blob: fd3154ae69b172e0c4f6b2b803cf9896d4c9b6c6 [file] [log] [blame]
/*
* linux/arch/arm/plat-omap/dma.c
*
* Copyright (C) 2003 - 2008 Nokia Corporation
* Author: Juha Yrjölä <juha.yrjola@nokia.com>
* DMA channel linking for 1610 by Samuel Ortiz <samuel.ortiz@nokia.com>
* Graphics DMA and LCD DMA graphics tranformations
* by Imre Deak <imre.deak@nokia.com>
* OMAP2/3 support Copyright (C) 2004-2007 Texas Instruments, Inc.
* Merged to support both OMAP1 and OMAP2 by Tony Lindgren <tony@atomide.com>
* Some functions based on earlier dma-omap.c Copyright (C) 2001 RidgeRun, Inc.
*
* Copyright (C) 2009 Texas Instruments
* Added OMAP4 support - Santosh Shilimkar <santosh.shilimkar@ti.com>
*
* Support functions for the OMAP internal DMA channels.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/spinlock.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/io.h>
#include <asm/system.h>
#include <mach/hardware.h>
#include <mach/dma.h>
#include <mach/tc.h>
#undef DEBUG
#ifndef CONFIG_ARCH_OMAP1
enum { DMA_CH_ALLOC_DONE, DMA_CH_PARAMS_SET_DONE, DMA_CH_STARTED,
DMA_CH_QUEUED, DMA_CH_NOTSTARTED, DMA_CH_PAUSED, DMA_CH_LINK_ENABLED
};
enum { DMA_CHAIN_STARTED, DMA_CHAIN_NOTSTARTED };
#endif
#define OMAP_DMA_ACTIVE 0x01
#define OMAP_DMA_CCR_EN (1 << 7)
#define OMAP2_DMA_CSR_CLEAR_MASK 0xffe
#define OMAP_FUNC_MUX_ARM_BASE (0xfffe1000 + 0xec)
static int enable_1510_mode;
struct omap_dma_lch {
int next_lch;
int dev_id;
u16 saved_csr;
u16 enabled_irqs;
const char *dev_name;
void (*callback)(int lch, u16 ch_status, void *data);
void *data;
#ifndef CONFIG_ARCH_OMAP1
/* required for Dynamic chaining */
int prev_linked_ch;
int next_linked_ch;
int state;
int chain_id;
int status;
#endif
long flags;
};
struct dma_link_info {
int *linked_dmach_q;
int no_of_lchs_linked;
int q_count;
int q_tail;
int q_head;
int chain_state;
int chain_mode;
};
static struct dma_link_info *dma_linked_lch;
#ifndef CONFIG_ARCH_OMAP1
/* Chain handling macros */
#define OMAP_DMA_CHAIN_QINIT(chain_id) \
do { \
dma_linked_lch[chain_id].q_head = \
dma_linked_lch[chain_id].q_tail = \
dma_linked_lch[chain_id].q_count = 0; \
} while (0)
#define OMAP_DMA_CHAIN_QFULL(chain_id) \
(dma_linked_lch[chain_id].no_of_lchs_linked == \
dma_linked_lch[chain_id].q_count)
#define OMAP_DMA_CHAIN_QLAST(chain_id) \
do { \
((dma_linked_lch[chain_id].no_of_lchs_linked-1) == \
dma_linked_lch[chain_id].q_count) \
} while (0)
#define OMAP_DMA_CHAIN_QEMPTY(chain_id) \
(0 == dma_linked_lch[chain_id].q_count)
#define __OMAP_DMA_CHAIN_INCQ(end) \
((end) = ((end)+1) % dma_linked_lch[chain_id].no_of_lchs_linked)
#define OMAP_DMA_CHAIN_INCQHEAD(chain_id) \
do { \
__OMAP_DMA_CHAIN_INCQ(dma_linked_lch[chain_id].q_head); \
dma_linked_lch[chain_id].q_count--; \
} while (0)
#define OMAP_DMA_CHAIN_INCQTAIL(chain_id) \
do { \
__OMAP_DMA_CHAIN_INCQ(dma_linked_lch[chain_id].q_tail); \
dma_linked_lch[chain_id].q_count++; \
} while (0)
#endif
static int dma_lch_count;
static int dma_chan_count;
static int omap_dma_reserve_channels;
static spinlock_t dma_chan_lock;
static struct omap_dma_lch *dma_chan;
static void __iomem *omap_dma_base;
static const u8 omap1_dma_irq[OMAP1_LOGICAL_DMA_CH_COUNT] = {
INT_DMA_CH0_6, INT_DMA_CH1_7, INT_DMA_CH2_8, INT_DMA_CH3,
INT_DMA_CH4, INT_DMA_CH5, INT_1610_DMA_CH6, INT_1610_DMA_CH7,
INT_1610_DMA_CH8, INT_1610_DMA_CH9, INT_1610_DMA_CH10,
INT_1610_DMA_CH11, INT_1610_DMA_CH12, INT_1610_DMA_CH13,
INT_1610_DMA_CH14, INT_1610_DMA_CH15, INT_DMA_LCD
};
static inline void disable_lnk(int lch);
static void omap_disable_channel_irq(int lch);
static inline void omap_enable_channel_irq(int lch);
#define REVISIT_24XX() printk(KERN_ERR "FIXME: no %s on 24xx\n", \
__func__);
#define dma_read(reg) \
({ \
u32 __val; \
if (cpu_class_is_omap1()) \
__val = __raw_readw(omap_dma_base + OMAP1_DMA_##reg); \
else \
__val = __raw_readl(omap_dma_base + OMAP_DMA4_##reg); \
__val; \
})
#define dma_write(val, reg) \
({ \
if (cpu_class_is_omap1()) \
__raw_writew((u16)(val), omap_dma_base + OMAP1_DMA_##reg); \
else \
__raw_writel((val), omap_dma_base + OMAP_DMA4_##reg); \
})
#ifdef CONFIG_ARCH_OMAP15XX
/* Returns 1 if the DMA module is in OMAP1510-compatible mode, 0 otherwise */
int omap_dma_in_1510_mode(void)
{
return enable_1510_mode;
}
#else
#define omap_dma_in_1510_mode() 0
#endif
#ifdef CONFIG_ARCH_OMAP1
static inline int get_gdma_dev(int req)
{
u32 reg = OMAP_FUNC_MUX_ARM_BASE + ((req - 1) / 5) * 4;
int shift = ((req - 1) % 5) * 6;
return ((omap_readl(reg) >> shift) & 0x3f) + 1;
}
static inline void set_gdma_dev(int req, int dev)
{
u32 reg = OMAP_FUNC_MUX_ARM_BASE + ((req - 1) / 5) * 4;
int shift = ((req - 1) % 5) * 6;
u32 l;
l = omap_readl(reg);
l &= ~(0x3f << shift);
l |= (dev - 1) << shift;
omap_writel(l, reg);
}
#else
#define set_gdma_dev(req, dev) do {} while (0)
#endif
/* Omap1 only */
static void clear_lch_regs(int lch)
{
int i;
void __iomem *lch_base = omap_dma_base + OMAP1_DMA_CH_BASE(lch);
for (i = 0; i < 0x2c; i += 2)
__raw_writew(0, lch_base + i);
}
void omap_set_dma_priority(int lch, int dst_port, int priority)
{
unsigned long reg;
u32 l;
if (cpu_class_is_omap1()) {
switch (dst_port) {
case OMAP_DMA_PORT_OCP_T1: /* FFFECC00 */
reg = OMAP_TC_OCPT1_PRIOR;
break;
case OMAP_DMA_PORT_OCP_T2: /* FFFECCD0 */
reg = OMAP_TC_OCPT2_PRIOR;
break;
case OMAP_DMA_PORT_EMIFF: /* FFFECC08 */
reg = OMAP_TC_EMIFF_PRIOR;
break;
case OMAP_DMA_PORT_EMIFS: /* FFFECC04 */
reg = OMAP_TC_EMIFS_PRIOR;
break;
default:
BUG();
return;
}
l = omap_readl(reg);
l &= ~(0xf << 8);
l |= (priority & 0xf) << 8;
omap_writel(l, reg);
}
if (cpu_class_is_omap2()) {
u32 ccr;
ccr = dma_read(CCR(lch));
if (priority)
ccr |= (1 << 6);
else
ccr &= ~(1 << 6);
dma_write(ccr, CCR(lch));
}
}
EXPORT_SYMBOL(omap_set_dma_priority);
void omap_set_dma_transfer_params(int lch, int data_type, int elem_count,
int frame_count, int sync_mode,
int dma_trigger, int src_or_dst_synch)
{
u32 l;
l = dma_read(CSDP(lch));
l &= ~0x03;
l |= data_type;
dma_write(l, CSDP(lch));
if (cpu_class_is_omap1()) {
u16 ccr;
ccr = dma_read(CCR(lch));
ccr &= ~(1 << 5);
if (sync_mode == OMAP_DMA_SYNC_FRAME)
ccr |= 1 << 5;
dma_write(ccr, CCR(lch));
ccr = dma_read(CCR2(lch));
ccr &= ~(1 << 2);
if (sync_mode == OMAP_DMA_SYNC_BLOCK)
ccr |= 1 << 2;
dma_write(ccr, CCR2(lch));
}
if (cpu_class_is_omap2() && dma_trigger) {
u32 val;
val = dma_read(CCR(lch));
/* DMA_SYNCHRO_CONTROL_UPPER depends on the channel number */
val &= ~((3 << 19) | 0x1f);
val |= (dma_trigger & ~0x1f) << 14;
val |= dma_trigger & 0x1f;
if (sync_mode & OMAP_DMA_SYNC_FRAME)
val |= 1 << 5;
else
val &= ~(1 << 5);
if (sync_mode & OMAP_DMA_SYNC_BLOCK)
val |= 1 << 18;
else
val &= ~(1 << 18);
if (src_or_dst_synch)
val |= 1 << 24; /* source synch */
else
val &= ~(1 << 24); /* dest synch */
dma_write(val, CCR(lch));
}
dma_write(elem_count, CEN(lch));
dma_write(frame_count, CFN(lch));
}
EXPORT_SYMBOL(omap_set_dma_transfer_params);
void omap_set_dma_color_mode(int lch, enum omap_dma_color_mode mode, u32 color)
{
BUG_ON(omap_dma_in_1510_mode());
if (cpu_class_is_omap1()) {
u16 w;
w = dma_read(CCR2(lch));
w &= ~0x03;
switch (mode) {
case OMAP_DMA_CONSTANT_FILL:
w |= 0x01;
break;
case OMAP_DMA_TRANSPARENT_COPY:
w |= 0x02;
break;
case OMAP_DMA_COLOR_DIS:
break;
default:
BUG();
}
dma_write(w, CCR2(lch));
w = dma_read(LCH_CTRL(lch));
w &= ~0x0f;
/* Default is channel type 2D */
if (mode) {
dma_write((u16)color, COLOR_L(lch));
dma_write((u16)(color >> 16), COLOR_U(lch));
w |= 1; /* Channel type G */
}
dma_write(w, LCH_CTRL(lch));
}
if (cpu_class_is_omap2()) {
u32 val;
val = dma_read(CCR(lch));
val &= ~((1 << 17) | (1 << 16));
switch (mode) {
case OMAP_DMA_CONSTANT_FILL:
val |= 1 << 16;
break;
case OMAP_DMA_TRANSPARENT_COPY:
val |= 1 << 17;
break;
case OMAP_DMA_COLOR_DIS:
break;
