| /* |
| * Copyright © 2014 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| * |
| * Authors: |
| * Ben Widawsky <ben@bwidawsk.net> |
| * Michel Thierry <michel.thierry@intel.com> |
| * Thomas Daniel <thomas.daniel@intel.com> |
| * Oscar Mateo <oscar.mateo@intel.com> |
| * |
| */ |
| |
| /** |
| * DOC: Logical Rings, Logical Ring Contexts and Execlists |
| * |
| * Motivation: |
| * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts". |
| * These expanded contexts enable a number of new abilities, especially |
| * "Execlists" (also implemented in this file). |
| * |
| * One of the main differences with the legacy HW contexts is that logical |
| * ring contexts incorporate many more things to the context's state, like |
| * PDPs or ringbuffer control registers: |
| * |
| * The reason why PDPs are included in the context is straightforward: as |
| * PPGTTs (per-process GTTs) are actually per-context, having the PDPs |
| * contained there mean you don't need to do a ppgtt->switch_mm yourself, |
| * instead, the GPU will do it for you on the context switch. |
| * |
| * But, what about the ringbuffer control registers (head, tail, etc..)? |
| * shouldn't we just need a set of those per engine command streamer? This is |
| * where the name "Logical Rings" starts to make sense: by virtualizing the |
| * rings, the engine cs shifts to a new "ring buffer" with every context |
| * switch. When you want to submit a workload to the GPU you: A) choose your |
| * context, B) find its appropriate virtualized ring, C) write commands to it |
| * and then, finally, D) tell the GPU to switch to that context. |
| * |
| * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch |
| * to a contexts is via a context execution list, ergo "Execlists". |
| * |
| * LRC implementation: |
| * Regarding the creation of contexts, we have: |
| * |
| * - One global default context. |
| * - One local default context for each opened fd. |
| * - One local extra context for each context create ioctl call. |
| * |
| * Now that ringbuffers belong per-context (and not per-engine, like before) |
| * and that contexts are uniquely tied to a given engine (and not reusable, |
| * like before) we need: |
| * |
| * - One ringbuffer per-engine inside each context. |
| * - One backing object per-engine inside each context. |
| * |
| * The global default context starts its life with these new objects fully |
| * allocated and populated. The local default context for each opened fd is |
| * more complex, because we don't know at creation time which engine is going |
| * to use them. To handle this, we have implemented a deferred creation of LR |
| * contexts: |
| * |
| * The local context starts its life as a hollow or blank holder, that only |
| * gets populated for a given engine once we receive an execbuffer. If later |
| * on we receive another execbuffer ioctl for the same context but a different |
| * engine, we allocate/populate a new ringbuffer and context backing object and |
| * so on. |
| * |
| * Finally, regarding local contexts created using the ioctl call: as they are |
| * only allowed with the render ring, we can allocate & populate them right |
| * away (no need to defer anything, at least for now). |
| * |
| * Execlists implementation: |
| * Execlists are the new method by which, on gen8+ hardware, workloads are |
| * submitted for execution (as opposed to the legacy, ringbuffer-based, method). |
| * This method works as follows: |
| * |
| * When a request is committed, its commands (the BB start and any leading or |
| * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer |
| * for the appropriate context. The tail pointer in the hardware context is not |
| * updated at this time, but instead, kept by the driver in the ringbuffer |
| * structure. A structure representing this request is added to a request queue |
