtc->pipe) |
| pipe_config->cpu_transcoder = TRANSCODER_EDP; |
| } |
| |
| if (!intel_display_power_is_enabled(dev_priv, |
| POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder))) |
| return false; |
| |
| tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder)); |
| if (!(tmp & PIPECONF_ENABLE)) |
| return false; |
| |
| haswell_get_ddi_port_state(crtc, pipe_config); |
| |
| intel_get_pipe_timings(crtc, pipe_config); |
| |
| pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe); |
| if (intel_display_power_is_enabled(dev_priv, pfit_domain)) { |
| if (IS_SKYLAKE(dev)) |
| skylake_get_pfit_config(crtc, pipe_config); |
| else |
| ironlake_get_pfit_config(crtc, pipe_config); |
| } |
| |
| if (IS_HASWELL(dev)) |
| pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) && |
| (I915_READ(IPS_CTL) & IPS_ENABLE); |
| |
| if (pipe_config->cpu_transcoder != TRANSCODER_EDP) { |
| pipe_config->pixel_multiplier = |
| I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1; |
| } else { |
| pipe_config->pixel_multiplier = 1; |
| } |
| |
| return true; |
| } |
| |
| static void i845_update_cursor(struct drm_crtc *crtc, u32 base) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| uint32_t cntl = 0, size = 0; |
| |
| if (base) { |
| unsigned int width = intel_crtc->cursor_width; |
| unsigned int height = intel_crtc->cursor_height; |
| unsigned int stride = roundup_pow_of_two(width) * 4; |
| |
| switch (stride) { |
| default: |
| WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n", |
| width, stride); |
| stride = 256; |
| /* fallthrough */ |
| case 256: |
| case 512: |
| case 1024: |
| case 2048: |
| break; |
| } |
| |
| cntl |= CURSOR_ENABLE | |
| CURSOR_GAMMA_ENABLE | |
| CURSOR_FORMAT_ARGB | |
| CURSOR_STRIDE(stride); |
| |
| size = (height << 12) | width; |
| } |
| |
| if (intel_crtc->cursor_cntl != 0 && |
| (intel_crtc->cursor_base != base || |
| intel_crtc->cursor_size != size || |
| intel_crtc->cursor_cntl != cntl)) { |
| /* On these chipsets we can only modify the base/size/stride |
| * whilst the cursor is disabled. |
| */ |
| I915_WRITE(_CURACNTR, 0); |
| POSTING_READ(_CURACNTR); |
| intel_crtc->cursor_cntl = 0; |
| } |
| |
| if (intel_crtc->cursor_base != base) { |
| I915_WRITE(_CURABASE, base); |
| intel_crtc->cursor_base = base; |
| } |
| |
| if (intel_crtc->cursor_size != size) { |
| I915_WRITE(CURSIZE, size); |
| intel_crtc->cursor_size = size; |
| } |
| |
| if (intel_crtc->cursor_cntl != cntl) { |
| I915_WRITE(_CURACNTR, cntl); |
| POSTING_READ(_CURACNTR); |
| intel_crtc->cursor_cntl = cntl; |
| } |
| } |
| |
| static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| uint32_t cntl; |
| |
| cntl = 0; |
| if (base) { |
| cntl = MCURSOR_GAMMA_ENABLE; |
| switch (intel_crtc->cursor_width) { |
| case 64: |
| cntl |= CURSOR_MODE_64_ARGB_AX; |
| break; |
| case 128: |
| cntl |= CURSOR_MODE_128_ARGB_AX; |
| break; |
| case 256: |
| cntl |= CURSOR_MODE_256_ARGB_AX; |
| break; |
| default: |
| WARN_ON(1); |
| return; |
| } |
| cntl |= pipe << 28; /* Connect to correct pipe */ |
| |
| if (IS_HASWELL(dev) || IS_BROADWELL(dev)) |
| cntl |= CURSOR_PIPE_CSC_ENABLE; |
| } |
| |
| if (to_intel_plane(crtc->cursor)->rotation == BIT(DRM_ROTATE_180)) |
| cntl |= CURSOR_ROTATE_180; |
| |
| if (intel_crtc->cursor_cntl != cntl) { |
| I915_WRITE(CURCNTR(pipe), cntl); |
| POSTING_READ(CURCNTR(pipe)); |
| intel_crtc->cursor_cntl = cntl; |
| } |
| |
| /* and commit changes on next vblank */ |
| I915_WRITE(CURBASE(pipe), base); |
| POSTING_READ(CURBASE(pipe)); |
| |
| intel_crtc->cursor_base = base; |
| } |
| |
| /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */ |
| static void intel_crtc_update_cursor(struct drm_crtc *crtc, |
| bool on) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int pipe = intel_crtc->pipe; |
| int x = crtc->cursor_x; |
| int y = crtc->cursor_y; |
| u32 base = 0, pos = 0; |
| |
| if (on) |
| base = intel_crtc->cursor_addr; |
| |
| if (x >= intel_crtc->config.pipe_src_w) |
| base = 0; |
| |
| if (y >= intel_crtc->config.pipe_src_h) |
| base = 0; |
| |
| if (x < 0) { |
| if (x + intel_crtc->cursor_width <= 0) |
| base = 0; |
| |
| pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT; |
| x = -x; |
| } |
| pos |= x << CURSOR_X_SHIFT; |
| |
| if (y < 0) { |
| if (y + intel_crtc->cursor_height <= 0) |
| base = 0; |
| |
| pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT; |
| y = -y; |
| } |
| pos |= y << CURSOR_Y_SHIFT; |
| |
| if (base == 0 && intel_crtc->cursor_base == 0) |
| return; |
| |
| I915_WRITE(CURPOS(pipe), pos); |
| |
| /* ILK+ do this automagically */ |
| if (HAS_GMCH_DISPLAY(dev) && |
| to_intel_plane(crtc->cursor)->rotation == BIT(DRM_ROTATE_180)) { |
| base += (intel_crtc->cursor_height * |
| intel_crtc->cursor_width - 1) * 4; |
| } |
| |
| if (IS_845G(dev) || IS_I865G(dev)) |
| i845_update_cursor(crtc, base); |
| else |
| i9xx_update_cursor(crtc, base); |
| } |
| |
| static bool cursor_size_ok(struct drm_device *dev, |
| uint32_t width, uint32_t height) |
| { |
| if (width == 0 || height == 0) |
| return false; |
| |
| /* |
| * 845g/865g are special in that they are only limited by |
| * the width of their cursors, the height is arbitrary up to |
| * the precision of the register. Everything else requires |
| * square cursors, limited to a few power-of-two sizes. |
| */ |
| if (IS_845G(dev) || IS_I865G(dev)) { |
| if ((width & 63) != 0) |
| return false; |
| |
| if (width > (IS_845G(dev) ? 64 : 512)) |
| return false; |
| |
| if (height > 1023) |
| return false; |
| } else { |
| switch (width | height) { |
| case 256: |
| case 128: |
| if (IS_GEN2(dev)) |
| return false; |
| case 64: |
| break; |
| default: |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green, |
| u16 *blue, uint32_t start, uint32_t size) |
| { |
| int end = (start + size > 256) ? 256 : start + size, i; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| |
| for (i = start; i < end; i++) { |
| intel_crtc->lut_r[i] = red[i] >> 8; |
| intel_crtc->lut_g[i] = green[i] >> 8; |
| intel_crtc->lut_b[i] = blue[i] >> 8; |
| } |
| |
| intel_crtc_load_lut(crtc); |
| } |
| |
| /* VESA 640x480x72Hz mode to set on the pipe */ |
| static struct drm_display_mode load_detect_mode = { |
| DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664, |
| 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), |
| }; |
| |
| struct drm_framebuffer * |
| __intel_framebuffer_create(struct drm_device *dev, |
| struct drm_mode_fb_cmd2 *mode_cmd, |
| struct drm_i915_gem_object *obj) |
| { |
| struct intel_framebuffer *intel_fb; |
| int ret; |
| |
| intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); |
| if (!intel_fb) { |
| drm_gem_object_unreference(&obj->base); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj); |
| if (ret) |
| goto err; |
| |
| return &intel_fb->base; |
| err: |
| drm_gem_object_unreference(&obj->base); |
| kfree(intel_fb); |
| |
| return ERR_PTR(ret); |
| } |
| |
| static struct drm_framebuffer * |
| intel_framebuffer_create(struct drm_device *dev, |
| struct drm_mode_fb_cmd2 *mode_cmd, |
| struct drm_i915_gem_object *obj) |
| { |
| struct drm_framebuffer *fb; |
| int ret; |
| |
| ret = i915_mutex_lock_interruptible(dev); |
| if (ret) |
| return ERR_PTR(ret); |
| fb = __intel_framebuffer_create(dev, mode_cmd, obj); |
| mutex_unlock(&dev->struct_mutex); |
| |
| return fb; |
| } |
| |
| static u32 |
| intel_framebuffer_pitch_for_width(int width, int bpp) |
| { |
| u32 pitch = DIV_ROUND_UP(width * bpp, 8); |
| return ALIGN(pitch, 64); |
| } |
| |
| static u32 |
| intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp) |
| { |
| u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp); |
| return PAGE_ALIGN(pitch * mode->vdisplay); |
| } |
| |
| static struct drm_framebuffer * |
| intel_framebuffer_create_for_mode(struct drm_device *dev, |
| struct drm_display_mode *mode, |
| int depth, int bpp) |
| { |
| struct drm_i915_gem_object *obj; |
| struct drm_mode_fb_cmd2 mode_cmd = { 0 }; |
| |
| obj = i915_gem_alloc_object(dev, |
| intel_framebuffer_size_for_mode(mode, bpp)); |
| if (obj == NULL) |
| return ERR_PTR(-ENOMEM); |
| |
| mode_cmd.width = mode->hdisplay; |
| mode_cmd.height = mode->vdisplay; |
| mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width, |
| bpp); |
| mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth); |
| |
| return intel_framebuffer_create(dev, &mode_cmd, obj); |
| } |
| |
| static struct drm_framebuffer * |
| mode_fits_in_fbdev(struct drm_device *dev, |
| struct drm_display_mode *mode) |
| { |
| #ifdef CONFIG_DRM_I915_FBDEV |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_i915_gem_object *obj; |
| struct drm_framebuffer *fb; |
| |
| if (!dev_priv->fbdev) |
| return NULL; |
| |
| if (!dev_priv->fbdev->fb) |
| return NULL; |
| |
| obj = dev_priv->fbdev->fb->obj; |
| BUG_ON(!obj); |
| |
| fb = &dev_priv->fbdev->fb->base; |
| if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay, |
| fb->bits_per_pixel)) |
| return NULL; |
| |
| if (obj->base.size < mode->vdisplay * fb->pitches[0]) |
| return NULL; |
| |
| return fb; |
| #else |
| return NULL; |
| #endif |
| } |
| |
| bool intel_get_load_detect_pipe(struct drm_connector *connector, |
| struct drm_display_mode *mode, |
| struct intel_load_detect_pipe *old, |
| struct drm_modeset_acquire_ctx *ctx) |
| { |
| struct intel_crtc *intel_crtc; |
| struct intel_encoder *intel_encoder = |
| intel_attached_encoder(connector); |
| struct drm_crtc *possible_crtc; |
| struct drm_encoder *encoder = &intel_encoder->base; |
| struct drm_crtc *crtc = NULL; |
| struct drm_device *dev = encoder->dev; |
| struct drm_framebuffer *fb; |
| struct drm_mode_config *config = &dev->mode_config; |
| int ret, i = -1; |
| |
| DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", |
| connector->base.id, connector->name, |
| encoder->base.id, encoder->name); |
| |
| retry: |
| ret = drm_modeset_lock(&config->connection_mutex, ctx); |
| if (ret) |
| goto fail_unlock; |
| |
| /* |
| * Algorithm gets a little messy: |
| * |
| * - if the connector already has an assigned crtc, use it (but make |
| * sure it's on first) |
| * |
| * - try to find the first unused crtc that can drive this connector, |
| * and use that if we find one |
| */ |
| |
| /* See if we already have a CRTC for this connector */ |
| if (encoder->crtc) { |
| crtc = encoder->crtc; |
| |
| ret = drm_modeset_lock(&crtc->mutex, ctx); |
| if (ret) |
| goto fail_unlock; |
| ret = drm_modeset_lock(&crtc->primary->mutex, ctx); |
| if (ret) |
| goto fail_unlock; |
| |
| old->dpms_mode = connector->dpms; |
| old->load_detect_temp = false; |
| |
| /* Make sure the crtc and connector are running */ |
| if (connector->dpms != DRM_MODE_DPMS_ON) |
| connector->funcs->dpms(connector, DRM_MODE_DPMS_ON); |
| |
| return true; |
| } |
| |
| /* Find an unused one (if possible) */ |
| for_each_crtc(dev, possible_crtc) { |
| i++; |
| if (!(encoder->possible_crtcs & (1 << i))) |
| continue; |
| if (possible_crtc->enabled) |
| continue; |
| /* This can occur when applying the pipe A quirk on resume. */ |
| if (to_intel_crtc(possible_crtc)->new_enabled) |
| continue; |
| |
| crtc = possible_crtc; |
| break; |
| } |
| |
| /* |
| * If we didn't find an unused CRTC, don't use any. |
| */ |
| if (!crtc) { |
| DRM_DEBUG_KMS("no pipe available for load-detect\n"); |
| goto fail_unlock; |
| } |
| |
| ret = drm_modeset_lock(&crtc->mutex, ctx); |
| if (ret) |
| goto fail_unlock; |
| ret = drm_modeset_lock(&crtc->primary->mutex, ctx); |
| if (ret) |
| goto fail_unlock; |
| intel_encoder->new_crtc = to_intel_crtc(crtc); |
| to_intel_connector(connector)->new_encoder = intel_encoder; |
| |
| intel_crtc = to_intel_crtc(crtc); |
| intel_crtc->new_enabled = true; |
| intel_crtc->new_config = &intel_crtc->config; |
| old->dpms_mode = connector->dpms; |
| old->load_detect_temp = true; |
| old->release_fb = NULL; |
| |
| if (!mode) |
| mode = &load_detect_mode; |
| |
| /* We need a framebuffer large enough to accommodate all accesses |
| * that the plane may generate whilst we perform load detection. |
| * We can not rely on the fbcon either being present (we get called |
| * during its initialisation to detect all boot displays, or it may |
| * not even exist) or that it is large enough to satisfy the |
| * requested mode. |
| */ |
| fb = mode_fits_in_fbdev(dev, mode); |
| if (fb == NULL) { |
| DRM_DEBUG_KMS("creating tmp fb for load-detection\n"); |
| fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32); |
| old->release_fb = fb; |
| } else |
| DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n"); |
| if (IS_ERR(fb)) { |
| DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n"); |
| goto fail; |
| } |
| |
| if (intel_set_mode(crtc, mode, 0, 0, fb)) { |
| DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n"); |
| if (old->release_fb) |
| old->release_fb->funcs->destroy(old->release_fb); |
| goto fail; |
| } |
| |
| /* let the connector get through one full cycle before testing */ |
| intel_wait_for_vblank(dev, intel_crtc->pipe); |
| return true; |
| |
| fail: |
| intel_crtc->new_enabled = crtc->enabled; |
| if (intel_crtc->new_enabled) |
| intel_crtc->new_config = &intel_crtc->config; |
| else |
| intel_crtc->new_config = NULL; |
| fail_unlock: |
| if (ret == -EDEADLK) { |
| drm_modeset_backoff(ctx); |
| goto retry; |
| } |
| |
| return false; |
| } |
| |
| void intel_release_load_detect_pipe(struct drm_connector *connector, |
| struct intel_load_detect_pipe *old) |
| { |
| struct intel_encoder *intel_encoder = |
| intel_attached_encoder(connector); |
| struct drm_encoder *encoder = &intel_encoder->base; |
| struct drm_crtc *crtc = encoder->crtc; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| |
| DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", |
| connector->base.id, connector->name, |
| encoder->base.id, encoder->name); |
| |
| if (old->load_detect_temp) { |
| to_intel_connector(connector)->new_encoder = NULL; |
| intel_encoder->new_crtc = NULL; |
| intel_crtc->new_enabled = false; |
| intel_crtc->new_config = NULL; |
| intel_set_mode(crtc, NULL, 0, 0, NULL); |
| |
| if (old->release_fb) { |
| drm_framebuffer_unregister_private(old->release_fb); |
| drm_framebuffer_unreference(old->release_fb); |
| } |
| |
| return; |
| } |
| |
| /* Switch crtc and encoder back off if necessary */ |
| if (old->dpms_mode != DRM_MODE_DPMS_ON) |
| connector->funcs->dpms(connector, old->dpms_mode); |
| } |
| |
| static int i9xx_pll_refclk(struct drm_device *dev, |
| const struct intel_crtc_config *pipe_config) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 dpll = pipe_config->dpll_hw_state.dpll; |
| |
| if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN) |
| return dev_priv->vbt.lvds_ssc_freq; |
| else if (HAS_PCH_SPLIT(dev)) |
| return 120000; |
| else if (!IS_GEN2(dev)) |
| return 96000; |
| else |
| return 48000; |
| } |
| |
| /* Returns the clock of the currently programmed mode of the given pipe. */ |
| static void i9xx_crtc_clock_get(struct intel_crtc *crtc, |
| struct intel_crtc_config *pipe_config) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int pipe = pipe_config->cpu_transcoder; |
| u32 dpll = pipe_config->dpll_hw_state.dpll; |
| u32 fp; |
| intel_clock_t clock; |
| int refclk = i9xx_pll_refclk(dev, pipe_config); |
| |
| if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) |
| fp = pipe_config->dpll_hw_state.fp0; |
| else |
| fp = pipe_config->dpll_hw_state.fp1; |
| |
| clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT; |
| if (IS_PINEVIEW(dev)) { |
| clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1; |
| clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT; |
| } else { |
| clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT; |
| clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT; |
| } |
| |
| if (!IS_GEN2(dev)) { |
| if (IS_PINEVIEW(dev)) |
| clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >> |
| DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW); |
| else |
| clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >> |
| DPLL_FPA01_P1_POST_DIV_SHIFT); |
| |
| switch (dpll & DPLL_MODE_MASK) { |
| case DPLLB_MODE_DAC_SERIAL: |
| clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ? |
| 5 : 10; |
| break; |
| case DPLLB_MODE_LVDS: |
| clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ? |
| 7 : 14; |
| break; |
| default: |
| DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed " |
| "mode\n", (int)(dpll & DPLL_MODE_MASK)); |
| return; |
| } |
| |
| if (IS_PINEVIEW(dev)) |
| pineview_clock(refclk, &clock); |
| else |
| i9xx_clock(refclk, &clock); |
| } else { |
| u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS); |
| bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN); |
| |
| if (is_lvds) { |
| clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >> |
| DPLL_FPA01_P1_POST_DIV_SHIFT); |
| |
| if (lvds & LVDS_CLKB_POWER_UP) |
| clock.p2 = 7; |
| else |
| clock.p2 = 14; |
| } else { |
| if (dpll & PLL_P1_DIVIDE_BY_TWO) |
| clock.p1 = 2; |
| else { |
| clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >> |
| DPLL_FPA01_P1_POST_DIV_SHIFT) + 2; |
| } |
| if (dpll & PLL_P2_DIVIDE_BY_4) |
| clock.p2 = 4; |
| else |
| clock.p2 = 2; |
| } |
| |
| i9xx_clock(refclk, &clock); |
| } |
| |
| /* |
| * This value includes pixel_multiplier. We will use |
| * port_clock to compute adjusted_mode.crtc_clock in the |
| * encoder's get_config() function. |
| */ |
| pipe_config->port_clock = clock.dot; |
| } |
| |
| int intel_dotclock_calculate(int link_freq, |
| const struct intel_link_m_n *m_n) |
| { |
| /* |
| * The calculation for the data clock is: |
| * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp |
| * But we want to avoid losing precison if possible, so: |
| * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp)) |
| * |
| * and the link clock is simpler: |
| * link_clock = (m * link_clock) / n |
| */ |
| |
| if (!m_n->link_n) |
| return 0; |
| |
| return div_u64((u64)m_n->link_m * link_freq, m_n->link_n); |
| } |
| |
| static void ironlake_pch_clock_get(struct intel_crtc *crtc, |
| struct intel_crtc_config *pipe_config) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| |
| /* read out port_clock from the DPLL */ |
| i9xx_crtc_clock_get(crtc, pipe_config); |
| |
| /* |
| * This value does not include pixel_multiplier. |
| * We will check that port_clock and adjusted_mode.crtc_clock |
| * agree once we know their relationship in the encoder's |
| * get_config() function. |
| */ |
| pipe_config->adjusted_mode.crtc_clock = |
| intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000, |
| &pipe_config->fdi_m_n); |
| } |
| |
| /** Returns the currently programmed mode of the given pipe. */ |
| struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev, |
| struct drm_crtc *crtc) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder; |
| struct drm_display_mode *mode; |
| struct intel_crtc_config pipe_config; |
| int htot = I915_READ(HTOTAL(cpu_transcoder)); |
| int hsync = I915_READ(HSYNC(cpu_transcoder)); |
| int vtot = I915_READ(VTOTAL(cpu_transcoder)); |
| int vsync = I915_READ(VSYNC(cpu_transcoder)); |
| enum pipe pipe = intel_crtc->pipe; |
| |
| mode = kzalloc(sizeof(*mode), GFP_KERNEL); |
| if (!mode) |
| return NULL; |
| |
| /* |
| * Construct a pipe_config sufficient for getting the clock info |
| * back out of crtc_clock_get. |
| * |
| * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need |
| * to use a real value here instead. |
| */ |
| pipe_config.cpu_transcoder = (enum transcoder) pipe; |
| pipe_config.pixel_multiplier = 1; |
| pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe)); |
| pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe)); |
| pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe)); |
| i9xx_crtc_clock_get(intel_crtc, &pipe_config); |
| |
| mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier; |
| mode->hdisplay = (htot & 0xffff) + 1; |
| mode->htotal = ((htot & 0xffff0000) >> 16) + 1; |
| mode->hsync_start = (hsync & 0xffff) + 1; |
| mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1; |
| mode->vdisplay = (vtot & 0xffff) + 1; |
| mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1; |
| mode->vsync_start = (vsync & 0xffff) + 1; |
| mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1; |
| |
| drm_mode_set_name(mode); |
| |
| return mode; |
| } |
| |
| static void intel_decrease_pllclock(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| |
| if (!HAS_GMCH_DISPLAY(dev)) |
| return; |
| |
| if (!dev_priv->lvds_downclock_avail) |
| return; |
| |
| /* |
| * Since this is called by a timer, we should never get here in |
| * the manual case. |
| */ |
| if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) { |
| int pipe = intel_crtc->pipe; |
| int dpll_reg = DPLL(pipe); |
| int dpll; |
| |
| DRM_DEBUG_DRIVER("downclocking LVDS\n"); |
| |
| assert_panel_unlocked(dev_priv, pipe); |
| |
| dpll = I915_READ(dpll_reg); |
| dpll |= DISPLAY_RATE_SELECT_FPA1; |
| I915_WRITE(dpll_reg, dpll); |
| intel_wait_for_vblank(dev, pipe); |
| dpll = I915_READ(dpll_reg); |
| if (!(dpll & DISPLAY_RATE_SELECT_FPA1)) |
| DRM_DEBUG_DRIVER("failed to downclock LVDS!\n"); |
| } |
| |
| } |
| |
| void intel_mark_busy(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| if (dev_priv->mm.busy) |
| return; |
| |
| intel_runtime_pm_get(dev_priv); |
| i915_update_gfx_val(dev_priv); |
| dev_priv->mm.busy = true; |
| } |
| |
| void intel_mark_idle(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_crtc *crtc; |
| |
| if (!dev_priv->mm.busy) |
| return; |
| |
| dev_priv->mm.busy = false; |
| |
| if (!i915.powersave) |
| goto out; |
| |
| for_each_crtc(dev, crtc) { |
| if (!crtc->primary->fb) |
| continue; |
| |
| intel_decrease_pllclock(crtc); |
| } |
| |
| if (INTEL_INFO(dev)->gen >= 6) |
| gen6_rps_idle(dev->dev_private); |