default:
BUG();
}
dma_write(val, CCR(lch));
color &= 0xffffff;
dma_write(color, COLOR(lch));
}
}
EXPORT_SYMBOL(omap_set_dma_color_mode);
void omap_set_dma_write_mode(int lch, enum omap_dma_write_mode mode)
{
if (cpu_class_is_omap2()) {
u32 csdp;
csdp = dma_read(CSDP(lch));
csdp &= ~(0x3 << 16);
csdp |= (mode << 16);
dma_write(csdp, CSDP(lch));
}
}
EXPORT_SYMBOL(omap_set_dma_write_mode);
void omap_set_dma_channel_mode(int lch, enum omap_dma_channel_mode mode)
{
if (cpu_class_is_omap1() && !cpu_is_omap15xx()) {
u32 l;
l = dma_read(LCH_CTRL(lch));
l &= ~0x7;
l |= mode;
dma_write(l, LCH_CTRL(lch));
}
}
EXPORT_SYMBOL(omap_set_dma_channel_mode);
/* Note that src_port is only for omap1 */
void omap_set_dma_src_params(int lch, int src_port, int src_amode,
unsigned long src_start,
int src_ei, int src_fi)
{
u32 l;
if (cpu_class_is_omap1()) {
u16 w;
w = dma_read(CSDP(lch));
w &= ~(0x1f << 2);
w |= src_port << 2;
dma_write(w, CSDP(lch));
}
l = dma_read(CCR(lch));
l &= ~(0x03 << 12);
l |= src_amode << 12;
dma_write(l, CCR(lch));
if (cpu_class_is_omap1()) {
dma_write(src_start >> 16, CSSA_U(lch));
dma_write((u16)src_start, CSSA_L(lch));
}
if (cpu_class_is_omap2())
dma_write(src_start, CSSA(lch));
dma_write(src_ei, CSEI(lch));
dma_write(src_fi, CSFI(lch));
}
EXPORT_SYMBOL(omap_set_dma_src_params);
void omap_set_dma_params(int lch, struct omap_dma_channel_params *params)
{
omap_set_dma_transfer_params(lch, params->data_type,
params->elem_count, params->frame_count,
params->sync_mode, params->trigger,
params->src_or_dst_synch);
omap_set_dma_src_params(lch, params->src_port,
params->src_amode, params->src_start,
params->src_ei, params->src_fi);
omap_set_dma_dest_params(lch, params->dst_port,
params->dst_amode, params->dst_start,
params->dst_ei, params->dst_fi);
if (params->read_prio || params->write_prio)
omap_dma_set_prio_lch(lch, params->read_prio,
params->write_prio);
}
EXPORT_SYMBOL(omap_set_dma_params);
void omap_set_dma_src_index(int lch, int eidx, int fidx)
{
if (cpu_class_is_omap2())
return;
dma_write(eidx, CSEI(lch));
dma_write(fidx, CSFI(lch));
}
EXPORT_SYMBOL(omap_set_dma_src_index);
void omap_set_dma_src_data_pack(int lch, int enable)
{
u32 l;
l = dma_read(CSDP(lch));
l &= ~(1 << 6);
if (enable)
l |= (1 << 6);
dma_write(l, CSDP(lch));
}
EXPORT_SYMBOL(omap_set_dma_src_data_pack);
void omap_set_dma_src_burst_mode(int lch, enum omap_dma_burst_mode burst_mode)
{
unsigned int burst = 0;
u32 l;
l = dma_read(CSDP(lch));
l &= ~(0x03 << 7);
switch (burst_mode) {
case OMAP_DMA_DATA_BURST_DIS:
break;
case OMAP_DMA_DATA_BURST_4:
if (cpu_class_is_omap2())
burst = 0x1;
else
burst = 0x2;
break;
case OMAP_DMA_DATA_BURST_8:
if (cpu_class_is_omap2()) {
burst = 0x2;
break;
}
/* not supported by current hardware on OMAP1
* w |= (0x03 << 7);
* fall through
*/
case OMAP_DMA_DATA_BURST_16:
if (cpu_class_is_omap2()) {
burst = 0x3;
break;
}
/* OMAP1 don't support burst 16
* fall through
*/
default:
BUG();
}
l |= (burst << 7);
dma_write(l, CSDP(lch));
}
EXPORT_SYMBOL(omap_set_dma_src_burst_mode);
/* Note that dest_port is only for OMAP1 */
void omap_set_dma_dest_params(int lch, int dest_port, int dest_amode,
unsigned long dest_start,
int dst_ei, int dst_fi)
{
u32 l;
if (cpu_class_is_omap1()) {
l = dma_read(CSDP(lch));
l &= ~(0x1f << 9);
l |= dest_port << 9;
dma_write(l, CSDP(lch));
}
l = dma_read(CCR(lch));
l &= ~(0x03 << 14);
l |= dest_amode << 14;
dma_write(l, CCR(lch));
if (cpu_class_is_omap1()) {
dma_write(dest_start >> 16, CDSA_U(lch));
dma_write(dest_start, CDSA_L(lch));
}
if (cpu_class_is_omap2())
dma_write(dest_start, CDSA(lch));
dma_write(dst_ei, CDEI(lch));
dma_write(dst_fi, CDFI(lch));
}
EXPORT_SYMBOL(omap_set_dma_dest_params);
void omap_set_dma_dest_index(int lch, int eidx, int fidx)
{
if (cpu_class_is_omap2())
return;
dma_write(eidx, CDEI(lch));
dma_write(fidx, CDFI(lch));
}
EXPORT_SYMBOL(omap_set_dma_dest_index);
void omap_set_dma_dest_data_pack(int lch, int enable)
{
u32 l;
l = dma_read(CSDP(lch));
l &= ~(1 << 13);
if (enable)
l |= 1 << 13;
dma_write(l, CSDP(lch));
}
EXPORT_SYMBOL(omap_set_dma_dest_data_pack);
void omap_set_dma_dest_burst_mode(int lch, enum omap_dma_burst_mode burst_mode)
{
unsigned int burst = 0;
u32 l;
l = dma_read(CSDP(lch));
l &= ~(0x03 << 14);
switch (burst_mode) {
case OMAP_DMA_DATA_BURST_DIS:
break;
case OMAP_DMA_DATA_BURST_4:
if (cpu_class_is_omap2())
burst = 0x1;
else
burst = 0x2;
break;
case OMAP_DMA_DATA_BURST_8:
if (cpu_class_is_omap2())
burst = 0x2;
else
burst = 0x3;
break;
case OMAP_DMA_DATA_BURST_16:
if (cpu_class_is_omap2()) {
burst = 0x3;
break;
}
/* OMAP1 don't support burst 16
* fall through
*/
default:
printk(KERN_ERR "Invalid DMA burst mode\n");
BUG();
return;
}
l |= (burst << 14);
dma_write(l, CSDP(lch));
}
EXPORT_SYMBOL(omap_set_dma_dest_burst_mode);
static inline void omap_enable_channel_irq(int lch)
{
u32 status;
/* Clear CSR */
if (cpu_class_is_omap1())
status = dma_read(CSR(lch));
else if (cpu_class_is_omap2())
dma_write(OMAP2_DMA_CSR_CLEAR_MASK, CSR(lch));
/* Enable some nice interrupts. */
dma_write(dma_chan[lch].enabled_irqs, CICR(lch));
}
static void omap_disable_channel_irq(int lch)
{
if (cpu_class_is_omap2())
dma_write(0, CICR(lch));
}
void omap_enable_dma_irq(int lch, u16 bits)
{
dma_chan[lch].enabled_irqs |= bits;
}
EXPORT_SYMBOL(omap_enable_dma_irq);
void omap_disable_dma_irq(int lch, u16 bits)
{
dma_chan[lch].enabled_irqs &= ~bits;
}
EXPORT_SYMBOL(omap_disable_dma_irq);
static inline void enable_lnk(int lch)
{
u32 l;
l = dma_read(CLNK_CTRL(lch));
if (cpu_class_is_omap1())
l &= ~(1 << 14);
/* Set the ENABLE_LNK bits */
if (dma_chan[lch].next_lch != -1)
l = dma_chan[lch].next_lch | (1 << 15);
#ifndef CONFIG_ARCH_OMAP1
if (cpu_class_is_omap2())
if (dma_chan[lch].next_linked_ch != -1)
l = dma_chan[lch].next_linked_ch | (1 << 15);
#endif
dma_write(l, CLNK_CTRL(lch));
}
static inline void disable_lnk(int lch)
{
u32 l;
l = dma_read(CLNK_CTRL(lch));
/* Disable interrupts */
if (cpu_class_is_omap1()) {
dma_write(0, CICR(lch));
/* Set the STOP_LNK bit */
l |= 1 << 14;
}
if (cpu_class_is_omap2()) {
omap_disable_channel_irq(lch);
/* Clear the ENABLE_LNK bit */
l &= ~(1 << 15);
}
dma_write(l, CLNK_CTRL(lch));
dma_chan[lch].flags &= ~OMAP_DMA_ACTIVE;
}
static inline void omap2_enable_irq_lch(int lch)
{
u32 val;
if (!cpu_class_is_omap2())
return;
val = dma_read(IRQENABLE_L0);
val |= 1 << lch;
dma_write(val, IRQENABLE_L0);
}
int omap_request_dma(int dev_id, const char *dev_name,
void (*callback)(int lch, u16 ch_status, void *data),
void *data, int *dma_ch_out)
{
int ch, free_ch = -1;
unsigned long flags;
struct omap_dma_lch *chan;
spin_lock_irqsave(&dma_chan_lock, flags);
for (ch = 0; ch < dma_chan_count; ch++) {
if (free_ch == -1 && dma_chan[ch].dev_id == -1) {
free_ch = ch;
if (dev_id == 0)
break;
}
}
if (free_ch == -1) {
spin_unlock_irqrestore(&dma_chan_lock, flags);
return -EBUSY;
}
chan = dma_chan + free_ch;
chan->dev_id = dev_id;
if (cpu_class_is_omap1())
clear_lch_regs(free_ch);
if (cpu_class_is_omap2())
omap_clear_dma(free_ch);
spin_unlock_irqrestore(&dma_chan_lock, flags);
chan->dev_name = dev_name;
chan->callback = callback;
chan->data = data;
chan->flags = 0;
#ifndef CONFIG_ARCH_OMAP1
if (cpu_class_is_omap2()) {
chan->chain_id = -1;
chan->next_linked_ch = -1;
}
#endif
chan->enabled_irqs = OMAP_DMA_DROP_IRQ | OMAP_DMA_BLOCK_IRQ;
if (cpu_class_is_omap1())
chan->enabled_irqs |= OMAP1_DMA_TOUT_IRQ;
else if (cpu_class_is_omap2())
chan->enabled_irqs |= OMAP2_DMA_MISALIGNED_ERR_IRQ |
OMAP2_DMA_TRANS_ERR_IRQ;
if (cpu_is_omap16xx()) {
/* If the sync device is set, configure it dynamically. */
if (dev_id != 0) {
set_gdma_dev(free_ch + 1, dev_id);
dev_id = free_ch + 1;
}
/*
* Disable the 1510 compatibility mode and set the sync device
* id.
