| /* |
| * Partial Parity Log for closing the RAID5 write hole |
| * Copyright (c) 2017, Intel Corporation. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms and conditions of the GNU General Public License, |
| * version 2, as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/blkdev.h> |
| #include <linux/slab.h> |
| #include <linux/crc32c.h> |
| #include <linux/flex_array.h> |
| #include <linux/async_tx.h> |
| #include <linux/raid/md_p.h> |
| #include "md.h" |
| #include "raid5.h" |
| |
| /* |
| * PPL consists of a 4KB header (struct ppl_header) and at least 128KB for |
| * partial parity data. The header contains an array of entries |
| * (struct ppl_header_entry) which describe the logged write requests. |
| * Partial parity for the entries comes after the header, written in the same |
| * sequence as the entries: |
| * |
| * Header |
| * entry0 |
| * ... |
| * entryN |
| * PP data |
| * PP for entry0 |
| * ... |
| * PP for entryN |
| * |
| * An entry describes one or more consecutive stripe_heads, up to a full |
| * stripe. The modifed raid data chunks form an m-by-n matrix, where m is the |
| * number of stripe_heads in the entry and n is the number of modified data |
| * disks. Every stripe_head in the entry must write to the same data disks. |
| * An example of a valid case described by a single entry (writes to the first |
| * stripe of a 4 disk array, 16k chunk size): |
| * |
| * sh->sector dd0 dd1 dd2 ppl |
| * +-----+-----+-----+ |
| * 0 | --- | --- | --- | +----+ |
| * 8 | -W- | -W- | --- | | pp | data_sector = 8 |
| * 16 | -W- | -W- | --- | | pp | data_size = 3 * 2 * 4k |
| * 24 | -W- | -W- | --- | | pp | pp_size = 3 * 4k |
| * +-----+-----+-----+ +----+ |
| * |
| * data_sector is the first raid sector of the modified data, data_size is the |
| * total size of modified data and pp_size is the size of partial parity for |
| * this entry. Entries for full stripe writes contain no partial parity |
| * (pp_size = 0), they only mark the stripes for which parity should be |
| * recalculated after an unclean shutdown. Every entry holds a checksum of its |
| * partial parity, the header also has a checksum of the header itself. |
| * |
| * A write request is always logged to the PPL instance stored on the parity |
| * disk of the corresponding stripe. For each member disk there is one ppl_log |
| * used to handle logging for this disk, independently from others. They are |
| * grouped in child_logs array in struct ppl_conf, which is assigned to |
| * r5conf->log_private. |
| * |
| * ppl_io_unit represents a full PPL write, header_page contains the ppl_header. |
| * PPL entries for logged stripes are added in ppl_log_stripe(). A stripe_head |
| * can be appended to the last entry if it meets the conditions for a valid |
| * entry described above, otherwise a new entry is added. Checksums of entries |
| * are calculated incrementally as stripes containing partial parity are being |
| * added. ppl_submit_iounit() calculates the checksum of the header and submits |
| * a bio containing the header page and partial parity pages (sh->ppl_page) for |
| * all stripes of the io_unit. When the PPL write completes, the stripes |
| * associated with the io_unit are released and raid5d starts writing their data |
| * and parity. When all stripes are written, the io_unit is freed and the next |
| * can be submitted. |
| * |
| * An io_unit is used to gather stripes until it is submitted or becomes full |
| * (if the maximum number of entries or size of PPL is reached). Another io_unit |
| * can't be submitted until the previous has completed (PPL and stripe |
| * data+parity is written). The log->io_list tracks all io_units of a log |
| * (for a single member disk). New io_units are added to the end of the list |
| * and the first io_unit is submitted, if it is not submitted already. |
| * The current io_unit accepting new stripes is always at the end of the list. |
| */ |
| |
| struct ppl_conf { |
| struct mddev *mddev; |
| |
| /* array of child logs, one for each raid disk */ |
| struct ppl_log *child_logs; |
| int count; |
| |
| int block_size; /* the logical block size used for data_sector |
| * in ppl_header_entry */ |
| u32 signature; /* raid array identifier */ |
| atomic64_t seq; /* current log write sequence number */ |
| |
| struct kmem_cache *io_kc; |
| mempool_t *io_pool; |
| struct bio_set *bs; |
| |
| /* used only for recovery */ |
| int recovered_entries; |
| int mismatch_count; |
| |
| /* stripes to retry if failed to allocate io_unit */ |
| struct list_head no_mem_stripes; |
| spinlock_t no_mem_stripes_lock; |
| }; |
| |
| struct ppl_log { |
| struct ppl_conf *ppl_conf; /* shared between all log instances */ |
| |
| struct md_rdev *rdev; /* array member disk associated with |
| * this log instance */ |
| struct mutex io_mutex; |