| |
| out: |
| intel_runtime_pm_put(dev_priv); |
| } |
| |
| static void intel_crtc_destroy(struct drm_crtc *crtc) |
| { |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| struct drm_device *dev = crtc->dev; |
| struct intel_unpin_work *work; |
| |
| spin_lock_irq(&dev->event_lock); |
| work = intel_crtc->unpin_work; |
| intel_crtc->unpin_work = NULL; |
| spin_unlock_irq(&dev->event_lock); |
| |
| if (work) { |
| cancel_work_sync(&work->work); |
| kfree(work); |
| } |
| |
| drm_crtc_cleanup(crtc); |
| |
| kfree(intel_crtc); |
| } |
| |
| static void intel_unpin_work_fn(struct work_struct *__work) |
| { |
| struct intel_unpin_work *work = |
| container_of(__work, struct intel_unpin_work, work); |
| struct drm_device *dev = work->crtc->dev; |
| enum pipe pipe = to_intel_crtc(work->crtc)->pipe; |
| |
| mutex_lock(&dev->struct_mutex); |
| intel_unpin_fb_obj(work->old_fb_obj); |
| drm_gem_object_unreference(&work->pending_flip_obj->base); |
| drm_gem_object_unreference(&work->old_fb_obj->base); |
| |
| intel_update_fbc(dev); |
| |
| if (work->flip_queued_req) |
| i915_gem_request_unreference(work->flip_queued_req); |
| work->flip_queued_req = NULL; |
| mutex_unlock(&dev->struct_mutex); |
| |
| intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe)); |
| |
| BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0); |
| atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count); |
| |
| kfree(work); |
| } |
| |
| static void do_intel_finish_page_flip(struct drm_device *dev, |
| struct drm_crtc *crtc) |
| { |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| struct intel_unpin_work *work; |
| unsigned long flags; |
| |
| /* Ignore early vblank irqs */ |
| if (intel_crtc == NULL) |
| return; |
| |
| /* |
| * This is called both by irq handlers and the reset code (to complete |
| * lost pageflips) so needs the full irqsave spinlocks. |
| */ |
| spin_lock_irqsave(&dev->event_lock, flags); |
| work = intel_crtc->unpin_work; |
| |
| /* Ensure we don't miss a work->pending update ... */ |
| smp_rmb(); |
| |
| if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) { |
| spin_unlock_irqrestore(&dev->event_lock, flags); |
| return; |
| } |
| |
| page_flip_completed(intel_crtc); |
| |
| spin_unlock_irqrestore(&dev->event_lock, flags); |
| } |
| |
| void intel_finish_page_flip(struct drm_device *dev, int pipe) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe]; |
| |
| do_intel_finish_page_flip(dev, crtc); |
| } |
| |
| void intel_finish_page_flip_plane(struct drm_device *dev, int plane) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane]; |
| |
| do_intel_finish_page_flip(dev, crtc); |
| } |
| |
| /* Is 'a' after or equal to 'b'? */ |
| static bool g4x_flip_count_after_eq(u32 a, u32 b) |
| { |
| return !((a - b) & 0x80000000); |
| } |
| |
| static bool page_flip_finished(struct intel_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| if (i915_reset_in_progress(&dev_priv->gpu_error) || |
| crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) |
| return true; |
| |
| /* |
| * The relevant registers doen't exist on pre-ctg. |
| * As the flip done interrupt doesn't trigger for mmio |
| * flips on gmch platforms, a flip count check isn't |
| * really needed there. But since ctg has the registers, |
| * include it in the check anyway. |
| */ |
| if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev)) |
| return true; |
| |
| /* |
| * A DSPSURFLIVE check isn't enough in case the mmio and CS flips |
| * used the same base address. In that case the mmio flip might |
| * have completed, but the CS hasn't even executed the flip yet. |
| * |
| * A flip count check isn't enough as the CS might have updated |
| * the base address just after start of vblank, but before we |
| * managed to process the interrupt. This means we'd complete the |
| * CS flip too soon. |
| * |
| * Combining both checks should get us a good enough result. It may |
| * still happen that the CS flip has been executed, but has not |
| * yet actually completed. But in case the base address is the same |
| * anyway, we don't really care. |
| */ |
| return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) == |
| crtc->unpin_work->gtt_offset && |
| g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)), |
| crtc->unpin_work->flip_count); |
| } |
| |
| void intel_prepare_page_flip(struct drm_device *dev, int plane) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = |
| to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]); |
| unsigned long flags; |
| |
| |
| /* |
| * This is called both by irq handlers and the reset code (to complete |
| * lost pageflips) so needs the full irqsave spinlocks. |
| * |
| * NB: An MMIO update of the plane base pointer will also |
| * generate a page-flip completion irq, i.e. every modeset |
| * is also accompanied by a spurious intel_prepare_page_flip(). |
| */ |
| spin_lock_irqsave(&dev->event_lock, flags); |
| if (intel_crtc->unpin_work && page_flip_finished(intel_crtc)) |
| atomic_inc_not_zero(&intel_crtc->unpin_work->pending); |
| spin_unlock_irqrestore(&dev->event_lock, flags); |
| } |
| |
| static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc) |
| { |
| /* Ensure that the work item is consistent when activating it ... */ |
| smp_wmb(); |
| atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING); |
| /* and that it is marked active as soon as the irq could fire. */ |
| smp_wmb(); |
| } |
| |
| static int intel_gen2_queue_flip(struct drm_device *dev, |
| struct drm_crtc *crtc, |
| struct drm_framebuffer *fb, |
| struct drm_i915_gem_object *obj, |
| struct intel_engine_cs *ring, |
| uint32_t flags) |
| { |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| u32 flip_mask; |
| int ret; |
| |
| ret = intel_ring_begin(ring, 6); |
| if (ret) |
| return ret; |
| |
| /* Can't queue multiple flips, so wait for the previous |
| * one to finish before executing the next. |
| */ |
| if (intel_crtc->plane) |
| flip_mask = MI_WAIT_FOR_PLANE_B_FLIP; |
| else |
| flip_mask = MI_WAIT_FOR_PLANE_A_FLIP; |
| intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask); |
| intel_ring_emit(ring, MI_NOOP); |
| intel_ring_emit(ring, MI_DISPLAY_FLIP | |
| MI_DISPLAY_FLIP_PLANE(intel_crtc->plane)); |
| intel_ring_emit(ring, fb->pitches[0]); |
| intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset); |
| intel_ring_emit(ring, 0); /* aux display base address, unused */ |
| |
| intel_mark_page_flip_active(intel_crtc); |
| __intel_ring_advance(ring); |
| return 0; |
| } |
| |
| static int intel_gen3_queue_flip(struct drm_device *dev, |
| struct drm_crtc *crtc, |
| struct drm_framebuffer *fb, |
| struct drm_i915_gem_object *obj, |
| struct intel_engine_cs *ring, |
| uint32_t flags) |
| { |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| u32 flip_mask; |
| int ret; |
| |
| ret = intel_ring_begin(ring, 6); |
| if (ret) |
| return ret; |
| |
| if (intel_crtc->plane) |
| flip_mask = MI_WAIT_FOR_PLANE_B_FLIP; |
| else |
| flip_mask = MI_WAIT_FOR_PLANE_A_FLIP; |
| intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask); |
| intel_ring_emit(ring, MI_NOOP); |
| intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | |
| MI_DISPLAY_FLIP_PLANE(intel_crtc->plane)); |
| intel_ring_emit(ring, fb->pitches[0]); |
| intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset); |
| intel_ring_emit(ring, MI_NOOP); |
| |
| intel_mark_page_flip_active(intel_crtc); |
| __intel_ring_advance(ring); |
| return 0; |
| } |
| |
| static int intel_gen4_queue_flip(struct drm_device *dev, |
| struct drm_crtc *crtc, |
| struct drm_framebuffer *fb, |
| struct drm_i915_gem_object *obj, |
| struct intel_engine_cs *ring, |
| uint32_t flags) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| uint32_t pf, pipesrc; |
| int ret; |
| |
| ret = intel_ring_begin(ring, 4); |
| if (ret) |
| return ret; |
| |
| /* i965+ uses the linear or tiled offsets from the |
| * Display Registers (which do not change across a page-flip) |
| * so we need only reprogram the base address. |
| */ |
| intel_ring_emit(ring, MI_DISPLAY_FLIP | |
| MI_DISPLAY_FLIP_PLANE(intel_crtc->plane)); |
| intel_ring_emit(ring, fb->pitches[0]); |
| intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset | |
| obj->tiling_mode); |
| |
| /* XXX Enabling the panel-fitter across page-flip is so far |
| * untested on non-native modes, so ignore it for now. |
| * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE; |
| */ |
| pf = 0; |
| pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff; |
| intel_ring_emit(ring, pf | pipesrc); |
| |
| intel_mark_page_flip_active(intel_crtc); |
| __intel_ring_advance(ring); |
| return 0; |
| } |
| |
| static int intel_gen6_queue_flip(struct drm_device *dev, |
| struct drm_crtc *crtc, |
| struct drm_framebuffer *fb, |
| struct drm_i915_gem_object *obj, |
| struct intel_engine_cs *ring, |
| uint32_t flags) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| uint32_t pf, pipesrc; |
| int ret; |
| |
| ret = intel_ring_begin(ring, 4); |
| if (ret) |
| return ret; |
| |
| intel_ring_emit(ring, MI_DISPLAY_FLIP | |
| MI_DISPLAY_FLIP_PLANE(intel_crtc->plane)); |
| intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode); |
| intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset); |
| |
| /* Contrary to the suggestions in the documentation, |
| * "Enable Panel Fitter" does not seem to be required when page |
| * flipping with a non-native mode, and worse causes a normal |
| * modeset to fail. |
| * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE; |
| */ |
| pf = 0; |
| pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff; |
| intel_ring_emit(ring, pf | pipesrc); |
| |
| intel_mark_page_flip_active(intel_crtc); |
| __intel_ring_advance(ring); |
| return 0; |
| } |
| |
| static int intel_gen7_queue_flip(struct drm_device *dev, |
| struct drm_crtc *crtc, |
| struct drm_framebuffer *fb, |
| struct drm_i915_gem_object *obj, |
| struct intel_engine_cs *ring, |
| uint32_t flags) |
| { |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| uint32_t plane_bit = 0; |
| int len, ret; |
| |
| switch (intel_crtc->plane) { |
| case PLANE_A: |
| plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A; |
| break; |
| case PLANE_B: |
| plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B; |
| break; |
| case PLANE_C: |
| plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C; |
| break; |
| default: |
| WARN_ONCE(1, "unknown plane in flip command\n"); |
| return -ENODEV; |
| } |
| |
| len = 4; |
| if (ring->id == RCS) { |
| len += 6; |
| /* |
| * On Gen 8, SRM is now taking an extra dword to accommodate |
| * 48bits addresses, and we need a NOOP for the batch size to |
| * stay even. |
| */ |
| if (IS_GEN8(dev)) |
| len += 2; |
| } |
| |
| /* |
| * BSpec MI_DISPLAY_FLIP for IVB: |
| * "The full packet must be contained within the same cache line." |
| * |
| * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same |
| * cacheline, if we ever start emitting more commands before |
| * the MI_DISPLAY_FLIP we may need to first emit everything else, |
| * then do the cacheline alignment, and finally emit the |
| * MI_DISPLAY_FLIP. |
| */ |
| ret = intel_ring_cacheline_align(ring); |
| if (ret) |
| return ret; |
| |
| ret = intel_ring_begin(ring, len); |
| if (ret) |
| return ret; |
| |
| /* Unmask the flip-done completion message. Note that the bspec says that |
| * we should do this for both the BCS and RCS, and that we must not unmask |
| * more than one flip event at any time (or ensure that one flip message |
| * can be sent by waiting for flip-done prior to queueing new flips). |
| * Experimentation says that BCS works despite DERRMR masking all |
| * flip-done completion events and that unmasking all planes at once |
| * for the RCS also doesn't appear to drop events. Setting the DERRMR |
| * to zero does lead to lockups within MI_DISPLAY_FLIP. |
| */ |
| if (ring->id == RCS) { |
| intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1)); |
| intel_ring_emit(ring, DERRMR); |
| intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE | |
| DERRMR_PIPEB_PRI_FLIP_DONE | |
| DERRMR_PIPEC_PRI_FLIP_DONE)); |
| if (IS_GEN8(dev)) |
| intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) | |
| MI_SRM_LRM_GLOBAL_GTT); |
| else |
| intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | |
| MI_SRM_LRM_GLOBAL_GTT); |
| intel_ring_emit(ring, DERRMR); |
| intel_ring_emit(ring, ring->scratch.gtt_offset + 256); |
| if (IS_GEN8(dev)) { |
| intel_ring_emit(ring, 0); |
| intel_ring_emit(ring, MI_NOOP); |
| } |
| } |
| |
| intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit); |
| intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode)); |
| intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset); |
| intel_ring_emit(ring, (MI_NOOP)); |
| |
| intel_mark_page_flip_active(intel_crtc); |
| __intel_ring_advance(ring); |
| return 0; |
| } |
| |
| static bool use_mmio_flip(struct intel_engine_cs *ring, |
| struct drm_i915_gem_object *obj) |
| { |
| /* |
| * This is not being used for older platforms, because |
| * non-availability of flip done interrupt forces us to use |
| * CS flips. Older platforms derive flip done using some clever |
| * tricks involving the flip_pending status bits and vblank irqs. |
| * So using MMIO flips there would disrupt this mechanism. |
| */ |
| |
| if (ring == NULL) |
| return true; |
| |
| if (INTEL_INFO(ring->dev)->gen < 5) |
| return false; |
| |
| if (i915.use_mmio_flip < 0) |
| return false; |
| else if (i915.use_mmio_flip > 0) |
| return true; |
| else if (i915.enable_execlists) |
| return true; |
| else |
| return ring != i915_gem_request_get_ring(obj->last_read_req); |
| } |
| |
| static void skl_do_mmio_flip(struct intel_crtc *intel_crtc) |
| { |
| struct drm_device *dev = intel_crtc->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_framebuffer *fb = intel_crtc->base.primary->fb; |
| struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); |
| struct drm_i915_gem_object *obj = intel_fb->obj; |
| const enum pipe pipe = intel_crtc->pipe; |
| u32 ctl, stride; |
| |
| ctl = I915_READ(PLANE_CTL(pipe, 0)); |
| ctl &= ~PLANE_CTL_TILED_MASK; |
| if (obj->tiling_mode == I915_TILING_X) |
| ctl |= PLANE_CTL_TILED_X; |
| |
| /* |
| * The stride is either expressed as a multiple of 64 bytes chunks for |
| * linear buffers or in number of tiles for tiled buffers. |
| */ |
| stride = fb->pitches[0] >> 6; |
| if (obj->tiling_mode == I915_TILING_X) |
| stride = fb->pitches[0] >> 9; /* X tiles are 512 bytes wide */ |
| |
| /* |
| * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on |
| * PLANE_SURF updates, the update is then guaranteed to be atomic. |
| */ |
| I915_WRITE(PLANE_CTL(pipe, 0), ctl); |
| I915_WRITE(PLANE_STRIDE(pipe, 0), stride); |
| |
| I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset); |
| POSTING_READ(PLANE_SURF(pipe, 0)); |
| } |
| |
| static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc) |
| { |
| struct drm_device *dev = intel_crtc->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_framebuffer *intel_fb = |
| to_intel_framebuffer(intel_crtc->base.primary->fb); |
| struct drm_i915_gem_object *obj = intel_fb->obj; |
| u32 dspcntr; |
| u32 reg; |
| |
| reg = DSPCNTR(intel_crtc->plane); |
| dspcntr = I915_READ(reg); |
| |
| if (obj->tiling_mode != I915_TILING_NONE) |
| dspcntr |= DISPPLANE_TILED; |
| else |
| dspcntr &= ~DISPPLANE_TILED; |
| |
| I915_WRITE(reg, dspcntr); |
| |
| I915_WRITE(DSPSURF(intel_crtc->plane), |
| intel_crtc->unpin_work->gtt_offset); |
| POSTING_READ(DSPSURF(intel_crtc->plane)); |
| |
| } |
| |
| /* |
| * XXX: This is the temporary way to update the plane registers until we get |
| * around to using the usual plane update functions for MMIO flips |
| */ |
| static void intel_do_mmio_flip(struct intel_crtc *intel_crtc) |
| { |
| struct drm_device *dev = intel_crtc->base.dev; |
| bool atomic_update; |
| u32 start_vbl_count; |
| |
| intel_mark_page_flip_active(intel_crtc); |
| |
| atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count); |
| |
| if (INTEL_INFO(dev)->gen >= 9) |
| skl_do_mmio_flip(intel_crtc); |
| else |
| /* use_mmio_flip() retricts MMIO flips to ilk+ */ |
| ilk_do_mmio_flip(intel_crtc); |
| |
| if (atomic_update) |
| intel_pipe_update_end(intel_crtc, start_vbl_count); |
| } |
| |
| static void intel_mmio_flip_work_func(struct work_struct *work) |
| { |
| struct intel_crtc *crtc = |
| container_of(work, struct intel_crtc, mmio_flip.work); |
| struct intel_mmio_flip *mmio_flip; |
| |
| mmio_flip = &crtc->mmio_flip; |
| if (mmio_flip->req) |
| WARN_ON(__i915_wait_request(mmio_flip->req, |
| crtc->reset_counter, |
| false, NULL, NULL) != 0); |
| |
| intel_do_mmio_flip(crtc); |
| if (mmio_flip->req) { |
| mutex_lock(&crtc->base.dev->struct_mutex); |
| i915_gem_request_unreference(mmio_flip->req); |
| mutex_unlock(&crtc->base.dev->struct_mutex); |
| } |
| mmio_flip->req = NULL; |
| } |
| |
| static int intel_queue_mmio_flip(struct drm_device *dev, |
| struct drm_crtc *crtc, |
| struct drm_framebuffer *fb, |
| struct drm_i915_gem_object *obj, |
| struct intel_engine_cs *ring, |
| uint32_t flags) |
| { |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| |
| i915_gem_request_assign(&intel_crtc->mmio_flip.req, |
| obj->last_write_req); |
| |
| schedule_work(&intel_crtc->mmio_flip.work); |
| |
| return 0; |
| } |
| |
| static int intel_gen9_queue_flip(struct drm_device *dev, |
| struct drm_crtc *crtc, |
| struct drm_framebuffer *fb, |
| struct drm_i915_gem_object *obj, |
| struct intel_engine_cs *ring, |
| uint32_t flags) |
| { |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| uint32_t plane = 0, stride; |
| int ret; |
| |
| switch(intel_crtc->pipe) { |
| case PIPE_A: |
| plane = MI_DISPLAY_FLIP_SKL_PLANE_1_A; |
| break; |
| case PIPE_B: |
| plane = MI_DISPLAY_FLIP_SKL_PLANE_1_B; |
| break; |
| case PIPE_C: |
| plane = MI_DISPLAY_FLIP_SKL_PLANE_1_C; |
| break; |
| default: |
| WARN_ONCE(1, "unknown plane in flip command\n"); |
| return -ENODEV; |
| } |
| |
| switch (obj->tiling_mode) { |
| case I915_TILING_NONE: |
| stride = fb->pitches[0] >> 6; |
| break; |
| case I915_TILING_X: |
| stride = fb->pitches[0] >> 9; |
| break; |
| default: |
| WARN_ONCE(1, "unknown tiling in flip command\n"); |
| return -ENODEV; |
| } |
| |
| ret = intel_ring_begin(ring, 10); |
| if (ret) |
| return ret; |
| |
| intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1)); |
| intel_ring_emit(ring, DERRMR); |
| intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE | |
| DERRMR_PIPEB_PRI_FLIP_DONE | |
| DERRMR_PIPEC_PRI_FLIP_DONE)); |
| intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) | |
| MI_SRM_LRM_GLOBAL_GTT); |
| intel_ring_emit(ring, DERRMR); |
| intel_ring_emit(ring, ring->scratch.gtt_offset + 256); |
| intel_ring_emit(ring, 0); |
| |
| intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane); |
| intel_ring_emit(ring, stride << 6 | obj->tiling_mode); |
| intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset); |
| |
| intel_mark_page_flip_active(intel_crtc); |
| __intel_ring_advance(ring); |
| |
| return 0; |
| } |
| |
| static int intel_default_queue_flip(struct drm_device *dev, |
| struct drm_crtc *crtc, |
| struct drm_framebuffer *fb, |
| struct drm_i915_gem_object *obj, |
| struct intel_engine_cs *ring, |
| uint32_t flags) |
| { |
| return -ENODEV; |
| } |
| |
| static bool __intel_pageflip_stall_check(struct drm_device *dev, |
| struct drm_crtc *crtc) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| struct intel_unpin_work *work = intel_crtc->unpin_work; |
| u32 addr; |
| |
| if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE) |
| return true; |
| |
| if (!work->enable_stall_check) |
| return false; |
| |
| if (work->flip_ready_vblank == 0) { |
| if (work->flip_queued_req && |
| !i915_gem_request_completed(work->flip_queued_req, true)) |
| return false; |
| |
| work->flip_ready_vblank = drm_vblank_count(dev, intel_crtc->pipe); |
| } |
| |
| if (drm_vblank_count(dev, intel_crtc->pipe) - work->flip_ready_vblank < 3) |
| return false; |
| |
| /* Potential stall - if we see that the flip has happened, |
| * assume a missed interrupt. */ |
| if (INTEL_INFO(dev)->gen >= 4) |
| addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane))); |
| else |
| addr = I915_READ(DSPADDR(intel_crtc->plane)); |
| |
| /* There is a potential issue here with a false positive after a flip |
| * to the same address. We could address this by checking for a |
| * non-incrementing frame counter. |
| */ |
| return addr == work->gtt_offset; |
| } |
| |
| void intel_check_page_flip(struct drm_device *dev, int pipe) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe]; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| |
| WARN_ON(!in_irq()); |
| |
| if (crtc == NULL) |
| return; |
| |
| spin_lock(&dev->event_lock); |
| if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) { |
| WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n", |
| intel_crtc->unpin_work->flip_queued_vblank, drm_vblank_count(dev, pipe)); |
| page_flip_completed(intel_crtc); |
| } |
| spin_unlock(&dev->event_lock); |
| } |
| |
| static int intel_crtc_page_flip(struct drm_crtc *crtc, |
| struct drm_framebuffer *fb, |
| struct drm_pending_vblank_event *event, |
| uint32_t page_flip_flags) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_framebuffer *old_fb = crtc->primary->fb; |
| struct drm_i915_gem_object *obj = intel_fb_obj(fb); |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| enum pipe pipe = intel_crtc->pipe; |
| struct intel_unpin_work *work; |
| struct intel_engine_cs *ring; |
| int ret; |
| |
| /* |
| * drm_mode_page_flip_ioctl() should already catch this, but double |
| * check to be safe. In the future we may enable pageflipping from |
| * a disabled primary plane. |
| */ |