*/
dma_write(dev_id | (1 << 10), CCR(free_ch));
} else if (cpu_is_omap7xx() || cpu_is_omap15xx()) {
dma_write(dev_id, CCR(free_ch));
}
if (cpu_class_is_omap2()) {
omap2_enable_irq_lch(free_ch);
omap_enable_channel_irq(free_ch);
/* Clear the CSR register and IRQ status register */
dma_write(OMAP2_DMA_CSR_CLEAR_MASK, CSR(free_ch));
dma_write(1 << free_ch, IRQSTATUS_L0);
}
*dma_ch_out = free_ch;
return 0;
}
EXPORT_SYMBOL(omap_request_dma);
void omap_free_dma(int lch)
{
unsigned long flags;
if (dma_chan[lch].dev_id == -1) {
pr_err("omap_dma: trying to free unallocated DMA channel %d\n",
lch);
return;
}
if (cpu_class_is_omap1()) {
/* Disable all DMA interrupts for the channel. */
dma_write(0, CICR(lch));
/* Make sure the DMA transfer is stopped. */
dma_write(0, CCR(lch));
}
if (cpu_class_is_omap2()) {
u32 val;
/* Disable interrupts */
val = dma_read(IRQENABLE_L0);
val &= ~(1 << lch);
dma_write(val, IRQENABLE_L0);
/* Clear the CSR register and IRQ status register */
dma_write(OMAP2_DMA_CSR_CLEAR_MASK, CSR(lch));
dma_write(1 << lch, IRQSTATUS_L0);
/* Disable all DMA interrupts for the channel. */
dma_write(0, CICR(lch));
/* Make sure the DMA transfer is stopped. */
dma_write(0, CCR(lch));
omap_clear_dma(lch);
}
spin_lock_irqsave(&dma_chan_lock, flags);
dma_chan[lch].dev_id = -1;
dma_chan[lch].next_lch = -1;
dma_chan[lch].callback = NULL;
spin_unlock_irqrestore(&dma_chan_lock, flags);
}
EXPORT_SYMBOL(omap_free_dma);
/**
* @brief omap_dma_set_global_params : Set global priority settings for dma
*
* @param arb_rate
* @param max_fifo_depth
* @param tparams - Number of thereads to reserve : DMA_THREAD_RESERVE_NORM
* DMA_THREAD_RESERVE_ONET
* DMA_THREAD_RESERVE_TWOT
* DMA_THREAD_RESERVE_THREET
*/
void
omap_dma_set_global_params(int arb_rate, int max_fifo_depth, int tparams)
{
u32 reg;
if (!cpu_class_is_omap2()) {
printk(KERN_ERR "FIXME: no %s on 15xx/16xx\n", __func__);
return;
}
if (arb_rate == 0)
arb_rate = 1;
reg = (arb_rate & 0xff) << 16;
reg |= (0xff & max_fifo_depth);
dma_write(reg, GCR);
}
EXPORT_SYMBOL(omap_dma_set_global_params);
/**
* @brief omap_dma_set_prio_lch : Set channel wise priority settings
*
* @param lch
* @param read_prio - Read priority
* @param write_prio - Write priority
* Both of the above can be set with one of the following values :
* DMA_CH_PRIO_HIGH/DMA_CH_PRIO_LOW
*/
int
omap_dma_set_prio_lch(int lch, unsigned char read_prio,
unsigned char write_prio)
{
u32 l;
if (unlikely((lch < 0 || lch >= dma_lch_count))) {
printk(KERN_ERR "Invalid channel id\n");
return -EINVAL;
}
l = dma_read(CCR(lch));
l &= ~((1 << 6) | (1 << 26));
if (cpu_is_omap2430() || cpu_is_omap34xx() || cpu_is_omap44xx())
l |= ((read_prio & 0x1) << 6) | ((write_prio & 0x1) << 26);
else
l |= ((read_prio & 0x1) << 6);
dma_write(l, CCR(lch));
return 0;
}
EXPORT_SYMBOL(omap_dma_set_prio_lch);
/*
* Clears any DMA state so the DMA engine is ready to restart with new buffers
* through omap_start_dma(). Any buffers in flight are discarded.
*/
void omap_clear_dma(int lch)
{
unsigned long flags;
local_irq_save(flags);
if (cpu_class_is_omap1()) {
u32 l;
l = dma_read(CCR(lch));
l &= ~OMAP_DMA_CCR_EN;
dma_write(l, CCR(lch));
/* Clear pending interrupts */
l = dma_read(CSR(lch));
}
if (cpu_class_is_omap2()) {
int i;
void __iomem *lch_base = omap_dma_base + OMAP_DMA4_CH_BASE(lch);
for (i = 0; i < 0x44; i += 4)
__raw_writel(0, lch_base + i);
}
local_irq_restore(flags);
}
EXPORT_SYMBOL(omap_clear_dma);
void omap_start_dma(int lch)
{
u32 l;
if (!omap_dma_in_1510_mode() && dma_chan[lch].next_lch != -1) {
int next_lch, cur_lch;
char dma_chan_link_map[OMAP_DMA4_LOGICAL_DMA_CH_COUNT];
dma_chan_link_map[lch] = 1;
/* Set the link register of the first channel */
enable_lnk(lch);
memset(dma_chan_link_map, 0, sizeof(dma_chan_link_map));
cur_lch = dma_chan[lch].next_lch;
do {
next_lch = dma_chan[cur_lch].next_lch;
/* The loop case: we've been here already */
if (dma_chan_link_map[cur_lch])
break;
/* Mark the current channel */
dma_chan_link_map[cur_lch] = 1;
enable_lnk(cur_lch);
omap_enable_channel_irq(cur_lch);
cur_lch = next_lch;
} while (next_lch != -1);
} else if (cpu_is_omap242x() ||
(cpu_is_omap243x() && omap_type() <= OMAP2430_REV_ES1_0)) {
/* Errata: Need to write lch even if not using chaining */
dma_write(lch, CLNK_CTRL(lch));
}
omap_enable_channel_irq(lch);
l = dma_read(CCR(lch));
/*
* Errata: On ES2.0 BUFFERING disable must be set.
* This will always fail on ES1.0
*/
if (cpu_is_omap24xx())
l |= OMAP_DMA_CCR_EN;
l |= OMAP_DMA_CCR_EN;
dma_write(l, CCR(lch));
dma_chan[lch].flags |= OMAP_DMA_ACTIVE;
}
EXPORT_SYMBOL(omap_start_dma);
void omap_stop_dma(int lch)
{
u32 l;
if (!omap_dma_in_1510_mode() && dma_chan[lch].next_lch != -1) {
int next_lch, cur_lch = lch;
char dma_chan_link_map[OMAP_DMA4_LOGICAL_DMA_CH_COUNT];
memset(dma_chan_link_map, 0, sizeof(dma_chan_link_map));
do {
/* The loop case: we've been here already */
if (dma_chan_link_map[cur_lch])
break;
/* Mark the current channel */
dma_chan_link_map[cur_lch] = 1;
disable_lnk(cur_lch);
next_lch = dma_chan[cur_lch].next_lch;
cur_lch = next_lch;
} while (next_lch != -1);
return;
}
/* Disable all interrupts on the channel */
if (cpu_class_is_omap1())
dma_write(0, CICR(lch));
l = dma_read(CCR(lch));
l &= ~OMAP_DMA_CCR_EN;
dma_write(l, CCR(lch));
dma_chan[lch].flags &= ~OMAP_DMA_ACTIVE;
}
EXPORT_SYMBOL(omap_stop_dma);
/*
* Allows changing the DMA callback function or data. This may be needed if
* the driver shares a single DMA channel for multiple dma triggers.