| * for the appropriate engine: this structure contains a copy of the context's |
| * tail after the request was written to the ring buffer and a pointer to the |
| * context itself. |
| * |
| * If the engine's request queue was empty before the request was added, the |
| * queue is processed immediately. Otherwise the queue will be processed during |
| * a context switch interrupt. In any case, elements on the queue will get sent |
| * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a |
| * globally unique 20-bits submission ID. |
| * |
| * When execution of a request completes, the GPU updates the context status |
| * buffer with a context complete event and generates a context switch interrupt. |
| * During the interrupt handling, the driver examines the events in the buffer: |
| * for each context complete event, if the announced ID matches that on the head |
| * of the request queue, then that request is retired and removed from the queue. |
| * |
| * After processing, if any requests were retired and the queue is not empty |
| * then a new execution list can be submitted. The two requests at the front of |
| * the queue are next to be submitted but since a context may not occur twice in |
| * an execution list, if subsequent requests have the same ID as the first then |
| * the two requests must be combined. This is done simply by discarding requests |
| * at the head of the queue until either only one requests is left (in which case |
| * we use a NULL second context) or the first two requests have unique IDs. |
| * |
| * By always executing the first two requests in the queue the driver ensures |
| * that the GPU is kept as busy as possible. In the case where a single context |
| * completes but a second context is still executing, the request for this second |
| * context will be at the head of the queue when we remove the first one. This |
| * request will then be resubmitted along with a new request for a different context, |
| * which will cause the hardware to continue executing the second request and queue |
| * the new request (the GPU detects the condition of a context getting preempted |
| * with the same context and optimizes the context switch flow by not doing |
| * preemption, but just sampling the new tail pointer). |
| * |
| */ |
| |
| #include <drm/drmP.h> |
| #include <drm/i915_drm.h> |
| #include "i915_drv.h" |
| |
| #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE) |
| #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE) |
| #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE) |
| |
| #define RING_EXECLIST_QFULL (1 << 0x2) |
| #define RING_EXECLIST1_VALID (1 << 0x3) |
| #define RING_EXECLIST0_VALID (1 << 0x4) |
| #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE) |
| #define RING_EXECLIST1_ACTIVE (1 << 0x11) |
| #define RING_EXECLIST0_ACTIVE (1 << 0x12) |
| |
| #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0) |
| #define GEN8_CTX_STATUS_PREEMPTED (1 << 1) |
| #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2) |
| #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3) |
| #define GEN8_CTX_STATUS_COMPLETE (1 << 4) |
| #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15) |
| |
| #define CTX_LRI_HEADER_0 0x01 |
| #define CTX_CONTEXT_CONTROL 0x02 |
| #define CTX_RING_HEAD 0x04 |
| #define CTX_RING_TAIL 0x06 |
| #define CTX_RING_BUFFER_START 0x08 |
| #define CTX_RING_BUFFER_CONTROL 0x0a |
| #define CTX_BB_HEAD_U 0x0c |
| #define CTX_BB_HEAD_L 0x0e |
| #define CTX_BB_STATE 0x10 |
| #define CTX_SECOND_BB_HEAD_U 0x12 |
| #define CTX_SECOND_BB_HEAD_L 0x14 |
| #define CTX_SECOND_BB_STATE 0x16 |
| #define CTX_BB_PER_CTX_PTR 0x18 |
| #define CTX_RCS_INDIRECT_CTX 0x1a |
| #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c |
| #define CTX_LRI_HEADER_1 0x21 |
| #define CTX_CTX_TIMESTAMP 0x22 |