| if (WARN_ON(intel_fb_obj(old_fb) == NULL)) |
| return -EBUSY; |
| |
| /* Can't change pixel format via MI display flips. */ |
| if (fb->pixel_format != crtc->primary->fb->pixel_format) |
| return -EINVAL; |
| |
| /* |
| * TILEOFF/LINOFF registers can't be changed via MI display flips. |
| * Note that pitch changes could also affect these register. |
| */ |
| if (INTEL_INFO(dev)->gen > 3 && |
| (fb->offsets[0] != crtc->primary->fb->offsets[0] || |
| fb->pitches[0] != crtc->primary->fb->pitches[0])) |
| return -EINVAL; |
| |
| if (i915_terminally_wedged(&dev_priv->gpu_error)) |
| goto out_hang; |
| |
| work = kzalloc(sizeof(*work), GFP_KERNEL); |
| if (work == NULL) |
| return -ENOMEM; |
| |
| work->event = event; |
| work->crtc = crtc; |
| work->old_fb_obj = intel_fb_obj(old_fb); |
| INIT_WORK(&work->work, intel_unpin_work_fn); |
| |
| ret = drm_crtc_vblank_get(crtc); |
| if (ret) |
| goto free_work; |
| |
| /* We borrow the event spin lock for protecting unpin_work */ |
| spin_lock_irq(&dev->event_lock); |
| if (intel_crtc->unpin_work) { |
| /* Before declaring the flip queue wedged, check if |
| * the hardware completed the operation behind our backs. |
| */ |
| if (__intel_pageflip_stall_check(dev, crtc)) { |
| DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n"); |
| page_flip_completed(intel_crtc); |
| } else { |
| DRM_DEBUG_DRIVER("flip queue: crtc already busy\n"); |
| spin_unlock_irq(&dev->event_lock); |
| |
| drm_crtc_vblank_put(crtc); |
| kfree(work); |
| return -EBUSY; |
| } |
| } |
| intel_crtc->unpin_work = work; |
| spin_unlock_irq(&dev->event_lock); |
| |
| if (atomic_read(&intel_crtc->unpin_work_count) >= 2) |
| flush_workqueue(dev_priv->wq); |
| |
| ret = i915_mutex_lock_interruptible(dev); |
| if (ret) |
| goto cleanup; |
| |
| /* Reference the objects for the scheduled work. */ |
| drm_gem_object_reference(&work->old_fb_obj->base); |
| drm_gem_object_reference(&obj->base); |
| |
| crtc->primary->fb = fb; |
| |
| work->pending_flip_obj = obj; |
| |
| atomic_inc(&intel_crtc->unpin_work_count); |
| intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter); |
| |
| if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) |
| work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1; |
| |
| if (IS_VALLEYVIEW(dev)) { |
| ring = &dev_priv->ring[BCS]; |
| if (obj->tiling_mode != work->old_fb_obj->tiling_mode) |
| /* vlv: DISPLAY_FLIP fails to change tiling */ |
| ring = NULL; |
| } else if (IS_IVYBRIDGE(dev)) { |
| ring = &dev_priv->ring[BCS]; |
| } else if (INTEL_INFO(dev)->gen >= 7) { |
| ring = i915_gem_request_get_ring(obj->last_read_req); |
| if (ring == NULL || ring->id != RCS) |
| ring = &dev_priv->ring[BCS]; |
| } else { |
| ring = &dev_priv->ring[RCS]; |
| } |
| |
| ret = intel_pin_and_fence_fb_obj(crtc->primary, fb, ring); |
| if (ret) |
| goto cleanup_pending; |
| |
| work->gtt_offset = |
| i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset; |
| |
| if (use_mmio_flip(ring, obj)) { |
| ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring, |
| page_flip_flags); |
| if (ret) |
| goto cleanup_unpin; |
| |
| i915_gem_request_assign(&work->flip_queued_req, |
| obj->last_write_req); |
| } else { |
| ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring, |
| page_flip_flags); |
| if (ret) |
| goto cleanup_unpin; |
| |
| i915_gem_request_assign(&work->flip_queued_req, |
| intel_ring_get_request(ring)); |
| } |
| |
| work->flip_queued_vblank = drm_vblank_count(dev, intel_crtc->pipe); |
| work->enable_stall_check = true; |
| |
| i915_gem_track_fb(work->old_fb_obj, obj, |
| INTEL_FRONTBUFFER_PRIMARY(pipe)); |
| |
| intel_disable_fbc(dev); |
| intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe)); |
| mutex_unlock(&dev->struct_mutex); |
| |
| trace_i915_flip_request(intel_crtc->plane, obj); |
| |
| return 0; |
| |
| cleanup_unpin: |
| intel_unpin_fb_obj(obj); |
| cleanup_pending: |
| atomic_dec(&intel_crtc->unpin_work_count); |
| crtc->primary->fb = old_fb; |
| drm_gem_object_unreference(&work->old_fb_obj->base); |
| drm_gem_object_unreference(&obj->base); |
| mutex_unlock(&dev->struct_mutex); |
| |
| cleanup: |
| spin_lock_irq(&dev->event_lock); |
| intel_crtc->unpin_work = NULL; |
| spin_unlock_irq(&dev->event_lock); |
| |
| drm_crtc_vblank_put(crtc); |
| free_work: |
| kfree(work); |
| |
| if (ret == -EIO) { |
| out_hang: |
| intel_crtc_wait_for_pending_flips(crtc); |
| ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb); |
| if (ret == 0 && event) { |
| spin_lock_irq(&dev->event_lock); |
| drm_send_vblank_event(dev, pipe, event); |
| spin_unlock_irq(&dev->event_lock); |
| } |
| } |
| return ret; |
| } |
| |
| static struct drm_crtc_helper_funcs intel_helper_funcs = { |
| .mode_set_base_atomic = intel_pipe_set_base_atomic, |
| .load_lut = intel_crtc_load_lut, |
| }; |
| |
| /** |
| * intel_modeset_update_staged_output_state |
| * |
| * Updates the staged output configuration state, e.g. after we've read out the |
| * current hw state. |
| */ |
| static void intel_modeset_update_staged_output_state(struct drm_device *dev) |
| { |
| struct intel_crtc *crtc; |
| struct intel_encoder *encoder; |
| struct intel_connector *connector; |
| |
| list_for_each_entry(connector, &dev->mode_config.connector_list, |
| base.head) { |
| connector->new_encoder = |
| to_intel_encoder(connector->base.encoder); |
| } |
| |
| for_each_intel_encoder(dev, encoder) { |
| encoder->new_crtc = |
| to_intel_crtc(encoder->base.crtc); |
| } |
| |
| for_each_intel_crtc(dev, crtc) { |
| crtc->new_enabled = crtc->base.enabled; |
| |
| if (crtc->new_enabled) |
| crtc->new_config = &crtc->config; |
| else |
| crtc->new_config = NULL; |
| } |
| } |
| |
| /** |
| * intel_modeset_commit_output_state |
| * |
| * This function copies the stage display pipe configuration to the real one. |
| */ |
| static void intel_modeset_commit_output_state(struct drm_device *dev) |
| { |
| struct intel_crtc *crtc; |
| struct intel_encoder *encoder; |
| struct intel_connector *connector; |
| |
| list_for_each_entry(connector, &dev->mode_config.connector_list, |
| base.head) { |
| connector->base.encoder = &connector->new_encoder->base; |
| } |
| |
| for_each_intel_encoder(dev, encoder) { |
| encoder->base.crtc = &encoder->new_crtc->base; |
| } |
| |
| for_each_intel_crtc(dev, crtc) { |
| crtc->base.enabled = crtc->new_enabled; |
| } |
| } |
| |
| static void |
| connected_sink_compute_bpp(struct intel_connector *connector, |
| struct intel_crtc_config *pipe_config) |
| { |
| int bpp = pipe_config->pipe_bpp; |
| |
| DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n", |
| connector->base.base.id, |
| connector->base.name); |
| |
| /* Don't use an invalid EDID bpc value */ |
| if (connector->base.display_info.bpc && |
| connector->base.display_info.bpc * 3 < bpp) { |
| DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n", |
| bpp, connector->base.display_info.bpc*3); |
| pipe_config->pipe_bpp = connector->base.display_info.bpc*3; |
| } |
| |
| /* Clamp bpp to 8 on screens without EDID 1.4 */ |
| if (connector->base.display_info.bpc == 0 && bpp > 24) { |
| DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n", |
| bpp); |
| pipe_config->pipe_bpp = 24; |
| } |
| } |
| |
| static int |
| compute_baseline_pipe_bpp(struct intel_crtc *crtc, |
| struct drm_framebuffer *fb, |
| struct intel_crtc_config *pipe_config) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct intel_connector *connector; |
| int bpp; |
| |
| switch (fb->pixel_format) { |
| case DRM_FORMAT_C8: |
| bpp = 8*3; /* since we go through a colormap */ |
| break; |
| case DRM_FORMAT_XRGB1555: |
| case DRM_FORMAT_ARGB1555: |
| /* checked in intel_framebuffer_init already */ |
| if (WARN_ON(INTEL_INFO(dev)->gen > 3)) |
| return -EINVAL; |
| case DRM_FORMAT_RGB565: |
| bpp = 6*3; /* min is 18bpp */ |
| break; |
| case DRM_FORMAT_XBGR8888: |
| case DRM_FORMAT_ABGR8888: |
| /* checked in intel_framebuffer_init already */ |
| if (WARN_ON(INTEL_INFO(dev)->gen < 4)) |
| return -EINVAL; |
| case DRM_FORMAT_XRGB8888: |
| case DRM_FORMAT_ARGB8888: |
| bpp = 8*3; |
| break; |
| case DRM_FORMAT_XRGB2101010: |
| case DRM_FORMAT_ARGB2101010: |
| case DRM_FORMAT_XBGR2101010: |
| case DRM_FORMAT_ABGR2101010: |
| /* checked in intel_framebuffer_init already */ |
| if (WARN_ON(INTEL_INFO(dev)->gen < 4)) |
| return -EINVAL; |
| bpp = 10*3; |
| break; |
| /* TODO: gen4+ supports 16 bpc floating point, too. */ |
| default: |
| DRM_DEBUG_KMS("unsupported depth\n"); |
| return -EINVAL; |
| } |
| |
| pipe_config->pipe_bpp = bpp; |
| |
| /* Clamp display bpp to EDID value */ |
| list_for_each_entry(connector, &dev->mode_config.connector_list, |
| base.head) { |
| if (!connector->new_encoder || |
| connector->new_encoder->new_crtc != crtc) |
| continue; |
| |
| connected_sink_compute_bpp(connector, pipe_config); |
| } |
| |
| return bpp; |
| } |
| |
| static void intel_dump_crtc_timings(const struct drm_display_mode *mode) |
| { |
| DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, " |
| "type: 0x%x flags: 0x%x\n", |
| mode->crtc_clock, |
| mode->crtc_hdisplay, mode->crtc_hsync_start, |
| mode->crtc_hsync_end, mode->crtc_htotal, |
| mode->crtc_vdisplay, mode->crtc_vsync_start, |
| mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags); |
| } |
| |
| static void intel_dump_pipe_config(struct intel_crtc *crtc, |
| struct intel_crtc_config *pipe_config, |
| const char *context) |
| { |
| DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id, |
| context, pipe_name(crtc->pipe)); |
| |
| DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder)); |
| DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n", |
| pipe_config->pipe_bpp, pipe_config->dither); |
| DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n", |
| pipe_config->has_pch_encoder, |
| pipe_config->fdi_lanes, |
| pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n, |
| pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n, |
| pipe_config->fdi_m_n.tu); |
| DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n", |
| pipe_config->has_dp_encoder, |
| pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n, |
| pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n, |
| pipe_config->dp_m_n.tu); |
| |
| DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n", |
| pipe_config->has_dp_encoder, |
| pipe_config->dp_m2_n2.gmch_m, |
| pipe_config->dp_m2_n2.gmch_n, |
| pipe_config->dp_m2_n2.link_m, |
| pipe_config->dp_m2_n2.link_n, |
| pipe_config->dp_m2_n2.tu); |
| |
| DRM_DEBUG_KMS("audio: %i, infoframes: %i\n", |
| pipe_config->has_audio, |
| pipe_config->has_infoframe); |
| |
| DRM_DEBUG_KMS("requested mode:\n"); |
| drm_mode_debug_printmodeline(&pipe_config->requested_mode); |
| DRM_DEBUG_KMS("adjusted mode:\n"); |
| drm_mode_debug_printmodeline(&pipe_config->adjusted_mode); |
| intel_dump_crtc_timings(&pipe_config->adjusted_mode); |
| DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock); |
| DRM_DEBUG_KMS("pipe src size: %dx%d\n", |
| pipe_config->pipe_src_w, pipe_config->pipe_src_h); |
| DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n", |
| pipe_config->gmch_pfit.control, |
| pipe_config->gmch_pfit.pgm_ratios, |
| pipe_config->gmch_pfit.lvds_border_bits); |
| DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n", |
| pipe_config->pch_pfit.pos, |
| pipe_config->pch_pfit.size, |
| pipe_config->pch_pfit.enabled ? "enabled" : "disabled"); |
| DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled); |
| DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide); |
| } |
| |
| static bool encoders_cloneable(const struct intel_encoder *a, |
| const struct intel_encoder *b) |
| { |
| /* masks could be asymmetric, so check both ways */ |
| return a == b || (a->cloneable & (1 << b->type) && |
| b->cloneable & (1 << a->type)); |
| } |
| |
| static bool check_single_encoder_cloning(struct intel_crtc *crtc, |
| struct intel_encoder *encoder) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct intel_encoder *source_encoder; |
| |
| for_each_intel_encoder(dev, source_encoder) { |
| if (source_encoder->new_crtc != crtc) |
| continue; |
| |
| if (!encoders_cloneable(encoder, source_encoder)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool check_encoder_cloning(struct intel_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct intel_encoder *encoder; |
| |
| for_each_intel_encoder(dev, encoder) { |
| if (encoder->new_crtc != crtc) |
| continue; |
| |
| if (!check_single_encoder_cloning(crtc, encoder)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool check_digital_port_conflicts(struct drm_device *dev) |
| { |
| struct intel_connector *connector; |
| unsigned int used_ports = 0; |
| |
| /* |
| * Walk the connector list instead of the encoder |
| * list to detect the problem on ddi platforms |
| * where there's just one encoder per digital port. |
| */ |
| list_for_each_entry(connector, |
| &dev->mode_config.connector_list, base.head) { |
| struct intel_encoder *encoder = connector->new_encoder; |
| |
| if (!encoder) |
| continue; |
| |
| WARN_ON(!encoder->new_crtc); |
| |
| switch (encoder->type) { |
| unsigned int port_mask; |
| case INTEL_OUTPUT_UNKNOWN: |
| if (WARN_ON(!HAS_DDI(dev))) |
| break; |
| case INTEL_OUTPUT_DISPLAYPORT: |
| case INTEL_OUTPUT_HDMI: |
| case INTEL_OUTPUT_EDP: |
| port_mask = 1 << enc_to_dig_port(&encoder->base)->port; |
| |
| /* the same port mustn't appear more than once */ |
| if (used_ports & port_mask) |
| return false; |
| |
| used_ports |= port_mask; |
| default: |
| break; |
| } |
| } |
| |
| return true; |
| } |
| |
| static struct intel_crtc_config * |
| intel_modeset_pipe_config(struct drm_crtc *crtc, |
| struct drm_framebuffer *fb, |
| struct drm_display_mode *mode) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct intel_encoder *encoder; |
| struct intel_crtc_config *pipe_config; |
| int plane_bpp, ret = -EINVAL; |
| bool retry = true; |
| |
| if (!check_encoder_cloning(to_intel_crtc(crtc))) { |
| DRM_DEBUG_KMS("rejecting invalid cloning configuration\n"); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| if (!check_digital_port_conflicts(dev)) { |
| DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n"); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL); |
| if (!pipe_config) |
| return ERR_PTR(-ENOMEM); |
| |
| drm_mode_copy(&pipe_config->adjusted_mode, mode); |
| drm_mode_copy(&pipe_config->requested_mode, mode); |
| |
| pipe_config->cpu_transcoder = |
| (enum transcoder) to_intel_crtc(crtc)->pipe; |
| pipe_config->shared_dpll = DPLL_ID_PRIVATE; |
| |
| /* |
| * Sanitize sync polarity flags based on requested ones. If neither |
| * positive or negative polarity is requested, treat this as meaning |
| * negative polarity. |
| */ |
| if (!(pipe_config->adjusted_mode.flags & |
| (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC))) |
| pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC; |
| |
| if (!(pipe_config->adjusted_mode.flags & |
| (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC))) |
| pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC; |
| |
| /* Compute a starting value for pipe_config->pipe_bpp taking the source |
| * plane pixel format and any sink constraints into account. Returns the |
| * source plane bpp so that dithering can be selected on mismatches |
| * after encoders and crtc also have had their say. */ |
| plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc), |
| fb, pipe_config); |
| if (plane_bpp < 0) |
| goto fail; |
| |
| /* |
| * Determine the real pipe dimensions. Note that stereo modes can |
| * increase the actual pipe size due to the frame doubling and |
| * insertion of additional space for blanks between the frame. This |
| * is stored in the crtc timings. We use the requested mode to do this |
| * computation to clearly distinguish it from the adjusted mode, which |
| * can be changed by the connectors in the below retry loop. |
| */ |
| drm_crtc_get_hv_timing(&pipe_config->requested_mode, |
| &pipe_config->pipe_src_w, |
| &pipe_config->pipe_src_h); |
| |
| encoder_retry: |
| /* Ensure the port clock defaults are reset when retrying. */ |
| pipe_config->port_clock = 0; |
| pipe_config->pixel_multiplier = 1; |
| |
| /* Fill in default crtc timings, allow encoders to overwrite them. */ |
| drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE); |
| |
| /* Pass our mode to the connectors and the CRTC to give them a chance to |
| * adjust it according to limitations or connector properties, and also |
| * a chance to reject the mode entirely. |
| */ |
| for_each_intel_encoder(dev, encoder) { |
| |
| if (&encoder->new_crtc->base != crtc) |
| continue; |
| |
| if (!(encoder->compute_config(encoder, pipe_config))) { |
| DRM_DEBUG_KMS("Encoder config failure\n"); |
| goto fail; |
| } |
| } |
| |
| /* Set default port clock if not overwritten by the encoder. Needs to be |
| * done afterwards in case the encoder adjusts the mode. */ |
| if (!pipe_config->port_clock) |
| pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock |
| * pipe_config->pixel_multiplier; |
| |
| ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config); |
| if (ret < 0) { |
| DRM_DEBUG_KMS("CRTC fixup failed\n"); |
| goto fail; |
| } |
| |
| if (ret == RETRY) { |
| if (WARN(!retry, "loop in pipe configuration computation\n")) { |
| ret = -EINVAL; |
| goto fail; |
| } |
| |
| DRM_DEBUG_KMS("CRTC bw constrained, retrying\n"); |
| retry = false; |
| goto encoder_retry; |
| } |
| |
| pipe_config->dither = pipe_config->pipe_bpp != plane_bpp; |
| DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n", |
| plane_bpp, pipe_config->pipe_bpp, pipe_config->dither); |
| |
| return pipe_config; |
| fail: |
| kfree(pipe_config); |
| return ERR_PTR(ret); |
| } |
| |
| /* Computes which crtcs are affected and sets the relevant bits in the mask. For |
| * simplicity we use the crtc's pipe number (because it's easier to obtain). */ |
| static void |
| intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes, |
| unsigned *prepare_pipes, unsigned *disable_pipes) |
| { |
| struct intel_crtc *intel_crtc; |
| struct drm_device *dev = crtc->dev; |
| struct intel_encoder *encoder; |
| struct intel_connector *connector; |
| struct drm_crtc *tmp_crtc; |
| |
| *disable_pipes = *modeset_pipes = *prepare_pipes = 0; |
| |
| /* Check which crtcs have changed outputs connected to them, these need |
| * to be part of the prepare_pipes mask. We don't (yet) support global |
| * modeset across multiple crtcs, so modeset_pipes will only have one |
| * bit set at most. */ |
| list_for_each_entry(connector, &dev->mode_config.connector_list, |
| base.head) { |
| if (connector->base.encoder == &connector->new_encoder->base) |
| continue; |
| |
| if (connector->base.encoder) { |
| tmp_crtc = connector->base.encoder->crtc; |
| |
| *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe; |
| } |
| |
| if (connector->new_encoder) |
| *prepare_pipes |= |
| 1 << connector->new_encoder->new_crtc->pipe; |
| } |
| |
| for_each_intel_encoder(dev, encoder) { |
| if (encoder->base.crtc == &encoder->new_crtc->base) |
| continue; |
| |
| if (encoder->base.crtc) { |
| tmp_crtc = encoder->base.crtc; |
| |
| *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe; |
| } |
| |
| if (encoder->new_crtc) |
| *prepare_pipes |= 1 << encoder->new_crtc->pipe; |
| } |
| |
| /* Check for pipes that will be enabled/disabled ... */ |
| for_each_intel_crtc(dev, intel_crtc) { |
| if (intel_crtc->base.enabled == intel_crtc->new_enabled) |
| continue; |
| |
| if (!intel_crtc->new_enabled) |
| *disable_pipes |= 1 << intel_crtc->pipe; |
| else |
| *prepare_pipes |= 1 << intel_crtc->pipe; |
| } |
| |
| |
| /* set_mode is also used to update properties on life display pipes. */ |
| intel_crtc = to_intel_crtc(crtc); |
| if (intel_crtc->new_enabled) |
| *prepare_pipes |= 1 << intel_crtc->pipe; |
| |
| /* |
| * For simplicity do a full modeset on any pipe where the output routing |
| * changed. We could be more clever, but that would require us to be |
| * more careful with calling the relevant encoder->mode_set functions. |
| */ |
| if (*prepare_pipes) |
| *modeset_pipes = *prepare_pipes; |
| |
| /* ... and mask these out. */ |
| *modeset_pipes &= ~(*disable_pipes); |
| *prepare_pipes &= ~(*disable_pipes); |
| |
| /* |
| * HACK: We don't (yet) fully support global modesets. intel_set_config |
| * obies this rule, but the modeset restore mode of |
| * intel_modeset_setup_hw_state does not. |
| */ |
| *modeset_pipes &= 1 << intel_crtc->pipe; |
| *prepare_pipes &= 1 << intel_crtc->pipe; |
| |
| DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n", |
| *modeset_pipes, *prepare_pipes, *disable_pipes); |
| } |
| |
| static bool intel_crtc_in_use(struct drm_crtc *crtc) |
| { |
| struct drm_encoder *encoder; |
| struct drm_device *dev = crtc->dev; |
| |
| list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) |
| if (encoder->crtc == crtc) |
| return true; |
| |
| return false; |
| } |
| |
| static void |
| intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_encoder *intel_encoder; |
| struct intel_crtc *intel_crtc; |
| struct drm_connector *connector; |
| |
| intel_shared_dpll_commit(dev_priv); |
| |
| for_each_intel_encoder(dev, intel_encoder) { |
| if (!intel_encoder->base.crtc) |
| continue; |
| |
| intel_crtc = to_intel_crtc(intel_encoder->base.crtc); |
| |
| if (prepare_pipes & (1 << intel_crtc->pipe)) |
| intel_encoder->connectors_active = false; |
| } |
| |
| intel_modeset_commit_output_state(dev); |
| |
| /* Double check state. */ |
| for_each_intel_crtc(dev, intel_crtc) { |
| WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base)); |
| WARN_ON(intel_crtc->new_config && |
| intel_crtc->new_config != &intel_crtc->config); |
| WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config); |
| } |
| |
