| /* |
| * Copyright 2002 Andi Kleen, SuSE Labs. |
| * Thanks to Ben LaHaise for precious feedback. |
| */ |
| #include <linux/highmem.h> |
| #include <linux/bootmem.h> |
| #include <linux/sched.h> |
| #include <linux/mm.h> |
| #include <linux/interrupt.h> |
| #include <linux/seq_file.h> |
| #include <linux/debugfs.h> |
| #include <linux/pfn.h> |
| #include <linux/percpu.h> |
| #include <linux/gfp.h> |
| #include <linux/pci.h> |
| #include <linux/vmalloc.h> |
| |
| #include <asm/e820/api.h> |
| #include <asm/processor.h> |
| #include <asm/tlbflush.h> |
| #include <asm/sections.h> |
| #include <asm/setup.h> |
| #include <linux/uaccess.h> |
| #include <asm/pgalloc.h> |
| #include <asm/proto.h> |
| #include <asm/pat.h> |
| #include <asm/set_memory.h> |
| |
| /* |
| * The current flushing context - we pass it instead of 5 arguments: |
| */ |
| struct cpa_data { |
| unsigned long *vaddr; |
| pgd_t *pgd; |
| pgprot_t mask_set; |
| pgprot_t mask_clr; |
| unsigned long numpages; |
| int flags; |
| unsigned long pfn; |
| unsigned force_split : 1; |
| int curpage; |
| struct page **pages; |
| }; |
| |
| /* |
| * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings) |
| * using cpa_lock. So that we don't allow any other cpu, with stale large tlb |
| * entries change the page attribute in parallel to some other cpu |
| * splitting a large page entry along with changing the attribute. |
| */ |
| static DEFINE_SPINLOCK(cpa_lock); |
| |
| #define CPA_FLUSHTLB 1 |
| #define CPA_ARRAY 2 |
| #define CPA_PAGES_ARRAY 4 |
| |
| #ifdef CONFIG_PROC_FS |
| static unsigned long direct_pages_count[PG_LEVEL_NUM]; |
| |
| void update_page_count(int level, unsigned long pages) |
| { |
| /* Protect against CPA */ |
| spin_lock(&pgd_lock); |
| direct_pages_count[level] += pages; |
| spin_unlock(&pgd_lock); |
| } |
| |
| static void split_page_count(int level) |
| { |
| if (direct_pages_count[level] == 0) |
| return; |
| |
| direct_pages_count[level]--; |
| direct_pages_count[level - 1] += PTRS_PER_PTE; |
| } |
| |
| void arch_report_meminfo(struct seq_file *m) |
| { |
| seq_printf(m, "DirectMap4k: %8lu kB\n", |
| direct_pages_count[PG_LEVEL_4K] << 2); |
| #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE) |
| seq_printf(m, "DirectMap2M: %8lu kB\n", |
| direct_pages_count[PG_LEVEL_2M] << 11); |
| #else |
| seq_printf(m, "DirectMap4M: %8lu kB\n", |
| direct_pages_count[PG_LEVEL_2M] << 12); |
| #endif |
| if (direct_gbpages) |
| seq_printf(m, "DirectMap1G: %8lu kB\n", |
| direct_pages_count[PG_LEVEL_1G] << 20); |
| } |
| #else |
| static inline void split_page_count(int level) { } |
| #endif |
| |
| #ifdef CONFIG_X86_64 |
| |
| static inline unsigned long highmap_start_pfn(void) |
| { |
| return __pa_symbol(_text) >> PAGE_SHIFT; |
| } |
| |
| static inline unsigned long highmap_end_pfn(void) |
| { |
| /* Do not reference physical address outside the kernel. */ |
| return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT; |
| } |
| |
| #endif |
| |
| static inline int |
| within(unsigned long addr, unsigned long start, unsigned long end) |
| { |
| return addr >= start && addr < end; |
| } |
| |
| static inline int |
| within_inclusive(unsigned long addr, unsigned long start, unsigned long end) |
| { |
| return addr >= start && addr <= end; |
| } |
| |
| /* |
| * Flushing functions |
| */ |
| |
| /** |
| * clflush_cache_range - flush a cache range with clflush |
| * @vaddr: virtual start address |
| * @size: number of bytes to flush |
| * |
| * clflushopt is an unordered instruction which needs fencing with mfence or |
| * sfence to avoid ordering issues. |
| */ |
| void clflush_cache_range(void *vaddr, unsigned int size) |
| { |
| const unsigned long clflush_size = boot_cpu_data.x86_clflush_size; |
| void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1)); |
| void *vend = vaddr + size; |
| |
| if (p >= vend) |
| return; |
| |
| mb(); |
| |
| for (; p < vend; p += clflush_size) |
| clflushopt(p); |
| |
| mb(); |
| } |
| EXPORT_SYMBOL_GPL(clflush_cache_range); |
| |
| static void __cpa_flush_all(void *arg) |
| { |
| unsigned long cache = (unsigned long)arg; |
| |
| /* |
| * Flush all to work around Errata in early athlons regarding |
| * large page flushing. |
| */ |
| __flush_tlb_all(); |
| |
| if (cache && boot_cpu_data.x86 >= 4) |
| wbinvd(); |
| } |
| |
| static void cpa_flush_all(unsigned long cache) |
| { |
| BUG_ON(irqs_disabled()); |
| |
| on_each_cpu(__cpa_flush_all, (void *) cache, 1); |
| } |
| |
| static void __cpa_flush_range(void *arg) |
| { |
| /* |
| * We could optimize that further and do individual per page |
| * tlb invalidates for a low number of pages. Caveat: we must |
| * flush the high aliases on 64bit as well. |
| */ |
| __flush_tlb_all(); |
| } |
| |
| static void cpa_flush_range(unsigned long start, int numpages, int cache) |
| { |
| unsigned int i, level; |
| unsigned long addr; |
| |
| BUG_ON(irqs_disabled()); |
| WARN_ON(PAGE_ALIGN(start) != start); |
| |
| on_each_cpu(__cpa_flush_range, NULL, 1); |
| |
| if (!cache) |
| return; |
| |
| /* |
| * We only need to flush on one CPU, |
| * clflush is a MESI-coherent instruction that |
| * will cause all other CPUs to flush the same |
| * cachelines: |
| */ |
| for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) { |
| pte_t *pte = lookup_address(addr, &level); |
| |
| /* |
| * Only flush present addresses: |
| */ |
| if (pte && (pte_val(*pte) & _PAGE_PRESENT)) |
| clflush_cache_range((void *) addr, PAGE_SIZE); |
| } |
| } |
| |
| static void cpa_flush_array(unsigned long *start, int numpages, int cache, |
| int in_flags, struct page **pages) |
| { |
| unsigned int i, level; |
| #ifdef CONFIG_PREEMPT |
| /* |
| * Avoid wbinvd() because it causes latencies on all CPUs, |
| * regardless of any CPU isolation that may be in effect. |
| * |
| * This should be extended for CAT enabled systems independent of |
| * PREEMPT because wbinvd() does not respect the CAT partitions and |
| * this is exposed to unpriviledged users through the graphics |
| * subsystem. |
| */ |
| unsigned long do_wbinvd = 0; |
| #else |
| unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */ |
| #endif |
| |
| BUG_ON(irqs_disabled()); |
| |
| on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1); |
| |
| if (!cache || do_wbinvd) |
| return; |
| |
| /* |
| * We only need to flush on one CPU, |
| * clflush is a MESI-coherent instruction that |
| * will cause all other CPUs to flush the same |
| * cachelines: |
| */ |
| for (i = 0; i < numpages; i++) { |
| unsigned long addr; |
| pte_t *pte; |
| |
| if (in_flags & CPA_PAGES_ARRAY) |
| addr = (unsigned long)page_address(pages[i]); |
| else |
| addr = start[i]; |
| |
| pte = lookup_address(addr, &level); |
| |
| /* |
| * Only flush present addresses: |
| */ |
| if (pte && (pte_val(*pte) & _PAGE_PRESENT)) |