| struct ppl_io_unit *current_io; /* current io_unit accepting new data |
| * always at the end of io_list */ |
| spinlock_t io_list_lock; |
| struct list_head io_list; /* all io_units of this log */ |
| }; |
| |
| #define PPL_IO_INLINE_BVECS 32 |
| |
| struct ppl_io_unit { |
| struct ppl_log *log; |
| |
| struct page *header_page; /* for ppl_header */ |
| |
| unsigned int entries_count; /* number of entries in ppl_header */ |
| unsigned int pp_size; /* total size current of partial parity */ |
| |
| u64 seq; /* sequence number of this log write */ |
| struct list_head log_sibling; /* log->io_list */ |
| |
| struct list_head stripe_list; /* stripes added to the io_unit */ |
| atomic_t pending_stripes; /* how many stripes not written to raid */ |
| |
| bool submitted; /* true if write to log started */ |
| |
| /* inline bio and its biovec for submitting the iounit */ |
| struct bio bio; |
| struct bio_vec biovec[PPL_IO_INLINE_BVECS]; |
| }; |
| |
| struct dma_async_tx_descriptor * |
| ops_run_partial_parity(struct stripe_head *sh, struct raid5_percpu *percpu, |
| struct dma_async_tx_descriptor *tx) |
| { |
| int disks = sh->disks; |
| struct page **srcs = flex_array_get(percpu->scribble, 0); |
| int count = 0, pd_idx = sh->pd_idx, i; |
| struct async_submit_ctl submit; |
| |
| pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); |
| |
| /* |
| * Partial parity is the XOR of stripe data chunks that are not changed |
| * during the write request. Depending on available data |
| * (read-modify-write vs. reconstruct-write case) we calculate it |
| * differently. |
| */ |
| if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { |
| /* |
| * rmw: xor old data and parity from updated disks |
| * This is calculated earlier by ops_run_prexor5() so just copy |
| * the parity dev page. |
| */ |
| srcs[count++] = sh->dev[pd_idx].page; |
| } else if (sh->reconstruct_state == reconstruct_state_drain_run) { |
| /* rcw: xor data from all not updated disks */ |
| for (i = disks; i--;) { |
| struct r5dev *dev = &sh->dev[i]; |
| if (test_bit(R5_UPTODATE, &dev->flags)) |
| srcs[count++] = dev->page; |
| } |
| } else { |
| return tx; |
| } |
| |
| init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, tx, |
| NULL, sh, flex_array_get(percpu->scribble, 0) |
| + sizeof(struct page *) * (sh->disks + 2)); |
| |
| if (count == 1) |
| tx = async_memcpy(sh->ppl_page, srcs[0], 0, 0, PAGE_SIZE, |
| &submit); |
| else |
| tx = async_xor(sh->ppl_page, srcs, 0, count, PAGE_SIZE, |
| &submit); |
| |
| return tx; |
| } |
| |
| static void *ppl_io_pool_alloc(gfp_t gfp_mask, void *pool_data) |
| { |
| struct kmem_cache *kc = pool_data; |
| struct ppl_io_unit *io; |
| |
| io = kmem_cache_alloc(kc, gfp_mask); |
| if (!io) |
| return NULL; |
| |
| io->header_page = alloc_page(gfp_mask); |
| if (!io->header_page) { |
| kmem_cache_free(kc, io); |
| return NULL; |
| } |
| |
| return io; |
| } |
| |
| static void ppl_io_pool_free(void *element, void *pool_data) |
| { |
| struct kmem_cache *kc = pool_data; |
| struct ppl_io_unit *io = element; |
| |
| __free_page(io->header_page); |
| kmem_cache_free(kc, io); |
| } |
| |
| static struct ppl_io_unit *ppl_new_iounit(struct ppl_log *log, |
| struct stripe_head *sh) |
| { |
| struct ppl_conf *ppl_conf = log->ppl_conf; |
| struct ppl_io_unit *io; |
| struct ppl_header *pplhdr; |
| struct page *header_page; |
| |
| io = mempool_alloc(ppl_conf->io_pool, GFP_NOWAIT); |
| if (!io) |
| return NULL; |
| |
| header_page = io->header_page; |
| memset(io, 0, sizeof(*io)); |
| io->header_page = header_page; |
| |
| io->log = log; |
| INIT_LIST_HEAD(&io->log_sibling); |
| INIT_LIST_HEAD(&io->stripe_list); |
| atomic_set(&io->pending_stripes, 0); |
| bio_init(&io->bio, io->biovec, PPL_IO_INLINE_BVECS); |
| |
| pplhdr = page_address(io->header_page); |
| clear_page(pplhdr); |
| memset(pplhdr->reserved, 0xff, PPL_HDR_RESERVED); |
| pplhdr->signature = cpu_to_le32(ppl_conf->signature); |
| |
| io->seq = atomic64_add_return(1, &ppl_conf->seq); |
| pplhdr->generation = cpu_to_le64(io->seq); |
| |
| return io; |
| } |
| |
| static int ppl_log_stripe(struct ppl_log *log, struct stripe_head *sh) |
| { |
| struct ppl_io_unit *io = log->current_io; |
| struct ppl_header_entry *e = NULL; |
| struct ppl_header *pplhdr; |
| int i; |
| sector_t data_sector = 0; |
| int data_disks = 0; |
| unsigned int entry_space = (log->rdev->ppl.size << 9) - PPL_HEADER_SIZE; |
| struct r5conf *conf = sh->raid_conf; |
| |
| pr_debug("%s: stripe: %llu\n", __func__, (unsigned long long)sh->sector); |
| |
| /* check if current io_unit is full */ |
| if (io && (io->pp_size == entry_space || |
| io->entries_count == PPL_HDR_MAX_ENTRIES)) { |
| pr_debug("%s: add io_unit blocked by seq: %llu\n", |
| __func__, io->seq); |
| io = NULL; |
| } |
| |