| list_for_each_entry(connector, &dev->mode_config.connector_list, head) { |
| if (!connector->encoder || !connector->encoder->crtc) |
| continue; |
| |
| intel_crtc = to_intel_crtc(connector->encoder->crtc); |
| |
| if (prepare_pipes & (1 << intel_crtc->pipe)) { |
| struct drm_property *dpms_property = |
| dev->mode_config.dpms_property; |
| |
| connector->dpms = DRM_MODE_DPMS_ON; |
| drm_object_property_set_value(&connector->base, |
| dpms_property, |
| DRM_MODE_DPMS_ON); |
| |
| intel_encoder = to_intel_encoder(connector->encoder); |
| intel_encoder->connectors_active = true; |
| } |
| } |
| |
| } |
| |
| static bool intel_fuzzy_clock_check(int clock1, int clock2) |
| { |
| int diff; |
| |
| if (clock1 == clock2) |
| return true; |
| |
| if (!clock1 || !clock2) |
| return false; |
| |
| diff = abs(clock1 - clock2); |
| |
| if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105) |
| return true; |
| |
| return false; |
| } |
| |
| #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \ |
| list_for_each_entry((intel_crtc), \ |
| &(dev)->mode_config.crtc_list, \ |
| base.head) \ |
| if (mask & (1 <<(intel_crtc)->pipe)) |
| |
| static bool |
| intel_pipe_config_compare(struct drm_device *dev, |
| struct intel_crtc_config *current_config, |
| struct intel_crtc_config *pipe_config) |
| { |
| #define PIPE_CONF_CHECK_X(name) \ |
| if (current_config->name != pipe_config->name) { \ |
| DRM_ERROR("mismatch in " #name " " \ |
| "(expected 0x%08x, found 0x%08x)\n", \ |
| current_config->name, \ |
| pipe_config->name); \ |
| return false; \ |
| } |
| |
| #define PIPE_CONF_CHECK_I(name) \ |
| if (current_config->name != pipe_config->name) { \ |
| DRM_ERROR("mismatch in " #name " " \ |
| "(expected %i, found %i)\n", \ |
| current_config->name, \ |
| pipe_config->name); \ |
| return false; \ |
| } |
| |
| /* This is required for BDW+ where there is only one set of registers for |
| * switching between high and low RR. |
| * This macro can be used whenever a comparison has to be made between one |
| * hw state and multiple sw state variables. |
| */ |
| #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \ |
| if ((current_config->name != pipe_config->name) && \ |
| (current_config->alt_name != pipe_config->name)) { \ |
| DRM_ERROR("mismatch in " #name " " \ |
| "(expected %i or %i, found %i)\n", \ |
| current_config->name, \ |
| current_config->alt_name, \ |
| pipe_config->name); \ |
| return false; \ |
| } |
| |
| #define PIPE_CONF_CHECK_FLAGS(name, mask) \ |
| if ((current_config->name ^ pipe_config->name) & (mask)) { \ |
| DRM_ERROR("mismatch in " #name "(" #mask ") " \ |
| "(expected %i, found %i)\n", \ |
| current_config->name & (mask), \ |
| pipe_config->name & (mask)); \ |
| return false; \ |
| } |
| |
| #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \ |
| if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \ |
| DRM_ERROR("mismatch in " #name " " \ |
| "(expected %i, found %i)\n", \ |
| current_config->name, \ |
| pipe_config->name); \ |
| return false; \ |
| } |
| |
| #define PIPE_CONF_QUIRK(quirk) \ |
| ((current_config->quirks | pipe_config->quirks) & (quirk)) |
| |
| PIPE_CONF_CHECK_I(cpu_transcoder); |
| |
| PIPE_CONF_CHECK_I(has_pch_encoder); |
| PIPE_CONF_CHECK_I(fdi_lanes); |
| PIPE_CONF_CHECK_I(fdi_m_n.gmch_m); |
| PIPE_CONF_CHECK_I(fdi_m_n.gmch_n); |
| PIPE_CONF_CHECK_I(fdi_m_n.link_m); |
| PIPE_CONF_CHECK_I(fdi_m_n.link_n); |
| PIPE_CONF_CHECK_I(fdi_m_n.tu); |
| |
| PIPE_CONF_CHECK_I(has_dp_encoder); |
| |
| if (INTEL_INFO(dev)->gen < 8) { |
| PIPE_CONF_CHECK_I(dp_m_n.gmch_m); |
| PIPE_CONF_CHECK_I(dp_m_n.gmch_n); |
| PIPE_CONF_CHECK_I(dp_m_n.link_m); |
| PIPE_CONF_CHECK_I(dp_m_n.link_n); |
| PIPE_CONF_CHECK_I(dp_m_n.tu); |
| |
| if (current_config->has_drrs) { |
| PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m); |
| PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n); |
| PIPE_CONF_CHECK_I(dp_m2_n2.link_m); |
| PIPE_CONF_CHECK_I(dp_m2_n2.link_n); |
| PIPE_CONF_CHECK_I(dp_m2_n2.tu); |
| } |
| } else { |
| PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m); |
| PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n); |
| PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m); |
| PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n); |
| PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu); |
| } |
| |
| PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay); |
| PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal); |
| PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start); |
| PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end); |
| PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start); |
| PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end); |
| |
| PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay); |
| PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal); |
| PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start); |
| PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end); |
| PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start); |
| PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end); |
| |
| PIPE_CONF_CHECK_I(pixel_multiplier); |
| PIPE_CONF_CHECK_I(has_hdmi_sink); |
| if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) || |
| IS_VALLEYVIEW(dev)) |
| PIPE_CONF_CHECK_I(limited_color_range); |
| PIPE_CONF_CHECK_I(has_infoframe); |
| |
| PIPE_CONF_CHECK_I(has_audio); |
| |
| PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags, |
| DRM_MODE_FLAG_INTERLACE); |
| |
| if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) { |
| PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags, |
| DRM_MODE_FLAG_PHSYNC); |
| PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags, |
| DRM_MODE_FLAG_NHSYNC); |
| PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags, |
| DRM_MODE_FLAG_PVSYNC); |
| PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags, |
| DRM_MODE_FLAG_NVSYNC); |
| } |
| |
| PIPE_CONF_CHECK_I(pipe_src_w); |
| PIPE_CONF_CHECK_I(pipe_src_h); |
| |
| /* |
| * FIXME: BIOS likes to set up a cloned config with lvds+external |
| * screen. Since we don't yet re-compute the pipe config when moving |
| * just the lvds port away to another pipe the sw tracking won't match. |
| * |
| * Proper atomic modesets with recomputed global state will fix this. |
| * Until then just don't check gmch state for inherited modes. |
| */ |
| if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) { |
| PIPE_CONF_CHECK_I(gmch_pfit.control); |
| /* pfit ratios are autocomputed by the hw on gen4+ */ |
| if (INTEL_INFO(dev)->gen < 4) |
| PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios); |
| PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits); |
| } |
| |
| PIPE_CONF_CHECK_I(pch_pfit.enabled); |
| if (current_config->pch_pfit.enabled) { |
| PIPE_CONF_CHECK_I(pch_pfit.pos); |
| PIPE_CONF_CHECK_I(pch_pfit.size); |
| } |
| |
| /* BDW+ don't expose a synchronous way to read the state */ |
| if (IS_HASWELL(dev)) |
| PIPE_CONF_CHECK_I(ips_enabled); |
| |
| PIPE_CONF_CHECK_I(double_wide); |
| |
| PIPE_CONF_CHECK_X(ddi_pll_sel); |
| |
| PIPE_CONF_CHECK_I(shared_dpll); |
| PIPE_CONF_CHECK_X(dpll_hw_state.dpll); |
| PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md); |
| PIPE_CONF_CHECK_X(dpll_hw_state.fp0); |
| PIPE_CONF_CHECK_X(dpll_hw_state.fp1); |
| PIPE_CONF_CHECK_X(dpll_hw_state.wrpll); |
| PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1); |
| PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1); |
| PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2); |
| |
| if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) |
| PIPE_CONF_CHECK_I(pipe_bpp); |
| |
| PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock); |
| PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock); |
| |
| #undef PIPE_CONF_CHECK_X |
| #undef PIPE_CONF_CHECK_I |
| #undef PIPE_CONF_CHECK_I_ALT |
| #undef PIPE_CONF_CHECK_FLAGS |
| #undef PIPE_CONF_CHECK_CLOCK_FUZZY |
| #undef PIPE_CONF_QUIRK |
| |
| return true; |
| } |
| |
| static void check_wm_state(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct skl_ddb_allocation hw_ddb, *sw_ddb; |
| struct intel_crtc *intel_crtc; |
| int plane; |
| |
| if (INTEL_INFO(dev)->gen < 9) |
| return; |
| |
| skl_ddb_get_hw_state(dev_priv, &hw_ddb); |
| sw_ddb = &dev_priv->wm.skl_hw.ddb; |
| |
| for_each_intel_crtc(dev, intel_crtc) { |
| struct skl_ddb_entry *hw_entry, *sw_entry; |
| const enum pipe pipe = intel_crtc->pipe; |
| |
| if (!intel_crtc->active) |
| continue; |
| |
| /* planes */ |
| for_each_plane(pipe, plane) { |
| hw_entry = &hw_ddb.plane[pipe][plane]; |
| sw_entry = &sw_ddb->plane[pipe][plane]; |
| |
| if (skl_ddb_entry_equal(hw_entry, sw_entry)) |
| continue; |
| |
| DRM_ERROR("mismatch in DDB state pipe %c plane %d " |
| "(expected (%u,%u), found (%u,%u))\n", |
| pipe_name(pipe), plane + 1, |
| sw_entry->start, sw_entry->end, |
| hw_entry->start, hw_entry->end); |
| } |
| |
| /* cursor */ |
| hw_entry = &hw_ddb.cursor[pipe]; |
| sw_entry = &sw_ddb->cursor[pipe]; |
| |
| if (skl_ddb_entry_equal(hw_entry, sw_entry)) |
| continue; |
| |
| DRM_ERROR("mismatch in DDB state pipe %c cursor " |
| "(expected (%u,%u), found (%u,%u))\n", |
| pipe_name(pipe), |
| sw_entry->start, sw_entry->end, |
| hw_entry->start, hw_entry->end); |
| } |
| } |
| |
| static void |
| check_connector_state(struct drm_device *dev) |
| { |
| struct intel_connector *connector; |
| |
| list_for_each_entry(connector, &dev->mode_config.connector_list, |
| base.head) { |
| /* This also checks the encoder/connector hw state with the |
| * ->get_hw_state callbacks. */ |
| intel_connector_check_state(connector); |
| |
| WARN(&connector->new_encoder->base != connector->base.encoder, |
| "connector's staged encoder doesn't match current encoder\n"); |
| } |
| } |
| |
| static void |
| check_encoder_state(struct drm_device *dev) |
| { |
| struct intel_encoder *encoder; |
| struct intel_connector *connector; |
| |
| for_each_intel_encoder(dev, encoder) { |
| bool enabled = false; |
| bool active = false; |
| enum pipe pipe, tracked_pipe; |
| |
| DRM_DEBUG_KMS("[ENCODER:%d:%s]\n", |
| encoder->base.base.id, |
| encoder->base.name); |
| |
| WARN(&encoder->new_crtc->base != encoder->base.crtc, |
| "encoder's stage crtc doesn't match current crtc\n"); |
| WARN(encoder->connectors_active && !encoder->base.crtc, |
| "encoder's active_connectors set, but no crtc\n"); |
| |
| list_for_each_entry(connector, &dev->mode_config.connector_list, |
| base.head) { |
| if (connector->base.encoder != &encoder->base) |
| continue; |
| enabled = true; |
| if (connector->base.dpms != DRM_MODE_DPMS_OFF) |
| active = true; |
| } |
| /* |
| * for MST connectors if we unplug the connector is gone |
| * away but the encoder is still connected to a crtc |
| * until a modeset happens in response to the hotplug. |
| */ |
| if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST) |
| continue; |
| |
| WARN(!!encoder->base.crtc != enabled, |
| "encoder's enabled state mismatch " |
| "(expected %i, found %i)\n", |
| !!encoder->base.crtc, enabled); |
| WARN(active && !encoder->base.crtc, |
| "active encoder with no crtc\n"); |
| |
| WARN(encoder->connectors_active != active, |
| "encoder's computed active state doesn't match tracked active state " |
| "(expected %i, found %i)\n", active, encoder->connectors_active); |
| |
| active = encoder->get_hw_state(encoder, &pipe); |
| WARN(active != encoder->connectors_active, |
| "encoder's hw state doesn't match sw tracking " |
| "(expected %i, found %i)\n", |
| encoder->connectors_active, active); |
| |
| if (!encoder->base.crtc) |
| continue; |
| |
| tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe; |
| WARN(active && pipe != tracked_pipe, |
| "active encoder's pipe doesn't match" |
| "(expected %i, found %i)\n", |
| tracked_pipe, pipe); |
| |
| } |
| } |
| |
| static void |
| check_crtc_state(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *crtc; |
| struct intel_encoder *encoder; |
| struct intel_crtc_config pipe_config; |
| |
| for_each_intel_crtc(dev, crtc) { |
| bool enabled = false; |
| bool active = false; |
| |
| memset(&pipe_config, 0, sizeof(pipe_config)); |
| |
| DRM_DEBUG_KMS("[CRTC:%d]\n", |
| crtc->base.base.id); |
| |
| WARN(crtc->active && !crtc->base.enabled, |
| "active crtc, but not enabled in sw tracking\n"); |
| |
| for_each_intel_encoder(dev, encoder) { |
| if (encoder->base.crtc != &crtc->base) |
| continue; |
| enabled = true; |
| if (encoder->connectors_active) |
| active = true; |
| } |
| |
| WARN(active != crtc->active, |
| "crtc's computed active state doesn't match tracked active state " |
| "(expected %i, found %i)\n", active, crtc->active); |
| WARN(enabled != crtc->base.enabled, |
| "crtc's computed enabled state doesn't match tracked enabled state " |
| "(expected %i, found %i)\n", enabled, crtc->base.enabled); |
| |
| active = dev_priv->display.get_pipe_config(crtc, |
| &pipe_config); |
| |
| /* hw state is inconsistent with the pipe quirk */ |
| if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) || |
| (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)) |
| active = crtc->active; |
| |
| for_each_intel_encoder(dev, encoder) { |
| enum pipe pipe; |
| if (encoder->base.crtc != &crtc->base) |
| continue; |
| if (encoder->get_hw_state(encoder, &pipe)) |
| encoder->get_config(encoder, &pipe_config); |
| } |
| |
| WARN(crtc->active != active, |
| "crtc active state doesn't match with hw state " |
| "(expected %i, found %i)\n", crtc->active, active); |
| |
| if (active && |
| !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) { |
| WARN(1, "pipe state doesn't match!\n"); |
| intel_dump_pipe_config(crtc, &pipe_config, |
| "[hw state]"); |
| intel_dump_pipe_config(crtc, &crtc->config, |
| "[sw state]"); |
| } |
| } |
| } |
| |
| static void |
| check_shared_dpll_state(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *crtc; |
| struct intel_dpll_hw_state dpll_hw_state; |
| int i; |
| |
| for (i = 0; i < dev_priv->num_shared_dpll; i++) { |
| struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i]; |
| int enabled_crtcs = 0, active_crtcs = 0; |
| bool active; |
| |
| memset(&dpll_hw_state, 0, sizeof(dpll_hw_state)); |
| |
| DRM_DEBUG_KMS("%s\n", pll->name); |
| |
| active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state); |
| |
| WARN(pll->active > hweight32(pll->config.crtc_mask), |
| "more active pll users than references: %i vs %i\n", |
| pll->active, hweight32(pll->config.crtc_mask)); |
| WARN(pll->active && !pll->on, |
| "pll in active use but not on in sw tracking\n"); |
| WARN(pll->on && !pll->active, |
| "pll in on but not on in use in sw tracking\n"); |
| WARN(pll->on != active, |
| "pll on state mismatch (expected %i, found %i)\n", |
| pll->on, active); |
| |
| for_each_intel_crtc(dev, crtc) { |
| if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll) |
| enabled_crtcs++; |
| if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) |
| active_crtcs++; |
| } |
| WARN(pll->active != active_crtcs, |
| "pll active crtcs mismatch (expected %i, found %i)\n", |
| pll->active, active_crtcs); |
| WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs, |
| "pll enabled crtcs mismatch (expected %i, found %i)\n", |
| hweight32(pll->config.crtc_mask), enabled_crtcs); |
| |
| WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state, |
| sizeof(dpll_hw_state)), |
| "pll hw state mismatch\n"); |
| } |
| } |
| |
| void |
| intel_modeset_check_state(struct drm_device *dev) |
| { |
| check_wm_state(dev); |
| check_connector_state(dev); |
| check_encoder_state(dev); |
| check_crtc_state(dev); |
| check_shared_dpll_state(dev); |
| } |
| |
| void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config, |
| int dotclock) |
| { |
| /* |
| * FDI already provided one idea for the dotclock. |
| * Yell if the encoder disagrees. |
| */ |
| WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock), |
| "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n", |
| pipe_config->adjusted_mode.crtc_clock, dotclock); |
| } |
| |
| static void update_scanline_offset(struct intel_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| |
| /* |
| * The scanline counter increments at the leading edge of hsync. |
| * |
| * On most platforms it starts counting from vtotal-1 on the |
| * first active line. That means the scanline counter value is |
| * always one less than what we would expect. Ie. just after |
| * start of vblank, which also occurs at start of hsync (on the |
| * last active line), the scanline counter will read vblank_start-1. |
| * |
| * On gen2 the scanline counter starts counting from 1 instead |
| * of vtotal-1, so we have to subtract one (or rather add vtotal-1 |
| * to keep the value positive), instead of adding one. |
| * |
| * On HSW+ the behaviour of the scanline counter depends on the output |
| * type. For DP ports it behaves like most other platforms, but on HDMI |
| * there's an extra 1 line difference. So we need to add two instead of |
| * one to the value. |
| */ |
| if (IS_GEN2(dev)) { |
| const struct drm_display_mode *mode = &crtc->config.adjusted_mode; |
| int vtotal; |
| |
| vtotal = mode->crtc_vtotal; |
| if (mode->flags & DRM_MODE_FLAG_INTERLACE) |
| vtotal /= 2; |
| |
| crtc->scanline_offset = vtotal - 1; |
| } else if (HAS_DDI(dev) && |
| intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) { |
| crtc->scanline_offset = 2; |
| } else |
| crtc->scanline_offset = 1; |
| } |
| |
| static struct intel_crtc_config * |
| intel_modeset_compute_config(struct drm_crtc *crtc, |
| struct drm_display_mode *mode, |
| struct drm_framebuffer *fb, |
| unsigned *modeset_pipes, |
| unsigned *prepare_pipes, |
| unsigned *disable_pipes) |
| { |
| struct intel_crtc_config *pipe_config = NULL; |
| |
| intel_modeset_affected_pipes(crtc, modeset_pipes, |
| prepare_pipes, disable_pipes); |
| |
| if ((*modeset_pipes) == 0) |
| goto out; |
| |
| /* |
| * Note this needs changes when we start tracking multiple modes |
| * and crtcs. At that point we'll need to compute the whole config |
| * (i.e. one pipe_config for each crtc) rather than just the one |
| * for this crtc. |
| */ |
| pipe_config = intel_modeset_pipe_config(crtc, fb, mode); |
| if (IS_ERR(pipe_config)) { |
| goto out; |
| } |
| intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config, |
| "[modeset]"); |
| |
| out: |
| return pipe_config; |
| } |
| |
| static int __intel_set_mode(struct drm_crtc *crtc, |
| struct drm_display_mode *mode, |
| int x, int y, struct drm_framebuffer *fb, |
| struct intel_crtc_config *pipe_config, |
| unsigned modeset_pipes, |
| unsigned prepare_pipes, |
| unsigned disable_pipes) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_display_mode *saved_mode; |
| struct intel_crtc *intel_crtc; |
| int ret = 0; |
| |
| saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL); |
| if (!saved_mode) |
| return -ENOMEM; |
| |
| *saved_mode = crtc->mode; |
| |
| if (modeset_pipes) |
| to_intel_crtc(crtc)->new_config = pipe_config; |
| |
| /* |
| * See if the config requires any additional preparation, e.g. |
| * to adjust global state with pipes off. We need to do this |
| * here so we can get the modeset_pipe updated config for the new |
| * mode set on this crtc. For other crtcs we need to use the |
| * adjusted_mode bits in the crtc directly. |
| */ |
| if (IS_VALLEYVIEW(dev)) { |
| valleyview_modeset_global_pipes(dev, &prepare_pipes); |
| |
| /* may have added more to prepare_pipes than we should */ |
| prepare_pipes &= ~disable_pipes; |
| } |
| |
| if (dev_priv->display.crtc_compute_clock) { |
| unsigned clear_pipes = modeset_pipes | disable_pipes; |
| |
| ret = intel_shared_dpll_start_config(dev_priv, clear_pipes); |
| if (ret) |
| goto done; |
| |
| for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) { |
| ret = dev_priv->display.crtc_compute_clock(intel_crtc); |
| if (ret) { |
| intel_shared_dpll_abort_config(dev_priv); |
| goto done; |
| } |
| } |
| } |
| |
| for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc) |
| intel_crtc_disable(&intel_crtc->base); |
| |
| for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) { |
| if (intel_crtc->base.enabled) |
| dev_priv->display.crtc_disable(&intel_crtc->base); |
| } |
| |
| /* crtc->mode is already used by the ->mode_set callbacks, hence we need |
| * to set it here already despite that we pass it down the callchain. |
| * |
| * Note we'll need to fix this up when we start tracking multiple |
| * pipes; here we assume a single modeset_pipe and only track the |
| * single crtc and mode. |
| */ |
| if (modeset_pipes) { |
| crtc->mode = *mode; |
| /* mode_set/enable/disable functions rely on a correct pipe |
| * config. */ |
| to_intel_crtc(crtc)->config = *pipe_config; |
| to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config; |
| |
| /* |
| * Calculate and store various constants which |
| * are later needed by vblank and swap-completion |
| * timestamping. They are derived from true hwmode. |
| */ |
| drm_calc_timestamping_constants(crtc, |
| &pipe_config->adjusted_mode); |
| } |
| |
| /* Only after disabling all output pipelines that will be changed can we |
| * update the the output configuration. */ |
| intel_modeset_update_state(dev, prepare_pipes); |
| |
| modeset_update_crtc_power_domains(dev); |
| |
| /* Set up the DPLL and any encoders state that needs to adjust or depend |
| * on the DPLL. |
| */ |
| for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) { |
| struct drm_framebuffer *old_fb = crtc->primary->fb; |
| struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb); |
| struct drm_i915_gem_object *obj = intel_fb_obj(fb); |
| |
| mutex_lock(&dev->struct_mutex); |
| ret = intel_pin_and_fence_fb_obj(crtc->primary, fb, NULL); |
| if (ret != 0) { |
| DRM_ERROR("pin & fence failed\n"); |