| clflush_cache_range((void *)addr, PAGE_SIZE); |
| } |
| } |
| |
| /* |
| * Certain areas of memory on x86 require very specific protection flags, |
| * for example the BIOS area or kernel text. Callers don't always get this |
| * right (again, ioremap() on BIOS memory is not uncommon) so this function |
| * checks and fixes these known static required protection bits. |
| */ |
| static inline pgprot_t static_protections(pgprot_t prot, unsigned long address, |
| unsigned long pfn) |
| { |
| pgprot_t forbidden = __pgprot(0); |
| |
| /* |
| * The BIOS area between 640k and 1Mb needs to be executable for |
| * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support. |
| */ |
| #ifdef CONFIG_PCI_BIOS |
| if (pcibios_enabled && within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT)) |
| pgprot_val(forbidden) |= _PAGE_NX; |
| #endif |
| |
| /* |
| * The kernel text needs to be executable for obvious reasons |
| * Does not cover __inittext since that is gone later on. On |
| * 64bit we do not enforce !NX on the low mapping |
| */ |
| if (within(address, (unsigned long)_text, (unsigned long)_etext)) |
| pgprot_val(forbidden) |= _PAGE_NX; |
| |
| /* |
| * The .rodata section needs to be read-only. Using the pfn |
| * catches all aliases. |
| */ |
| if (within(pfn, __pa_symbol(__start_rodata) >> PAGE_SHIFT, |
| __pa_symbol(__end_rodata) >> PAGE_SHIFT)) |
| pgprot_val(forbidden) |= _PAGE_RW; |
| |
| #if defined(CONFIG_X86_64) |
| /* |
| * Once the kernel maps the text as RO (kernel_set_to_readonly is set), |
| * kernel text mappings for the large page aligned text, rodata sections |
| * will be always read-only. For the kernel identity mappings covering |
| * the holes caused by this alignment can be anything that user asks. |
| * |
| * This will preserve the large page mappings for kernel text/data |
| * at no extra cost. |
| */ |
| if (kernel_set_to_readonly && |
| within(address, (unsigned long)_text, |
| (unsigned long)__end_rodata_hpage_align)) { |
| unsigned int level; |
| |
| /* |
| * Don't enforce the !RW mapping for the kernel text mapping, |
| * if the current mapping is already using small page mapping. |
| * No need to work hard to preserve large page mappings in this |
| * case. |
| * |
| * This also fixes the Linux Xen paravirt guest boot failure |
| * (because of unexpected read-only mappings for kernel identity |
| * mappings). In this paravirt guest case, the kernel text |
| * mapping and the kernel identity mapping share the same |
| * page-table pages. Thus we can't really use different |
| * protections for the kernel text and identity mappings. Also, |
| * these shared mappings are made of small page mappings. |
| * Thus this don't enforce !RW mapping for small page kernel |
| * text mapping logic will help Linux Xen parvirt guest boot |
| * as well. |
| */ |
| if (lookup_address(address, &level) && (level != PG_LEVEL_4K)) |
| pgprot_val(forbidden) |= _PAGE_RW; |
| } |
| #endif |
| |
| prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden)); |
| |
| return prot; |
| } |
| |
| /* |
| * Lookup the page table entry for a virtual address in a specific pgd. |
| * Return a pointer to the entry and the level of the mapping. |
| */ |
| pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address, |
| unsigned int *level) |
| { |
| p4d_t *p4d; |
| pud_t *pud; |
| pmd_t *pmd; |
| |
| *level = PG_LEVEL_NONE; |
| |
| if (pgd_none(*pgd)) |
| return NULL; |
| |
| p4d = p4d_offset(pgd, address); |
| if (p4d_none(*p4d)) |
| return NULL; |
| |
| *level = PG_LEVEL_512G; |
| if (p4d_large(*p4d) || !p4d_present(*p4d)) |
| return (pte_t *)p4d; |
| |
| pud = pud_offset(p4d, address); |
| if (pud_none(*pud)) |
| return NULL; |
| |
| *level = PG_LEVEL_1G; |
| if (pud_large(*pud) || !pud_present(*pud)) |
| return (pte_t *)pud; |
| |
| pmd = pmd_offset(pud, address); |
| if (pmd_none(*pmd)) |
| return NULL; |
| |
| *level = PG_LEVEL_2M; |
| if (pmd_large(*pmd) || !pmd_present(*pmd)) |
| return (pte_t *)pmd; |
| |
| *level = PG_LEVEL_4K; |
| |
| return pte_offset_kernel(pmd, address); |
| } |
| |
| /* |
| * Lookup the page table entry for a virtual address. Return a pointer |
| * to the entry and the level of the mapping. |
| * |
| * Note: We return pud and pmd either when the entry is marked large |
| * or when the present bit is not set. Otherwise we would return a |
| * pointer to a nonexisting mapping. |
| */ |
| pte_t *lookup_address(unsigned long address, unsigned int *level) |
| { |
| return lookup_address_in_pgd(pgd_offset_k(address), address, level); |
| } |
| EXPORT_SYMBOL_GPL(lookup_address); |
| |
| static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address, |
| unsigned int *level) |
| { |
| if (cpa->pgd) |
| return lookup_address_in_pgd(cpa->pgd + pgd_index(address), |
| address, level); |
| |
| return lookup_address(address, level); |
| } |
| |
| /* |
| * Lookup the PMD entry for a virtual address. Return a pointer to the entry |
| * or NULL if not present. |
| */ |
| pmd_t *lookup_pmd_address(unsigned long address) |
| { |
| pgd_t *pgd; |
| p4d_t *p4d; |
| pud_t *pud; |
| |
| pgd = pgd_offset_k(address); |
| if (pgd_none(*pgd)) |
| return NULL; |
| |
| p4d = p4d_offset(pgd, address); |
| if (p4d_none(*p4d) || p4d_large(*p4d) || !p4d_present(*p4d)) |
| return NULL; |
| |
| pud = pud_offset(p4d, address); |
| if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud)) |
| return NULL; |
| |
| return pmd_offset(pud, address); |
| } |
| |
| /* |
| * This is necessary because __pa() does not work on some |
| * kinds of memory, like vmalloc() or the alloc_remap() |
| * areas on 32-bit NUMA systems. The percpu areas can |
| * end up in this kind of memory, for instance. |
| * |
| * This could be optimized, but it is only intended to be |
| * used at inititalization time, and keeping it |
| * unoptimized should increase the testing coverage for |
| * the more obscure platforms. |
| */ |
| phys_addr_t slow_virt_to_phys(void *__virt_addr) |
| { |
| unsigned long virt_addr = (unsigned long)__virt_addr; |
| phys_addr_t phys_addr; |
| unsigned long offset; |
| enum pg_level level; |
| pte_t *pte; |
| |
| pte = lookup_address(virt_addr, &level); |
| BUG_ON(!pte); |
| |
| /* |
| * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t |
| * before being left-shifted PAGE_SHIFT bits -- this trick is to |
| * make 32-PAE kernel work correctly. |
| */ |
| switch (level) { |
| case PG_LEVEL_1G: |
| phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT; |
| offset = virt_addr & ~PUD_PAGE_MASK; |
| break; |
| case PG_LEVEL_2M: |
| phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT; |
| offset = virt_addr & ~PMD_PAGE_MASK; |
| break; |
| default: |
| phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT; |
| offset = virt_addr & ~PAGE_MASK; |
| } |
| |
| return (phys_addr_t)(phys_addr | offset); |