| /* add a new unit if there is none or the current is full */ |
| if (!io) { |
| io = ppl_new_iounit(log, sh); |
| if (!io) |
| return -ENOMEM; |
| spin_lock_irq(&log->io_list_lock); |
| list_add_tail(&io->log_sibling, &log->io_list); |
| spin_unlock_irq(&log->io_list_lock); |
| |
| log->current_io = io; |
| } |
| |
| for (i = 0; i < sh->disks; i++) { |
| struct r5dev *dev = &sh->dev[i]; |
| |
| if (i != sh->pd_idx && test_bit(R5_Wantwrite, &dev->flags)) { |
| if (!data_disks || dev->sector < data_sector) |
| data_sector = dev->sector; |
| data_disks++; |
| } |
| } |
| BUG_ON(!data_disks); |
| |
| pr_debug("%s: seq: %llu data_sector: %llu data_disks: %d\n", __func__, |
| io->seq, (unsigned long long)data_sector, data_disks); |
| |
| pplhdr = page_address(io->header_page); |
| |
| if (io->entries_count > 0) { |
| struct ppl_header_entry *last = |
| &pplhdr->entries[io->entries_count - 1]; |
| struct stripe_head *sh_last = list_last_entry( |
| &io->stripe_list, struct stripe_head, log_list); |
| u64 data_sector_last = le64_to_cpu(last->data_sector); |
| u32 data_size_last = le32_to_cpu(last->data_size); |
| |
| /* |
| * Check if we can append the stripe to the last entry. It must |
| * be just after the last logged stripe and write to the same |
| * disks. Use bit shift and logarithm to avoid 64-bit division. |
| */ |
| if ((sh->sector == sh_last->sector + STRIPE_SECTORS) && |
| (data_sector >> ilog2(conf->chunk_sectors) == |
| data_sector_last >> ilog2(conf->chunk_sectors)) && |
| ((data_sector - data_sector_last) * data_disks == |
| data_size_last >> 9)) |
| e = last; |
| } |
| |
| if (!e) { |
| e = &pplhdr->entries[io->entries_count++]; |
| e->data_sector = cpu_to_le64(data_sector); |
| e->parity_disk = cpu_to_le32(sh->pd_idx); |
| e->checksum = cpu_to_le32(~0); |
| } |
| |
| le32_add_cpu(&e->data_size, data_disks << PAGE_SHIFT); |
| |
| /* don't write any PP if full stripe write */ |
| if (!test_bit(STRIPE_FULL_WRITE, &sh->state)) { |
| le32_add_cpu(&e->pp_size, PAGE_SIZE); |
| io->pp_size += PAGE_SIZE; |
| e->checksum = cpu_to_le32(crc32c_le(le32_to_cpu(e->checksum), |
| page_address(sh->ppl_page), |
| PAGE_SIZE)); |
| } |
| |
| list_add_tail(&sh->log_list, &io->stripe_list); |
| atomic_inc(&io->pending_stripes); |
| sh->ppl_io = io; |
| |
| return 0; |
| } |
| |
| int ppl_write_stripe(struct r5conf *conf, struct stripe_head *sh) |
| { |
| struct ppl_conf *ppl_conf = conf->log_private; |
| struct ppl_io_unit *io = sh->ppl_io; |
| struct ppl_log *log; |
| |
| if (io || test_bit(STRIPE_SYNCING, &sh->state) || !sh->ppl_page || |
| !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) || |
| !test_bit(R5_Insync, &sh->dev[sh->pd_idx].flags)) { |
| clear_bit(STRIPE_LOG_TRAPPED, &sh->state); |
| return -EAGAIN; |
| } |
| |
| log = &ppl_conf->child_logs[sh->pd_idx]; |
| |
| mutex_lock(&log->io_mutex); |
| |
| if (!log->rdev || test_bit(Faulty, &log->rdev->flags)) { |
| mutex_unlock(&log->io_mutex); |
| return -EAGAIN; |
| } |
| |
| set_bit(STRIPE_LOG_TRAPPED, &sh->state); |
| clear_bit(STRIPE_DELAYED, &sh->state); |
| atomic_inc(&sh->count); |
| |
| if (ppl_log_stripe(log, sh)) { |
| spin_lock_irq(&ppl_conf->no_mem_stripes_lock); |
| list_add_tail(&sh->log_list, &ppl_conf->no_mem_stripes); |
| spin_unlock_irq(&ppl_conf->no_mem_stripes_lock); |
| } |
| |
| mutex_unlock(&log->io_mutex); |
| |
| return 0; |
| } |
| |
| static void ppl_log_endio(struct bio *bio) |
| { |
| struct ppl_io_unit *io = bio->bi_private; |
| struct ppl_log *log = io->log; |
| struct ppl_conf *ppl_conf = log->ppl_conf; |
| struct stripe_head *sh, *next; |
| |
| pr_debug("%s: seq: %llu\n", __func__, io->seq); |
| |
| if (bio->bi_error) |
| md_error(ppl_conf->mddev, log->rdev); |
| |
| list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) { |
| list_del_init(&sh->log_list); |
| |
| set_bit(STRIPE_HANDLE, &sh->state); |
| raid5_release_stripe(sh); |
| } |
| } |
| |
| static void ppl_submit_iounit_bio(struct ppl_io_unit *io, struct bio *bio) |
| { |
| char b[BDEVNAME_SIZE]; |
| |
| pr_debug("%s: seq: %llu size: %u sector: %llu dev: %s\n", |
| __func__, io->seq, bio->bi_iter.bi_size, |
| (unsigned long long)bio->bi_iter.bi_sector, |
| bdevname(bio->bi_bdev, b)); |
| |
| submit_bio(bio); |
| } |
| |
| static void ppl_submit_iounit(struct ppl_io_unit *io) |
| { |
| struct ppl_log *log = io->log; |
| struct ppl_conf *ppl_conf = log->ppl_conf; |
| struct ppl_header *pplhdr = page_address(io->header_page); |
| struct bio *bio = &io->bio; |
| struct stripe_head *sh; |
| int i; |
| |
| bio->bi_private = io; |
| |
| if (!log->rdev || test_bit(Faulty, &log->rdev->flags)) { |
| ppl_log_endio(bio); |
| return; |
| } |
| |
| for (i = 0; i < io->entries_count; i++) { |
| struct ppl_header_entry *e = &pplhdr->entries[i]; |
| |
| pr_debug("%s: seq: %llu entry: %d data_sector: %llu pp_size: %u data_size: %u\n", |