*/
int omap_set_dma_callback(int lch,
void (*callback)(int lch, u16 ch_status, void *data),
void *data)
{
unsigned long flags;
if (lch < 0)
return -ENODEV;
spin_lock_irqsave(&dma_chan_lock, flags);
if (dma_chan[lch].dev_id == -1) {
printk(KERN_ERR "DMA callback for not set for free channel\n");
spin_unlock_irqrestore(&dma_chan_lock, flags);
return -EINVAL;
}
dma_chan[lch].callback = callback;
dma_chan[lch].data = data;
spin_unlock_irqrestore(&dma_chan_lock, flags);
return 0;
}
EXPORT_SYMBOL(omap_set_dma_callback);
/*
* Returns current physical source address for the given DMA channel.
* If the channel is running the caller must disable interrupts prior calling
* this function and process the returned value before re-enabling interrupt to
* prevent races with the interrupt handler. Note that in continuous mode there
* is a chance for CSSA_L register overflow inbetween the two reads resulting
* in incorrect return value.
*/
dma_addr_t omap_get_dma_src_pos(int lch)
{
dma_addr_t offset = 0;
if (cpu_is_omap15xx())
offset = dma_read(CPC(lch));
else
offset = dma_read(CSAC(lch));
/*
* omap 3.2/3.3 erratum: sometimes 0 is returned if CSAC/CDAC is
* read before the DMA controller finished disabling the channel.
*/
if (!cpu_is_omap15xx() && offset == 0)
offset = dma_read(CSAC(lch));
if (cpu_class_is_omap1())
offset |= (dma_read(CSSA_U(lch)) << 16);
return offset;
}
EXPORT_SYMBOL(omap_get_dma_src_pos);
/*
* Returns current physical destination address for the given DMA channel.
* If the channel is running the caller must disable interrupts prior calling
* this function and process the returned value before re-enabling interrupt to
* prevent races with the interrupt handler. Note that in continuous mode there
* is a chance for CDSA_L register overflow inbetween the two reads resulting
* in incorrect return value.
*/
dma_addr_t omap_get_dma_dst_pos(int lch)
{
dma_addr_t offset = 0;
if (cpu_is_omap15xx())
offset = dma_read(CPC(lch));
else
offset = dma_read(CDAC(lch));
/*
* omap 3.2/3.3 erratum: sometimes 0 is returned if CSAC/CDAC is
* read before the DMA controller finished disabling the channel.
*/
if (!cpu_is_omap15xx() && offset == 0)
offset = dma_read(CDAC(lch));
if (cpu_class_is_omap1())
offset |= (dma_read(CDSA_U(lch)) << 16);
return offset;
}
EXPORT_SYMBOL(omap_get_dma_dst_pos);
int omap_get_dma_active_status(int lch)
{
return (dma_read(CCR(lch)) & OMAP_DMA_CCR_EN) != 0;
}
EXPORT_SYMBOL(omap_get_dma_active_status);
int omap_dma_running(void)
{
int lch;
/* Check if LCD DMA is running */
if (cpu_is_omap16xx())
if (omap_readw(OMAP1610_DMA_LCD_CCR) & OMAP_DMA_CCR_EN)
return 1;
for (lch = 0; lch < dma_chan_count; lch++)
if (dma_read(CCR(lch)) & OMAP_DMA_CCR_EN)
return 1;
return 0;
}
/*
* lch_queue DMA will start right after lch_head one is finished.
* For this DMA link to start, you still need to start (see omap_start_dma)
* the first one. That will fire up the entire queue.
*/
void omap_dma_link_lch(int lch_head, int lch_queue)
{
if (omap_dma_in_1510_mode()) {
if (lch_head == lch_queue) {
dma_write(dma_read(CCR(lch_head)) | (3 << 8),
CCR(lch_head));
return;
}
printk(KERN_ERR "DMA linking is not supported in 1510 mode\n");
BUG();
return;
}
if ((dma_chan[lch_head].dev_id == -1) ||
(dma_chan[lch_queue].dev_id == -1)) {
printk(KERN_ERR "omap_dma: trying to link "
"non requested channels\n");
dump_stack();
}
dma_chan[lch_head].next_lch = lch_queue;
}
EXPORT_SYMBOL(omap_dma_link_lch);
/*
* Once the DMA queue is stopped, we can destroy it.
*/
void omap_dma_unlink_lch(int lch_head, int lch_queue)
{
if (omap_dma_in_1510_mode()) {
if (lch_head == lch_queue) {
dma_write(dma_read(CCR(lch_head)) & ~(3 << 8),
CCR(lch_head));
return;
}
printk(KERN_ERR "DMA linking is not supported in 1510 mode\n");
BUG();
return;
}
if (dma_chan[lch_head].next_lch != lch_queue ||
dma_chan[lch_head].next_lch == -1) {
printk(KERN_ERR "omap_dma: trying to unlink "
"non linked channels\n");
dump_stack();
}
if ((dma_chan[lch_head].flags & OMAP_DMA_ACTIVE) ||
(dma_chan[lch_head].flags & OMAP_DMA_ACTIVE)) {
printk(KERN_ERR "omap_dma: You need to stop the DMA channels "
"before unlinking\n");
dump_stack();
}
dma_chan[lch_head].next_lch = -1;
}
EXPORT_SYMBOL(omap_dma_unlink_lch);
/*----------------------------------------------------------------------------*/
#ifndef CONFIG_ARCH_OMAP1
/* Create chain of DMA channesls */
static void create_dma_lch_chain(int lch_head, int lch_queue)
{
u32 l;
/* Check if this is the first link in chain */
if (dma_chan[lch_head].next_linked_ch == -1) {
dma_chan[lch_head].next_linked_ch = lch_queue;
dma_chan[lch_head].prev_linked_ch = lch_queue;
dma_chan[lch_queue].next_linked_ch = lch_head;
dma_chan[lch_queue].prev_linked_ch = lch_head;
}
/* a link exists, link the new channel in circular chain */
else {
dma_chan[lch_queue].next_linked_ch =
dma_chan[lch_head].next_linked_ch;
dma_chan[lch_queue].prev_linked_ch = lch_head;
dma_chan[lch_head].next_linked_ch = lch_queue;
dma_chan[dma_chan[lch_queue].next_linked_ch].prev_linked_ch =
lch_queue;
}
l = dma_read(CLNK_CTRL(lch_head));
l &= ~(0x1f);
l |= lch_queue;
dma_write(l, CLNK_CTRL(lch_head));
l = dma_read(CLNK_CTRL(lch_queue));
l &= ~(0x1f);
l |= (dma_chan[lch_queue].next_linked_ch);
dma_write(l, CLNK_CTRL(lch_queue));
}
/**
* @brief omap_request_dma_chain : Request a chain of DMA channels
*
* @param dev_id - Device id using the dma channel
* @param dev_name - Device name
* @param callback - Call back function
* @chain_id -
* @no_of_chans - Number of channels requested
* @chain_mode - Dynamic or static chaining : OMAP_DMA_STATIC_CHAIN
* OMAP_DMA_DYNAMIC_CHAIN
* @params - Channel parameters
*
* @return - Succes : 0
* Failure: -EINVAL/-ENOMEM
*/
int omap_request_dma_chain(int dev_id, const char *dev_name,
void (*callback) (int lch, u16 ch_status,
void *data),
int *chain_id, int no_of_chans, int chain_mode,
struct omap_dma_channel_params params)
{
int *channels;
int i, err;
/* Is the chain mode valid ? */
if (chain_mode != OMAP_DMA_STATIC_CHAIN
&& chain_mode != OMAP_DMA_DYNAMIC_CHAIN) {
printk(KERN_ERR "Invalid chain mode requested\n");
return -EINVAL;
}
if (unlikely((no_of_chans < 1
|| no_of_chans > dma_lch_count))) {
printk(KERN_ERR "Invalid Number of channels requested\n");
return -EINVAL;
}
/* Allocate a queue to maintain the status of the channels
* in the chain */
channels = kmalloc(sizeof(*channels) * no_of_chans, GFP_KERNEL);
if (channels == NULL) {
printk(KERN_ERR "omap_dma: No memory for channel queue\n");
return -ENOMEM;
}
/* request and reserve DMA channels for the chain */
for (i = 0; i < no_of_chans; i++) {
err = omap_request_dma(dev_id, dev_name,
callback, NULL, &channels[i]);
if (err < 0) {
int j;
for (j = 0; j < i; j++)
omap_free_dma(channels[j]);
kfree(channels);
printk(KERN_ERR "omap_dma: Request failed %d\n", err);
return err;
}
dma_chan[channels[i]].prev_linked_ch = -1;
dma_chan[channels[i]].state = DMA_CH_NOTSTARTED;
/*
* Allowing client drivers to set common parameters now,
* so that later only relevant (src_start, dest_start
* and element count) can be set
*/
omap_set_dma_params(channels[i], &params);
}
*chain_id = channels[0];
dma_linked_lch[*chain_id].linked_dmach_q = channels;
dma_linked_lch[*chain_id].chain_mode = chain_mode;
dma_linked_lch[*chain_id].chain_state = DMA_CHAIN_NOTSTARTED;
dma_linked_lch[*chain_id].no_of_lchs_linked = no_of_chans;
for (i = 0; i < no_of_chans; i++)
dma_chan[channels[i]].chain_id = *chain_id;
/* Reset the Queue pointers */
OMAP_DMA_CHAIN_QINIT(*chain_id);
/* Set up the chain */
if (no_of_chans == 1)
create_dma_lch_chain(channels[0], channels[0]);
else {
for (i = 0; i < (no_of_chans - 1); i++)
create_dma_lch_chain(channels[i], channels[i + 1]);
}
return 0;
}
EXPORT_SYMBOL(omap_request_dma_chain);
/**
* @brief omap_modify_dma_chain_param : Modify the chain's params - Modify the
* params after setting it. Dont do this while dma is running!!