| } |
| EXPORT_SYMBOL_GPL(slow_virt_to_phys); |
| |
| /* |
| * Set the new pmd in all the pgds we know about: |
| */ |
| static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte) |
| { |
| /* change init_mm */ |
| set_pte_atomic(kpte, pte); |
| #ifdef CONFIG_X86_32 |
| if (!SHARED_KERNEL_PMD) { |
| struct page *page; |
| |
| list_for_each_entry(page, &pgd_list, lru) { |
| pgd_t *pgd; |
| p4d_t *p4d; |
| pud_t *pud; |
| pmd_t *pmd; |
| |
| pgd = (pgd_t *)page_address(page) + pgd_index(address); |
| p4d = p4d_offset(pgd, address); |
| pud = pud_offset(p4d, address); |
| pmd = pmd_offset(pud, address); |
| set_pte_atomic((pte_t *)pmd, pte); |
| } |
| } |
| #endif |
| } |
| |
| static int |
| try_preserve_large_page(pte_t *kpte, unsigned long address, |
| struct cpa_data *cpa) |
| { |
| unsigned long nextpage_addr, numpages, pmask, psize, addr, pfn, old_pfn; |
| pte_t new_pte, old_pte, *tmp; |
| pgprot_t old_prot, new_prot, req_prot; |
| int i, do_split = 1; |
| enum pg_level level; |
| |
| if (cpa->force_split) |
| return 1; |
| |
| spin_lock(&pgd_lock); |
| /* |
| * Check for races, another CPU might have split this page |
| * up already: |
| */ |
| tmp = _lookup_address_cpa(cpa, address, &level); |
| if (tmp != kpte) |
| goto out_unlock; |
| |
| switch (level) { |
| case PG_LEVEL_2M: |
| old_prot = pmd_pgprot(*(pmd_t *)kpte); |
| old_pfn = pmd_pfn(*(pmd_t *)kpte); |
| break; |
| case PG_LEVEL_1G: |
| old_prot = pud_pgprot(*(pud_t *)kpte); |
| old_pfn = pud_pfn(*(pud_t *)kpte); |
| break; |
| default: |
| do_split = -EINVAL; |
| goto out_unlock; |
| } |
| |
| psize = page_level_size(level); |
| pmask = page_level_mask(level); |
| |
| /* |
| * Calculate the number of pages, which fit into this large |
| * page starting at address: |
| */ |
| nextpage_addr = (address + psize) & pmask; |
| numpages = (nextpage_addr - address) >> PAGE_SHIFT; |
| if (numpages < cpa->numpages) |
| cpa->numpages = numpages; |
| |
| /* |
| * We are safe now. Check whether the new pgprot is the same: |
| * Convert protection attributes to 4k-format, as cpa->mask* are set |
| * up accordingly. |
| */ |
| old_pte = *kpte; |
| req_prot = pgprot_large_2_4k(old_prot); |
| |
| pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr); |
| pgprot_val(req_prot) |= pgprot_val(cpa->mask_set); |
| |
| /* |
| * req_prot is in format of 4k pages. It must be converted to large |
| * page format: the caching mode includes the PAT bit located at |
| * different bit positions in the two formats. |
| */ |
| req_prot = pgprot_4k_2_large(req_prot); |
| |
| /* |
| * Set the PSE and GLOBAL flags only if the PRESENT flag is |
| * set otherwise pmd_present/pmd_huge will return true even on |
| * a non present pmd. The canon_pgprot will clear _PAGE_GLOBAL |
| * for the ancient hardware that doesn't support it. |
| */ |
| if (pgprot_val(req_prot) & _PAGE_PRESENT) |
| pgprot_val(req_prot) |= _PAGE_PSE | _PAGE_GLOBAL; |
| else |
| pgprot_val(req_prot) &= ~(_PAGE_PSE | _PAGE_GLOBAL); |
| |
| req_prot = canon_pgprot(req_prot); |
| |
| /* |
| * old_pfn points to the large page base pfn. So we need |
| * to add the offset of the virtual address: |
| */ |
| pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT); |
| cpa->pfn = pfn; |
| |
| new_prot = static_protections(req_prot, address, pfn); |
| |
| /* |
| * We need to check the full range, whether |
| * static_protection() requires a different pgprot for one of |
| * the pages in the range we try to preserve: |
| */ |
| addr = address & pmask; |
| pfn = old_pfn; |
| for (i = 0; i < (psize >> PAGE_SHIFT); i++, addr += PAGE_SIZE, pfn++) { |
| pgprot_t chk_prot = static_protections(req_prot, addr, pfn); |
| |
| if (pgprot_val(chk_prot) != pgprot_val(new_prot)) |
| goto out_unlock; |
| } |
| |
| /* |
| * If there are no changes, return. maxpages has been updated |
| * above: |
| */ |
| if (pgprot_val(new_prot) == pgprot_val(old_prot)) { |
| do_split = 0; |
| goto out_unlock; |
| } |
| |
| /* |
| * We need to change the attributes. Check, whether we can |
| * change the large page in one go. We request a split, when |
| * the address is not aligned and the number of pages is |
| * smaller than the number of pages in the large page. Note |
| * that we limited the number of possible pages already to |
| * the number of pages in the large page. |
| */ |
| if (address == (address & pmask) && cpa->numpages == (psize >> PAGE_SHIFT)) { |
| /* |
| * The address is aligned and the number of pages |
| * covers the full page. |
| */ |
| new_pte = pfn_pte(old_pfn, new_prot); |
| __set_pmd_pte(kpte, address, new_pte); |
| cpa->flags |= CPA_FLUSHTLB; |
| do_split = 0; |
| } |
| |
| out_unlock: |
| spin_unlock(&pgd_lock); |
| |
| return do_split; |
| } |
| |
| static int |
| __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address, |
| struct page *base) |
| { |
| pte_t *pbase = (pte_t *)page_address(base); |
| unsigned long ref_pfn, pfn, pfninc = 1; |
| unsigned int i, level; |
| pte_t *tmp; |
| pgprot_t ref_prot; |
| |
| spin_lock(&pgd_lock); |
| /* |
| * Check for races, another CPU might have split this page |
| * up for us already: |
| */ |
| tmp = _lookup_address_cpa(cpa, address, &level); |
| if (tmp != kpte) { |
| spin_unlock(&pgd_lock); |
| return 1; |
| } |
| |
| paravirt_alloc_pte(&init_mm, page_to_pfn(base)); |
| |
| switch (level) { |
| case PG_LEVEL_2M: |
| ref_prot = pmd_pgprot(*(pmd_t *)kpte); |
| /* clear PSE and promote PAT bit to correct position */ |
| ref_prot = pgprot_large_2_4k(ref_prot); |
| ref_pfn = pmd_pfn(*(pmd_t *)kpte); |
| break; |
| |
| case PG_LEVEL_1G: |
| ref_prot = pud_pgprot(*(pud_t *)kpte); |
| ref_pfn = pud_pfn(*(pud_t *)kpte); |
| pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT; |
| |
| /* |
| * Clear the PSE flags if the PRESENT flag is not set |
| * otherwise pmd_present/pmd_huge will return true |
| * even on a non present pmd. |
| */ |
| if (!(pgprot_val(ref_prot) & _PAGE_PRESENT)) |
| pgprot_val(ref_prot) &= ~_PAGE_PSE; |
| break; |
| |
| default: |
| spin_unlock(&pgd_lock); |
| return 1; |
| } |
| |
| /* |
| * Set the GLOBAL flags only if the PRESENT flag is set |
| * otherwise pmd/pte_present will return true even on a non |
| * present pmd/pte. The canon_pgprot will clear _PAGE_GLOBAL |
| * for the ancient hardware that doesn't support it. |
| */ |
| if (pgprot_val(ref_prot) & _PAGE_PRESENT) |
| pgprot_val(ref_prot) |= _PAGE_GLOBAL; |
| else |
| pgprot_val(ref_prot) &= ~_PAGE_GLOBAL; |
| |
| /* |
| * Get the target pfn from the original entry: |
| */ |
| pfn = ref_pfn; |
| for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc) |
| set_pte(&pbase[i], pfn_pte(pfn, canon_pgprot(ref_prot))); |
| |
| if (virt_addr_valid(address)) { |
| unsigned long pfn = PFN_DOWN(__pa(address)); |
| |
| if (pfn_range_is_mapped(pfn, pfn + 1)) |
| split_page_count(level); |