| __func__, io->seq, i, le64_to_cpu(e->data_sector), |
| le32_to_cpu(e->pp_size), le32_to_cpu(e->data_size)); |
| |
| e->data_sector = cpu_to_le64(le64_to_cpu(e->data_sector) >> |
| ilog2(ppl_conf->block_size >> 9)); |
| e->checksum = cpu_to_le32(~le32_to_cpu(e->checksum)); |
| } |
| |
| pplhdr->entries_count = cpu_to_le32(io->entries_count); |
| pplhdr->checksum = cpu_to_le32(~crc32c_le(~0, pplhdr, PPL_HEADER_SIZE)); |
| |
| bio->bi_end_io = ppl_log_endio; |
| bio->bi_opf = REQ_OP_WRITE | REQ_FUA; |
| bio->bi_bdev = log->rdev->bdev; |
| bio->bi_iter.bi_sector = log->rdev->ppl.sector; |
| bio_add_page(bio, io->header_page, PAGE_SIZE, 0); |
| |
| list_for_each_entry(sh, &io->stripe_list, log_list) { |
| /* entries for full stripe writes have no partial parity */ |
| if (test_bit(STRIPE_FULL_WRITE, &sh->state)) |
| continue; |
| |
| if (!bio_add_page(bio, sh->ppl_page, PAGE_SIZE, 0)) { |
| struct bio *prev = bio; |
| |
| bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES, |
| ppl_conf->bs); |
| bio->bi_opf = prev->bi_opf; |
| bio->bi_bdev = prev->bi_bdev; |
| bio->bi_iter.bi_sector = bio_end_sector(prev); |
| bio_add_page(bio, sh->ppl_page, PAGE_SIZE, 0); |
| |
| bio_chain(bio, prev); |
| ppl_submit_iounit_bio(io, prev); |
| } |
| } |
| |
| ppl_submit_iounit_bio(io, bio); |
| } |
| |
| static void ppl_submit_current_io(struct ppl_log *log) |
| { |
| struct ppl_io_unit *io; |
| |
| spin_lock_irq(&log->io_list_lock); |
| |
| io = list_first_entry_or_null(&log->io_list, struct ppl_io_unit, |
| log_sibling); |
| if (io && io->submitted) |
| io = NULL; |
| |
| spin_unlock_irq(&log->io_list_lock); |
| |
| if (io) { |
| io->submitted = true; |
| |
| if (io == log->current_io) |
| log->current_io = NULL; |
| |
| ppl_submit_iounit(io); |
| } |
| } |
| |
| void ppl_write_stripe_run(struct r5conf *conf) |
| { |
| struct ppl_conf *ppl_conf = conf->log_private; |
| struct ppl_log *log; |
| int i; |
| |
| for (i = 0; i < ppl_conf->count; i++) { |
| log = &ppl_conf->child_logs[i]; |
| |
| mutex_lock(&log->io_mutex); |
| ppl_submit_current_io(log); |
| mutex_unlock(&log->io_mutex); |
| } |
| } |
| |
| static void ppl_io_unit_finished(struct ppl_io_unit *io) |
| { |
| struct ppl_log *log = io->log; |
| struct ppl_conf *ppl_conf = log->ppl_conf; |
| unsigned long flags; |
| |
| pr_debug("%s: seq: %llu\n", __func__, io->seq); |
| |
| local_irq_save(flags); |
| |
| spin_lock(&log->io_list_lock); |
| list_del(&io->log_sibling); |
| spin_unlock(&log->io_list_lock); |
| |
| mempool_free(io, ppl_conf->io_pool); |
| |
| spin_lock(&ppl_conf->no_mem_stripes_lock); |
| if (!list_empty(&ppl_conf->no_mem_stripes)) { |
| struct stripe_head *sh; |
| |
| sh = list_first_entry(&ppl_conf->no_mem_stripes, |
| struct stripe_head, log_list); |
| list_del_init(&sh->log_list); |
| set_bit(STRIPE_HANDLE, &sh->state); |
| raid5_release_stripe(sh); |
| } |
| spin_unlock(&ppl_conf->no_mem_stripes_lock); |
| |
| local_irq_restore(flags); |
| } |
| |
| void ppl_stripe_write_finished(struct stripe_head *sh) |
| { |
| struct ppl_io_unit *io; |
| |
| io = sh->ppl_io; |
| sh->ppl_io = NULL; |
| |
| if (io && atomic_dec_and_test(&io->pending_stripes)) |
| ppl_io_unit_finished(io); |
| } |
| |
| static void ppl_xor(int size, struct page *page1, struct page *page2) |
| { |
| struct async_submit_ctl submit; |
| struct dma_async_tx_descriptor *tx; |
| struct page *xor_srcs[] = { page1, page2 }; |
| |
| init_async_submit(&submit, ASYNC_TX_ACK|ASYNC_TX_XOR_DROP_DST, |
| NULL, NULL, NULL, NULL); |
| tx = async_xor(page1, xor_srcs, 0, 2, size, &submit); |
| |
| async_tx_quiesce(&tx); |
| } |
| |
| /* |
| * PPL recovery strategy: xor partial parity and data from all modified data |
| * disks within a stripe and write the result as the new stripe parity. If all |
| * stripe data disks are modified (full stripe write), no partial parity is |
| * available, so just xor the data disks. |
| * |
| * Recovery of a PPL entry shall occur only if all modified data disks are |
| * available and read from all of them succeeds. |
| * |
| * A PPL entry applies to a stripe, partial parity size for an entry is at most |
| * the size of the chunk. Examples of possible cases for a single entry: |
| * |
| * case 0: single data disk write: |
| * data0 data1 data2 ppl parity |
| * +--------+--------+--------+ +--------------------+ |
| * | ------ | ------ | ------ | +----+ | (no change) | |
| * | ------ | -data- | ------ | | pp | -> | data1 ^ pp | |
| * | ------ | -data- | ------ | | pp | -> | data1 ^ pp | |
| * | ------ | ------ | ------ | +----+ | (no change) | |
| * +--------+--------+--------+ +--------------------+ |
| * pp_size = data_size |
| * |
| * case 1: more than one data disk write: |
| * data0 data1 data2 ppl parity |
| * +--------+--------+--------+ +--------------------+ |
| * | ------ | ------ | ------ | +----+ | (no change) | |