*
* @param chain_id - Chained logical channel id.
* @param params
*
* @return - Success : 0
* Failure : -EINVAL
*/
int omap_modify_dma_chain_params(int chain_id,
struct omap_dma_channel_params params)
{
int *channels;
u32 i;
/* Check for input params */
if (unlikely((chain_id < 0
|| chain_id >= dma_lch_count))) {
printk(KERN_ERR "Invalid chain id\n");
return -EINVAL;
}
/* Check if the chain exists */
if (dma_linked_lch[chain_id].linked_dmach_q == NULL) {
printk(KERN_ERR "Chain doesn't exists\n");
return -EINVAL;
}
channels = dma_linked_lch[chain_id].linked_dmach_q;
for (i = 0; i < dma_linked_lch[chain_id].no_of_lchs_linked; i++) {
/*
* Allowing client drivers to set common parameters now,
* so that later only relevant (src_start, dest_start
* and element count) can be set
*/
omap_set_dma_params(channels[i], &params);
}
return 0;
}
EXPORT_SYMBOL(omap_modify_dma_chain_params);
/**
* @brief omap_free_dma_chain - Free all the logical channels in a chain.
*
* @param chain_id
*
* @return - Success : 0
* Failure : -EINVAL
*/
int omap_free_dma_chain(int chain_id)
{
int *channels;
u32 i;
/* Check for input params */
if (unlikely((chain_id < 0 || chain_id >= dma_lch_count))) {
printk(KERN_ERR "Invalid chain id\n");
return -EINVAL;
}
/* Check if the chain exists */
if (dma_linked_lch[chain_id].linked_dmach_q == NULL) {
printk(KERN_ERR "Chain doesn't exists\n");
return -EINVAL;
}
channels = dma_linked_lch[chain_id].linked_dmach_q;
for (i = 0; i < dma_linked_lch[chain_id].no_of_lchs_linked; i++) {
dma_chan[channels[i]].next_linked_ch = -1;
dma_chan[channels[i]].prev_linked_ch = -1;
dma_chan[channels[i]].chain_id = -1;
dma_chan[channels[i]].state = DMA_CH_NOTSTARTED;
omap_free_dma(channels[i]);
}
kfree(channels);
dma_linked_lch[chain_id].linked_dmach_q = NULL;
dma_linked_lch[chain_id].chain_mode = -1;
dma_linked_lch[chain_id].chain_state = -1;
return (0);
}
EXPORT_SYMBOL(omap_free_dma_chain);
/**
* @brief omap_dma_chain_status - Check if the chain is in
* active / inactive state.
* @param chain_id
*
* @return - Success : OMAP_DMA_CHAIN_ACTIVE/OMAP_DMA_CHAIN_INACTIVE
* Failure : -EINVAL
*/
int omap_dma_chain_status(int chain_id)
{
/* Check for input params */
if (unlikely((chain_id < 0 || chain_id >= dma_lch_count))) {
printk(KERN_ERR "Invalid chain id\n");
return -EINVAL;
}
/* Check if the chain exists */
if (dma_linked_lch[chain_id].linked_dmach_q == NULL) {
printk(KERN_ERR "Chain doesn't exists\n");
return -EINVAL;
}
pr_debug("CHAINID=%d, qcnt=%d\n", chain_id,
dma_linked_lch[chain_id].q_count);
if (OMAP_DMA_CHAIN_QEMPTY(chain_id))
return OMAP_DMA_CHAIN_INACTIVE;
return OMAP_DMA_CHAIN_ACTIVE;
}
EXPORT_SYMBOL(omap_dma_chain_status);
/**
* @brief omap_dma_chain_a_transfer - Get a free channel from a chain,
* set the params and start the transfer.
*
* @param chain_id
* @param src_start - buffer start address
* @param dest_start - Dest address
* @param elem_count
* @param frame_count
* @param callbk_data - channel callback parameter data.
*
* @return - Success : 0
* Failure: -EINVAL/-EBUSY
*/
int omap_dma_chain_a_transfer(int chain_id, int src_start, int dest_start,
int elem_count, int frame_count, void *callbk_data)
{
int *channels;
u32 l, lch;
int start_dma = 0;
/*
* if buffer size is less than 1 then there is
* no use of starting the chain
*/
if (elem_count < 1) {
printk(KERN_ERR "Invalid buffer size\n");
return -EINVAL;
}
/* Check for input params */
if (unlikely((chain_id < 0
|| chain_id >= dma_lch_count))) {
printk(KERN_ERR "Invalid chain id\n");
return -EINVAL;
}
/* Check if the chain exists */
if (dma_linked_lch[chain_id].linked_dmach_q == NULL) {
printk(KERN_ERR "Chain doesn't exist\n");
return -EINVAL;
}
/* Check if all the channels in chain are in use */
if (OMAP_DMA_CHAIN_QFULL(chain_id))
return -EBUSY;
/* Frame count may be negative in case of indexed transfers */
channels = dma_linked_lch[chain_id].linked_dmach_q;
/* Get a free channel */
lch = channels[dma_linked_lch[chain_id].q_tail];
/* Store the callback data */
dma_chan[lch].data = callbk_data;
/* Increment the q_tail */
OMAP_DMA_CHAIN_INCQTAIL(chain_id);
/* Set the params to the free channel */
if (src_start != 0)
dma_write(src_start, CSSA(lch));
if (dest_start != 0)
dma_write(dest_start, CDSA(lch));
/* Write the buffer size */
dma_write(elem_count, CEN(lch));
dma_write(frame_count, CFN(lch));
/*
* If the chain is dynamically linked,
* then we may have to start the chain if its not active
*/
if (dma_linked_lch[chain_id].chain_mode == OMAP_DMA_DYNAMIC_CHAIN) {
/*
* In Dynamic chain, if the chain is not started,
* queue the channel
*/
if (dma_linked_lch[chain_id].chain_state ==
DMA_CHAIN_NOTSTARTED) {
/* Enable the link in previous channel */
if (dma_chan[dma_chan[lch].prev_linked_ch].state ==
DMA_CH_QUEUED)
enable_lnk(dma_chan[lch].prev_linked_ch);
dma_chan[lch].state = DMA_CH_QUEUED;
}
/*
* Chain is already started, make sure its active,
* if not then start the chain
*/
else {
start_dma = 1;
if (dma_chan[dma_chan[lch].prev_linked_ch].state ==
DMA_CH_STARTED) {
enable_lnk(dma_chan[lch].prev_linked_ch);
dma_chan[lch].state = DMA_CH_QUEUED;
start_dma = 0;
if (0 == ((1 << 7) & dma_read(
CCR(dma_chan[lch].prev_linked_ch)))) {
disable_lnk(dma_chan[lch].
prev_linked_ch);
pr_debug("\n prev ch is stopped\n");
start_dma = 1;
}
}
else if (dma_chan[dma_chan[lch].prev_linked_ch].state
== DMA_CH_QUEUED) {
enable_lnk(dma_chan[lch].prev_linked_ch);
dma_chan[lch].state = DMA_CH_QUEUED;
start_dma = 0;
}
omap_enable_channel_irq(lch);
l = dma_read(CCR(lch));
if ((0 == (l & (1 << 24))))
l &= ~(1 << 25);
else
l |= (1 << 25);
if (start_dma == 1) {
if (0 == (l & (1 << 7))) {
l |= (1 << 7);
dma_chan[lch].state = DMA_CH_STARTED;
pr_debug("starting %d\n", lch);
dma_write(l, CCR(lch));
} else
start_dma = 0;
} else {
if (0 == (l & (1 << 7)))
dma_write(l, CCR(lch));
}
dma_chan[lch].flags |= OMAP_DMA_ACTIVE;
}
}
return 0;
}
EXPORT_SYMBOL(omap_dma_chain_a_transfer);
/**
* @brief omap_start_dma_chain_transfers - Start the chain
*
* @param chain_id
*
* @return - Success : 0
* Failure : -EINVAL/-EBUSY
*/
int omap_start_dma_chain_transfers(int chain_id)
{
int *channels;
u32 l, i;
if (unlikely((chain_id < 0 || chain_id >= dma_lch_count))) {
printk(KERN_ERR "Invalid chain id\n");
return -EINVAL;
}
channels = dma_linked_lch[chain_id].linked_dmach_q;
if (dma_linked_lch[channels[0]].chain_state == DMA_CHAIN_STARTED) {
printk(KERN_ERR "Chain is already started\n");
return -EBUSY;
}
if (dma_linked_lch[chain_id].chain_mode == OMAP_DMA_STATIC_CHAIN) {
for (i = 0; i < dma_linked_lch[chain_id].no_of_lchs_linked;
i++) {
enable_lnk(channels[i]);
omap_enable_channel_irq(channels[i]);
}
} else {
omap_enable_channel_irq(channels[0]);
}
l = dma_read(CCR(channels[0]));
l |= (1 << 7);
dma_linked_lch[chain_id].chain_state = DMA_CHAIN_STARTED;
dma_chan[channels[0]].state = DMA_CH_STARTED;
if ((0 == (l & (1 << 24))))
l &= ~(1 << 25);
else
l |= (1 << 25);
dma_write(l, CCR(channels[0]));
dma_chan[channels[0]].flags |= OMAP_DMA_ACTIVE;
return 0;
}
EXPORT_SYMBOL(omap_start_dma_chain_transfers);
/**
* @brief omap_stop_dma_chain_transfers - Stop the dma transfer of a chain.