| #define CTX_PDP3_UDW 0x24 |
| #define CTX_PDP3_LDW 0x26 |
| #define CTX_PDP2_UDW 0x28 |
| #define CTX_PDP2_LDW 0x2a |
| #define CTX_PDP1_UDW 0x2c |
| #define CTX_PDP1_LDW 0x2e |
| #define CTX_PDP0_UDW 0x30 |
| #define CTX_PDP0_LDW 0x32 |
| #define CTX_LRI_HEADER_2 0x41 |
| #define CTX_R_PWR_CLK_STATE 0x42 |
| #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44 |
| |
| #define GEN8_CTX_VALID (1<<0) |
| #define GEN8_CTX_FORCE_PD_RESTORE (1<<1) |
| #define GEN8_CTX_FORCE_RESTORE (1<<2) |
| #define GEN8_CTX_L3LLC_COHERENT (1<<5) |
| #define GEN8_CTX_PRIVILEGE (1<<8) |
| |
| #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) { \ |
| const u64 _addr = test_bit(n, ppgtt->pdp.used_pdpes) ? \ |
| ppgtt->pdp.page_directory[n]->daddr : \ |
| ppgtt->scratch_pd->daddr; \ |
| reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \ |
| reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \ |
| } |
| |
| enum { |
| ADVANCED_CONTEXT = 0, |
| LEGACY_CONTEXT, |
| ADVANCED_AD_CONTEXT, |
| LEGACY_64B_CONTEXT |
| }; |
| #define GEN8_CTX_MODE_SHIFT 3 |
| enum { |
| FAULT_AND_HANG = 0, |
| FAULT_AND_HALT, /* Debug only */ |
| FAULT_AND_STREAM, |
| FAULT_AND_CONTINUE /* Unsupported */ |
| }; |
| #define GEN8_CTX_ID_SHIFT 32 |
| #define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17 |
| |
| static int intel_lr_context_pin(struct intel_engine_cs *ring, |
| struct intel_context *ctx); |
| |
| /** |
| * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists |
| * @dev: DRM device. |
| * @enable_execlists: value of i915.enable_execlists module parameter. |
| * |
| * Only certain platforms support Execlists (the prerequisites being |
| * support for Logical Ring Contexts and Aliasing PPGTT or better). |
| * |
| * Return: 1 if Execlists is supported and has to be enabled. |
| */ |
| int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists) |
| { |
| WARN_ON(i915.enable_ppgtt == -1); |
| |
| if (INTEL_INFO(dev)->gen >= 9) |
| return 1; |
| |
| if (enable_execlists == 0) |
| return 0; |
| |
| if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) && |
| i915.use_mmio_flip >= 0) |
| return 1; |
| |
| return 0; |
| } |
| |
| /** |
| * intel_execlists_ctx_id() - get the Execlists Context ID |
| * @ctx_obj: Logical Ring Context backing object. |
| * |
| * Do not confuse with ctx->id! Unfortunately we have a name overload |
| * here: the old context ID we pass to userspace as a handler so that |
| * they can refer to a context, and the new context ID we pass to the |
| * ELSP so that the GPU can inform us of the context status via |
| * interrupts. |
| * |
| * Return: 20-bits globally unique context ID. |
| */ |
| u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj) |
| { |
| u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj); |
| |
| /* LRCA is required to be 4K aligned so the more significant 20 bits |
| * are globally unique */ |
| return lrca >> 12; |
| } |
| |
| static uint64_t execlists_ctx_descriptor(struct intel_engine_cs *ring, |
| struct drm_i915_gem_object *ctx_obj) |
| { |
| struct drm_device *dev = ring->dev; |
| uint64_t desc; |
| uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj); |
| |
| WARN_ON(lrca & 0xFFFFFFFF00000FFFULL); |
| |
| desc = GEN8_CTX_VALID; |
| desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT; |
| if (IS_GEN8(ctx_obj->base.dev)) |
| desc |= GEN8_CTX_L3LLC_COHERENT; |
| desc |= GEN8_CTX_PRIVILEGE; |
| desc |= lrca; |
| desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT; |
| |
| /* TODO: WaDisableLiteRestore when we start using semaphore |
| * signalling between Command Streamers */ |
| /* desc |= GEN8_CTX_FORCE_RESTORE; */ |
| |
| /* WaEnableForceRestoreInCtxtDescForVCS:skl */ |
| if (IS_GEN9(dev) && |
| INTEL_REVID(dev) <= SKL_REVID_B0 && |
| (ring->id == BCS || ring->id == VCS || |