| } |
| |
| /* |
| * Install the new, split up pagetable. |
| * |
| * We use the standard kernel pagetable protections for the new |
| * pagetable protections, the actual ptes set above control the |
| * primary protection behavior: |
| */ |
| __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE))); |
| |
| /* |
| * Intel Atom errata AAH41 workaround. |
| * |
| * The real fix should be in hw or in a microcode update, but |
| * we also probabilistically try to reduce the window of having |
| * a large TLB mixed with 4K TLBs while instruction fetches are |
| * going on. |
| */ |
| __flush_tlb_all(); |
| spin_unlock(&pgd_lock); |
| |
| return 0; |
| } |
| |
| static int split_large_page(struct cpa_data *cpa, pte_t *kpte, |
| unsigned long address) |
| { |
| struct page *base; |
| |
| if (!debug_pagealloc_enabled()) |
| spin_unlock(&cpa_lock); |
| base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0); |
| if (!debug_pagealloc_enabled()) |
| spin_lock(&cpa_lock); |
| if (!base) |
| return -ENOMEM; |
| |
| if (__split_large_page(cpa, kpte, address, base)) |
| __free_page(base); |
| |
| return 0; |
| } |
| |
| static bool try_to_free_pte_page(pte_t *pte) |
| { |
| int i; |
| |
| for (i = 0; i < PTRS_PER_PTE; i++) |
| if (!pte_none(pte[i])) |
| return false; |
| |
| free_page((unsigned long)pte); |
| return true; |
| } |
| |
| static bool try_to_free_pmd_page(pmd_t *pmd) |
| { |
| int i; |
| |
| for (i = 0; i < PTRS_PER_PMD; i++) |
| if (!pmd_none(pmd[i])) |
| return false; |
| |
| free_page((unsigned long)pmd); |
| return true; |
| } |
| |
| static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end) |
| { |
| pte_t *pte = pte_offset_kernel(pmd, start); |
| |
| while (start < end) { |
| set_pte(pte, __pte(0)); |
| |
| start += PAGE_SIZE; |
| pte++; |
| } |
| |
| if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) { |
| pmd_clear(pmd); |
| return true; |
| } |
| return false; |
| } |
| |
| static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd, |
| unsigned long start, unsigned long end) |
| { |
| if (unmap_pte_range(pmd, start, end)) |
| if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud))) |
| pud_clear(pud); |
| } |
| |
| static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end) |
| { |
| pmd_t *pmd = pmd_offset(pud, start); |
| |
| /* |
| * Not on a 2MB page boundary? |
| */ |
| if (start & (PMD_SIZE - 1)) { |
| unsigned long next_page = (start + PMD_SIZE) & PMD_MASK; |
| unsigned long pre_end = min_t(unsigned long, end, next_page); |
| |
| __unmap_pmd_range(pud, pmd, start, pre_end); |
| |
| start = pre_end; |
| pmd++; |
| } |
| |
| /* |
| * Try to unmap in 2M chunks. |
| */ |
| while (end - start >= PMD_SIZE) { |
| if (pmd_large(*pmd)) |
| pmd_clear(pmd); |
| else |
| __unmap_pmd_range(pud, pmd, start, start + PMD_SIZE); |
| |
| start += PMD_SIZE; |
| pmd++; |
| } |
| |
| /* |
| * 4K leftovers? |
| */ |
| if (start < end) |
| return __unmap_pmd_range(pud, pmd, start, end); |
| |
| /* |
| * Try again to free the PMD page if haven't succeeded above. |
| */ |
| if (!pud_none(*pud)) |
| if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud))) |
| pud_clear(pud); |
| } |
| |
| static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end) |
| { |
| pud_t *pud = pud_offset(p4d, start); |
| |
| /* |
| * Not on a GB page boundary? |
| */ |
| if (start & (PUD_SIZE - 1)) { |
| unsigned long next_page = (start + PUD_SIZE) & PUD_MASK; |
| unsigned long pre_end = min_t(unsigned long, end, next_page); |
| |
| unmap_pmd_range(pud, start, pre_end); |
| |
| start = pre_end; |
| pud++; |
| } |
| |
| /* |
| * Try to unmap in 1G chunks? |
| */ |
| while (end - start >= PUD_SIZE) { |
| |
| if (pud_large(*pud)) |
| pud_clear(pud); |
| else |
| unmap_pmd_range(pud, start, start + PUD_SIZE); |
| |
| start += PUD_SIZE; |
| pud++; |
| } |
| |
| /* |
| * 2M leftovers? |
| */ |
| if (start < end) |
| unmap_pmd_range(pud, start, end); |
| |
| /* |
| * No need to try to free the PUD page because we'll free it in |
| * populate_pgd's error path |
| */ |
| } |
| |
| static int alloc_pte_page(pmd_t *pmd) |
| { |
| pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK); |
| if (!pte) |
| return -1; |
| |
| set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE)); |
| return 0; |
| } |
| |
| static int alloc_pmd_page(pud_t *pud) |
| { |
| pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK); |
| if (!pmd) |
| return -1; |
| |
| set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE)); |
| return 0; |
| } |
| |
| static void populate_pte(struct cpa_data *cpa, |
| unsigned long start, unsigned long end, |
| unsigned num_pages, pmd_t *pmd, pgprot_t pgprot) |
| { |
| pte_t *pte; |
| |
| pte = pte_offset_kernel(pmd, start); |
| |
| /* |
| * Set the GLOBAL flags only if the PRESENT flag is |
| * set otherwise pte_present will return true even on |
| * a non present pte. The canon_pgprot will clear |
| * _PAGE_GLOBAL for the ancient hardware that doesn't |
| * support it. |
| */ |
| if (pgprot_val(pgprot) & _PAGE_PRESENT) |
| pgprot_val(pgprot) |= _PAGE_GLOBAL; |
| else |
| pgprot_val(pgprot) &= ~_PAGE_GLOBAL; |
| |
| pgprot = canon_pgprot(pgprot); |
| |
| while (num_pages-- && start < end) { |
| set_pte(pte, pfn_pte(cpa->pfn, pgprot)); |
| |
| start += PAGE_SIZE; |
| cpa->pfn++; |
| pte++; |
| } |
| } |
| |
| static long populate_pmd(struct cpa_data *cpa, |
| unsigned long start, unsigned long end, |
| unsigned num_pages, pud_t *pud, pgprot_t pgprot) |
| { |
| long cur_pages = 0; |
| pmd_t *pmd; |
| pgprot_t pmd_pgprot; |
| |
| /* |
| * Not on a 2M boundary? |
| */ |
| if (start & (PMD_SIZE - 1)) { |
| unsigned long pre_end = start + (num_pages << PAGE_SHIFT); |
| unsigned long next_page = (start + PMD_SIZE) & PMD_MASK; |
| |
| pre_end = min_t(unsigned long, pre_end, next_page); |
| cur_pages = (pre_end - start) >> PAGE_SHIFT; |
| cur_pages = min_t(unsigned int, num_pages, cur_pages); |
| |
| /* |
| * Need a PTE page? |
| */ |
| pmd = pmd_offset(pud, start); |
| if (pmd_none(*pmd)) |
| if (alloc_pte_page(pmd)) |
| return -1; |
| |
| populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot); |
| |
| start = pre_end; |
| } |
| |
| /* |
| * We mapped them all? |
| */ |
| if (num_pages == cur_pages) |
| return cur_pages; |
| |
| pmd_pgprot = pgprot_4k_2_large(pgprot); |
| |
| while (end - start >= PMD_SIZE) { |
| |
| /* |
| * We cannot use a 1G page so allocate a PMD page if needed. |
| */ |
| if (pud_none(*pud)) |
| if (alloc_pmd_page(pud)) |
| return -1; |
| |
| pmd = pmd_offset(pud, start); |
| |
| set_pmd(pmd, __pmd(cpa->pfn << PAGE_SHIFT | _PAGE_PSE | |
| massage_pgprot(pmd_pgprot))); |
| |
| start += PMD_SIZE; |
| cpa->pfn += PMD_SIZE >> PAGE_SHIFT; |
| cur_pages += PMD_SIZE >> PAGE_SHIFT; |
| } |
| |
| /* |
| * Map trailing 4K pages. |
| */ |
| if (start < end) { |