| mutex_unlock(&dev->struct_mutex); |
| goto done; |
| } |
| if (old_fb) |
| intel_unpin_fb_obj(old_obj); |
| i915_gem_track_fb(old_obj, obj, |
| INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe)); |
| mutex_unlock(&dev->struct_mutex); |
| |
| crtc->primary->fb = fb; |
| crtc->x = x; |
| crtc->y = y; |
| } |
| |
| /* Now enable the clocks, plane, pipe, and connectors that we set up. */ |
| for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) { |
| update_scanline_offset(intel_crtc); |
| |
| dev_priv->display.crtc_enable(&intel_crtc->base); |
| } |
| |
| /* FIXME: add subpixel order */ |
| done: |
| if (ret && crtc->enabled) |
| crtc->mode = *saved_mode; |
| |
| kfree(pipe_config); |
| kfree(saved_mode); |
| return ret; |
| } |
| |
| static int intel_set_mode_pipes(struct drm_crtc *crtc, |
| struct drm_display_mode *mode, |
| int x, int y, struct drm_framebuffer *fb, |
| struct intel_crtc_config *pipe_config, |
| unsigned modeset_pipes, |
| unsigned prepare_pipes, |
| unsigned disable_pipes) |
| { |
| int ret; |
| |
| ret = __intel_set_mode(crtc, mode, x, y, fb, pipe_config, modeset_pipes, |
| prepare_pipes, disable_pipes); |
| |
| if (ret == 0) |
| intel_modeset_check_state(crtc->dev); |
| |
| return ret; |
| } |
| |
| static int intel_set_mode(struct drm_crtc *crtc, |
| struct drm_display_mode *mode, |
| int x, int y, struct drm_framebuffer *fb) |
| { |
| struct intel_crtc_config *pipe_config; |
| unsigned modeset_pipes, prepare_pipes, disable_pipes; |
| |
| pipe_config = intel_modeset_compute_config(crtc, mode, fb, |
| &modeset_pipes, |
| &prepare_pipes, |
| &disable_pipes); |
| |
| if (IS_ERR(pipe_config)) |
| return PTR_ERR(pipe_config); |
| |
| return intel_set_mode_pipes(crtc, mode, x, y, fb, pipe_config, |
| modeset_pipes, prepare_pipes, |
| disable_pipes); |
| } |
| |
| void intel_crtc_restore_mode(struct drm_crtc *crtc) |
| { |
| intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb); |
| } |
| |
| #undef for_each_intel_crtc_masked |
| |
| static void intel_set_config_free(struct intel_set_config *config) |
| { |
| if (!config) |
| return; |
| |
| kfree(config->save_connector_encoders); |
| kfree(config->save_encoder_crtcs); |
| kfree(config->save_crtc_enabled); |
| kfree(config); |
| } |
| |
| static int intel_set_config_save_state(struct drm_device *dev, |
| struct intel_set_config *config) |
| { |
| struct drm_crtc *crtc; |
| struct drm_encoder *encoder; |
| struct drm_connector *connector; |
| int count; |
| |
| config->save_crtc_enabled = |
| kcalloc(dev->mode_config.num_crtc, |
| sizeof(bool), GFP_KERNEL); |
| if (!config->save_crtc_enabled) |
| return -ENOMEM; |
| |
| config->save_encoder_crtcs = |
| kcalloc(dev->mode_config.num_encoder, |
| sizeof(struct drm_crtc *), GFP_KERNEL); |
| if (!config->save_encoder_crtcs) |
| return -ENOMEM; |
| |
| config->save_connector_encoders = |
| kcalloc(dev->mode_config.num_connector, |
| sizeof(struct drm_encoder *), GFP_KERNEL); |
| if (!config->save_connector_encoders) |
| return -ENOMEM; |
| |
| /* Copy data. Note that driver private data is not affected. |
| * Should anything bad happen only the expected state is |
| * restored, not the drivers personal bookkeeping. |
| */ |
| count = 0; |
| for_each_crtc(dev, crtc) { |
| config->save_crtc_enabled[count++] = crtc->enabled; |
| } |
| |
| count = 0; |
| list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { |
| config->save_encoder_crtcs[count++] = encoder->crtc; |
| } |
| |
| count = 0; |
| list_for_each_entry(connector, &dev->mode_config.connector_list, head) { |
| config->save_connector_encoders[count++] = connector->encoder; |
| } |
| |
| return 0; |
| } |
| |
| static void intel_set_config_restore_state(struct drm_device *dev, |
| struct intel_set_config *config) |
| { |
| struct intel_crtc *crtc; |
| struct intel_encoder *encoder; |
| struct intel_connector *connector; |
| int count; |
| |
| count = 0; |
| for_each_intel_crtc(dev, crtc) { |
| crtc->new_enabled = config->save_crtc_enabled[count++]; |
| |
| if (crtc->new_enabled) |
| crtc->new_config = &crtc->config; |
| else |
| crtc->new_config = NULL; |
| } |
| |
| count = 0; |
| for_each_intel_encoder(dev, encoder) { |
| encoder->new_crtc = |
| to_intel_crtc(config->save_encoder_crtcs[count++]); |
| } |
| |
| count = 0; |
| list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) { |
| connector->new_encoder = |
| to_intel_encoder(config->save_connector_encoders[count++]); |
| } |
| } |
| |
| static bool |
| is_crtc_connector_off(struct drm_mode_set *set) |
| { |
| int i; |
| |
| if (set->num_connectors == 0) |
| return false; |
| |
| if (WARN_ON(set->connectors == NULL)) |
| return false; |
| |
| for (i = 0; i < set->num_connectors; i++) |
| if (set->connectors[i]->encoder && |
| set->connectors[i]->encoder->crtc == set->crtc && |
| set->connectors[i]->dpms != DRM_MODE_DPMS_ON) |
| return true; |
| |
| return false; |
| } |
| |
| static void |
| intel_set_config_compute_mode_changes(struct drm_mode_set *set, |
| struct intel_set_config *config) |
| { |
| |
| /* We should be able to check here if the fb has the same properties |
| * and then just flip_or_move it */ |
| if (is_crtc_connector_off(set)) { |
| config->mode_changed = true; |
| } else if (set->crtc->primary->fb != set->fb) { |
| /* |
| * If we have no fb, we can only flip as long as the crtc is |
| * active, otherwise we need a full mode set. The crtc may |
| * be active if we've only disabled the primary plane, or |
| * in fastboot situations. |
| */ |
| if (set->crtc->primary->fb == NULL) { |
| struct intel_crtc *intel_crtc = |
| to_intel_crtc(set->crtc); |
| |
| if (intel_crtc->active) { |
| DRM_DEBUG_KMS("crtc has no fb, will flip\n"); |
| config->fb_changed = true; |
| } else { |
| DRM_DEBUG_KMS("inactive crtc, full mode set\n"); |
| config->mode_changed = true; |
| } |
| } else if (set->fb == NULL) { |
| config->mode_changed = true; |
| } else if (set->fb->pixel_format != |
| set->crtc->primary->fb->pixel_format) { |
| config->mode_changed = true; |
| } else { |
| config->fb_changed = true; |
| } |
| } |
| |
| if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y)) |
| config->fb_changed = true; |
| |
| if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) { |
| DRM_DEBUG_KMS("modes are different, full mode set\n"); |
| drm_mode_debug_printmodeline(&set->crtc->mode); |
| drm_mode_debug_printmodeline(set->mode); |
| config->mode_changed = true; |
| } |
| |
| DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n", |
| set->crtc->base.id, config->mode_changed, config->fb_changed); |
| } |
| |
| static int |
| intel_modeset_stage_output_state(struct drm_device *dev, |
| struct drm_mode_set *set, |
| struct intel_set_config *config) |
| { |
| struct intel_connector *connector; |
| struct intel_encoder *encoder; |
| struct intel_crtc *crtc; |
| int ro; |
| |
| /* The upper layers ensure that we either disable a crtc or have a list |
| * of connectors. For paranoia, double-check this. */ |
| WARN_ON(!set->fb && (set->num_connectors != 0)); |
| WARN_ON(set->fb && (set->num_connectors == 0)); |
| |
| list_for_each_entry(connector, &dev->mode_config.connector_list, |
| base.head) { |
| /* Otherwise traverse passed in connector list and get encoders |
| * for them. */ |
| for (ro = 0; ro < set->num_connectors; ro++) { |
| if (set->connectors[ro] == &connector->base) { |
| connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe); |
| break; |
| } |
| } |
| |
| /* If we disable the crtc, disable all its connectors. Also, if |
| * the connector is on the changing crtc but not on the new |
| * connector list, disable it. */ |
| if ((!set->fb || ro == set->num_connectors) && |
| connector->base.encoder && |
| connector->base.encoder->crtc == set->crtc) { |
| connector->new_encoder = NULL; |
| |
| DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n", |
| connector->base.base.id, |
| connector->base.name); |
| } |
| |
| |
| if (&connector->new_encoder->base != connector->base.encoder) { |
| DRM_DEBUG_KMS("encoder changed, full mode switch\n"); |
| config->mode_changed = true; |
| } |
| } |
| /* connector->new_encoder is now updated for all connectors. */ |
| |
| /* Update crtc of enabled connectors. */ |
| list_for_each_entry(connector, &dev->mode_config.connector_list, |
| base.head) { |
| struct drm_crtc *new_crtc; |
| |
| if (!connector->new_encoder) |
| continue; |
| |
| new_crtc = connector->new_encoder->base.crtc; |
| |
| for (ro = 0; ro < set->num_connectors; ro++) { |
| if (set->connectors[ro] == &connector->base) |
| new_crtc = set->crtc; |
| } |
| |
| /* Make sure the new CRTC will work with the encoder */ |
| if (!drm_encoder_crtc_ok(&connector->new_encoder->base, |
| new_crtc)) { |
| return -EINVAL; |
| } |
| connector->new_encoder->new_crtc = to_intel_crtc(new_crtc); |
| |
| DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n", |
| connector->base.base.id, |
| connector->base.name, |
| new_crtc->base.id); |
| } |
| |
| /* Check for any encoders that needs to be disabled. */ |
| for_each_intel_encoder(dev, encoder) { |
| int num_connectors = 0; |
| list_for_each_entry(connector, |
| &dev->mode_config.connector_list, |
| base.head) { |
| if (connector->new_encoder == encoder) { |
| WARN_ON(!connector->new_encoder->new_crtc); |
| num_connectors++; |
| } |
| } |
| |
| if (num_connectors == 0) |
| encoder->new_crtc = NULL; |
| else if (num_connectors > 1) |
| return -EINVAL; |
| |
| /* Only now check for crtc changes so we don't miss encoders |
| * that will be disabled. */ |
| if (&encoder->new_crtc->base != encoder->base.crtc) { |
| DRM_DEBUG_KMS("crtc changed, full mode switch\n"); |
| config->mode_changed = true; |
| } |
| } |
| /* Now we've also updated encoder->new_crtc for all encoders. */ |
| list_for_each_entry(connector, &dev->mode_config.connector_list, |
| base.head) { |
| if (connector->new_encoder) |
| if (connector->new_encoder != connector->encoder) |
| connector->encoder = connector->new_encoder; |
| } |
| for_each_intel_crtc(dev, crtc) { |
| crtc->new_enabled = false; |
| |
| for_each_intel_encoder(dev, encoder) { |
| if (encoder->new_crtc == crtc) { |
| crtc->new_enabled = true; |
| break; |
| } |
| } |
| |
| if (crtc->new_enabled != crtc->base.enabled) { |
| DRM_DEBUG_KMS("crtc %sabled, full mode switch\n", |
| crtc->new_enabled ? "en" : "dis"); |
| config->mode_changed = true; |
| } |
| |
| if (crtc->new_enabled) |
| crtc->new_config = &crtc->config; |
| else |
| crtc->new_config = NULL; |
| } |
| |
| return 0; |
| } |
| |
| static void disable_crtc_nofb(struct intel_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct intel_encoder *encoder; |
| struct intel_connector *connector; |
| |
| DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n", |
| pipe_name(crtc->pipe)); |
| |
| list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) { |
| if (connector->new_encoder && |
| connector->new_encoder->new_crtc == crtc) |
| connector->new_encoder = NULL; |
| } |
| |
| for_each_intel_encoder(dev, encoder) { |
| if (encoder->new_crtc == crtc) |
| encoder->new_crtc = NULL; |
| } |
| |
| crtc->new_enabled = false; |
| crtc->new_config = NULL; |
| } |
| |
| static int intel_crtc_set_config(struct drm_mode_set *set) |
| { |
| struct drm_device *dev; |
| struct drm_mode_set save_set; |
| struct intel_set_config *config; |
| struct intel_crtc_config *pipe_config; |
| unsigned modeset_pipes, prepare_pipes, disable_pipes; |
| int ret; |
| |
| BUG_ON(!set); |
| BUG_ON(!set->crtc); |
| BUG_ON(!set->crtc->helper_private); |
| |
| /* Enforce sane interface api - has been abused by the fb helper. */ |
| BUG_ON(!set->mode && set->fb); |
| BUG_ON(set->fb && set->num_connectors == 0); |
| |
| if (set->fb) { |
| DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n", |
| set->crtc->base.id, set->fb->base.id, |
| (int)set->num_connectors, set->x, set->y); |
| } else { |
| DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id); |
| } |
| |
| dev = set->crtc->dev; |
| |
| ret = -ENOMEM; |
| config = kzalloc(sizeof(*config), GFP_KERNEL); |
| if (!config) |
| goto out_config; |
| |
| ret = intel_set_config_save_state(dev, config); |
| if (ret) |
| goto out_config; |
| |
| save_set.crtc = set->crtc; |
| save_set.mode = &set->crtc->mode; |
| save_set.x = set->crtc->x; |
| save_set.y = set->crtc->y; |
| save_set.fb = set->crtc->primary->fb; |
| |
| /* Compute whether we need a full modeset, only an fb base update or no |
| * change at all. In the future we might also check whether only the |
| * mode changed, e.g. for LVDS where we only change the panel fitter in |
| * such cases. */ |
| intel_set_config_compute_mode_changes(set, config); |
| |
| ret = intel_modeset_stage_output_state(dev, set, config); |
| if (ret) |
| goto fail; |
| |
| pipe_config = intel_modeset_compute_config(set->crtc, set->mode, |
| set->fb, |
| &modeset_pipes, |
| &prepare_pipes, |
| &disable_pipes); |
| if (IS_ERR(pipe_config)) { |
| ret = PTR_ERR(pipe_config); |
| goto fail; |
| } else if (pipe_config) { |
| if (pipe_config->has_audio != |
| to_intel_crtc(set->crtc)->config.has_audio) |
| config->mode_changed = true; |
| |
| /* Force mode sets for any infoframe stuff */ |
| if (pipe_config->has_infoframe || |
| to_intel_crtc(set->crtc)->config.has_infoframe) |
| config->mode_changed = true; |
| } |
| |
| /* set_mode will free it in the mode_changed case */ |
| if (!config->mode_changed) |
| kfree(pipe_config); |
| |
| intel_update_pipe_size(to_intel_crtc(set->crtc)); |
| |
| if (config->mode_changed) { |
| ret = intel_set_mode_pipes(set->crtc, set->mode, |
| set->x, set->y, set->fb, pipe_config, |
| modeset_pipes, prepare_pipes, |
| disable_pipes); |
| } else if (config->fb_changed) { |
| struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc); |
| |
| intel_crtc_wait_for_pending_flips(set->crtc); |
| |
| ret = intel_pipe_set_base(set->crtc, |
| set->x, set->y, set->fb); |
| |
| /* |
| * We need to make sure the primary plane is re-enabled if it |
| * has previously been turned off. |
| */ |
| if (!intel_crtc->primary_enabled && ret == 0) { |
| WARN_ON(!intel_crtc->active); |
| intel_enable_primary_hw_plane(set->crtc->primary, set->crtc); |
| } |
| |
| /* |
| * In the fastboot case this may be our only check of the |
| * state after boot. It would be better to only do it on |
| * the first update, but we don't have a nice way of doing that |
| * (and really, set_config isn't used much for high freq page |
| * flipping, so increasing its cost here shouldn't be a big |
| * deal). |
| */ |
| if (i915.fastboot && ret == 0) |
| intel_modeset_check_state(set->crtc->dev); |
| } |
| |
| if (ret) { |
| DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n", |
| set->crtc->base.id, ret); |
| fail: |
| intel_set_config_restore_state(dev, config); |
| |
| /* |
| * HACK: if the pipe was on, but we didn't have a framebuffer, |
| * force the pipe off to avoid oopsing in the modeset code |
| * due to fb==NULL. This should only happen during boot since |
| * we don't yet reconstruct the FB from the hardware state. |
| */ |
| if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb) |
| disable_crtc_nofb(to_intel_crtc(save_set.crtc)); |
| |
| /* Try to restore the config */ |
| if (config->mode_changed && |
| intel_set_mode(save_set.crtc, save_set.mode, |
| save_set.x, save_set.y, save_set.fb)) |
| DRM_ERROR("failed to restore config after modeset failure\n"); |
| } |
| |
| out_config: |
| intel_set_config_free(config); |
| return ret; |
| } |
| |
| static const struct drm_crtc_funcs intel_crtc_funcs = { |
| .gamma_set = intel_crtc_gamma_set, |
| .set_config = intel_crtc_set_config, |
| .destroy = intel_crtc_destroy, |
| .page_flip = intel_crtc_page_flip, |
| }; |
| |
| static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv, |
| struct intel_shared_dpll *pll, |
| struct intel_dpll_hw_state *hw_state) |
| { |
| uint32_t val; |
| |
| if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS)) |
| return false; |
| |
| val = I915_READ(PCH_DPLL(pll->id)); |
| hw_state->dpll = val; |
| hw_state->fp0 = I915_READ(PCH_FP0(pll->id)); |
| hw_state->fp1 = I915_READ(PCH_FP1(pll->id)); |
| |
| return val & DPLL_VCO_ENABLE; |
| } |
| |
| static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv, |
| struct intel_shared_dpll *pll) |
| { |
| I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0); |
| I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1); |
| } |
| |
| static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv, |
| struct intel_shared_dpll *pll) |
| { |
| /* PCH refclock must be enabled first */ |
| ibx_assert_pch_refclk_enabled(dev_priv); |
| |
| I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll); |
| |
| /* Wait for the clocks to stabilize. */ |
| POSTING_READ(PCH_DPLL(pll->id)); |
| udelay(150); |
| |
| /* The pixel multiplier can only be updated once the |
| * DPLL is enabled and the clocks are stable. |
| * |
| * So write it again. |
| */ |
| I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll); |
| POSTING_READ(PCH_DPLL(pll->id)); |
| udelay(200); |
| } |
| |
| static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv, |
| struct intel_shared_dpll *pll) |
| { |
| struct drm_device *dev = dev_priv->dev; |
| struct intel_crtc *crtc; |
| |
| /* Make sure no transcoder isn't still depending on us. */ |
| for_each_intel_crtc(dev, crtc) { |
| if (intel_crtc_to_shared_dpll(crtc) == pll) |
| assert_pch_transcoder_disabled(dev_priv, crtc->pipe); |
| } |
| |
| I915_WRITE(PCH_DPLL(pll->id), 0); |
| POSTING_READ(PCH_DPLL(pll->id)); |
| udelay(200); |
| } |
| |
| static char *ibx_pch_dpll_names[] = { |
| "PCH DPLL A", |
| "PCH DPLL B", |
| }; |
| |
| static void ibx_pch_dpll_init(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int i; |
| |
| dev_priv->num_shared_dpll = 2; |
| |
| for (i = 0; i < dev_priv->num_shared_dpll; i++) { |
| dev_priv->shared_dplls[i].id = i; |
| dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i]; |
| dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set; |
| dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable; |
| dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable; |
| dev_priv->shared_dplls[i].get_hw_state = |
| ibx_pch_dpll_get_hw_state; |
| } |
| } |
| |
| static void intel_shared_dpll_init(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| if (HAS_DDI(dev)) |
| intel_ddi_pll_init(dev); |
| else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) |
| ibx_pch_dpll_init(dev); |
| else |
| dev_priv->num_shared_dpll = 0; |
| |
| BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS); |
| } |
| |
| static int |
| intel_primary_plane_disable(struct drm_plane *plane) |
| { |
| struct drm_device *dev = plane->dev; |
| struct intel_crtc *intel_crtc; |
| |
| if (!plane->fb) |
| return 0; |
| |
| BUG_ON(!plane->crtc); |
| |
| intel_crtc = to_intel_crtc(plane->crtc); |
| |
| /* |
| * Even though we checked plane->fb above, it's still possible that |
| * the primary plane has been implicitly disabled because the crtc |
| * coordinates given weren't visible, or because we detected |
| * that it was 100% covered by a sprite plane. Or, the CRTC may be |
| * off and we've set a fb, but haven't actually turned on the CRTC yet. |
| * In either case, we need to unpin the FB and let the fb pointer get |
| * updated, but otherwise we don't need to touch the hardware. |
| */ |
| if (intel_crtc->primary_enabled) { |
| intel_crtc_wait_for_pending_flips(plane->crtc); |
| intel_disable_primary_hw_plane(plane, plane->crtc); |
| } |
| |
| mutex_lock(&dev->struct_mutex); |
| i915_gem_track_fb(intel_fb_obj(plane->fb), NULL, |
| INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe)); |
| intel_unpin_fb_obj(intel_fb_obj(plane->fb)); |
| mutex_unlock(&dev->struct_mutex); |
| plane->fb = NULL; |
| |
| return 0; |
| } |
| |
| static int |
| intel_check_primary_plane(struct drm_plane *plane, |
| struct intel_plane_state *state) |
| { |
| struct drm_crtc *crtc = state->crtc; |
| struct drm_framebuffer *fb = state->fb; |
| struct drm_rect *dest = &state->dst; |
| struct drm_rect *src = &state->src; |
| const struct drm_rect *clip = &state->clip; |
| |
| return drm_plane_helper_check_update(plane, crtc, fb, |
| src, dest, clip, |
| DRM_PLANE_HELPER_NO_SCALING, |
| DRM_PLANE_HELPER_NO_SCALING, |
| false, true, &state->visible); |
| } |
| |
| static int |
| intel_prepare_primary_plane(struct drm_plane *plane, |
| struct intel_plane_state *state) |
| { |
| struct drm_crtc *crtc = state->crtc; |
| struct drm_framebuffer *fb = state->fb; |
| struct drm_device *dev = crtc->dev; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| enum pipe pipe = intel_crtc->pipe; |
| struct drm_i915_gem_object *obj = intel_fb_obj(fb); |
| struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb); |
| int ret; |
| |
| intel_crtc_wait_for_pending_flips(crtc); |
| |
| if (intel_crtc_has_pending_flip(crtc)) { |
| DRM_ERROR("pipe is still busy with an old pageflip\n"); |
| return -EBUSY; |
| } |
| |
| if (old_obj != obj) { |
| mutex_lock(&dev->struct_mutex); |
| ret = intel_pin_and_fence_fb_obj(plane, fb, NULL); |
| if (ret == 0) |
| i915_gem_track_fb(old_obj, obj, |
| INTEL_FRONTBUFFER_PRIMARY(pipe)); |
| mutex_unlock(&dev->struct_mutex); |
| if (ret != 0) { |
| DRM_DEBUG_KMS("pin & fence failed\n"); |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void |
| intel_commit_primary_plane(struct drm_plane *plane, |
| struct intel_plane_state *state) |
| { |
| struct drm_crtc *crtc = state->crtc; |
| struct drm_framebuffer *fb = state->fb; |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| enum pipe pipe = intel_crtc->pipe; |
| struct drm_framebuffer *old_fb = plane->fb; |
| struct drm_i915_gem_object *obj = intel_fb_obj(fb); |
| struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb); |