*
* @param chain_id
*
* @return - Success : 0
* Failure : EINVAL
*/
int omap_stop_dma_chain_transfers(int chain_id)
{
int *channels;
u32 l, i;
u32 sys_cf;
/* Check for input params */
if (unlikely((chain_id < 0 || chain_id >= dma_lch_count))) {
printk(KERN_ERR "Invalid chain id\n");
return -EINVAL;
}
/* Check if the chain exists */
if (dma_linked_lch[chain_id].linked_dmach_q == NULL) {
printk(KERN_ERR "Chain doesn't exists\n");
return -EINVAL;
}
channels = dma_linked_lch[chain_id].linked_dmach_q;
/*
* DMA Errata:
* Special programming model needed to disable DMA before end of block
*/
sys_cf = dma_read(OCP_SYSCONFIG);
l = sys_cf;
/* Middle mode reg set no Standby */
l &= ~((1 << 12)|(1 << 13));
dma_write(l, OCP_SYSCONFIG);
for (i = 0; i < dma_linked_lch[chain_id].no_of_lchs_linked; i++) {
/* Stop the Channel transmission */
l = dma_read(CCR(channels[i]));
l &= ~(1 << 7);
dma_write(l, CCR(channels[i]));
/* Disable the link in all the channels */
disable_lnk(channels[i]);
dma_chan[channels[i]].state = DMA_CH_NOTSTARTED;
}
dma_linked_lch[chain_id].chain_state = DMA_CHAIN_NOTSTARTED;
/* Reset the Queue pointers */
OMAP_DMA_CHAIN_QINIT(chain_id);
/* Errata - put in the old value */
dma_write(sys_cf, OCP_SYSCONFIG);
return 0;
}
EXPORT_SYMBOL(omap_stop_dma_chain_transfers);
/* Get the index of the ongoing DMA in chain */
/**
* @brief omap_get_dma_chain_index - Get the element and frame index
* of the ongoing DMA in chain
*
* @param chain_id
* @param ei - Element index
* @param fi - Frame index
*
* @return - Success : 0
* Failure : -EINVAL
*/
int omap_get_dma_chain_index(int chain_id, int *ei, int *fi)
{
int lch;
int *channels;
/* Check for input params */
if (unlikely((chain_id < 0 || chain_id >= dma_lch_count))) {
printk(KERN_ERR "Invalid chain id\n");
return -EINVAL;
}
/* Check if the chain exists */
if (dma_linked_lch[chain_id].linked_dmach_q == NULL) {
printk(KERN_ERR "Chain doesn't exists\n");
return -EINVAL;
}
if ((!ei) || (!fi))
return -EINVAL;
channels = dma_linked_lch[chain_id].linked_dmach_q;
/* Get the current channel */
lch = channels[dma_linked_lch[chain_id].q_head];
*ei = dma_read(CCEN(lch));
*fi = dma_read(CCFN(lch));
return 0;
}
EXPORT_SYMBOL(omap_get_dma_chain_index);
/**
* @brief omap_get_dma_chain_dst_pos - Get the destination position of the
* ongoing DMA in chain
*
* @param chain_id
*
* @return - Success : Destination position
* Failure : -EINVAL
*/
int omap_get_dma_chain_dst_pos(int chain_id)
{
int lch;
int *channels;
/* Check for input params */
if (unlikely((chain_id < 0 || chain_id >= dma_lch_count))) {
printk(KERN_ERR "Invalid chain id\n");
return -EINVAL;
}
/* Check if the chain exists */
if (dma_linked_lch[chain_id].linked_dmach_q == NULL) {
printk(KERN_ERR "Chain doesn't exists\n");
return -EINVAL;
}
channels = dma_linked_lch[chain_id].linked_dmach_q;
/* Get the current channel */
lch = channels[dma_linked_lch[chain_id].q_head];
return dma_read(CDAC(lch));
}
EXPORT_SYMBOL(omap_get_dma_chain_dst_pos);
/**
* @brief omap_get_dma_chain_src_pos - Get the source position
* of the ongoing DMA in chain
* @param chain_id
*
* @return - Success : Destination position
* Failure : -EINVAL
*/
int omap_get_dma_chain_src_pos(int chain_id)
{
int lch;
int *channels;
/* Check for input params */
if (unlikely((chain_id < 0 || chain_id >= dma_lch_count))) {
printk(KERN_ERR "Invalid chain id\n");
return -EINVAL;
}
/* Check if the chain exists */
if (dma_linked_lch[chain_id].linked_dmach_q == NULL) {
printk(KERN_ERR "Chain doesn't exists\n");
return -EINVAL;
}
channels = dma_linked_lch[chain_id].linked_dmach_q;
/* Get the current channel */
lch = channels[dma_linked_lch[chain_id].q_head];
return dma_read(CSAC(lch));
}
EXPORT_SYMBOL(omap_get_dma_chain_src_pos);
#endif /* ifndef CONFIG_ARCH_OMAP1 */
/*----------------------------------------------------------------------------*/
#ifdef CONFIG_ARCH_OMAP1
static int omap1_dma_handle_ch(int ch)
{
u32 csr;
if (enable_1510_mode && ch >= 6) {
csr = dma_chan[ch].saved_csr;
dma_chan[ch].saved_csr = 0;
} else
csr = dma_read(CSR(ch));
if (enable_1510_mode && ch <= 2 && (csr >> 7) != 0) {
dma_chan[ch + 6].saved_csr = csr >> 7;
csr &= 0x7f;
}
if ((csr & 0x3f) == 0)
return 0;
if (unlikely(dma_chan[ch].dev_id == -1)) {
printk(KERN_WARNING "Spurious interrupt from DMA channel "
"%d (CSR %04x)\n", ch, csr);
return 0;
}
if (unlikely(csr & OMAP1_DMA_TOUT_IRQ))
printk(KERN_WARNING "DMA timeout with device %d\n",
dma_chan[ch].dev_id);
if (unlikely(csr & OMAP_DMA_DROP_IRQ))
printk(KERN_WARNING "DMA synchronization event drop occurred "
"with device %d\n", dma_chan[ch].dev_id);
if (likely(csr & OMAP_DMA_BLOCK_IRQ))
dma_chan[ch].flags &= ~OMAP_DMA_ACTIVE;
if (likely(dma_chan[ch].callback != NULL))
dma_chan[ch].callback(ch, csr, dma_chan[ch].data);
return 1;
}
static irqreturn_t omap1_dma_irq_handler(int irq, void *dev_id)
{
int ch = ((int) dev_id) - 1;
int handled = 0;
for (;;) {
int handled_now = 0;
handled_now += omap1_dma_handle_ch(ch);
if (enable_1510_mode && dma_chan[ch + 6].saved_csr)
handled_now += omap1_dma_handle_ch(ch + 6);
if (!handled_now)
break;
handled += handled_now;
}
return handled ? IRQ_HANDLED : IRQ_NONE;
}
#else
#define omap1_dma_irq_handler NULL
#endif
#if defined(CONFIG_ARCH_OMAP2) || defined(CONFIG_ARCH_OMAP3) || \
defined(CONFIG_ARCH_OMAP4)
static int omap2_dma_handle_ch(int ch)
{
u32 status = dma_read(CSR(ch));
if (!status) {
if (printk_ratelimit())
printk(KERN_WARNING "Spurious DMA IRQ for lch %d\n",
ch);
dma_write(1 << ch, IRQSTATUS_L0);
return 0;
}
if (unlikely(dma_chan[ch].dev_id == -1)) {
if (printk_ratelimit())
printk(KERN_WARNING "IRQ %04x for non-allocated DMA"
"channel %d\n", status, ch);
return 0;
}
if (unlikely(status & OMAP_DMA_DROP_IRQ))
printk(KERN_INFO
"DMA synchronization event drop occurred with device "
"%d\n", dma_chan[ch].dev_id);
if (unlikely(status & OMAP2_DMA_TRANS_ERR_IRQ)) {
printk(KERN_INFO "DMA transaction error with device %d\n",
dma_chan[ch].dev_id);
if (cpu_class_is_omap2()) {
/* Errata: sDMA Channel is not disabled
* after a transaction error. So we explicitely
* disable the channel
*/
u32 ccr;
ccr = dma_read(CCR(ch));
ccr &= ~OMAP_DMA_CCR_EN;
dma_write(ccr, CCR(ch));
dma_chan[ch].flags &= ~OMAP_DMA_ACTIVE;
}
}
if (unlikely(status & OMAP2_DMA_SECURE_ERR_IRQ))
printk(KERN_INFO "DMA secure error with device %d\n",
dma_chan[ch].dev_id);
if (unlikely(status & OMAP2_DMA_MISALIGNED_ERR_IRQ))
printk(KERN_INFO "DMA misaligned error with device %d\n",
dma_chan[ch].dev_id);
dma_write(OMAP2_DMA_CSR_CLEAR_MASK, CSR(ch));
dma_write(1 << ch, IRQSTATUS_L0);
/* If the ch is not chained then chain_id will be -1 */
if (dma_chan[ch].chain_id != -1) {
int chain_id = dma_chan[ch].chain_id;
dma_chan[ch].state = DMA_CH_NOTSTARTED;
if (dma_read(CLNK_CTRL(ch)) & (1 << 15))
dma_chan[dma_chan[ch].next_linked_ch].state =
DMA_CH_STARTED;
if (dma_linked_lch[chain_id].chain_mode ==
OMAP_DMA_DYNAMIC_CHAIN)
disable_lnk(ch);
if (!OMAP_DMA_CHAIN_QEMPTY(chain_id))
OMAP_DMA_CHAIN_INCQHEAD(chain_id);
status = dma_read(CSR(ch));
}
dma_write(status, CSR(ch));
if (likely(dma_chan[ch].callback != NULL))
dma_chan[ch].callback(ch, status, dma_chan[ch].data);
return 0;
}
/* STATUS register count is from 1-32 while our is 0-31 */
static irqreturn_t omap2_dma_irq_handler(int irq, void *dev_id)
{
u32 val, enable_reg;
int i;
val = dma_read(IRQSTATUS_L0);
if (val == 0) {
if (printk_ratelimit())
printk(KERN_WARNING "Spurious DMA IRQ\n");
return IRQ_HANDLED;
}
enable_reg = dma_read(IRQENABLE_L0);
val &= enable_reg; /* Dispatch only relevant interrupts */