| pmd = pmd_offset(pud, start); |
| if (pmd_none(*pmd)) |
| if (alloc_pte_page(pmd)) |
| return -1; |
| |
| populate_pte(cpa, start, end, num_pages - cur_pages, |
| pmd, pgprot); |
| } |
| return num_pages; |
| } |
| |
| static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d, |
| pgprot_t pgprot) |
| { |
| pud_t *pud; |
| unsigned long end; |
| long cur_pages = 0; |
| pgprot_t pud_pgprot; |
| |
| end = start + (cpa->numpages << PAGE_SHIFT); |
| |
| /* |
| * Not on a Gb page boundary? => map everything up to it with |
| * smaller pages. |
| */ |
| if (start & (PUD_SIZE - 1)) { |
| unsigned long pre_end; |
| unsigned long next_page = (start + PUD_SIZE) & PUD_MASK; |
| |
| pre_end = min_t(unsigned long, end, next_page); |
| cur_pages = (pre_end - start) >> PAGE_SHIFT; |
| cur_pages = min_t(int, (int)cpa->numpages, cur_pages); |
| |
| pud = pud_offset(p4d, start); |
| |
| /* |
| * Need a PMD page? |
| */ |
| if (pud_none(*pud)) |
| if (alloc_pmd_page(pud)) |
| return -1; |
| |
| cur_pages = populate_pmd(cpa, start, pre_end, cur_pages, |
| pud, pgprot); |
| if (cur_pages < 0) |
| return cur_pages; |
| |
| start = pre_end; |
| } |
| |
| /* We mapped them all? */ |
| if (cpa->numpages == cur_pages) |
| return cur_pages; |
| |
| pud = pud_offset(p4d, start); |
| pud_pgprot = pgprot_4k_2_large(pgprot); |
| |
| /* |
| * Map everything starting from the Gb boundary, possibly with 1G pages |
| */ |
| while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) { |
| set_pud(pud, __pud(cpa->pfn << PAGE_SHIFT | _PAGE_PSE | |
| massage_pgprot(pud_pgprot))); |
| |
| start += PUD_SIZE; |
| cpa->pfn += PUD_SIZE >> PAGE_SHIFT; |
| cur_pages += PUD_SIZE >> PAGE_SHIFT; |
| pud++; |
| } |
| |
| /* Map trailing leftover */ |
| if (start < end) { |
| long tmp; |
| |
| pud = pud_offset(p4d, start); |
| if (pud_none(*pud)) |
| if (alloc_pmd_page(pud)) |
| return -1; |
| |
| tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages, |
| pud, pgprot); |
| if (tmp < 0) |
| return cur_pages; |
| |
| cur_pages += tmp; |
| } |
| return cur_pages; |
| } |
| |
| /* |
| * Restrictions for kernel page table do not necessarily apply when mapping in |
| * an alternate PGD. |
| */ |
| static int populate_pgd(struct cpa_data *cpa, unsigned long addr) |
| { |
| pgprot_t pgprot = __pgprot(_KERNPG_TABLE); |
| pud_t *pud = NULL; /* shut up gcc */ |
| p4d_t *p4d; |
| pgd_t *pgd_entry; |
| long ret; |
| |
| pgd_entry = cpa->pgd + pgd_index(addr); |
| |
| if (pgd_none(*pgd_entry)) { |
| p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK); |
| if (!p4d) |
| return -1; |
| |
| set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE)); |
| } |
| |
| /* |
| * Allocate a PUD page and hand it down for mapping. |
| */ |
| p4d = p4d_offset(pgd_entry, addr); |
| if (p4d_none(*p4d)) { |
| pud = (pud_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK); |
| if (!pud) |
| return -1; |
| |
| set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE)); |
| } |
| |
| pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr); |
| pgprot_val(pgprot) |= pgprot_val(cpa->mask_set); |
| |
| ret = populate_pud(cpa, addr, p4d, pgprot); |
| if (ret < 0) { |
| /* |
| * Leave the PUD page in place in case some other CPU or thread |
| * already found it, but remove any useless entries we just |
| * added to it. |
| */ |
| unmap_pud_range(p4d, addr, |
| addr + (cpa->numpages << PAGE_SHIFT)); |
| return ret; |
| } |
| |
| cpa->numpages = ret; |
| return 0; |
| } |
| |
| static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr, |
| int primary) |
| { |
| if (cpa->pgd) { |
| /* |
| * Right now, we only execute this code path when mapping |
| * the EFI virtual memory map regions, no other users |
| * provide a ->pgd value. This may change in the future. |
| */ |
| return populate_pgd(cpa, vaddr); |
| } |
| |
| /* |
| * Ignore all non primary paths. |
| */ |
| if (!primary) { |
| cpa->numpages = 1; |
| return 0; |
| } |
| |
| /* |
| * Ignore the NULL PTE for kernel identity mapping, as it is expected |
| * to have holes. |
| * Also set numpages to '1' indicating that we processed cpa req for |
| * one virtual address page and its pfn. TBD: numpages can be set based |
| * on the initial value and the level returned by lookup_address(). |
| */ |
| if (within(vaddr, PAGE_OFFSET, |
| PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) { |
| cpa->numpages = 1; |
| cpa->pfn = __pa(vaddr) >> PAGE_SHIFT; |
| return 0; |
| } else { |
| WARN(1, KERN_WARNING "CPA: called for zero pte. " |
| "vaddr = %lx cpa->vaddr = %lx\n", vaddr, |
| *cpa->vaddr); |
| |
| return -EFAULT; |
| } |
| } |
| |
| static int __change_page_attr(struct cpa_data *cpa, int primary) |
| { |
| unsigned long address; |
| int do_split, err; |
| unsigned int level; |
| pte_t *kpte, old_pte; |
| |
| if (cpa->flags & CPA_PAGES_ARRAY) { |
| struct page *page = cpa->pages[cpa->curpage]; |
| if (unlikely(PageHighMem(page))) |
| return 0; |
| address = (unsigned long)page_address(page); |
| } else if (cpa->flags & CPA_ARRAY) |
| address = cpa->vaddr[cpa->curpage]; |
| else |
| address = *cpa->vaddr; |
| repeat: |
| kpte = _lookup_address_cpa(cpa, address, &level); |
| if (!kpte) |
| return __cpa_process_fault(cpa, address, primary); |
| |
| old_pte = *kpte; |
| if (pte_none(old_pte)) |
| return __cpa_process_fault(cpa, address, primary); |
| |
| if (level == PG_LEVEL_4K) { |
| pte_t new_pte; |
| pgprot_t new_prot = pte_pgprot(old_pte); |
| unsigned long pfn = pte_pfn(old_pte); |
| |
| pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr); |
| pgprot_val(new_prot) |= pgprot_val(cpa->mask_set); |
| |
| new_prot = static_protections(new_prot, address, pfn); |
| |
| /* |
| * Set the GLOBAL flags only if the PRESENT flag is |
| * set otherwise pte_present will return true even on |
| * a non present pte. The canon_pgprot will clear |
| * _PAGE_GLOBAL for the ancient hardware that doesn't |
| * support it. |
| */ |
| if (pgprot_val(new_prot) & _PAGE_PRESENT) |
| pgprot_val(new_prot) |= _PAGE_GLOBAL; |
| else |
| pgprot_val(new_prot) &= ~_PAGE_GLOBAL; |
| |
| /* |
| * We need to keep the pfn from the existing PTE, |
| * after all we're only going to change it's attributes |
| * not the memory it points to |
| */ |
| new_pte = pfn_pte(pfn, canon_pgprot(new_prot)); |
| cpa->pfn = pfn; |
| /* |
| * Do we really change anything ? |
| */ |
| if (pte_val(old_pte) != pte_val(new_pte)) { |
| set_pte_atomic(kpte, new_pte); |
| cpa->flags |= CPA_FLUSHTLB; |
| } |
| cpa->numpages = 1; |
| return 0; |
| } |
| |
| /* |
| * Check, whether we can keep the large page intact |
| * and just change the pte: |
| */ |
| do_split = try_preserve_large_page(kpte, address, cpa); |
| /* |
| * When the range fits into the existing large page, |
| * return. cp->numpages and cpa->tlbflush have been updated in |
| * try_large_page: |
| */ |