| * | -data- | -data- | ------ | | pp | -> | data0 ^ data1 ^ pp | |
| * | -data- | -data- | ------ | | pp | -> | data0 ^ data1 ^ pp | |
| * | ------ | ------ | ------ | +----+ | (no change) | |
| * +--------+--------+--------+ +--------------------+ |
| * pp_size = data_size / modified_data_disks |
| * |
| * case 2: write to all data disks (also full stripe write): |
| * data0 data1 data2 parity |
| * +--------+--------+--------+ +--------------------+ |
| * | ------ | ------ | ------ | | (no change) | |
| * | -data- | -data- | -data- | --------> | xor all data | |
| * | ------ | ------ | ------ | --------> | (no change) | |
| * | ------ | ------ | ------ | | (no change) | |
| * +--------+--------+--------+ +--------------------+ |
| * pp_size = 0 |
| * |
| * The following cases are possible only in other implementations. The recovery |
| * code can handle them, but they are not generated at runtime because they can |
| * be reduced to cases 0, 1 and 2: |
| * |
| * case 3: |
| * data0 data1 data2 ppl parity |
| * +--------+--------+--------+ +----+ +--------------------+ |
| * | ------ | -data- | -data- | | pp | | data1 ^ data2 ^ pp | |
| * | ------ | -data- | -data- | | pp | -> | data1 ^ data2 ^ pp | |
| * | -data- | -data- | -data- | | -- | -> | xor all data | |
| * | -data- | -data- | ------ | | pp | | data0 ^ data1 ^ pp | |
| * +--------+--------+--------+ +----+ +--------------------+ |
| * pp_size = chunk_size |
| * |
| * case 4: |
| * data0 data1 data2 ppl parity |
| * +--------+--------+--------+ +----+ +--------------------+ |
| * | ------ | -data- | ------ | | pp | | data1 ^ pp | |
| * | ------ | ------ | ------ | | -- | -> | (no change) | |
| * | ------ | ------ | ------ | | -- | -> | (no change) | |
| * | -data- | ------ | ------ | | pp | | data0 ^ pp | |
| * +--------+--------+--------+ +----+ +--------------------+ |
| * pp_size = chunk_size |
| */ |
| static int ppl_recover_entry(struct ppl_log *log, struct ppl_header_entry *e, |
| sector_t ppl_sector) |
| { |
| struct ppl_conf *ppl_conf = log->ppl_conf; |
| struct mddev *mddev = ppl_conf->mddev; |
| struct r5conf *conf = mddev->private; |
| int block_size = ppl_conf->block_size; |
| struct page *page1; |
| struct page *page2; |
| sector_t r_sector_first; |
| sector_t r_sector_last; |
| int strip_sectors; |
| int data_disks; |
| int i; |
| int ret = 0; |
| char b[BDEVNAME_SIZE]; |
| unsigned int pp_size = le32_to_cpu(e->pp_size); |
| unsigned int data_size = le32_to_cpu(e->data_size); |
| |
| page1 = alloc_page(GFP_KERNEL); |
| page2 = alloc_page(GFP_KERNEL); |
| |
| if (!page1 || !page2) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| r_sector_first = le64_to_cpu(e->data_sector) * (block_size >> 9); |
| |
| if ((pp_size >> 9) < conf->chunk_sectors) { |
| if (pp_size > 0) { |
| data_disks = data_size / pp_size; |
| strip_sectors = pp_size >> 9; |
| } else { |
| data_disks = conf->raid_disks - conf->max_degraded; |
| strip_sectors = (data_size >> 9) / data_disks; |
| } |
| r_sector_last = r_sector_first + |
| (data_disks - 1) * conf->chunk_sectors + |
| strip_sectors; |
| } else { |
| data_disks = conf->raid_disks - conf->max_degraded; |
| strip_sectors = conf->chunk_sectors; |
| r_sector_last = r_sector_first + (data_size >> 9); |
| } |
| |
| pr_debug("%s: array sector first: %llu last: %llu\n", __func__, |
| (unsigned long long)r_sector_first, |
| (unsigned long long)r_sector_last); |
| |
| /* if start and end is 4k aligned, use a 4k block */ |
| if (block_size == 512 && |
| (r_sector_first & (STRIPE_SECTORS - 1)) == 0 && |
| (r_sector_last & (STRIPE_SECTORS - 1)) == 0) |
| block_size = STRIPE_SIZE; |
| |
| /* iterate through blocks in strip */ |
| for (i = 0; i < strip_sectors; i += (block_size >> 9)) { |
| bool update_parity = false; |
| sector_t parity_sector; |
| struct md_rdev *parity_rdev; |
| struct stripe_head sh; |
| int disk; |
| int indent = 0; |
| |
| pr_debug("%s:%*s iter %d start\n", __func__, indent, "", i); |
| indent += 2; |
| |
| memset(page_address(page1), 0, PAGE_SIZE); |
| |
| /* iterate through data member disks */ |
| for (disk = 0; disk < data_disks; disk++) { |
| int dd_idx; |
| struct md_rdev *rdev; |
| sector_t sector; |
| sector_t r_sector = r_sector_first + i + |
| (disk * conf->chunk_sectors); |
| |
| pr_debug("%s:%*s data member disk %d start\n", |
| __func__, indent, "", disk); |
| indent += 2; |
| |
| if (r_sector >= r_sector_last) { |
| pr_debug("%s:%*s array sector %llu doesn't need parity update\n", |
| __func__, indent, "", |
| (unsigned long long)r_sector); |
| indent -= 2; |
| continue; |
| } |
| |
| update_parity = true; |
| |
| /* map raid sector to member disk */ |
| sector = raid5_compute_sector(conf, r_sector, 0, |
| &dd_idx, NULL); |
| pr_debug("%s:%*s processing array sector %llu => data member disk %d, sector %llu\n", |