| struct intel_plane *intel_plane = to_intel_plane(plane); |
| struct drm_rect *src = &state->src; |
| |
| crtc->primary->fb = fb; |
| crtc->x = src->x1 >> 16; |
| crtc->y = src->y1 >> 16; |
| |
| intel_plane->crtc_x = state->orig_dst.x1; |
| intel_plane->crtc_y = state->orig_dst.y1; |
| intel_plane->crtc_w = drm_rect_width(&state->orig_dst); |
| intel_plane->crtc_h = drm_rect_height(&state->orig_dst); |
| intel_plane->src_x = state->orig_src.x1; |
| intel_plane->src_y = state->orig_src.y1; |
| intel_plane->src_w = drm_rect_width(&state->orig_src); |
| intel_plane->src_h = drm_rect_height(&state->orig_src); |
| intel_plane->obj = obj; |
| |
| if (intel_crtc->active) { |
| /* |
| * FBC does not work on some platforms for rotated |
| * planes, so disable it when rotation is not 0 and |
| * update it when rotation is set back to 0. |
| * |
| * FIXME: This is redundant with the fbc update done in |
| * the primary plane enable function except that that |
| * one is done too late. We eventually need to unify |
| * this. |
| */ |
| if (intel_crtc->primary_enabled && |
| INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) && |
| dev_priv->fbc.plane == intel_crtc->plane && |
| intel_plane->rotation != BIT(DRM_ROTATE_0)) { |
| intel_disable_fbc(dev); |
| } |
| |
| if (state->visible) { |
| bool was_enabled = intel_crtc->primary_enabled; |
| |
| /* FIXME: kill this fastboot hack */ |
| intel_update_pipe_size(intel_crtc); |
| |
| intel_crtc->primary_enabled = true; |
| |
| dev_priv->display.update_primary_plane(crtc, plane->fb, |
| crtc->x, crtc->y); |
| |
| /* |
| * BDW signals flip done immediately if the plane |
| * is disabled, even if the plane enable is already |
| * armed to occur at the next vblank :( |
| */ |
| if (IS_BROADWELL(dev) && !was_enabled) |
| intel_wait_for_vblank(dev, intel_crtc->pipe); |
| } else { |
| /* |
| * If clipping results in a non-visible primary plane, |
| * we'll disable the primary plane. Note that this is |
| * a bit different than what happens if userspace |
| * explicitly disables the plane by passing fb=0 |
| * because plane->fb still gets set and pinned. |
| */ |
| intel_disable_primary_hw_plane(plane, crtc); |
| } |
| |
| intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe)); |
| |
| mutex_lock(&dev->struct_mutex); |
| intel_update_fbc(dev); |
| mutex_unlock(&dev->struct_mutex); |
| } |
| |
| if (old_fb && old_fb != fb) { |
| if (intel_crtc->active) |
| intel_wait_for_vblank(dev, intel_crtc->pipe); |
| |
| mutex_lock(&dev->struct_mutex); |
| intel_unpin_fb_obj(old_obj); |
| mutex_unlock(&dev->struct_mutex); |
| } |
| } |
| |
| static int |
| intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc, |
| struct drm_framebuffer *fb, int crtc_x, int crtc_y, |
| unsigned int crtc_w, unsigned int crtc_h, |
| uint32_t src_x, uint32_t src_y, |
| uint32_t src_w, uint32_t src_h) |
| { |
| struct intel_plane_state state; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| int ret; |
| |
| state.crtc = crtc; |
| state.fb = fb; |
| |
| /* sample coordinates in 16.16 fixed point */ |
| state.src.x1 = src_x; |
| state.src.x2 = src_x + src_w; |
| state.src.y1 = src_y; |
| state.src.y2 = src_y + src_h; |
| |
| /* integer pixels */ |
| state.dst.x1 = crtc_x; |
| state.dst.x2 = crtc_x + crtc_w; |
| state.dst.y1 = crtc_y; |
| state.dst.y2 = crtc_y + crtc_h; |
| |
| state.clip.x1 = 0; |
| state.clip.y1 = 0; |
| state.clip.x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0; |
| state.clip.y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0; |
| |
| state.orig_src = state.src; |
| state.orig_dst = state.dst; |
| |
| ret = intel_check_primary_plane(plane, &state); |
| if (ret) |
| return ret; |
| |
| ret = intel_prepare_primary_plane(plane, &state); |
| if (ret) |
| return ret; |
| |
| intel_commit_primary_plane(plane, &state); |
| |
| return 0; |
| } |
| |
| /* Common destruction function for both primary and cursor planes */ |
| static void intel_plane_destroy(struct drm_plane *plane) |
| { |
| struct intel_plane *intel_plane = to_intel_plane(plane); |
| drm_plane_cleanup(plane); |
| kfree(intel_plane); |
| } |
| |
| static const struct drm_plane_funcs intel_primary_plane_funcs = { |
| .update_plane = intel_primary_plane_setplane, |
| .disable_plane = intel_primary_plane_disable, |
| .destroy = intel_plane_destroy, |
| .set_property = intel_plane_set_property |
| }; |
| |
| static struct drm_plane *intel_primary_plane_create(struct drm_device *dev, |
| int pipe) |
| { |
| struct intel_plane *primary; |
| const uint32_t *intel_primary_formats; |
| int num_formats; |
| |
| primary = kzalloc(sizeof(*primary), GFP_KERNEL); |
| if (primary == NULL) |
| return NULL; |
| |
| primary->can_scale = false; |
| primary->max_downscale = 1; |
| primary->pipe = pipe; |
| primary->plane = pipe; |
| primary->rotation = BIT(DRM_ROTATE_0); |
| if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) |
| primary->plane = !pipe; |
| |
| if (INTEL_INFO(dev)->gen <= 3) { |
| intel_primary_formats = intel_primary_formats_gen2; |
| num_formats = ARRAY_SIZE(intel_primary_formats_gen2); |
| } else { |
| intel_primary_formats = intel_primary_formats_gen4; |
| num_formats = ARRAY_SIZE(intel_primary_formats_gen4); |
| } |
| |
| drm_universal_plane_init(dev, &primary->base, 0, |
| &intel_primary_plane_funcs, |
| intel_primary_formats, num_formats, |
| DRM_PLANE_TYPE_PRIMARY); |
| |
| if (INTEL_INFO(dev)->gen >= 4) { |
| if (!dev->mode_config.rotation_property) |
| dev->mode_config.rotation_property = |
| drm_mode_create_rotation_property(dev, |
| BIT(DRM_ROTATE_0) | |
| BIT(DRM_ROTATE_180)); |
| if (dev->mode_config.rotation_property) |
| drm_object_attach_property(&primary->base.base, |
| dev->mode_config.rotation_property, |
| primary->rotation); |
| } |
| |
| return &primary->base; |
| } |
| |
| static int |
| intel_cursor_plane_disable(struct drm_plane *plane) |
| { |
| if (!plane->fb) |
| return 0; |
| |
| BUG_ON(!plane->crtc); |
| |
| return plane->funcs->update_plane(plane, plane->crtc, NULL, |
| 0, 0, 0, 0, 0, 0, 0, 0); |
| } |
| |
| static int |
| intel_check_cursor_plane(struct drm_plane *plane, |
| struct intel_plane_state *state) |
| { |
| struct drm_crtc *crtc = state->crtc; |
| struct drm_device *dev = crtc->dev; |
| struct drm_framebuffer *fb = state->fb; |
| struct drm_rect *dest = &state->dst; |
| struct drm_rect *src = &state->src; |
| const struct drm_rect *clip = &state->clip; |
| struct drm_i915_gem_object *obj = intel_fb_obj(fb); |
| int crtc_w, crtc_h; |
| unsigned stride; |
| int ret; |
| |
| ret = drm_plane_helper_check_update(plane, crtc, fb, |
| src, dest, clip, |
| DRM_PLANE_HELPER_NO_SCALING, |
| DRM_PLANE_HELPER_NO_SCALING, |
| true, true, &state->visible); |
| if (ret) |
| return ret; |
| |
| |
| /* if we want to turn off the cursor ignore width and height */ |
| if (!obj) |
| return 0; |
| |
| /* Check for which cursor types we support */ |
| crtc_w = drm_rect_width(&state->orig_dst); |
| crtc_h = drm_rect_height(&state->orig_dst); |
| if (!cursor_size_ok(dev, crtc_w, crtc_h)) { |
| DRM_DEBUG("Cursor dimension not supported\n"); |
| return -EINVAL; |
| } |
| |
| stride = roundup_pow_of_two(crtc_w) * 4; |
| if (obj->base.size < stride * crtc_h) { |
| DRM_DEBUG_KMS("buffer is too small\n"); |
| return -ENOMEM; |
| } |
| |
| if (fb == crtc->cursor->fb) |
| return 0; |
| |
| /* we only need to pin inside GTT if cursor is non-phy */ |
| mutex_lock(&dev->struct_mutex); |
| if (!INTEL_INFO(dev)->cursor_needs_physical && obj->tiling_mode) { |
| DRM_DEBUG_KMS("cursor cannot be tiled\n"); |
| ret = -EINVAL; |
| } |
| mutex_unlock(&dev->struct_mutex); |
| |
| return ret; |
| } |
| |
| static int |
| intel_commit_cursor_plane(struct drm_plane *plane, |
| struct intel_plane_state *state) |
| { |
| struct drm_crtc *crtc = state->crtc; |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| struct intel_plane *intel_plane = to_intel_plane(plane); |
| struct drm_i915_gem_object *obj = intel_fb_obj(state->fb); |
| enum pipe pipe = intel_crtc->pipe; |
| unsigned old_width; |
| uint32_t addr; |
| int ret; |
| |
| crtc->cursor_x = state->orig_dst.x1; |
| crtc->cursor_y = state->orig_dst.y1; |
| |
| intel_plane->crtc_x = state->orig_dst.x1; |
| intel_plane->crtc_y = state->orig_dst.y1; |
| intel_plane->crtc_w = drm_rect_width(&state->orig_dst); |
| intel_plane->crtc_h = drm_rect_height(&state->orig_dst); |
| intel_plane->src_x = state->orig_src.x1; |
| intel_plane->src_y = state->orig_src.y1; |
| intel_plane->src_w = drm_rect_width(&state->orig_src); |
| intel_plane->src_h = drm_rect_height(&state->orig_src); |
| intel_plane->obj = obj; |
| |
| if (intel_crtc->cursor_bo == obj) |
| goto update; |
| |
| /* if we want to turn off the cursor ignore width and height */ |
| if (!obj) { |
| DRM_DEBUG_KMS("cursor off\n"); |
| addr = 0; |
| mutex_lock(&dev->struct_mutex); |
| goto finish; |
| } |
| |
| /* we only need to pin inside GTT if cursor is non-phy */ |
| mutex_lock(&dev->struct_mutex); |
| if (!INTEL_INFO(dev)->cursor_needs_physical) { |
| unsigned alignment; |
| |
| /* |
| * Global gtt pte registers are special registers which actually |
| * forward writes to a chunk of system memory. Which means that |
| * there is no risk that the register values disappear as soon |
| * as we call intel_runtime_pm_put(), so it is correct to wrap |
| * only the pin/unpin/fence and not more. |
| */ |
| intel_runtime_pm_get(dev_priv); |
| |
| /* Note that the w/a also requires 2 PTE of padding following |
| * the bo. We currently fill all unused PTE with the shadow |
| * page and so we should always have valid PTE following the |
| * cursor preventing the VT-d warning. |
| */ |
| alignment = 0; |
| if (need_vtd_wa(dev)) |
| alignment = 64*1024; |
| |
| ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL); |
| if (ret) { |
| DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n"); |
| intel_runtime_pm_put(dev_priv); |
| goto fail_locked; |
| } |
| |
| ret = i915_gem_object_put_fence(obj); |
| if (ret) { |
| DRM_DEBUG_KMS("failed to release fence for cursor"); |
| intel_runtime_pm_put(dev_priv); |
| goto fail_unpin; |
| } |
| |
| addr = i915_gem_obj_ggtt_offset(obj); |
| |
| intel_runtime_pm_put(dev_priv); |
| |
| } else { |
| int align = IS_I830(dev) ? 16 * 1024 : 256; |
| ret = i915_gem_object_attach_phys(obj, align); |
| if (ret) { |
| DRM_DEBUG_KMS("failed to attach phys object\n"); |
| goto fail_locked; |
| } |
| addr = obj->phys_handle->busaddr; |
| } |
| |
| finish: |
| if (intel_crtc->cursor_bo) { |
| if (!INTEL_INFO(dev)->cursor_needs_physical) |
| i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo); |
| } |
| |
| i915_gem_track_fb(intel_crtc->cursor_bo, obj, |
| INTEL_FRONTBUFFER_CURSOR(pipe)); |
| mutex_unlock(&dev->struct_mutex); |
| |
| intel_crtc->cursor_addr = addr; |
| intel_crtc->cursor_bo = obj; |
| update: |
| old_width = intel_crtc->cursor_width; |
| |
| intel_crtc->cursor_width = drm_rect_width(&state->orig_dst); |
| intel_crtc->cursor_height = drm_rect_height(&state->orig_dst); |
| |
| if (intel_crtc->active) { |
| if (old_width != intel_crtc->cursor_width) |
| intel_update_watermarks(crtc); |
| intel_crtc_update_cursor(crtc, state->visible); |
| |
| intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe)); |
| } |
| |
| return 0; |
| fail_unpin: |
| i915_gem_object_unpin_from_display_plane(obj); |
| fail_locked: |
| mutex_unlock(&dev->struct_mutex); |
| return ret; |
| } |
| |
| static int |
| intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc, |
| struct drm_framebuffer *fb, int crtc_x, int crtc_y, |
| unsigned int crtc_w, unsigned int crtc_h, |
| uint32_t src_x, uint32_t src_y, |
| uint32_t src_w, uint32_t src_h) |
| { |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| struct intel_plane_state state; |
| int ret; |
| |
| state.crtc = crtc; |
| state.fb = fb; |
| |
| /* sample coordinates in 16.16 fixed point */ |
| state.src.x1 = src_x; |
| state.src.x2 = src_x + src_w; |
| state.src.y1 = src_y; |
| state.src.y2 = src_y + src_h; |
| |
| /* integer pixels */ |
| state.dst.x1 = crtc_x; |
| state.dst.x2 = crtc_x + crtc_w; |
| state.dst.y1 = crtc_y; |
| state.dst.y2 = crtc_y + crtc_h; |
| |
| state.clip.x1 = 0; |
| state.clip.y1 = 0; |
| state.clip.x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0; |
| state.clip.y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0; |
| |
| state.orig_src = state.src; |
| state.orig_dst = state.dst; |
| |
| ret = intel_check_cursor_plane(plane, &state); |
| if (ret) |
| return ret; |
| |
| return intel_commit_cursor_plane(plane, &state); |
| } |
| |
| static const struct drm_plane_funcs intel_cursor_plane_funcs = { |
| .update_plane = intel_cursor_plane_update, |
| .disable_plane = intel_cursor_plane_disable, |
| .destroy = intel_plane_destroy, |
| .set_property = intel_plane_set_property, |
| }; |
| |
| static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev, |
| int pipe) |
| { |
| struct intel_plane *cursor; |
| |
| cursor = kzalloc(sizeof(*cursor), GFP_KERNEL); |
| if (cursor == NULL) |
| return NULL; |
| |
| cursor->can_scale = false; |
| cursor->max_downscale = 1; |
| cursor->pipe = pipe; |
| cursor->plane = pipe; |
| cursor->rotation = BIT(DRM_ROTATE_0); |
| |
| drm_universal_plane_init(dev, &cursor->base, 0, |
| &intel_cursor_plane_funcs, |
| intel_cursor_formats, |
| ARRAY_SIZE(intel_cursor_formats), |
| DRM_PLANE_TYPE_CURSOR); |
| |
| if (INTEL_INFO(dev)->gen >= 4) { |
| if (!dev->mode_config.rotation_property) |
| dev->mode_config.rotation_property = |
| drm_mode_create_rotation_property(dev, |
| BIT(DRM_ROTATE_0) | |
| BIT(DRM_ROTATE_180)); |
| if (dev->mode_config.rotation_property) |
| drm_object_attach_property(&cursor->base.base, |
| dev->mode_config.rotation_property, |
| cursor->rotation); |
| } |
| |
| return &cursor->base; |
| } |
| |
| static void intel_crtc_init(struct drm_device *dev, int pipe) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc; |
| struct drm_plane *primary = NULL; |
| struct drm_plane *cursor = NULL; |
| int i, ret; |
| |
| intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL); |
| if (intel_crtc == NULL) |
| return; |
| |
| primary = intel_primary_plane_create(dev, pipe); |
| if (!primary) |
| goto fail; |
| |
| cursor = intel_cursor_plane_create(dev, pipe); |
| if (!cursor) |
| goto fail; |
| |
| ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary, |
| cursor, &intel_crtc_funcs); |
| if (ret) |
| goto fail; |
| |
| drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256); |
| for (i = 0; i < 256; i++) { |
| intel_crtc->lut_r[i] = i; |
| intel_crtc->lut_g[i] = i; |
| intel_crtc->lut_b[i] = i; |
| } |
| |
| /* |
| * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port |
| * is hooked to pipe B. Hence we want plane A feeding pipe B. |
| */ |
| intel_crtc->pipe = pipe; |
| intel_crtc->plane = pipe; |
| if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) { |
| DRM_DEBUG_KMS("swapping pipes & planes for FBC\n"); |
| intel_crtc->plane = !pipe; |
| } |
| |
| intel_crtc->cursor_base = ~0; |
| intel_crtc->cursor_cntl = ~0; |
| intel_crtc->cursor_size = ~0; |
| |
| BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) || |
| dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL); |
| dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base; |
| dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base; |
| |
| INIT_WORK(&intel_crtc->mmio_flip.work, intel_mmio_flip_work_func); |
| |
| drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs); |
| |
| WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe); |
| return; |
| |
| fail: |
| if (primary) |
| drm_plane_cleanup(primary); |
| if (cursor) |
| drm_plane_cleanup(cursor); |
| kfree(intel_crtc); |
| } |
| |
| enum pipe intel_get_pipe_from_connector(struct intel_connector *connector) |
| { |
| struct drm_encoder *encoder = connector->base.encoder; |
| struct drm_device *dev = connector->base.dev; |
| |
| WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex)); |
| |
| if (!encoder || WARN_ON(!encoder->crtc)) |
| return INVALID_PIPE; |
| |
| return to_intel_crtc(encoder->crtc)->pipe; |
| } |
| |
| int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data; |
| struct drm_crtc *drmmode_crtc; |
| struct intel_crtc *crtc; |
| |
| if (!drm_core_check_feature(dev, DRIVER_MODESET)) |
| return -ENODEV; |
| |
| drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id); |
| |
| if (!drmmode_crtc) { |
| DRM_ERROR("no such CRTC id\n"); |
| return -ENOENT; |
| } |
| |
| crtc = to_intel_crtc(drmmode_crtc); |
| pipe_from_crtc_id->pipe = crtc->pipe; |
| |
| return 0; |
| } |
| |
| static int intel_encoder_clones(struct intel_encoder *encoder) |
| { |
| struct drm_device *dev = encoder->base.dev; |
| struct intel_encoder *source_encoder; |
| int index_mask = 0; |
| int entry = 0; |
| |
| for_each_intel_encoder(dev, source_encoder) { |
| if (encoders_cloneable(encoder, source_encoder)) |
| index_mask |= (1 << entry); |
| |
| entry++; |
| } |
| |
| return index_mask; |
| } |
| |
| static bool has_edp_a(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| if (!IS_MOBILE(dev)) |
| return false; |
| |
| if ((I915_READ(DP_A) & DP_DETECTED) == 0) |
| return false; |
| |
| if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE)) |
| return false; |
| |
| return true; |
| } |
| |
| const char *intel_output_name(int output) |
| { |
| static const char *names[] = { |
| [INTEL_OUTPUT_UNUSED] = "Unused", |
| [INTEL_OUTPUT_ANALOG] = "Analog", |
| [INTEL_OUTPUT_DVO] = "DVO", |
| [INTEL_OUTPUT_SDVO] = "SDVO", |
| [INTEL_OUTPUT_LVDS] = "LVDS", |
| [INTEL_OUTPUT_TVOUT] = "TV", |
| [INTEL_OUTPUT_HDMI] = "HDMI", |
| [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort", |
| [INTEL_OUTPUT_EDP] = "eDP", |
| [INTEL_OUTPUT_DSI] = "DSI", |
| [INTEL_OUTPUT_UNKNOWN] = "Unknown", |
| }; |
| |
| if (output < 0 || output >= ARRAY_SIZE(names) || !names[output]) |
| return "Invalid"; |
| |
| return names[output]; |
| } |
| |
| static bool intel_crt_present(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| if (INTEL_INFO(dev)->gen >= 9) |
| return false; |
| |
| if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev)) |
| return false; |
| |
| if (IS_CHERRYVIEW(dev)) |
| return false; |
| |
| if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support) |
| return false; |
| |
| return true; |
| } |
| |
| static void intel_setup_outputs(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_encoder *encoder; |
| bool dpd_is_edp = false; |
| |
| intel_lvds_init(dev); |
| |
| if (intel_crt_present(dev)) |
| intel_crt_init(dev); |
| |
| if (HAS_DDI(dev)) { |
| int found; |
| |
| /* Haswell uses DDI functions to detect digital outputs */ |
| found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED; |
| /* DDI A only supports eDP */ |
| if (found) |
| intel_ddi_init(dev, PORT_A); |
| |
| /* DDI B, C and D detection is indicated by the SFUSE_STRAP |
| * register */ |
| found = I915_READ(SFUSE_STRAP); |
| |
| if (found & SFUSE_STRAP_DDIB_DETECTED) |
| intel_ddi_init(dev, PORT_B); |
| if (found & SFUSE_STRAP_DDIC_DETECTED) |
| intel_ddi_init(dev, PORT_C); |
| if (found & SFUSE_STRAP_DDID_DETECTED) |
| intel_ddi_init(dev, PORT_D); |
| } else if (HAS_PCH_SPLIT(dev)) { |
| int found; |
| dpd_is_edp = intel_dp_is_edp(dev, PORT_D); |
| |
| if (has_edp_a(dev)) |
| intel_dp_init(dev, DP_A, PORT_A); |
| |
| if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) { |
| /* PCH SDVOB multiplex with HDMIB */ |
| found = intel_sdvo_init(dev, PCH_SDVOB, true); |
| if (!found) |
| intel_hdmi_init(dev, PCH_HDMIB, PORT_B); |
| if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED)) |
| intel_dp_init(dev, PCH_DP_B, PORT_B); |
| } |
| |
| if (I915_READ(PCH_HDMIC) & SDVO_DETECTED) |
| intel_hdmi_init(dev, PCH_HDMIC, PORT_C); |
| |
| if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED) |
| intel_hdmi_init(dev, PCH_HDMID, PORT_D); |
| |
| if (I915_READ(PCH_DP_C) & DP_DETECTED) |
| intel_dp_init(dev, PCH_DP_C, PORT_C); |
| |
| if (I915_READ(PCH_DP_D) & DP_DETECTED) |
| intel_dp_init(dev, PCH_DP_D, PORT_D); |
| } else if (IS_VALLEYVIEW(dev)) { |
| /* |
| * The DP_DETECTED bit is the latched state of the DDC |
| * SDA pin at boot. However since eDP doesn't require DDC |
| * (no way to plug in a DP->HDMI dongle) the DDC pins for |
| * eDP ports may have been muxed to an alternate function. |
| * Thus we can't rely on the DP_DETECTED bit alone to detect |
| * eDP ports. Consult the VBT as well as DP_DETECTED to |
| * detect eDP ports. |
| */ |
| if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) |
| intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB, |
| PORT_B); |
| if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED || |
| intel_dp_is_edp(dev, PORT_B)) |
| intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B); |
| |
| if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) |
| intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC, |
| PORT_C); |
| if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED || |
| intel_dp_is_edp(dev, PORT_C)) |
| intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C); |
| |
| if (IS_CHERRYVIEW(dev)) { |
| if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED) |
| intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID, |
| PORT_D); |
| /* eDP not supported on port D, so don't check VBT */ |
| if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED) |
| intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D); |
| } |
| |
| intel_dsi_init(dev); |
| } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) { |
| bool found = false; |
| |
| if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) { |
| DRM_DEBUG_KMS("probing SDVOB\n"); |
| found = intel_sdvo_init(dev, GEN3_SDVOB, true); |
| if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) { |
| DRM_DEBUG_KMS("probing HDMI on SDVOB\n"); |