| if (do_split <= 0) |
| return do_split; |
| |
| /* |
| * We have to split the large page: |
| */ |
| err = split_large_page(cpa, kpte, address); |
| if (!err) { |
| /* |
| * Do a global flush tlb after splitting the large page |
| * and before we do the actual change page attribute in the PTE. |
| * |
| * With out this, we violate the TLB application note, that says |
| * "The TLBs may contain both ordinary and large-page |
| * translations for a 4-KByte range of linear addresses. This |
| * may occur if software modifies the paging structures so that |
| * the page size used for the address range changes. If the two |
| * translations differ with respect to page frame or attributes |
| * (e.g., permissions), processor behavior is undefined and may |
| * be implementation-specific." |
| * |
| * We do this global tlb flush inside the cpa_lock, so that we |
| * don't allow any other cpu, with stale tlb entries change the |
| * page attribute in parallel, that also falls into the |
| * just split large page entry. |
| */ |
| flush_tlb_all(); |
| goto repeat; |
| } |
| |
| return err; |
| } |
| |
| static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias); |
| |
| static int cpa_process_alias(struct cpa_data *cpa) |
| { |
| struct cpa_data alias_cpa; |
| unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT); |
| unsigned long vaddr; |
| int ret; |
| |
| if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1)) |
| return 0; |
| |
| /* |
| * No need to redo, when the primary call touched the direct |
| * mapping already: |
| */ |
| if (cpa->flags & CPA_PAGES_ARRAY) { |
| struct page *page = cpa->pages[cpa->curpage]; |
| if (unlikely(PageHighMem(page))) |
| return 0; |
| vaddr = (unsigned long)page_address(page); |
| } else if (cpa->flags & CPA_ARRAY) |
| vaddr = cpa->vaddr[cpa->curpage]; |
| else |
| vaddr = *cpa->vaddr; |
| |
| if (!(within(vaddr, PAGE_OFFSET, |
| PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) { |
| |
| alias_cpa = *cpa; |
| alias_cpa.vaddr = &laddr; |
| alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY); |
| |
| ret = __change_page_attr_set_clr(&alias_cpa, 0); |
| if (ret) |
| return ret; |
| } |
| |
| #ifdef CONFIG_X86_64 |
| /* |
| * If the primary call didn't touch the high mapping already |
| * and the physical address is inside the kernel map, we need |
| * to touch the high mapped kernel as well: |
| */ |
| if (!within(vaddr, (unsigned long)_text, _brk_end) && |
| within_inclusive(cpa->pfn, highmap_start_pfn(), |
| highmap_end_pfn())) { |
| unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) + |
| __START_KERNEL_map - phys_base; |
| alias_cpa = *cpa; |
| alias_cpa.vaddr = &temp_cpa_vaddr; |
| alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY); |
| |
| /* |
| * The high mapping range is imprecise, so ignore the |
| * return value. |
| */ |
| __change_page_attr_set_clr(&alias_cpa, 0); |
| } |
| #endif |
| |
| return 0; |
| } |
| |
| static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias) |
| { |
| unsigned long numpages = cpa->numpages; |
| int ret; |
| |
| while (numpages) { |
| /* |
| * Store the remaining nr of pages for the large page |
| * preservation check. |
| */ |
| cpa->numpages = numpages; |
| /* for array changes, we can't use large page */ |
| if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY)) |
| cpa->numpages = 1; |
| |
| if (!debug_pagealloc_enabled()) |
| spin_lock(&cpa_lock); |
| ret = __change_page_attr(cpa, checkalias); |
| if (!debug_pagealloc_enabled()) |
| spin_unlock(&cpa_lock); |
| if (ret) |
| return ret; |
| |
| if (checkalias) { |
| ret = cpa_process_alias(cpa); |
| if (ret) |
| return ret; |
| } |
| |
| /* |
| * Adjust the number of pages with the result of the |
| * CPA operation. Either a large page has been |
| * preserved or a single page update happened. |
| */ |
| BUG_ON(cpa->numpages > numpages || !cpa->numpages); |
| numpages -= cpa->numpages; |
| if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) |
| cpa->curpage++; |
| else |
| *cpa->vaddr += cpa->numpages * PAGE_SIZE; |
| |
| } |
| return 0; |
| } |
| |
| static int change_page_attr_set_clr(unsigned long *addr, int numpages, |
| pgprot_t mask_set, pgprot_t mask_clr, |
| int force_split, int in_flag, |
| struct page **pages) |
| { |
| struct cpa_data cpa; |
| int ret, cache, checkalias; |
| unsigned long baddr = 0; |
| |
| memset(&cpa, 0, sizeof(cpa)); |
| |
| /* |
| * Check, if we are requested to change a not supported |
| * feature: |
| */ |
| mask_set = canon_pgprot(mask_set); |
| mask_clr = canon_pgprot(mask_clr); |
| if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split) |
| return 0; |
| |
| /* Ensure we are PAGE_SIZE aligned */ |
| if (in_flag & CPA_ARRAY) { |
| int i; |
| for (i = 0; i < numpages; i++) { |
| if (addr[i] & ~PAGE_MASK) { |
| addr[i] &= PAGE_MASK; |
| WARN_ON_ONCE(1); |
| } |
| } |
| } else if (!(in_flag & CPA_PAGES_ARRAY)) { |
| /* |
| * in_flag of CPA_PAGES_ARRAY implies it is aligned. |
| * No need to cehck in that case |
| */ |
| if (*addr & ~PAGE_MASK) { |
| *addr &= PAGE_MASK; |
| /* |
| * People should not be passing in unaligned addresses: |
| */ |
| WARN_ON_ONCE(1); |
| } |
| /* |
| * Save address for cache flush. *addr is modified in the call |
| * to __change_page_attr_set_clr() below. |
| */ |
| baddr = *addr; |
| } |
| |
| /* Must avoid aliasing mappings in the highmem code */ |
| kmap_flush_unused(); |
| |
| vm_unmap_aliases(); |
| |
| cpa.vaddr = addr; |
| cpa.pages = pages; |
| cpa.numpages = numpages; |
| cpa.mask_set = mask_set; |
| cpa.mask_clr = mask_clr; |
| cpa.flags = 0; |
| cpa.curpage = 0; |
| cpa.force_split = force_split; |
| |
| if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY)) |
| cpa.flags |= in_flag; |
| |
| /* No alias checking for _NX bit modifications */ |
| checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX; |
| |
| ret = __change_page_attr_set_clr(&cpa, checkalias); |
| |
| /* |
| * Check whether we really changed something: |
| */ |
| if (!(cpa.flags & CPA_FLUSHTLB)) |
| goto out; |
| |
| /* |
| * No need to flush, when we did not set any of the caching |
| * attributes: |
| */ |
| cache = !!pgprot2cachemode(mask_set); |
| |
| /* |
| * On success we use CLFLUSH, when the CPU supports it to |
| * avoid the WBINVD. If the CPU does not support it and in the |
| * error case we fall back to cpa_flush_all (which uses |
| * WBINVD): |
| */ |
| if (!ret && boot_cpu_has(X86_FEATURE_CLFLUSH)) { |
| if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) { |
| cpa_flush_array(addr, numpages, cache, |
| cpa.flags, pages); |
| } else |
| cpa_flush_range(baddr, numpages, cache); |
| } else |
| cpa_flush_all(cache); |
| |
| out: |
| return ret; |
| } |
| |
| static inline int change_page_attr_set(unsigned long *addr, int numpages, |
| pgprot_t mask, int array) |