| __func__, indent, "", |
| (unsigned long long)r_sector, dd_idx, |
| (unsigned long long)sector); |
| |
| rdev = conf->disks[dd_idx].rdev; |
| if (!rdev) { |
| pr_debug("%s:%*s data member disk %d missing\n", |
| __func__, indent, "", dd_idx); |
| update_parity = false; |
| break; |
| } |
| |
| pr_debug("%s:%*s reading data member disk %s sector %llu\n", |
| __func__, indent, "", bdevname(rdev->bdev, b), |
| (unsigned long long)sector); |
| if (!sync_page_io(rdev, sector, block_size, page2, |
| REQ_OP_READ, 0, false)) { |
| md_error(mddev, rdev); |
| pr_debug("%s:%*s read failed!\n", __func__, |
| indent, ""); |
| ret = -EIO; |
| goto out; |
| } |
| |
| ppl_xor(block_size, page1, page2); |
| |
| indent -= 2; |
| } |
| |
| if (!update_parity) |
| continue; |
| |
| if (pp_size > 0) { |
| pr_debug("%s:%*s reading pp disk sector %llu\n", |
| __func__, indent, "", |
| (unsigned long long)(ppl_sector + i)); |
| if (!sync_page_io(log->rdev, |
| ppl_sector - log->rdev->data_offset + i, |
| block_size, page2, REQ_OP_READ, 0, |
| false)) { |
| pr_debug("%s:%*s read failed!\n", __func__, |
| indent, ""); |
| md_error(mddev, log->rdev); |
| ret = -EIO; |
| goto out; |
| } |
| |
| ppl_xor(block_size, page1, page2); |
| } |
| |
| /* map raid sector to parity disk */ |
| parity_sector = raid5_compute_sector(conf, r_sector_first + i, |
| 0, &disk, &sh); |
| BUG_ON(sh.pd_idx != le32_to_cpu(e->parity_disk)); |
| parity_rdev = conf->disks[sh.pd_idx].rdev; |
| |
| BUG_ON(parity_rdev->bdev->bd_dev != log->rdev->bdev->bd_dev); |
| pr_debug("%s:%*s write parity at sector %llu, disk %s\n", |
| __func__, indent, "", |
| (unsigned long long)parity_sector, |
| bdevname(parity_rdev->bdev, b)); |
| if (!sync_page_io(parity_rdev, parity_sector, block_size, |
| page1, REQ_OP_WRITE, 0, false)) { |
| pr_debug("%s:%*s parity write error!\n", __func__, |
| indent, ""); |
| md_error(mddev, parity_rdev); |
| ret = -EIO; |
| goto out; |
| } |
| } |
| out: |
| if (page1) |
| __free_page(page1); |
| if (page2) |
| __free_page(page2); |
| return ret; |
| } |
| |
| static int ppl_recover(struct ppl_log *log, struct ppl_header *pplhdr) |
| { |
| struct ppl_conf *ppl_conf = log->ppl_conf; |
| struct md_rdev *rdev = log->rdev; |
| struct mddev *mddev = rdev->mddev; |
| sector_t ppl_sector = rdev->ppl.sector + (PPL_HEADER_SIZE >> 9); |
| struct page *page; |
| int i; |
| int ret = 0; |
| |
| page = alloc_page(GFP_KERNEL); |
| if (!page) |
| return -ENOMEM; |
| |
| /* iterate through all PPL entries saved */ |
| for (i = 0; i < le32_to_cpu(pplhdr->entries_count); i++) { |
| struct ppl_header_entry *e = &pplhdr->entries[i]; |
| u32 pp_size = le32_to_cpu(e->pp_size); |
| sector_t sector = ppl_sector; |
| int ppl_entry_sectors = pp_size >> 9; |
| u32 crc, crc_stored; |
| |
| pr_debug("%s: disk: %d entry: %d ppl_sector: %llu pp_size: %u\n", |
| __func__, rdev->raid_disk, i, |
| (unsigned long long)ppl_sector, pp_size); |
| |
| crc = ~0; |
| crc_stored = le32_to_cpu(e->checksum); |
| |
| /* read parial parity for this entry and calculate its checksum */ |
| while (pp_size) { |
| int s = pp_size > PAGE_SIZE ? PAGE_SIZE : pp_size; |
| |
| if (!sync_page_io(rdev, sector - rdev->data_offset, |
| s, page, REQ_OP_READ, 0, false)) { |
| md_error(mddev, rdev); |
| ret = -EIO; |
| goto out; |
| } |
| |
| crc = crc32c_le(crc, page_address(page), s); |
| |
| pp_size -= s; |
| sector += s >> 9; |
| } |
| |
| crc = ~crc; |
| |
| if (crc != crc_stored) { |
| /* |
| * Don't recover this entry if the checksum does not |
| * match, but keep going and try to recover other |
| * entries. |
| */ |
| pr_debug("%s: ppl entry crc does not match: stored: 0x%x calculated: 0x%x\n", |
| __func__, crc_stored, crc); |
| ppl_conf->mismatch_count++; |
| } else { |
| ret = ppl_recover_entry(log, e, ppl_sector); |
| if (ret) |
| goto out; |
| ppl_conf->recovered_entries++; |
| } |
| |
| ppl_sector += ppl_entry_sectors; |
| } |
| |
| /* flush the disk cache after recovery if necessary */ |
| ret = blkdev_issue_flush(rdev->bdev, GFP_KERNEL, NULL); |
| out: |
| __free_page(page); |
| return ret; |
| } |
| |
| static int ppl_write_empty_header(struct ppl_log *log) |
| { |
| struct page *page; |
| struct ppl_header *pplhdr; |
| struct md_rdev *rdev = log->rdev; |
| int ret = 0; |
| |
| pr_debug("%s: disk: %d ppl_sector: %llu\n", __func__, |
| rdev->raid_disk, (unsigned long long)rdev->ppl.sector); |
| |
| page = alloc_page(GFP_NOIO | __GFP_ZERO); |
| if (!page) |
| return -ENOMEM; |
| |
| pplhdr = page_address(page); |
| memset(pplhdr->reserved, 0xff, PPL_HDR_RESERVED); |
| pplhdr->signature = cpu_to_le32(log->ppl_conf->signature); |
| pplhdr->checksum = cpu_to_le32(~crc32c_le(~0, pplhdr, PAGE_SIZE)); |
| |
| if (!sync_page_io(rdev, rdev->ppl.sector - rdev->data_offset, |
| PPL_HEADER_SIZE, page, REQ_OP_WRITE | REQ_FUA, 0, |