| intel_hdmi_init(dev, GEN4_HDMIB, PORT_B); |
| } |
| |
| if (!found && SUPPORTS_INTEGRATED_DP(dev)) |
| intel_dp_init(dev, DP_B, PORT_B); |
| } |
| |
| /* Before G4X SDVOC doesn't have its own detect register */ |
| |
| if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) { |
| DRM_DEBUG_KMS("probing SDVOC\n"); |
| found = intel_sdvo_init(dev, GEN3_SDVOC, false); |
| } |
| |
| if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) { |
| |
| if (SUPPORTS_INTEGRATED_HDMI(dev)) { |
| DRM_DEBUG_KMS("probing HDMI on SDVOC\n"); |
| intel_hdmi_init(dev, GEN4_HDMIC, PORT_C); |
| } |
| if (SUPPORTS_INTEGRATED_DP(dev)) |
| intel_dp_init(dev, DP_C, PORT_C); |
| } |
| |
| if (SUPPORTS_INTEGRATED_DP(dev) && |
| (I915_READ(DP_D) & DP_DETECTED)) |
| intel_dp_init(dev, DP_D, PORT_D); |
| } else if (IS_GEN2(dev)) |
| intel_dvo_init(dev); |
| |
| if (SUPPORTS_TV(dev)) |
| intel_tv_init(dev); |
| |
| intel_psr_init(dev); |
| |
| for_each_intel_encoder(dev, encoder) { |
| encoder->base.possible_crtcs = encoder->crtc_mask; |
| encoder->base.possible_clones = |
| intel_encoder_clones(encoder); |
| } |
| |
| intel_init_pch_refclk(dev); |
| |
| drm_helper_move_panel_connectors_to_head(dev); |
| } |
| |
| static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb) |
| { |
| struct drm_device *dev = fb->dev; |
| struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); |
| |
| drm_framebuffer_cleanup(fb); |
| mutex_lock(&dev->struct_mutex); |
| WARN_ON(!intel_fb->obj->framebuffer_references--); |
| drm_gem_object_unreference(&intel_fb->obj->base); |
| mutex_unlock(&dev->struct_mutex); |
| kfree(intel_fb); |
| } |
| |
| static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb, |
| struct drm_file *file, |
| unsigned int *handle) |
| { |
| struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); |
| struct drm_i915_gem_object *obj = intel_fb->obj; |
| |
| return drm_gem_handle_create(file, &obj->base, handle); |
| } |
| |
| static const struct drm_framebuffer_funcs intel_fb_funcs = { |
| .destroy = intel_user_framebuffer_destroy, |
| .create_handle = intel_user_framebuffer_create_handle, |
| }; |
| |
| static int intel_framebuffer_init(struct drm_device *dev, |
| struct intel_framebuffer *intel_fb, |
| struct drm_mode_fb_cmd2 *mode_cmd, |
| struct drm_i915_gem_object *obj) |
| { |
| int aligned_height; |
| int pitch_limit; |
| int ret; |
| |
| WARN_ON(!mutex_is_locked(&dev->struct_mutex)); |
| |
| if (obj->tiling_mode == I915_TILING_Y) { |
| DRM_DEBUG("hardware does not support tiling Y\n"); |
| return -EINVAL; |
| } |
| |
| if (mode_cmd->pitches[0] & 63) { |
| DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n", |
| mode_cmd->pitches[0]); |
| return -EINVAL; |
| } |
| |
| if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) { |
| pitch_limit = 32*1024; |
| } else if (INTEL_INFO(dev)->gen >= 4) { |
| if (obj->tiling_mode) |
| pitch_limit = 16*1024; |
| else |
| pitch_limit = 32*1024; |
| } else if (INTEL_INFO(dev)->gen >= 3) { |
| if (obj->tiling_mode) |
| pitch_limit = 8*1024; |
| else |
| pitch_limit = 16*1024; |
| } else |
| /* XXX DSPC is limited to 4k tiled */ |
| pitch_limit = 8*1024; |
| |
| if (mode_cmd->pitches[0] > pitch_limit) { |
| DRM_DEBUG("%s pitch (%d) must be at less than %d\n", |
| obj->tiling_mode ? "tiled" : "linear", |
| mode_cmd->pitches[0], pitch_limit); |
| return -EINVAL; |
| } |
| |
| if (obj->tiling_mode != I915_TILING_NONE && |
| mode_cmd->pitches[0] != obj->stride) { |
| DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n", |
| mode_cmd->pitches[0], obj->stride); |
| return -EINVAL; |
| } |
| |
| /* Reject formats not supported by any plane early. */ |
| switch (mode_cmd->pixel_format) { |
| case DRM_FORMAT_C8: |
| case DRM_FORMAT_RGB565: |
| case DRM_FORMAT_XRGB8888: |
| case DRM_FORMAT_ARGB8888: |
| break; |
| case DRM_FORMAT_XRGB1555: |
| case DRM_FORMAT_ARGB1555: |
| if (INTEL_INFO(dev)->gen > 3) { |
| DRM_DEBUG("unsupported pixel format: %s\n", |
| drm_get_format_name(mode_cmd->pixel_format)); |
| return -EINVAL; |
| } |
| break; |
| case DRM_FORMAT_XBGR8888: |
| case DRM_FORMAT_ABGR8888: |
| case DRM_FORMAT_XRGB2101010: |
| case DRM_FORMAT_ARGB2101010: |
| case DRM_FORMAT_XBGR2101010: |
| case DRM_FORMAT_ABGR2101010: |
| if (INTEL_INFO(dev)->gen < 4) { |
| DRM_DEBUG("unsupported pixel format: %s\n", |
| drm_get_format_name(mode_cmd->pixel_format)); |
| return -EINVAL; |
| } |
| break; |
| case DRM_FORMAT_YUYV: |
| case DRM_FORMAT_UYVY: |
| case DRM_FORMAT_YVYU: |
| case DRM_FORMAT_VYUY: |
| if (INTEL_INFO(dev)->gen < 5) { |
| DRM_DEBUG("unsupported pixel format: %s\n", |
| drm_get_format_name(mode_cmd->pixel_format)); |
| return -EINVAL; |
| } |
| break; |
| default: |
| DRM_DEBUG("unsupported pixel format: %s\n", |
| drm_get_format_name(mode_cmd->pixel_format)); |
| return -EINVAL; |
| } |
| |
| /* FIXME need to adjust LINOFF/TILEOFF accordingly. */ |
| if (mode_cmd->offsets[0] != 0) |
| return -EINVAL; |
| |
| aligned_height = intel_align_height(dev, mode_cmd->height, |
| obj->tiling_mode); |
| /* FIXME drm helper for size checks (especially planar formats)? */ |
| if (obj->base.size < aligned_height * mode_cmd->pitches[0]) |
| return -EINVAL; |
| |
| drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd); |
| intel_fb->obj = obj; |
| intel_fb->obj->framebuffer_references++; |
| |
| ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs); |
| if (ret) { |
| DRM_ERROR("framebuffer init failed %d\n", ret); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static struct drm_framebuffer * |
| intel_user_framebuffer_create(struct drm_device *dev, |
| struct drm_file *filp, |
| struct drm_mode_fb_cmd2 *mode_cmd) |
| { |
| struct drm_i915_gem_object *obj; |
| |
| obj = to_intel_bo(drm_gem_object_lookup(dev, filp, |
| mode_cmd->handles[0])); |
| if (&obj->base == NULL) |
| return ERR_PTR(-ENOENT); |
| |
| return intel_framebuffer_create(dev, mode_cmd, obj); |
| } |
| |
| #ifndef CONFIG_DRM_I915_FBDEV |
| static inline void intel_fbdev_output_poll_changed(struct drm_device *dev) |
| { |
| } |
| #endif |
| |
| static const struct drm_mode_config_funcs intel_mode_funcs = { |
| .fb_create = intel_user_framebuffer_create, |
| .output_poll_changed = intel_fbdev_output_poll_changed, |
| }; |
| |
| /* Set up chip specific display functions */ |
| static void intel_init_display(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| if (HAS_PCH_SPLIT(dev) || IS_G4X(dev)) |
| dev_priv->display.find_dpll = g4x_find_best_dpll; |
| else if (IS_CHERRYVIEW(dev)) |
| dev_priv->display.find_dpll = chv_find_best_dpll; |
| else if (IS_VALLEYVIEW(dev)) |
| dev_priv->display.find_dpll = vlv_find_best_dpll; |
| else if (IS_PINEVIEW(dev)) |
| dev_priv->display.find_dpll = pnv_find_best_dpll; |
| else |
| dev_priv->display.find_dpll = i9xx_find_best_dpll; |
| |
| if (HAS_DDI(dev)) { |
| dev_priv->display.get_pipe_config = haswell_get_pipe_config; |
| dev_priv->display.get_plane_config = ironlake_get_plane_config; |
| dev_priv->display.crtc_compute_clock = |
| haswell_crtc_compute_clock; |
| dev_priv->display.crtc_enable = haswell_crtc_enable; |
| dev_priv->display.crtc_disable = haswell_crtc_disable; |
| dev_priv->display.off = ironlake_crtc_off; |
| if (INTEL_INFO(dev)->gen >= 9) |
| dev_priv->display.update_primary_plane = |
| skylake_update_primary_plane; |
| else |
| dev_priv->display.update_primary_plane = |
| ironlake_update_primary_plane; |
| } else if (HAS_PCH_SPLIT(dev)) { |
| dev_priv->display.get_pipe_config = ironlake_get_pipe_config; |
| dev_priv->display.get_plane_config = ironlake_get_plane_config; |
| dev_priv->display.crtc_compute_clock = |
| ironlake_crtc_compute_clock; |
| dev_priv->display.crtc_enable = ironlake_crtc_enable; |
| dev_priv->display.crtc_disable = ironlake_crtc_disable; |
| dev_priv->display.off = ironlake_crtc_off; |
| dev_priv->display.update_primary_plane = |
| ironlake_update_primary_plane; |
| } else if (IS_VALLEYVIEW(dev)) { |
| dev_priv->display.get_pipe_config = i9xx_get_pipe_config; |
| dev_priv->display.get_plane_config = i9xx_get_plane_config; |
| dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock; |
| dev_priv->display.crtc_enable = valleyview_crtc_enable; |
| dev_priv->display.crtc_disable = i9xx_crtc_disable; |
| dev_priv->display.off = i9xx_crtc_off; |
| dev_priv->display.update_primary_plane = |
| i9xx_update_primary_plane; |
| } else { |
| dev_priv->display.get_pipe_config = i9xx_get_pipe_config; |
| dev_priv->display.get_plane_config = i9xx_get_plane_config; |
| dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock; |
| dev_priv->display.crtc_enable = i9xx_crtc_enable; |
| dev_priv->display.crtc_disable = i9xx_crtc_disable; |
| dev_priv->display.off = i9xx_crtc_off; |
| dev_priv->display.update_primary_plane = |
| i9xx_update_primary_plane; |
| } |
| |
| /* Returns the core display clock speed */ |
| if (IS_VALLEYVIEW(dev)) |
| dev_priv->display.get_display_clock_speed = |
| valleyview_get_display_clock_speed; |
| else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev))) |
| dev_priv->display.get_display_clock_speed = |
| i945_get_display_clock_speed; |
| else if (IS_I915G(dev)) |
| dev_priv->display.get_display_clock_speed = |
| i915_get_display_clock_speed; |
| else if (IS_I945GM(dev) || IS_845G(dev)) |
| dev_priv->display.get_display_clock_speed = |
| i9xx_misc_get_display_clock_speed; |
| else if (IS_PINEVIEW(dev)) |
| dev_priv->display.get_display_clock_speed = |
| pnv_get_display_clock_speed; |
| else if (IS_I915GM(dev)) |
| dev_priv->display.get_display_clock_speed = |
| i915gm_get_display_clock_speed; |
| else if (IS_I865G(dev)) |
| dev_priv->display.get_display_clock_speed = |
| i865_get_display_clock_speed; |
| else if (IS_I85X(dev)) |
| dev_priv->display.get_display_clock_speed = |
| i855_get_display_clock_speed; |
| else /* 852, 830 */ |
| dev_priv->display.get_display_clock_speed = |
| i830_get_display_clock_speed; |
| |
| if (IS_GEN5(dev)) { |
| dev_priv->display.fdi_link_train = ironlake_fdi_link_train; |
| } else if (IS_GEN6(dev)) { |
| dev_priv->display.fdi_link_train = gen6_fdi_link_train; |
| } else if (IS_IVYBRIDGE(dev)) { |
| /* FIXME: detect B0+ stepping and use auto training */ |
| dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train; |
| dev_priv->display.modeset_global_resources = |
| ivb_modeset_global_resources; |
| } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) { |
| dev_priv->display.fdi_link_train = hsw_fdi_link_train; |
| } else if (IS_VALLEYVIEW(dev)) { |
| dev_priv->display.modeset_global_resources = |
| valleyview_modeset_global_resources; |
| } |
| |
| /* Default just returns -ENODEV to indicate unsupported */ |
| dev_priv->display.queue_flip = intel_default_queue_flip; |
| |
| switch (INTEL_INFO(dev)->gen) { |
| case 2: |
| dev_priv->display.queue_flip = intel_gen2_queue_flip; |
| break; |
| |
| case 3: |
| dev_priv->display.queue_flip = intel_gen3_queue_flip; |
| break; |
| |
| case 4: |
| case 5: |
| dev_priv->display.queue_flip = intel_gen4_queue_flip; |
| break; |
| |
| case 6: |
| dev_priv->display.queue_flip = intel_gen6_queue_flip; |
| break; |
| case 7: |
| case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */ |
| dev_priv->display.queue_flip = intel_gen7_queue_flip; |
| break; |
| case 9: |
| dev_priv->display.queue_flip = intel_gen9_queue_flip; |
| break; |
| } |
| |
| intel_panel_init_backlight_funcs(dev); |
| |
| mutex_init(&dev_priv->pps_mutex); |
| } |
| |
| /* |
| * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend, |
| * resume, or other times. This quirk makes sure that's the case for |
| * affected systems. |
| */ |
| static void quirk_pipea_force(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| dev_priv->quirks |= QUIRK_PIPEA_FORCE; |
| DRM_INFO("applying pipe a force quirk\n"); |
| } |
| |
| static void quirk_pipeb_force(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| dev_priv->quirks |= QUIRK_PIPEB_FORCE; |
| DRM_INFO("applying pipe b force quirk\n"); |
| } |
| |
| /* |
| * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason |
| */ |
| static void quirk_ssc_force_disable(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE; |
| DRM_INFO("applying lvds SSC disable quirk\n"); |
| } |
| |
| /* |
| * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight |
| * brightness value |
| */ |
| static void quirk_invert_brightness(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS; |
| DRM_INFO("applying inverted panel brightness quirk\n"); |
| } |
| |
| /* Some VBT's incorrectly indicate no backlight is present */ |
| static void quirk_backlight_present(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT; |
| DRM_INFO("applying backlight present quirk\n"); |
| } |
| |
| struct intel_quirk { |
| int device; |
| int subsystem_vendor; |
| int subsystem_device; |
| void (*hook)(struct drm_device *dev); |
| }; |
| |
| /* For systems that don't have a meaningful PCI subdevice/subvendor ID */ |
| struct intel_dmi_quirk { |
| void (*hook)(struct drm_device *dev); |
| const struct dmi_system_id (*dmi_id_list)[]; |
| }; |
| |
| static int intel_dmi_reverse_brightness(const struct dmi_system_id *id) |
| { |
| DRM_INFO("Backlight polarity reversed on %s\n", id->ident); |
| return 1; |
| } |
| |
| static const struct intel_dmi_quirk intel_dmi_quirks[] = { |
| { |
| .dmi_id_list = &(const struct dmi_system_id[]) { |
| { |
| .callback = intel_dmi_reverse_brightness, |
| .ident = "NCR Corporation", |
| .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"), |
| DMI_MATCH(DMI_PRODUCT_NAME, ""), |
| }, |
| }, |
| { } /* terminating entry */ |
| }, |
| .hook = quirk_invert_brightness, |
| }, |
| }; |
| |
| static struct intel_quirk intel_quirks[] = { |
| /* HP Mini needs pipe A force quirk (LP: #322104) */ |
| { 0x27ae, 0x103c, 0x361a, quirk_pipea_force }, |
| |
| /* Toshiba Protege R-205, S-209 needs pipe A force quirk */ |
| { 0x2592, 0x1179, 0x0001, quirk_pipea_force }, |
| |
| /* ThinkPad T60 needs pipe A force quirk (bug #16494) */ |
| { 0x2782, 0x17aa, 0x201a, quirk_pipea_force }, |
| |
| /* 830 needs to leave pipe A & dpll A up */ |
| { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force }, |
| |
| /* 830 needs to leave pipe B & dpll B up */ |
| { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force }, |
| |
| /* Lenovo U160 cannot use SSC on LVDS */ |
| { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable }, |
| |
| /* Sony Vaio Y cannot use SSC on LVDS */ |
| { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable }, |
| |
| /* Acer Aspire 5734Z must invert backlight brightness */ |
| { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness }, |
| |
| /* Acer/eMachines G725 */ |
| { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness }, |
| |
| /* Acer/eMachines e725 */ |
| { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness }, |
| |
| /* Acer/Packard Bell NCL20 */ |
| { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness }, |
| |
| /* Acer Aspire 4736Z */ |
| { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness }, |
| |
| /* Acer Aspire 5336 */ |
| { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness }, |
| |
| /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */ |
| { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present }, |
| |
| /* Acer C720 Chromebook (Core i3 4005U) */ |
| { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present }, |
| |
| /* Apple Macbook 2,1 (Core 2 T7400) */ |
| { 0x27a2, 0x8086, 0x7270, quirk_backlight_present }, |
| |
| /* Toshiba CB35 Chromebook (Celeron 2955U) */ |
| { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present }, |
| |
| /* HP Chromebook 14 (Celeron 2955U) */ |
| { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present }, |
| }; |
| |
| static void intel_init_quirks(struct drm_device *dev) |
| { |
| struct pci_dev *d = dev->pdev; |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) { |
| struct intel_quirk *q = &intel_quirks[i]; |
| |
| if (d->device == q->device && |
| (d->subsystem_vendor == q->subsystem_vendor || |
| q->subsystem_vendor == PCI_ANY_ID) && |
| (d->subsystem_device == q->subsystem_device || |
| q->subsystem_device == PCI_ANY_ID)) |
| q->hook(dev); |
| } |
| for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) { |
| if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0) |
| intel_dmi_quirks[i].hook(dev); |
| } |
| } |
| |
| /* Disable the VGA plane that we never use */ |
| static void i915_disable_vga(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u8 sr1; |
| u32 vga_reg = i915_vgacntrl_reg(dev); |
| |
| /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */ |
| vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO); |
| outb(SR01, VGA_SR_INDEX); |
| sr1 = inb(VGA_SR_DATA); |
| outb(sr1 | 1<<5, VGA_SR_DATA); |
| vga_put(dev->pdev, VGA_RSRC_LEGACY_IO); |
| udelay(300); |
| |
| /* |
| * Fujitsu-Siemens Lifebook S6010 (830) has problems resuming |
| * from S3 without preserving (some of?) the other bits. |
| */ |
| I915_WRITE(vga_reg, dev_priv->bios_vgacntr | VGA_DISP_DISABLE); |
| POSTING_READ(vga_reg); |
| } |
| |
| void intel_modeset_init_hw(struct drm_device *dev) |
| { |
| intel_prepare_ddi(dev); |
| |
| if (IS_VALLEYVIEW(dev)) |
| vlv_update_cdclk(dev); |
| |
| intel_init_clock_gating(dev); |
| |
| intel_enable_gt_powersave(dev); |
| } |
| |
| void intel_modeset_init(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int sprite, ret; |
| enum pipe pipe; |
| struct intel_crtc *crtc; |
| |
| drm_mode_config_init(dev); |
| |
| dev->mode_config.min_width = 0; |
| dev->mode_config.min_height = 0; |
| |
| dev->mode_config.preferred_depth = 24; |
| dev->mode_config.prefer_shadow = 1; |
| |
| dev->mode_config.funcs = &intel_mode_funcs; |
| |
| intel_init_quirks(dev); |
| |
| intel_init_pm(dev); |
| |
| if (INTEL_INFO(dev)->num_pipes == 0) |
| return; |
| |
| intel_init_display(dev); |
| intel_init_audio(dev); |
| |
| if (IS_GEN2(dev)) { |
| dev->mode_config.max_width = 2048; |
| dev->mode_config.max_height = 2048; |
| } else if (IS_GEN3(dev)) { |
| dev->mode_config.max_width = 4096; |
| dev->mode_config.max_height = 4096; |
| } else { |
| dev->mode_config.max_width = 8192; |
| dev->mode_config.max_height = 8192; |
| } |
| |
| if (IS_845G(dev) || IS_I865G(dev)) { |
| dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512; |
| dev->mode_config.cursor_height = 1023; |
| } else if (IS_GEN2(dev)) { |
| dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH; |
| dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT; |
| } else { |
| dev->mode_config.cursor_width = MAX_CURSOR_WIDTH; |
| dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT; |
| } |
| |
| dev->mode_config.fb_base = dev_priv->gtt.mappable_base; |
| |
| DRM_DEBUG_KMS("%d display pipe%s available.\n", |
| INTEL_INFO(dev)->num_pipes, |
| INTEL_INFO(dev)->num_pipes > 1 ? "s" : ""); |
| |
| for_each_pipe(dev_priv, pipe) { |
| intel_crtc_init(dev, pipe); |
| for_each_sprite(pipe, sprite) { |
| ret = intel_plane_init(dev, pipe, sprite); |
| if (ret) |
| DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n", |
| pipe_name(pipe), sprite_name(pipe, sprite), ret); |
| } |
| } |
| |
| intel_init_dpio(dev); |
| |
| intel_shared_dpll_init(dev); |
| |
| /* save the BIOS value before clobbering it */ |
| dev_priv->bios_vgacntr = I915_READ(i915_vgacntrl_reg(dev)); |
| /* Just disable it once at startup */ |
| i915_disable_vga(dev); |
| intel_setup_outputs(dev); |
| |
| /* Just in case the BIOS is doing something questionable. */ |
| intel_disable_fbc(dev); |
| |
| drm_modeset_lock_all(dev); |
| intel_modeset_setup_hw_state(dev, false); |
| drm_modeset_unlock_all(dev); |
| |
| for_each_intel_crtc(dev, crtc) { |
| if (!crtc->active) |
| continue; |
| |
| /* |
| * Note that reserving the BIOS fb up front prevents us |
| * from stuffing other stolen allocations like the ring |
| * on top. This prevents some ugliness at boot time, and |
| * can even allow for smooth boot transitions if the BIOS |
| * fb is large enough for the active pipe configuration. |
| */ |
| if (dev_priv->display.get_plane_config) { |
| dev_priv->display.get_plane_config(crtc, |
| &crtc->plane_config); |
| /* |
| * If the fb is shared between multiple heads, we'll |
| * just get the first one. |
| */ |
| intel_find_plane_obj(crtc, &crtc->plane_config); |
| } |
| } |
| } |
| |
| static void intel_enable_pipe_a(struct drm_device *dev) |
| { |
| struct intel_connector *connector; |
| struct drm_connector *crt = NULL; |
| struct intel_load_detect_pipe load_detect_temp; |
| struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx; |
| |
| /* We can't just switch on the pipe A, we need to set things up with a |
| * proper mode and output configuration. As a gross hack, enable pipe A |
| * by enabling the load detect pipe once. */ |
| list_for_each_entry(connector, |
| &dev->mode_config.connector_list, |
| base.head) { |
| if (connector->encoder->type == INTEL_OUTPUT_ANALOG) { |
| crt = &connector->base; |
| break; |
| } |
| } |
| |
| if (!crt) |
| return; |
| |
| if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx)) |
| intel_release_load_detect_pipe(crt, &load_detect_temp); |
| } |
| |
| static bool |
| intel_check_plane_mapping(struct intel_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 reg, val; |
| |
| if (INTEL_INFO(dev)->num_pipes == 1) |
| return true; |
| |
| reg = DSPCNTR(!crtc->plane); |
| val = I915_READ(reg); |
| |
| if ((val & DISPLAY_PLANE_ENABLE) && |
| (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe)) |
| return false; |
| |
| return true; |
| } |
| |
| static void intel_sanitize_crtc(struct intel_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 reg; |
| |
| /* Clear any frame start delays used for debugging left by the BIOS */ |
| reg = PIPECONF(crtc->config.cpu_transcoder); |