| { |
| return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0, |
| (array ? CPA_ARRAY : 0), NULL); |
| } |
| |
| static inline int change_page_attr_clear(unsigned long *addr, int numpages, |
| pgprot_t mask, int array) |
| { |
| return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0, |
| (array ? CPA_ARRAY : 0), NULL); |
| } |
| |
| static inline int cpa_set_pages_array(struct page **pages, int numpages, |
| pgprot_t mask) |
| { |
| return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0, |
| CPA_PAGES_ARRAY, pages); |
| } |
| |
| static inline int cpa_clear_pages_array(struct page **pages, int numpages, |
| pgprot_t mask) |
| { |
| return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0, |
| CPA_PAGES_ARRAY, pages); |
| } |
| |
| int _set_memory_uc(unsigned long addr, int numpages) |
| { |
| /* |
| * for now UC MINUS. see comments in ioremap_nocache() |
| * If you really need strong UC use ioremap_uc(), but note |
| * that you cannot override IO areas with set_memory_*() as |
| * these helpers cannot work with IO memory. |
| */ |
| return change_page_attr_set(&addr, numpages, |
| cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS), |
| 0); |
| } |
| |
| int set_memory_uc(unsigned long addr, int numpages) |
| { |
| int ret; |
| |
| /* |
| * for now UC MINUS. see comments in ioremap_nocache() |
| */ |
| ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE, |
| _PAGE_CACHE_MODE_UC_MINUS, NULL); |
| if (ret) |
| goto out_err; |
| |
| ret = _set_memory_uc(addr, numpages); |
| if (ret) |
| goto out_free; |
| |
| return 0; |
| |
| out_free: |
| free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE); |
| out_err: |
| return ret; |
| } |
| EXPORT_SYMBOL(set_memory_uc); |
| |
| static int _set_memory_array(unsigned long *addr, int addrinarray, |
| enum page_cache_mode new_type) |
| { |
| enum page_cache_mode set_type; |
| int i, j; |
| int ret; |
| |
| for (i = 0; i < addrinarray; i++) { |
| ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE, |
| new_type, NULL); |
| if (ret) |
| goto out_free; |
| } |
| |
| /* If WC, set to UC- first and then WC */ |
| set_type = (new_type == _PAGE_CACHE_MODE_WC) ? |
| _PAGE_CACHE_MODE_UC_MINUS : new_type; |
| |
| ret = change_page_attr_set(addr, addrinarray, |
| cachemode2pgprot(set_type), 1); |
| |
| if (!ret && new_type == _PAGE_CACHE_MODE_WC) |
| ret = change_page_attr_set_clr(addr, addrinarray, |
| cachemode2pgprot( |
| _PAGE_CACHE_MODE_WC), |
| __pgprot(_PAGE_CACHE_MASK), |
| 0, CPA_ARRAY, NULL); |
| if (ret) |
| goto out_free; |
| |
| return 0; |
| |
| out_free: |
| for (j = 0; j < i; j++) |
| free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE); |
| |
| return ret; |
| } |
| |
| int set_memory_array_uc(unsigned long *addr, int addrinarray) |
| { |
| return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_UC_MINUS); |
| } |
| EXPORT_SYMBOL(set_memory_array_uc); |
| |
| int set_memory_array_wc(unsigned long *addr, int addrinarray) |
| { |
| return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WC); |
| } |
| EXPORT_SYMBOL(set_memory_array_wc); |
| |
| int set_memory_array_wt(unsigned long *addr, int addrinarray) |
| { |
| return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WT); |
| } |
| EXPORT_SYMBOL_GPL(set_memory_array_wt); |
| |
| int _set_memory_wc(unsigned long addr, int numpages) |
| { |
| int ret; |
| unsigned long addr_copy = addr; |
| |
| ret = change_page_attr_set(&addr, numpages, |
| cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS), |
| 0); |
| if (!ret) { |
| ret = change_page_attr_set_clr(&addr_copy, numpages, |
| cachemode2pgprot( |
| _PAGE_CACHE_MODE_WC), |
| __pgprot(_PAGE_CACHE_MASK), |
| 0, 0, NULL); |
| } |
| return ret; |
| } |
| |
| int set_memory_wc(unsigned long addr, int numpages) |
| { |
| int ret; |
| |
| ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE, |
| _PAGE_CACHE_MODE_WC, NULL); |
| if (ret) |
| return ret; |
| |
| ret = _set_memory_wc(addr, numpages); |
| if (ret) |
| free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(set_memory_wc); |
| |
| int _set_memory_wt(unsigned long addr, int numpages) |
| { |
| return change_page_attr_set(&addr, numpages, |
| cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0); |
| } |
| |
| int set_memory_wt(unsigned long addr, int numpages) |
| { |
| int ret; |
| |
| ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE, |
| _PAGE_CACHE_MODE_WT, NULL); |
| if (ret) |
| return ret; |
| |
| ret = _set_memory_wt(addr, numpages); |
| if (ret) |
| free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(set_memory_wt); |
| |
| int _set_memory_wb(unsigned long addr, int numpages) |
| { |
| /* WB cache mode is hard wired to all cache attribute bits being 0 */ |
| return change_page_attr_clear(&addr, numpages, |
| __pgprot(_PAGE_CACHE_MASK), 0); |
| } |
| |
| int set_memory_wb(unsigned long addr, int numpages) |
| { |
| int ret; |
| |
| ret = _set_memory_wb(addr, numpages); |
| if (ret) |
| return ret; |
| |
| free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE); |
| return 0; |
| } |
| EXPORT_SYMBOL(set_memory_wb); |
| |
| int set_memory_array_wb(unsigned long *addr, int addrinarray) |
| { |
| int i; |
| int ret; |
| |
| /* WB cache mode is hard wired to all cache attribute bits being 0 */ |
| ret = change_page_attr_clear(addr, addrinarray, |
| __pgprot(_PAGE_CACHE_MASK), 1); |
| if (ret) |
| return ret; |
| |
| for (i = 0; i < addrinarray; i++) |
| free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(set_memory_array_wb); |
| |
| int set_memory_x(unsigned long addr, int numpages) |
| { |
| if (!(__supported_pte_mask & _PAGE_NX)) |
| return 0; |
| |
| return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0); |
| } |
| EXPORT_SYMBOL(set_memory_x); |
| |
| int set_memory_nx(unsigned long addr, int numpages) |
| { |
| if (!(__supported_pte_mask & _PAGE_NX)) |
| return 0; |
| |
| return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0); |
| } |
| EXPORT_SYMBOL(set_memory_nx); |
| |
| int set_memory_ro(unsigned long addr, int numpages) |
| { |
| return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0); |
| } |
| |
| int set_memory_rw(unsigned long addr, int numpages) |
| { |
| return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0); |
| } |
| |
| int set_memory_np(unsigned long addr, int numpages) |
| { |
| return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0); |
| } |
| |
| int set_memory_4k(unsigned long addr, int numpages) |
| { |
| return change_page_attr_set_clr(&addr, numpages, __pgprot(0), |
| __pgprot(0), 1, 0, NULL); |
| } |
| |
| int set_pages_uc(struct page *page, int numpages) |
| { |
| unsigned long addr = (unsigned long)page_address(page); |
| |
| return set_memory_uc(addr, numpages); |
| } |
| EXPORT_SYMBOL(set_pages_uc); |
| |
| static int _set_pages_array(struct page **pages, int addrinarray, |