| false)) { |
| md_error(rdev->mddev, rdev); |
| ret = -EIO; |
| } |
| |
| __free_page(page); |
| return ret; |
| } |
| |
| static int ppl_load_distributed(struct ppl_log *log) |
| { |
| struct ppl_conf *ppl_conf = log->ppl_conf; |
| struct md_rdev *rdev = log->rdev; |
| struct mddev *mddev = rdev->mddev; |
| struct page *page; |
| struct ppl_header *pplhdr; |
| u32 crc, crc_stored; |
| u32 signature; |
| int ret = 0; |
| |
| pr_debug("%s: disk: %d\n", __func__, rdev->raid_disk); |
| |
| /* read PPL header */ |
| page = alloc_page(GFP_KERNEL); |
| if (!page) |
| return -ENOMEM; |
| |
| if (!sync_page_io(rdev, rdev->ppl.sector - rdev->data_offset, |
| PAGE_SIZE, page, REQ_OP_READ, 0, false)) { |
| md_error(mddev, rdev); |
| ret = -EIO; |
| goto out; |
| } |
| pplhdr = page_address(page); |
| |
| /* check header validity */ |
| crc_stored = le32_to_cpu(pplhdr->checksum); |
| pplhdr->checksum = 0; |
| crc = ~crc32c_le(~0, pplhdr, PAGE_SIZE); |
| |
| if (crc_stored != crc) { |
| pr_debug("%s: ppl header crc does not match: stored: 0x%x calculated: 0x%x\n", |
| __func__, crc_stored, crc); |
| ppl_conf->mismatch_count++; |
| goto out; |
| } |
| |
| signature = le32_to_cpu(pplhdr->signature); |
| |
| if (mddev->external) { |
| /* |
| * For external metadata the header signature is set and |
| * validated in userspace. |
| */ |
| ppl_conf->signature = signature; |
| } else if (ppl_conf->signature != signature) { |
| pr_debug("%s: ppl header signature does not match: stored: 0x%x configured: 0x%x\n", |
| __func__, signature, ppl_conf->signature); |
| ppl_conf->mismatch_count++; |
| goto out; |
| } |
| |
| /* attempt to recover from log if we are starting a dirty array */ |
| if (!mddev->pers && mddev->recovery_cp != MaxSector) |
| ret = ppl_recover(log, pplhdr); |
| out: |
| /* write empty header if we are starting the array */ |
| if (!ret && !mddev->pers) |
| ret = ppl_write_empty_header(log); |
| |
| __free_page(page); |
| |
| pr_debug("%s: return: %d mismatch_count: %d recovered_entries: %d\n", |
| __func__, ret, ppl_conf->mismatch_count, |
| ppl_conf->recovered_entries); |
| return ret; |
| } |
| |
| static int ppl_load(struct ppl_conf *ppl_conf) |
| { |
| int ret = 0; |
| u32 signature = 0; |
| bool signature_set = false; |
| int i; |
| |
| for (i = 0; i < ppl_conf->count; i++) { |
| struct ppl_log *log = &ppl_conf->child_logs[i]; |
| |
| /* skip missing drive */ |
| if (!log->rdev) |
| continue; |
| |
| ret = ppl_load_distributed(log); |
| if (ret) |
| break; |
| |
| /* |
| * For external metadata we can't check if the signature is |
| * correct on a single drive, but we can check if it is the same |
| * on all drives. |
| */ |
| if (ppl_conf->mddev->external) { |
| if (!signature_set) { |
| signature = ppl_conf->signature; |
| signature_set = true; |
| } else if (signature != ppl_conf->signature) { |
| pr_warn("md/raid:%s: PPL header signature does not match on all member drives\n", |
| mdname(ppl_conf->mddev)); |
| ret = -EINVAL; |
| break; |
| } |
| } |
| } |
| |
| pr_debug("%s: return: %d mismatch_count: %d recovered_entries: %d\n", |
| __func__, ret, ppl_conf->mismatch_count, |
| ppl_conf->recovered_entries); |
| return ret; |
| } |
| |
| static void __ppl_exit_log(struct ppl_conf *ppl_conf) |
| { |
| clear_bit(MD_HAS_PPL, &ppl_conf->mddev->flags); |
| |
| kfree(ppl_conf->child_logs); |
| |
| if (ppl_conf->bs) |
| bioset_free(ppl_conf->bs); |
| mempool_destroy(ppl_conf->io_pool); |
| kmem_cache_destroy(ppl_conf->io_kc); |
| |
| kfree(ppl_conf); |
| } |
| |
| void ppl_exit_log(struct r5conf *conf) |
| { |
| struct ppl_conf *ppl_conf = conf->log_private; |
| |
| if (ppl_conf) { |
| __ppl_exit_log(ppl_conf); |
| conf->log_private = NULL; |
| } |
| } |
| |
| static int ppl_validate_rdev(struct md_rdev *rdev) |
| { |
| char b[BDEVNAME_SIZE]; |
| int ppl_data_sectors; |
| int ppl_size_new; |
| |
| /* |
| * The configured PPL size must be enough to store |
| * the header and (at the very least) partial parity |
| * for one stripe. Round it down to ensure the data |
| * space is cleanly divisible by stripe size. |
| */ |
| ppl_data_sectors = rdev->ppl.size - (PPL_HEADER_SIZE >> 9); |
| |
| if (ppl_data_sectors > 0) |
| ppl_data_sectors = rounddown(ppl_data_sectors, STRIPE_SECTORS); |
| |
| if (ppl_data_sectors <= 0) { |
| pr_warn("md/raid:%s: PPL space too small on %s\n", |
| mdname(rdev->mddev), bdevname(rdev->bdev, b)); |
| return -ENOSPC; |
| } |
| |
| ppl_size_new = ppl_data_sectors + (PPL_HEADER_SIZE >> 9); |
| |
| if ((rdev->ppl.sector < rdev->data_offset && |
| rdev->ppl.sector + ppl_size_new > rdev->data_offset) || |
| (rdev->ppl.sector >= rdev->data_offset && |
| rdev->data_offset + rdev->sectors > rdev->ppl.sector)) { |
| pr_warn("md/raid:%s: PPL space overlaps with data on %s\n", |
| mdname(rdev->mddev), bdevname(rdev->bdev, b)); |