| I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK); |
| |
| /* restore vblank interrupts to correct state */ |
| if (crtc->active) { |
| update_scanline_offset(crtc); |
| drm_vblank_on(dev, crtc->pipe); |
| } else |
| drm_vblank_off(dev, crtc->pipe); |
| |
| /* We need to sanitize the plane -> pipe mapping first because this will |
| * disable the crtc (and hence change the state) if it is wrong. Note |
| * that gen4+ has a fixed plane -> pipe mapping. */ |
| if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) { |
| struct intel_connector *connector; |
| bool plane; |
| |
| DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n", |
| crtc->base.base.id); |
| |
| /* Pipe has the wrong plane attached and the plane is active. |
| * Temporarily change the plane mapping and disable everything |
| * ... */ |
| plane = crtc->plane; |
| crtc->plane = !plane; |
| crtc->primary_enabled = true; |
| dev_priv->display.crtc_disable(&crtc->base); |
| crtc->plane = plane; |
| |
| /* ... and break all links. */ |
| list_for_each_entry(connector, &dev->mode_config.connector_list, |
| base.head) { |
| if (connector->encoder->base.crtc != &crtc->base) |
| continue; |
| |
| connector->base.dpms = DRM_MODE_DPMS_OFF; |
| connector->base.encoder = NULL; |
| } |
| /* multiple connectors may have the same encoder: |
| * handle them and break crtc link separately */ |
| list_for_each_entry(connector, &dev->mode_config.connector_list, |
| base.head) |
| if (connector->encoder->base.crtc == &crtc->base) { |
| connector->encoder->base.crtc = NULL; |
| connector->encoder->connectors_active = false; |
| } |
| |
| WARN_ON(crtc->active); |
| crtc->base.enabled = false; |
| } |
| |
| if (dev_priv->quirks & QUIRK_PIPEA_FORCE && |
| crtc->pipe == PIPE_A && !crtc->active) { |
| /* BIOS forgot to enable pipe A, this mostly happens after |
| * resume. Force-enable the pipe to fix this, the update_dpms |
| * call below we restore the pipe to the right state, but leave |
| * the required bits on. */ |
| intel_enable_pipe_a(dev); |
| } |
| |
| /* Adjust the state of the output pipe according to whether we |
| * have active connectors/encoders. */ |
| intel_crtc_update_dpms(&crtc->base); |
| |
| if (crtc->active != crtc->base.enabled) { |
| struct intel_encoder *encoder; |
| |
| /* This can happen either due to bugs in the get_hw_state |
| * functions or because the pipe is force-enabled due to the |
| * pipe A quirk. */ |
| DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n", |
| crtc->base.base.id, |
| crtc->base.enabled ? "enabled" : "disabled", |
| crtc->active ? "enabled" : "disabled"); |
| |
| crtc->base.enabled = crtc->active; |
| |
| /* Because we only establish the connector -> encoder -> |
| * crtc links if something is active, this means the |
| * crtc is now deactivated. Break the links. connector |
| * -> encoder links are only establish when things are |
| * actually up, hence no need to break them. */ |
| WARN_ON(crtc->active); |
| |
| for_each_encoder_on_crtc(dev, &crtc->base, encoder) { |
| WARN_ON(encoder->connectors_active); |
| encoder->base.crtc = NULL; |
| } |
| } |
| |
| if (crtc->active || HAS_GMCH_DISPLAY(dev)) { |
| /* |
| * We start out with underrun reporting disabled to avoid races. |
| * For correct bookkeeping mark this on active crtcs. |
| * |
| * Also on gmch platforms we dont have any hardware bits to |
| * disable the underrun reporting. Which means we need to start |
| * out with underrun reporting disabled also on inactive pipes, |
| * since otherwise we'll complain about the garbage we read when |
| * e.g. coming up after runtime pm. |
| * |
| * No protection against concurrent access is required - at |
| * worst a fifo underrun happens which also sets this to false. |
| */ |
| crtc->cpu_fifo_underrun_disabled = true; |
| crtc->pch_fifo_underrun_disabled = true; |
| } |
| } |
| |
| static void intel_sanitize_encoder(struct intel_encoder *encoder) |
| { |
| struct intel_connector *connector; |
| struct drm_device *dev = encoder->base.dev; |
| |
| /* We need to check both for a crtc link (meaning that the |
| * encoder is active and trying to read from a pipe) and the |
| * pipe itself being active. */ |
| bool has_active_crtc = encoder->base.crtc && |
| to_intel_crtc(encoder->base.crtc)->active; |
| |
| if (encoder->connectors_active && !has_active_crtc) { |
| DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n", |
| encoder->base.base.id, |
| encoder->base.name); |
| |
| /* Connector is active, but has no active pipe. This is |
| * fallout from our resume register restoring. Disable |
| * the encoder manually again. */ |
| if (encoder->base.crtc) { |
| DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n", |
| encoder->base.base.id, |
| encoder->base.name); |
| encoder->disable(encoder); |
| if (encoder->post_disable) |
| encoder->post_disable(encoder); |
| } |
| encoder->base.crtc = NULL; |
| encoder->connectors_active = false; |
| |
| /* Inconsistent output/port/pipe state happens presumably due to |
| * a bug in one of the get_hw_state functions. Or someplace else |
| * in our code, like the register restore mess on resume. Clamp |
| * things to off as a safer default. */ |
| list_for_each_entry(connector, |
| &dev->mode_config.connector_list, |
| base.head) { |
| if (connector->encoder != encoder) |
| continue; |
| connector->base.dpms = DRM_MODE_DPMS_OFF; |
| connector->base.encoder = NULL; |
| } |
| } |
| /* Enabled encoders without active connectors will be fixed in |
| * the crtc fixup. */ |
| } |
| |
| void i915_redisable_vga_power_on(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 vga_reg = i915_vgacntrl_reg(dev); |
| |
| if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) { |
| DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n"); |
| i915_disable_vga(dev); |
| } |
| } |
| |
| void i915_redisable_vga(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| /* This function can be called both from intel_modeset_setup_hw_state or |
| * at a very early point in our resume sequence, where the power well |
| * structures are not yet restored. Since this function is at a very |
| * paranoid "someone might have enabled VGA while we were not looking" |
| * level, just check if the power well is enabled instead of trying to |
| * follow the "don't touch the power well if we don't need it" policy |
| * the rest of the driver uses. */ |
| if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA)) |
| return; |
| |
| i915_redisable_vga_power_on(dev); |
| } |
| |
| static bool primary_get_hw_state(struct intel_crtc *crtc) |
| { |
| struct drm_i915_private *dev_priv = crtc->base.dev->dev_private; |
| |
| if (!crtc->active) |
| return false; |
| |
| return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE; |
| } |
| |
| static void intel_modeset_readout_hw_state(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| enum pipe pipe; |
| struct intel_crtc *crtc; |
| struct intel_encoder *encoder; |
| struct intel_connector *connector; |
| int i; |
| |
| for_each_intel_crtc(dev, crtc) { |
| memset(&crtc->config, 0, sizeof(crtc->config)); |
| |
| crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE; |
| |
| crtc->active = dev_priv->display.get_pipe_config(crtc, |
| &crtc->config); |
| |
| crtc->base.enabled = crtc->active; |
| crtc->primary_enabled = primary_get_hw_state(crtc); |
| |
| DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n", |
| crtc->base.base.id, |
| crtc->active ? "enabled" : "disabled"); |
| } |
| |
| for (i = 0; i < dev_priv->num_shared_dpll; i++) { |
| struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i]; |
| |
| pll->on = pll->get_hw_state(dev_priv, pll, |
| &pll->config.hw_state); |
| pll->active = 0; |
| pll->config.crtc_mask = 0; |
| for_each_intel_crtc(dev, crtc) { |
| if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) { |
| pll->active++; |
| pll->config.crtc_mask |= 1 << crtc->pipe; |
| } |
| } |
| |
| DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n", |
| pll->name, pll->config.crtc_mask, pll->on); |
| |
| if (pll->config.crtc_mask) |
| intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS); |
| } |
| |
| for_each_intel_encoder(dev, encoder) { |
| pipe = 0; |
| |
| if (encoder->get_hw_state(encoder, &pipe)) { |
| crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]); |
| encoder->base.crtc = &crtc->base; |
| encoder->get_config(encoder, &crtc->config); |
| } else { |
| encoder->base.crtc = NULL; |
| } |
| |
| encoder->connectors_active = false; |
| DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n", |
| encoder->base.base.id, |
| encoder->base.name, |
| encoder->base.crtc ? "enabled" : "disabled", |
| pipe_name(pipe)); |
| } |
| |
| list_for_each_entry(connector, &dev->mode_config.connector_list, |
| base.head) { |
| if (connector->get_hw_state(connector)) { |
| connector->base.dpms = DRM_MODE_DPMS_ON; |
| connector->encoder->connectors_active = true; |
| connector->base.encoder = &connector->encoder->base; |
| } else { |
| connector->base.dpms = DRM_MODE_DPMS_OFF; |
| connector->base.encoder = NULL; |
| } |
| DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n", |
| connector->base.base.id, |
| connector->base.name, |
| connector->base.encoder ? "enabled" : "disabled"); |
| } |
| } |
| |
| /* Scan out the current hw modeset state, sanitizes it and maps it into the drm |
| * and i915 state tracking structures. */ |
| void intel_modeset_setup_hw_state(struct drm_device *dev, |
| bool force_restore) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| enum pipe pipe; |
| struct intel_crtc *crtc; |
| struct intel_encoder *encoder; |
| int i; |
| |
| intel_modeset_readout_hw_state(dev); |
| |
| /* |
| * Now that we have the config, copy it to each CRTC struct |
| * Note that this could go away if we move to using crtc_config |
| * checking everywhere. |
| */ |
| for_each_intel_crtc(dev, crtc) { |
| if (crtc->active && i915.fastboot) { |
| intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config); |
| DRM_DEBUG_KMS("[CRTC:%d] found active mode: ", |
| crtc->base.base.id); |
| drm_mode_debug_printmodeline(&crtc->base.mode); |
| } |
| } |
| |
| /* HW state is read out, now we need to sanitize this mess. */ |
| for_each_intel_encoder(dev, encoder) { |
| intel_sanitize_encoder(encoder); |
| } |
| |
| for_each_pipe(dev_priv, pipe) { |
| crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]); |
| intel_sanitize_crtc(crtc); |
| intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]"); |
| } |
| |
| for (i = 0; i < dev_priv->num_shared_dpll; i++) { |
| struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i]; |
| |
| if (!pll->on || pll->active) |
| continue; |
| |
| DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name); |
| |
| pll->disable(dev_priv, pll); |
| pll->on = false; |
| } |
| |
| if (IS_GEN9(dev)) |
| skl_wm_get_hw_state(dev); |
| else if (HAS_PCH_SPLIT(dev)) |
| ilk_wm_get_hw_state(dev); |
| |
| if (force_restore) { |
| i915_redisable_vga(dev); |
| |
| /* |
| * We need to use raw interfaces for restoring state to avoid |
| * checking (bogus) intermediate states. |
| */ |
| for_each_pipe(dev_priv, pipe) { |
| struct drm_crtc *crtc = |
| dev_priv->pipe_to_crtc_mapping[pipe]; |
| |
| intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, |
| crtc->primary->fb); |
| } |
| } else { |
| intel_modeset_update_staged_output_state(dev); |
| } |
| |
| intel_modeset_check_state(dev); |
| } |
| |
| void intel_modeset_gem_init(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_crtc *c; |
| struct drm_i915_gem_object *obj; |
| |
| mutex_lock(&dev->struct_mutex); |
| intel_init_gt_powersave(dev); |
| mutex_unlock(&dev->struct_mutex); |
| |
| /* |
| * There may be no VBT; and if the BIOS enabled SSC we can |
| * just keep using it to avoid unnecessary flicker. Whereas if the |
| * BIOS isn't using it, don't assume it will work even if the VBT |
| * indicates as much. |
| */ |
| if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) |
| dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) & |
| DREF_SSC1_ENABLE); |
| |
| intel_modeset_init_hw(dev); |
| |
| intel_setup_overlay(dev); |
| |
| /* |
| * Make sure any fbs we allocated at startup are properly |
| * pinned & fenced. When we do the allocation it's too early |
| * for this. |
| */ |
| mutex_lock(&dev->struct_mutex); |
| for_each_crtc(dev, c) { |
| obj = intel_fb_obj(c->primary->fb); |
| if (obj == NULL) |
| continue; |
| |
| if (intel_pin_and_fence_fb_obj(c->primary, |
| c->primary->fb, |
| NULL)) { |
| DRM_ERROR("failed to pin boot fb on pipe %d\n", |
| to_intel_crtc(c)->pipe); |
| drm_framebuffer_unreference(c->primary->fb); |
| c->primary->fb = NULL; |
| } |
| } |
| mutex_unlock(&dev->struct_mutex); |
| |
| intel_backlight_register(dev); |
| } |
| |
| void intel_connector_unregister(struct intel_connector *intel_connector) |
| { |
| struct drm_connector *connector = &intel_connector->base; |
| |
| intel_panel_destroy_backlight(connector); |
| drm_connector_unregister(connector); |
| } |
| |
| void intel_modeset_cleanup(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_connector *connector; |
| |
| intel_disable_gt_powersave(dev); |
| |
| intel_backlight_unregister(dev); |
| |
| /* |
| * Interrupts and polling as the first thing to avoid creating havoc. |
| * Too much stuff here (turning of connectors, ...) would |
| * experience fancy races otherwise. |
| */ |
| intel_irq_uninstall(dev_priv); |
| |
| /* |
| * Due to the hpd irq storm handling the hotplug work can re-arm the |
| * poll handlers. Hence disable polling after hpd handling is shut down. |
| */ |
| drm_kms_helper_poll_fini(dev); |
| |
| mutex_lock(&dev->struct_mutex); |
| |
| intel_unregister_dsm_handler(); |
| |
| intel_disable_fbc(dev); |
| |
| ironlake_teardown_rc6(dev); |
| |
| mutex_unlock(&dev->struct_mutex); |
| |
| /* flush any delayed tasks or pending work */ |
| flush_scheduled_work(); |
| |
| /* destroy the backlight and sysfs files before encoders/connectors */ |
| list_for_each_entry(connector, &dev->mode_config.connector_list, head) { |
| struct intel_connector *intel_connector; |
| |
| intel_connector = to_intel_connector(connector); |
| intel_connector->unregister(intel_connector); |
| } |
| |
| drm_mode_config_cleanup(dev); |
| |
| intel_cleanup_overlay(dev); |
| |
| mutex_lock(&dev->struct_mutex); |
| intel_cleanup_gt_powersave(dev); |
| mutex_unlock(&dev->struct_mutex); |
| } |
| |
| /* |
| * Return which encoder is currently attached for connector. |
| */ |
| struct drm_encoder *intel_best_encoder(struct drm_connector *connector) |
| { |
| return &intel_attached_encoder(connector)->base; |
| } |
| |
| void intel_connector_attach_encoder(struct intel_connector *connector, |
| struct intel_encoder *encoder) |
| { |
| connector->encoder = encoder; |
| drm_mode_connector_attach_encoder(&connector->base, |
| &encoder->base); |
| } |
| |
| /* |
| * set vga decode state - true == enable VGA decode |
| */ |
| int intel_modeset_vga_set_state(struct drm_device *dev, bool state) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL; |
| u16 gmch_ctrl; |
| |
| if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) { |
| DRM_ERROR("failed to read control word\n"); |
| return -EIO; |
| } |
| |
| if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state) |
| return 0; |
| |
| if (state) |
| gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE; |
| else |
| gmch_ctrl |= INTEL_GMCH_VGA_DISABLE; |
| |
| if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) { |
| DRM_ERROR("failed to write control word\n"); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| struct intel_display_error_state { |
| |
| u32 power_well_driver; |
| |
| int num_transcoders; |
| |
| struct intel_cursor_error_state { |
| u32 control; |
| u32 position; |
| u32 base; |
| u32 size; |
| } cursor[I915_MAX_PIPES]; |
| |
| struct intel_pipe_error_state { |
| bool power_domain_on; |
| u32 source; |
| u32 stat; |
| } pipe[I915_MAX_PIPES]; |
| |
| struct intel_plane_error_state { |
| u32 control; |
| u32 stride; |
| u32 size; |
| u32 pos; |
| u32 addr; |
| u32 surface; |
| u32 tile_offset; |
| } plane[I915_MAX_PIPES]; |
| |
| struct intel_transcoder_error_state { |
| bool power_domain_on; |
| enum transcoder cpu_transcoder; |
| |
| u32 conf; |
| |
| u32 htotal; |
| u32 hblank; |
| u32 hsync; |
| u32 vtotal; |
| u32 vblank; |
| u32 vsync; |
| } transcoder[4]; |
| }; |
| |
| struct intel_display_error_state * |
| intel_display_capture_error_state(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_display_error_state *error; |
| int transcoders[] = { |
| TRANSCODER_A, |
| TRANSCODER_B, |
| TRANSCODER_C, |
| TRANSCODER_EDP, |
| }; |
| int i; |
| |
| if (INTEL_INFO(dev)->num_pipes == 0) |
| return NULL; |
| |
| error = kzalloc(sizeof(*error), GFP_ATOMIC); |
| if (error == NULL) |
| return NULL; |
| |
| if (IS_HASWELL(dev) || IS_BROADWELL(dev)) |
| error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER); |
| |
| for_each_pipe(dev_priv, i) { |
| error->pipe[i].power_domain_on = |
| __intel_display_power_is_enabled(dev_priv, |
| POWER_DOMAIN_PIPE(i)); |
| if (!error->pipe[i].power_domain_on) |
| continue; |
| |
| error->cursor[i].control = I915_READ(CURCNTR(i)); |
| error->cursor[i].position = I915_READ(CURPOS(i)); |
| error->cursor[i].base = I915_READ(CURBASE(i)); |
| |
| error->plane[i].control = I915_READ(DSPCNTR(i)); |
| error->plane[i].stride = I915_READ(DSPSTRIDE(i)); |
| if (INTEL_INFO(dev)->gen <= 3) { |
| error->plane[i].size = I915_READ(DSPSIZE(i)); |
| error->plane[i].pos = I915_READ(DSPPOS(i)); |
| } |
| if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) |
| error->plane[i].addr = I915_READ(DSPADDR(i)); |
| if (INTEL_INFO(dev)->gen >= 4) { |
| error->plane[i].surface = I915_READ(DSPSURF(i)); |
| error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i)); |
| } |
| |
| error->pipe[i].source = I915_READ(PIPESRC(i)); |
| |
| if (HAS_GMCH_DISPLAY(dev)) |
| error->pipe[i].stat = I915_READ(PIPESTAT(i)); |
| } |
| |
| error->num_transcoders = INTEL_INFO(dev)->num_pipes; |
| if (HAS_DDI(dev_priv->dev)) |
| error->num_transcoders++; /* Account for eDP. */ |
| |
| for (i = 0; i < error->num_transcoders; i++) { |
| enum transcoder cpu_transcoder = transcoders[i]; |
| |
| error->transcoder[i].power_domain_on = |
| __intel_display_power_is_enabled(dev_priv, |
| POWER_DOMAIN_TRANSCODER(cpu_transcoder)); |
| if (!error->transcoder[i].power_domain_on) |
| continue; |
| |
| error->transcoder[i].cpu_transcoder = cpu_transcoder; |
| |
| error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder)); |
| error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder)); |
| error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder)); |
| error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder)); |
| error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder)); |
| error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder)); |
| error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder)); |
| } |
| |
| return error; |
| } |
| |
| #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__) |
| |
| void |
| intel_display_print_error_state(struct drm_i915_error_state_buf *m, |
| struct drm_device *dev, |
| struct intel_display_error_state *error) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int i; |
| |
| if (!error) |
| return; |
| |
| err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes); |
| if (IS_HASWELL(dev) || IS_BROADWELL(dev)) |
| err_printf(m, "PWR_WELL_CTL2: %08x\n", |
| error->power_well_driver); |
| for_each_pipe(dev_priv, i) { |
| err_printf(m, "Pipe [%d]:\n", i); |
| err_printf(m, " Power: %s\n", |
| error->pipe[i].power_domain_on ? "on" : "off"); |
| err_printf(m, " SRC: %08x\n", error->pipe[i].source); |
| err_printf(m, " STAT: %08x\n", error->pipe[i].stat); |
| |
| err_printf(m, "Plane [%d]:\n", i); |
| err_printf(m, " CNTR: %08x\n", error->plane[i].control); |
| err_printf(m, " STRIDE: %08x\n", error->plane[i].stride); |
| if (INTEL_INFO(dev)->gen <= 3) { |
| err_printf(m, " SIZE: %08x\n", error->plane[i].size); |
| err_printf(m, " POS: %08x\n", error->plane[i].pos); |
| } |
| if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) |
| err_printf(m, " ADDR: %08x\n", error->plane[i].addr); |
| if (INTEL_INFO(dev)->gen >= 4) { |
| err_printf(m, " SURF: %08x\n", error->plane[i].surface); |
| err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset); |
| } |
| |
| err_printf(m, "Cursor [%d]:\n", i); |
| err_printf(m, " CNTR: %08x\n", error->cursor[i].control); |
| err_printf(m, " POS: %08x\n", error->cursor[i].position); |
| err_printf(m, " BASE: %08x\n", error->cursor[i].base); |
| } |
| |
| for (i = 0; i < error->num_transcoders; i++) { |
| err_printf(m, "CPU transcoder: %c\n", |
| transcoder_name(error->transcoder[i].cpu_transcoder)); |
| err_printf(m, " Power: %s\n", |
| error->transcoder[i].power_domain_on ? "on" : "off"); |
| err_printf(m, " CONF: %08x\n", error->transcoder[i].conf); |
| err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal); |
| err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank); |
| err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync); |
| err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal); |
| err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank); |
| err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync); |
| } |
| } |
| |
| void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file) |
| { |
| struct intel_crtc *crtc; |
| |
| for_each_intel_crtc(dev, crtc) { |
| struct intel_unpin_work *work; |
| |
| spin_lock_irq(&dev->event_lock); |
| |
| work = crtc->unpin_work; |
| |
| if (work && work->event && |
| work->event->base.file_priv == file) { |
| kfree(work->event); |
| work->event = NULL; |
| } |
| |
| spin_unlock_irq(&dev->event_lock); |
| } |
| } |