| enum page_cache_mode new_type) |
| { |
| unsigned long start; |
| unsigned long end; |
| enum page_cache_mode set_type; |
| int i; |
| int free_idx; |
| int ret; |
| |
| for (i = 0; i < addrinarray; i++) { |
| if (PageHighMem(pages[i])) |
| continue; |
| start = page_to_pfn(pages[i]) << PAGE_SHIFT; |
| end = start + PAGE_SIZE; |
| if (reserve_memtype(start, end, new_type, NULL)) |
| goto err_out; |
| } |
| |
| /* If WC, set to UC- first and then WC */ |
| set_type = (new_type == _PAGE_CACHE_MODE_WC) ? |
| _PAGE_CACHE_MODE_UC_MINUS : new_type; |
| |
| ret = cpa_set_pages_array(pages, addrinarray, |
| cachemode2pgprot(set_type)); |
| if (!ret && new_type == _PAGE_CACHE_MODE_WC) |
| ret = change_page_attr_set_clr(NULL, addrinarray, |
| cachemode2pgprot( |
| _PAGE_CACHE_MODE_WC), |
| __pgprot(_PAGE_CACHE_MASK), |
| 0, CPA_PAGES_ARRAY, pages); |
| if (ret) |
| goto err_out; |
| return 0; /* Success */ |
| err_out: |
| free_idx = i; |
| for (i = 0; i < free_idx; i++) { |
| if (PageHighMem(pages[i])) |
| continue; |
| start = page_to_pfn(pages[i]) << PAGE_SHIFT; |
| end = start + PAGE_SIZE; |
| free_memtype(start, end); |
| } |
| return -EINVAL; |
| } |
| |
| int set_pages_array_uc(struct page **pages, int addrinarray) |
| { |
| return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_UC_MINUS); |
| } |
| EXPORT_SYMBOL(set_pages_array_uc); |
| |
| int set_pages_array_wc(struct page **pages, int addrinarray) |
| { |
| return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WC); |
| } |
| EXPORT_SYMBOL(set_pages_array_wc); |
| |
| int set_pages_array_wt(struct page **pages, int addrinarray) |
| { |
| return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WT); |
| } |
| EXPORT_SYMBOL_GPL(set_pages_array_wt); |
| |
| int set_pages_wb(struct page *page, int numpages) |
| { |
| unsigned long addr = (unsigned long)page_address(page); |
| |
| return set_memory_wb(addr, numpages); |
| } |
| EXPORT_SYMBOL(set_pages_wb); |
| |
| int set_pages_array_wb(struct page **pages, int addrinarray) |
| { |
| int retval; |
| unsigned long start; |
| unsigned long end; |
| int i; |
| |
| /* WB cache mode is hard wired to all cache attribute bits being 0 */ |
| retval = cpa_clear_pages_array(pages, addrinarray, |
| __pgprot(_PAGE_CACHE_MASK)); |
| if (retval) |
| return retval; |
| |
| for (i = 0; i < addrinarray; i++) { |
| if (PageHighMem(pages[i])) |
| continue; |
| start = page_to_pfn(pages[i]) << PAGE_SHIFT; |
| end = start + PAGE_SIZE; |
| free_memtype(start, end); |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(set_pages_array_wb); |
| |
| int set_pages_x(struct page *page, int numpages) |
| { |
| unsigned long addr = (unsigned long)page_address(page); |
| |
| return set_memory_x(addr, numpages); |
| } |
| EXPORT_SYMBOL(set_pages_x); |
| |
| int set_pages_nx(struct page *page, int numpages) |
| { |
| unsigned long addr = (unsigned long)page_address(page); |
| |
| return set_memory_nx(addr, numpages); |
| } |
| EXPORT_SYMBOL(set_pages_nx); |
| |
| int set_pages_ro(struct page *page, int numpages) |
| { |
| unsigned long addr = (unsigned long)page_address(page); |
| |
| return set_memory_ro(addr, numpages); |
| } |
| |
| int set_pages_rw(struct page *page, int numpages) |
| { |
| unsigned long addr = (unsigned long)page_address(page); |
| |
| return set_memory_rw(addr, numpages); |
| } |
| |
| #ifdef CONFIG_DEBUG_PAGEALLOC |
| |
| static int __set_pages_p(struct page *page, int numpages) |
| { |
| unsigned long tempaddr = (unsigned long) page_address(page); |
| struct cpa_data cpa = { .vaddr = &tempaddr, |
| .pgd = NULL, |
| .numpages = numpages, |
| .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW), |
| .mask_clr = __pgprot(0), |
| .flags = 0}; |
| |
| /* |
| * No alias checking needed for setting present flag. otherwise, |
| * we may need to break large pages for 64-bit kernel text |
| * mappings (this adds to complexity if we want to do this from |
| * atomic context especially). Let's keep it simple! |
| */ |
| return __change_page_attr_set_clr(&cpa, 0); |
| } |
| |
| static int __set_pages_np(struct page *page, int numpages) |
| { |
| unsigned long tempaddr = (unsigned long) page_address(page); |
| struct cpa_data cpa = { .vaddr = &tempaddr, |
| .pgd = NULL, |
| .numpages = numpages, |
| .mask_set = __pgprot(0), |
| .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW), |
| .flags = 0}; |
| |
| /* |
| * No alias checking needed for setting not present flag. otherwise, |
| * we may need to break large pages for 64-bit kernel text |
| * mappings (this adds to complexity if we want to do this from |
| * atomic context especially). Let's keep it simple! |
| */ |
| return __change_page_attr_set_clr(&cpa, 0); |
| } |
| |
| void __kernel_map_pages(struct page *page, int numpages, int enable) |
| { |
| if (PageHighMem(page)) |
| return; |
| if (!enable) { |
| debug_check_no_locks_freed(page_address(page), |
| numpages * PAGE_SIZE); |
| } |
| |
| /* |
| * The return value is ignored as the calls cannot fail. |
| * Large pages for identity mappings are not used at boot time |
| * and hence no memory allocations during large page split. |
| */ |
| if (enable) |
| __set_pages_p(page, numpages); |
| else |
| __set_pages_np(page, numpages); |
| |
| /* |
| * We should perform an IPI and flush all tlbs, |
| * but that can deadlock->flush only current cpu: |
| */ |
| __flush_tlb_all(); |
| |
| arch_flush_lazy_mmu_mode(); |
| } |
| |
| #ifdef CONFIG_HIBERNATION |
| |
| bool kernel_page_present(struct page *page) |
| { |
| unsigned int level; |
| pte_t *pte; |
| |
| if (PageHighMem(page)) |
| return false; |
| |
| pte = lookup_address((unsigned long)page_address(page), &level); |
| return (pte_val(*pte) & _PAGE_PRESENT); |
| } |
| |
| #endif /* CONFIG_HIBERNATION */ |
| |
| #endif /* CONFIG_DEBUG_PAGEALLOC */ |
| |
| int kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address, |
| unsigned numpages, unsigned long page_flags) |
| { |
| int retval = -EINVAL; |
| |
| struct cpa_data cpa = { |
| .vaddr = &address, |
| .pfn = pfn, |
| .pgd = pgd, |
| .numpages = numpages, |
| .mask_set = __pgprot(0), |
| .mask_clr = __pgprot(0), |
| .flags = 0, |
| }; |
| |
| if (!(__supported_pte_mask & _PAGE_NX)) |
| goto out; |
| |
| if (!(page_flags & _PAGE_NX)) |
| cpa.mask_clr = __pgprot(_PAGE_NX); |
| |
| if (!(page_flags & _PAGE_RW)) |
| cpa.mask_clr = __pgprot(_PAGE_RW); |
| |
| cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags); |
| |
| retval = __change_page_attr_set_clr(&cpa, 0); |
| __flush_tlb_all(); |
| |
| out: |
| return retval; |
| } |
| |
| /* |
| * The testcases use internal knowledge of the implementation that shouldn't |
| * be exposed to the rest of the kernel. Include these directly here. |
| */ |
| #ifdef CONFIG_CPA_DEBUG |
| #include "pageattr-test.c" |
| #endif |