| return -EINVAL; |
| } |
| |
| if (!rdev->mddev->external && |
| ((rdev->ppl.offset > 0 && rdev->ppl.offset < (rdev->sb_size >> 9)) || |
| (rdev->ppl.offset <= 0 && rdev->ppl.offset + ppl_size_new > 0))) { |
| pr_warn("md/raid:%s: PPL space overlaps with superblock on %s\n", |
| mdname(rdev->mddev), bdevname(rdev->bdev, b)); |
| return -EINVAL; |
| } |
| |
| rdev->ppl.size = ppl_size_new; |
| |
| return 0; |
| } |
| |
| int ppl_init_log(struct r5conf *conf) |
| { |
| struct ppl_conf *ppl_conf; |
| struct mddev *mddev = conf->mddev; |
| int ret = 0; |
| int i; |
| bool need_cache_flush = false; |
| |
| pr_debug("md/raid:%s: enabling distributed Partial Parity Log\n", |
| mdname(conf->mddev)); |
| |
| if (PAGE_SIZE != 4096) |
| return -EINVAL; |
| |
| if (mddev->level != 5) { |
| pr_warn("md/raid:%s PPL is not compatible with raid level %d\n", |
| mdname(mddev), mddev->level); |
| return -EINVAL; |
| } |
| |
| if (mddev->bitmap_info.file || mddev->bitmap_info.offset) { |
| pr_warn("md/raid:%s PPL is not compatible with bitmap\n", |
| mdname(mddev)); |
| return -EINVAL; |
| } |
| |
| if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { |
| pr_warn("md/raid:%s PPL is not compatible with journal\n", |
| mdname(mddev)); |
| return -EINVAL; |
| } |
| |
| ppl_conf = kzalloc(sizeof(struct ppl_conf), GFP_KERNEL); |
| if (!ppl_conf) |
| return -ENOMEM; |
| |
| ppl_conf->mddev = mddev; |
| |
| ppl_conf->io_kc = KMEM_CACHE(ppl_io_unit, 0); |
| if (!ppl_conf->io_kc) { |
| ret = -ENOMEM; |
| goto err; |
| } |
| |
| ppl_conf->io_pool = mempool_create(conf->raid_disks, ppl_io_pool_alloc, |
| ppl_io_pool_free, ppl_conf->io_kc); |
| if (!ppl_conf->io_pool) { |
| ret = -ENOMEM; |
| goto err; |
| } |
| |
| ppl_conf->bs = bioset_create(conf->raid_disks, 0); |
| if (!ppl_conf->bs) { |
| ret = -ENOMEM; |
| goto err; |
| } |
| |
| ppl_conf->count = conf->raid_disks; |
| ppl_conf->child_logs = kcalloc(ppl_conf->count, sizeof(struct ppl_log), |
| GFP_KERNEL); |
| if (!ppl_conf->child_logs) { |
| ret = -ENOMEM; |
| goto err; |
| } |
| |
| atomic64_set(&ppl_conf->seq, 0); |
| INIT_LIST_HEAD(&ppl_conf->no_mem_stripes); |
| spin_lock_init(&ppl_conf->no_mem_stripes_lock); |
| |
| if (!mddev->external) { |
| ppl_conf->signature = ~crc32c_le(~0, mddev->uuid, sizeof(mddev->uuid)); |
| ppl_conf->block_size = 512; |
| } else { |
| ppl_conf->block_size = queue_logical_block_size(mddev->queue); |
| } |
| |
| for (i = 0; i < ppl_conf->count; i++) { |
| struct ppl_log *log = &ppl_conf->child_logs[i]; |
| struct md_rdev *rdev = conf->disks[i].rdev; |
| |
| mutex_init(&log->io_mutex); |
| spin_lock_init(&log->io_list_lock); |
| INIT_LIST_HEAD(&log->io_list); |
| |
| log->ppl_conf = ppl_conf; |
| log->rdev = rdev; |
| |
| if (rdev) { |
| struct request_queue *q; |
| |
| ret = ppl_validate_rdev(rdev); |
| if (ret) |
| goto err; |
| |
| q = bdev_get_queue(rdev->bdev); |
| if (test_bit(QUEUE_FLAG_WC, &q->queue_flags)) |
| need_cache_flush = true; |
| } |
| } |
| |
| if (need_cache_flush) |
| pr_warn("md/raid:%s: Volatile write-back cache should be disabled on all member drives when using PPL!\n", |
| mdname(mddev)); |
| |
| /* load and possibly recover the logs from the member disks */ |
| ret = ppl_load(ppl_conf); |
| |
| if (ret) { |
| goto err; |
| } else if (!mddev->pers && |
| mddev->recovery_cp == 0 && !mddev->degraded && |
| ppl_conf->recovered_entries > 0 && |
| ppl_conf->mismatch_count == 0) { |
| /* |
| * If we are starting a dirty array and the recovery succeeds |
| * without any issues, set the array as clean. |
| */ |
| mddev->recovery_cp = MaxSector; |
| set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); |
| } else if (mddev->pers && ppl_conf->mismatch_count > 0) { |
| /* no mismatch allowed when enabling PPL for a running array */ |
| ret = -EINVAL; |
| goto err; |
| } |
| |
| conf->log_private = ppl_conf; |
| set_bit(MD_HAS_PPL, &ppl_conf->mddev->flags); |
| |
| return 0; |
| err: |
| __ppl_exit_log(ppl_conf); |
| return ret; |
| } |
| |
| int ppl_modify_log(struct r5conf *conf, struct md_rdev *rdev, bool add) |
| { |
| struct ppl_conf *ppl_conf = conf->log_private; |
| struct ppl_log *log; |
| int ret = 0; |
| char b[BDEVNAME_SIZE]; |
| |
| if (!rdev) |
| return -EINVAL; |
| |
| pr_debug("%s: disk: %d operation: %s dev: %s\n", |
| __func__, rdev->raid_disk, add ? "add" : "remove", |
| bdevname(rdev->bdev, b)); |
| |
| if (rdev->raid_disk < 0) |
| return 0; |
| |
| if (rdev->raid_disk >= ppl_conf->count) |
| return -ENODEV; |
| |
| log = &ppl_conf->child_logs[rdev->raid_disk]; |
| |
| mutex_lock(&log->io_mutex); |
| if (add) { |
| ret = ppl_validate_rdev(rdev); |
| if (!ret) { |
| log->rdev = rdev; |
| ret = ppl_write_empty_header(log); |
| } |
| } else { |
| log->rdev = NULL; |
| } |
| mutex_unlock(&log->io_mutex); |
| |
| return ret; |
| } |