for (i = 0; i < dma_lch_count && val != 0; i++) {
if (val & 1)
omap2_dma_handle_ch(i);
val >>= 1;
}
return IRQ_HANDLED;
}
static struct irqaction omap24xx_dma_irq = {
.name = "DMA",
.handler = omap2_dma_irq_handler,
.flags = IRQF_DISABLED
};
#else
static struct irqaction omap24xx_dma_irq;
#endif
/*----------------------------------------------------------------------------*/
static struct lcd_dma_info {
spinlock_t lock;
int reserved;
void (*callback)(u16 status, void *data);
void *cb_data;
int active;
unsigned long addr, size;
int rotate, data_type, xres, yres;
int vxres;
int mirror;
int xscale, yscale;
int ext_ctrl;
int src_port;
int single_transfer;
} lcd_dma;
void omap_set_lcd_dma_b1(unsigned long addr, u16 fb_xres, u16 fb_yres,
int data_type)
{
lcd_dma.addr = addr;
lcd_dma.data_type = data_type;
lcd_dma.xres = fb_xres;
lcd_dma.yres = fb_yres;
}
EXPORT_SYMBOL(omap_set_lcd_dma_b1);
void omap_set_lcd_dma_src_port(int port)
{
lcd_dma.src_port = port;
}
void omap_set_lcd_dma_ext_controller(int external)
{
lcd_dma.ext_ctrl = external;
}
EXPORT_SYMBOL(omap_set_lcd_dma_ext_controller);
void omap_set_lcd_dma_single_transfer(int single)
{
lcd_dma.single_transfer = single;
}
EXPORT_SYMBOL(omap_set_lcd_dma_single_transfer);
void omap_set_lcd_dma_b1_rotation(int rotate)
{
if (omap_dma_in_1510_mode()) {
printk(KERN_ERR "DMA rotation is not supported in 1510 mode\n");
BUG();
return;
}
lcd_dma.rotate = rotate;
}
EXPORT_SYMBOL(omap_set_lcd_dma_b1_rotation);
void omap_set_lcd_dma_b1_mirror(int mirror)
{
if (omap_dma_in_1510_mode()) {
printk(KERN_ERR "DMA mirror is not supported in 1510 mode\n");
BUG();
}
lcd_dma.mirror = mirror;
}
EXPORT_SYMBOL(omap_set_lcd_dma_b1_mirror);
void omap_set_lcd_dma_b1_vxres(unsigned long vxres)
{
if (omap_dma_in_1510_mode()) {
printk(KERN_ERR "DMA virtual resulotion is not supported "
"in 1510 mode\n");
BUG();
}
lcd_dma.vxres = vxres;
}
EXPORT_SYMBOL(omap_set_lcd_dma_b1_vxres);
void omap_set_lcd_dma_b1_scale(unsigned int xscale, unsigned int yscale)
{
if (omap_dma_in_1510_mode()) {
printk(KERN_ERR "DMA scale is not supported in 1510 mode\n");
BUG();
}
lcd_dma.xscale = xscale;
lcd_dma.yscale = yscale;
}
EXPORT_SYMBOL(omap_set_lcd_dma_b1_scale);
static void set_b1_regs(void)
{
unsigned long top, bottom;
int es;
u16 w;
unsigned long en, fn;
long ei, fi;
unsigned long vxres;
unsigned int xscale, yscale;
switch (lcd_dma.data_type) {
case OMAP_DMA_DATA_TYPE_S8:
es = 1;
break;
case OMAP_DMA_DATA_TYPE_S16:
es = 2;
break;
case OMAP_DMA_DATA_TYPE_S32:
es = 4;
break;
default:
BUG();
return;
}
vxres = lcd_dma.vxres ? lcd_dma.vxres : lcd_dma.xres;
xscale = lcd_dma.xscale ? lcd_dma.xscale : 1;
yscale = lcd_dma.yscale ? lcd_dma.yscale : 1;
BUG_ON(vxres < lcd_dma.xres);
#define PIXADDR(x, y) (lcd_dma.addr + \
((y) * vxres * yscale + (x) * xscale) * es)
#define PIXSTEP(sx, sy, dx, dy) (PIXADDR(dx, dy) - PIXADDR(sx, sy) - es + 1)
switch (lcd_dma.rotate) {
case 0:
if (!lcd_dma.mirror) {
top = PIXADDR(0, 0);
bottom = PIXADDR(lcd_dma.xres - 1, lcd_dma.yres - 1);
/* 1510 DMA requires the bottom address to be 2 more
* than the actual last memory access location. */
if (omap_dma_in_1510_mode() &&
lcd_dma.data_type == OMAP_DMA_DATA_TYPE_S32)
bottom += 2;
ei = PIXSTEP(0, 0, 1, 0);
fi = PIXSTEP(lcd_dma.xres - 1, 0, 0, 1);
} else {
top = PIXADDR(lcd_dma.xres - 1, 0);
bottom = PIXADDR(0, lcd_dma.yres - 1);
ei = PIXSTEP(1, 0, 0, 0);
fi = PIXSTEP(0, 0, lcd_dma.xres - 1, 1);
}
en = lcd_dma.xres;
fn = lcd_dma.yres;
break;
case 90:
if (!lcd_dma.mirror) {
top = PIXADDR(0, lcd_dma.yres - 1);
bottom = PIXADDR(lcd_dma.xres - 1, 0);
ei = PIXSTEP(0, 1, 0, 0);
fi = PIXSTEP(0, 0, 1, lcd_dma.yres - 1);
} else {
top = PIXADDR(lcd_dma.xres - 1, lcd_dma.yres - 1);
bottom = PIXADDR(0, 0);
ei = PIXSTEP(0, 1, 0, 0);
fi = PIXSTEP(1, 0, 0, lcd_dma.yres - 1);
}
en = lcd_dma.yres;
fn = lcd_dma.xres;
break;
case 180:
if (!lcd_dma.mirror) {
top = PIXADDR(lcd_dma.xres - 1, lcd_dma.yres - 1);
bottom = PIXADDR(0, 0);
ei = PIXSTEP(1, 0, 0, 0);
fi = PIXSTEP(0, 1, lcd_dma.xres - 1, 0);
} else {
top = PIXADDR(0, lcd_dma.yres - 1);
bottom = PIXADDR(lcd_dma.xres - 1, 0);
ei = PIXSTEP(0, 0, 1, 0);
fi = PIXSTEP(lcd_dma.xres - 1, 1, 0, 0);
}
en = lcd_dma.xres;
fn = lcd_dma.yres;
break;
case 270:
if (!lcd_dma.mirror) {
top = PIXADDR(lcd_dma.xres - 1, 0);
bottom = PIXADDR(0, lcd_dma.yres - 1);
ei = PIXSTEP(0, 0, 0, 1);
fi = PIXSTEP(1, lcd_dma.yres - 1, 0, 0);
} else {
top = PIXADDR(0, 0);
bottom = PIXADDR(lcd_dma.xres - 1, lcd_dma.yres - 1);
ei = PIXSTEP(0, 0, 0, 1);
fi = PIXSTEP(0, lcd_dma.yres - 1, 1, 0);
}
en = lcd_dma.yres;
fn = lcd_dma.xres;
break;
default:
BUG();
return; /* Suppress warning about uninitialized vars */
}
if (omap_dma_in_1510_mode()) {
omap_writew(top >> 16, OMAP1510_DMA_LCD_TOP_F1_U);
omap_writew(top, OMAP1510_DMA_LCD_TOP_F1_L);
omap_writew(bottom >> 16, OMAP1510_DMA_LCD_BOT_F1_U);
omap_writew(bottom, OMAP1510_DMA_LCD_BOT_F1_L);
return;
}
/* 1610 regs */
omap_writew(top >> 16, OMAP1610_DMA_LCD_TOP_B1_U);
omap_writew(top, OMAP1610_DMA_LCD_TOP_B1_L);
omap_writew(bottom >> 16, OMAP1610_DMA_LCD_BOT_B1_U);
omap_writew(bottom, OMAP1610_DMA_LCD_BOT_B1_L);
omap_writew(en, OMAP1610_DMA_LCD_SRC_EN_B1);
omap_writew(fn, OMAP1610_DMA_LCD_SRC_FN_B1);
w = omap_readw(OMAP1610_DMA_LCD_CSDP);
w &= ~0x03;
w |= lcd_dma.data_type;
omap_writew(w, OMAP1610_DMA_LCD_CSDP);
w = omap_readw(OMAP1610_DMA_LCD_CTRL);
/* Always set the source port as SDRAM for now*/
w &= ~(0x03 << 6);
if (lcd_dma.callback != NULL)
w |= 1 << 1; /* Block interrupt enable */
else
w &= ~(1 << 1);
omap_writew(w, OMAP1610_DMA_LCD_CTRL);
if (!(lcd_dma.rotate || lcd_dma.mirror ||
lcd_dma.vxres || lcd_dma.xscale || lcd_dma.yscale))
return;
w = omap_readw(OMAP1610_DMA_LCD_CCR);
/* Set the double-indexed addressing mode */
w |= (0x03 << 12);
omap_writew(w, OMAP1610_DMA_LCD_CCR);
omap_writew(ei, OMAP1610_DMA_LCD_SRC_EI_B1);
omap_writew(fi >> 16, OMAP1610_DMA_LCD_SRC_FI_B1_U);
omap_writew(fi, OMAP1610_DMA_LCD_SRC_FI_B1_L);
}
static irqreturn_t lcd_dma_irq_handler(int irq, void *dev_id)
{
u16 w;
w = omap_readw(OMAP1610_DMA_LCD_CTRL);
if (unlikely(!(w & (1 << 3)))) {
printk(KERN_WARNING "Spurious LCD DMA IRQ\n");
return IRQ_NONE;
}
/* Ack the IRQ */
w |= (1 << 3);
omap_writew(w, OMAP1610_DMA_LCD_CTRL);
lcd_dma.active = 0;
if (lcd_dma.callback != NULL)
lcd_dma.callback(w, lcd_dma.cb_data);
return IRQ_HANDLED;
}
int omap_request_lcd_dma(void (*callback)(u16 status, void *data),
void *data)
{
spin_lock_irq(&lcd_dma.lock);
if (lcd_dma.reserved) {
spin_unlock_irq(&lcd_dma.lock);
printk(KERN_ERR "LCD DMA channel already reserved\n");
BUG();
return -EBUSY;
}
lcd_dma.reserved = 1;
spin_unlock_irq(&lcd_dma.lock);
lcd_dma.callback = callback;
lcd_dma.cb_data = data;
lcd_dma.active = 0;
lcd_dma.single_transfer = 0;
lcd_dma.rotate = 0;
lcd_dma.vxres = 0;
lcd_dma.mirror = 0;
lcd_dma.xscale = 0;
lcd_dma.yscale = 0;
lcd_dma.ext_ctrl = 0;
lcd_dma.src_port = 0;
return 0;
}
EXPORT_SYMBOL(omap_request_lcd_dma);
void omap_free_lcd_dma(void)
{
spin_lock(&lcd_dma.lock);
if (!lcd_dma.reserved) {
spin_unlock(&lcd_dma.lock);
printk(KERN_ERR "LCD DMA is not reserved\n");
BUG();
return;
}
if (!enable_1510_mode)
omap_writew(omap_readw(OMAP1610_DMA_LCD_CCR) & ~1,
OMAP1610_DMA_LCD_CCR);
lcd_dma.reserved = 0;
spin_unlock(&lcd_dma.lock);
}
EXPORT_SYMBOL(omap_free_lcd_dma);
void omap_enable_lcd_dma(void)
{
u16 w;
/*
* Set the Enable bit only if an external controller is
* connected. Otherwise the OMAP internal controller will
* start the transfer when it gets enabled.
*/
if (enable_1510_mode || !lcd_dma.ext_ctrl)
return;
w = omap_readw(OMAP1610_DMA_LCD_CTRL);
w |= 1 << 8;
omap_writew(w, OMAP1610_DMA_LCD_CTRL);
lcd_dma.active = 1;
w = omap_readw(OMAP1610_DMA_LCD_CCR);
w |= 1 << 7;
omap_writew(w, OMAP1610_DMA_LCD_CCR);
}
EXPORT_SYMBOL(omap_enable_lcd_dma);
void omap_setup_lcd_dma(void)
{
BUG_ON(lcd_dma.active);
if (!enable_1510_mode) {
/* Set some reasonable defaults */
omap_writew(0x5440, OMAP1610_DMA_LCD_CCR);
omap_writew(0x9102, OMAP1610_DMA_LCD_CSDP);
omap_writew(0x0004, OMAP1610_DMA_LCD_LCH_CTRL);
}
set_b1_regs();
if (!enable_1510_mode) {
u16 w;
w = omap_readw(OMAP1610_DMA_LCD_CCR);
/*
* If DMA was already active set the end_prog bit to have
* the programmed register set loaded into the active
* register set.
*/
w |= 1 << 11; /* End_prog */
if (!lcd_dma.single_transfer)
w |= (3 << 8); /* Auto_init, repeat */
omap_writew(w, OMAP1610_DMA_LCD_CCR);
}
}
EXPORT_SYMBOL(omap_setup_lcd_dma);
void omap_stop_lcd_dma(void)
{
u16 w;
lcd_dma.active = 0;
if (enable_1510_mode || !lcd_dma.ext_ctrl)
return;
w = omap_readw(OMAP1610_DMA_LCD_CCR);
w &= ~(1 << 7);
omap_writew(w, OMAP1610_DMA_LCD_CCR);
w = omap_readw(OMAP1610_DMA_LCD_CTRL);
w &= ~(1 << 8);
omap_writew(w, OMAP1610_DMA_LCD_CTRL);
}
EXPORT_SYMBOL(omap_stop_lcd_dma);
/*----------------------------------------------------------------------------*/
static int __init omap_init_dma(void)
{
int ch, r;
if (cpu_class_is_omap1()) {
omap_dma_base = OMAP1_IO_ADDRESS(OMAP1_DMA_BASE);
dma_lch_count = OMAP1_LOGICAL_DMA_CH_COUNT;
} else if (cpu_is_omap24xx()) {
omap_dma_base = OMAP2_IO_ADDRESS(OMAP24XX_DMA4_BASE);
dma_lch_count = OMAP_DMA4_LOGICAL_DMA_CH_COUNT;
} else if (cpu_is_omap34xx()) {
omap_dma_base = OMAP2_IO_ADDRESS(OMAP34XX_DMA4_BASE);
dma_lch_count = OMAP_DMA4_LOGICAL_DMA_CH_COUNT;
} else if (cpu_is_omap44xx()) {
omap_dma_base = OMAP2_IO_ADDRESS(OMAP44XX_DMA4_BASE);
dma_lch_count = OMAP_DMA4_LOGICAL_DMA_CH_COUNT;
} else {
pr_err("DMA init failed for unsupported omap\n");
return -ENODEV;
}
if (cpu_class_is_omap2() && omap_dma_reserve_channels
&& (omap_dma_reserve_channels <= dma_lch_count))
dma_lch_count = omap_dma_reserve_channels;
dma_chan = kzalloc(sizeof(struct omap_dma_lch) * dma_lch_count,
GFP_KERNEL);
if (!dma_chan)
return -ENOMEM;
if (cpu_class_is_omap2()) {
dma_linked_lch = kzalloc(sizeof(struct dma_link_info) *
dma_lch_count, GFP_KERNEL);
if (!dma_linked_lch) {
kfree(dma_chan);
return -ENOMEM;
}
}
if (cpu_is_omap15xx()) {
printk(KERN_INFO "DMA support for OMAP15xx initialized\n");
dma_chan_count = 9;
enable_1510_mode = 1;
} else if (cpu_is_omap16xx() || cpu_is_omap7xx()) {
printk(KERN_INFO "OMAP DMA hardware version %d\n",
dma_read(HW_ID));
printk(KERN_INFO "DMA capabilities: %08x:%08x:%04x:%04x:%04x\n",
(dma_read(CAPS_0_U) << 16) |
dma_read(CAPS_0_L),
(dma_read(CAPS_1_U) << 16) |
dma_read(CAPS_1_L),
dma_read(CAPS_2), dma_read(CAPS_3),
dma_read(CAPS_4));
if (!enable_1510_mode) {
u16 w;
/* Disable OMAP 3.0/3.1 compatibility mode. */
w = dma_read(GSCR);
w |= 1 << 3;
dma_write(w, GSCR);
dma_chan_count = 16;
} else
dma_chan_count = 9;
if (cpu_is_omap16xx()) {
u16 w;
/* this would prevent OMAP sleep */
w = omap_readw(OMAP1610_DMA_LCD_CTRL);
w &= ~(1 << 8);
omap_writew(w, OMAP1610_DMA_LCD_CTRL);
}
} else if (cpu_class_is_omap2()) {
u8 revision = dma_read(REVISION) & 0xff;
printk(KERN_INFO "OMAP DMA hardware revision %d.%d\n",
revision >> 4, revision & 0xf);
dma_chan_count = dma_lch_count;
} else {
dma_chan_count = 0;
return 0;
}
spin_lock_init(&lcd_dma.lock);
spin_lock_init(&dma_chan_lock);
for (ch = 0; ch < dma_chan_count; ch++) {
omap_clear_dma(ch);
dma_chan[ch].dev_id = -1;
dma_chan[ch].next_lch = -1;
if (ch >= 6 && enable_1510_mode)
continue;
if (cpu_class_is_omap1()) {
/*
* request_irq() doesn't like dev_id (ie. ch) being
* zero, so we have to kludge around this.
*/
r = request_irq(omap1_dma_irq[ch],
omap1_dma_irq_handler, 0, "DMA",
(void *) (ch + 1));
if (r != 0) {
int i;
printk(KERN_ERR "unable to request IRQ %d "
"for DMA (error %d)\n",
omap1_dma_irq[ch], r);
for (i = 0; i < ch; i++)
free_irq(omap1_dma_irq[i],
(void *) (i + 1));
return r;
}
}
}
if (cpu_is_omap2430() || cpu_is_omap34xx() || cpu_is_omap44xx())
omap_dma_set_global_params(DMA_DEFAULT_ARB_RATE,
DMA_DEFAULT_FIFO_DEPTH, 0);
if (cpu_class_is_omap2()) {
int irq;
if (cpu_is_omap44xx())
irq = INT_44XX_SDMA_IRQ0;
else
irq = INT_24XX_SDMA_IRQ0;
setup_irq(irq, &omap24xx_dma_irq);
}
/* Enable smartidle idlemodes and autoidle */
if (cpu_is_omap34xx()) {
u32 v = dma_read(OCP_SYSCONFIG);
v &= ~(DMA_SYSCONFIG_MIDLEMODE_MASK |
DMA_SYSCONFIG_SIDLEMODE_MASK |
DMA_SYSCONFIG_AUTOIDLE);
v |= (DMA_SYSCONFIG_MIDLEMODE(DMA_IDLEMODE_SMARTIDLE) |
DMA_SYSCONFIG_SIDLEMODE(DMA_IDLEMODE_SMARTIDLE) |
DMA_SYSCONFIG_AUTOIDLE);
dma_write(v , OCP_SYSCONFIG);
}
/* FIXME: Update LCD DMA to work on 24xx */
if (cpu_class_is_omap1()) {
r = request_irq(INT_DMA_LCD, lcd_dma_irq_handler, 0,
"LCD DMA", NULL);
if (r != 0) {
int i;
printk(KERN_ERR "unable to request IRQ for LCD DMA "
"(error %d)\n", r);
for (i = 0; i < dma_chan_count; i++)
free_irq(omap1_dma_irq[i], (void *) (i + 1));
return r;
}
}
return 0;
}
arch_initcall(omap_init_dma);
/*
* Reserve the omap SDMA channels using cmdline bootarg
* "omap_dma_reserve_ch=". The valid range is 1 to 32
*/
static int __init omap_dma_cmdline_reserve_ch(char *str)
{
if (get_option(&str, &omap_dma_reserve_channels) != 1)
omap_dma_reserve_channels = 0;
return 1;
}
__setup("omap_dma_reserve_ch=", omap_dma_cmdline_reserve_ch);