| ring->id == VECS || ring->id == VCS2)) |
| desc |= GEN8_CTX_FORCE_RESTORE; |
| |
| return desc; |
| } |
| |
| static void execlists_elsp_write(struct intel_engine_cs *ring, |
| struct drm_i915_gem_object *ctx_obj0, |
| struct drm_i915_gem_object *ctx_obj1) |
| { |
| struct drm_device *dev = ring->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| uint64_t temp = 0; |
| uint32_t desc[4]; |
| |
| /* XXX: You must always write both descriptors in the order below. */ |
| if (ctx_obj1) |
| temp = execlists_ctx_descriptor(ring, ctx_obj1); |
| else |
| temp = 0; |
| desc[1] = (u32)(temp >> 32); |
| desc[0] = (u32)temp; |
| |
| temp = execlists_ctx_descriptor(ring, ctx_obj0); |
| desc[3] = (u32)(temp >> 32); |
| desc[2] = (u32)temp; |
| |
| spin_lock(&dev_priv->uncore.lock); |
| intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL); |
| I915_WRITE_FW(RING_ELSP(ring), desc[1]); |
| I915_WRITE_FW(RING_ELSP(ring), desc[0]); |
| I915_WRITE_FW(RING_ELSP(ring), desc[3]); |
| |
| /* The context is automatically loaded after the following */ |
| I915_WRITE_FW(RING_ELSP(ring), desc[2]); |
| |
| /* ELSP is a wo register, so use another nearby reg for posting instead */ |
| POSTING_READ_FW(RING_EXECLIST_STATUS(ring)); |
| intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL); |
| spin_unlock(&dev_priv->uncore.lock); |
| } |
| |
| static int execlists_update_context(struct drm_i915_gem_object *ctx_obj, |
| struct drm_i915_gem_object *ring_obj, |
| struct i915_hw_ppgtt *ppgtt, |
| u32 tail) |
| { |
| struct page *page; |
| uint32_t *reg_state; |
| |
| page = i915_gem_object_get_page(ctx_obj, 1); |
| reg_state = kmap_atomic(page); |
| |
| reg_state[CTX_RING_TAIL+1] = tail; |
| reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj); |
| |
| /* True PPGTT with dynamic page allocation: update PDP registers and |
| * point the unallocated PDPs to the scratch page |
| */ |
| if (ppgtt) { |
| ASSIGN_CTX_PDP(ppgtt, reg_state, 3); |
| ASSIGN_CTX_PDP(ppgtt, reg_state, 2); |
| ASSIGN_CTX_PDP(ppgtt, reg_state, 1); |
| ASSIGN_CTX_PDP(ppgtt, reg_state, 0); |
| } |
| |
| kunmap_atomic(reg_state); |
| |
| return 0; |
| } |
| |
| static void execlists_submit_contexts(struct intel_engine_cs *ring, |
| struct intel_context *to0, u32 tail0, |
| struct intel_context *to1, u32 tail1) |
| { |
| struct drm_i915_gem_object *ctx_obj0 = to0->engine[ring->id].state; |
| struct intel_ringbuffer *ringbuf0 = to0->engine[ring->id].ringbuf; |
| struct drm_i915_gem_object *ctx_obj1 = NULL; |
| struct intel_ringbuffer *ringbuf1 = NULL; |
| |
| BUG_ON(!ctx_obj0); |
| WARN_ON(!i915_gem_obj_is_pinned(ctx_obj0)); |
| WARN_ON(!i915_gem_obj_is_pinned(ringbuf0->obj)); |
| |
| execlists_update_context(ctx_obj0, ringbuf0->obj, to0->ppgtt, tail0); |
| |
| if (to1) { |
| ringbuf1 = to1->engine[ring->id].ringbuf; |
| ctx_obj1 = to1->engine[ring->id].state; |
| BUG_ON(!ctx_obj1); |
| WARN_ON(!i915_gem_obj_is_pinned(ctx_obj1)); |
| WARN_ON(!i915_gem_obj_is_pinned(ringbuf1->obj)); |
| |
| execlists_update_context(ctx_obj1, ringbuf1->obj, to1->ppgtt, tail1); |
| } |
| |
| execlists_elsp_write(ring, ctx_obj0, ctx_obj1); |
| } |
| |
| static void execlists_context_unqueue(struct intel_engine_cs *ring) |
| { |
| struct drm_i915_gem_request *req0 = NULL, *req1 = NULL; |
| struct drm_i915_gem_request *cursor = NULL, *tmp = NULL; |
| |
| assert_spin_locked(&ring->execlist_lock); |
| |
| /* |
| * If irqs are not active generate a warning as batches that finish |
| * without the irqs may get lost and a GPU Hang may occur. |
| */ |
| WARN_ON(!intel_irqs_enabled(ring->dev->dev_private)); |
| |
| if (list_empty(&ring->execlist_queue)) |
| return; |
| |
| /* Try to read in pairs */ |
| list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue, |
| execlist_link) { |
| if (!req0) { |
| req0 = cursor; |
| } else if (req0->ctx == cursor->ctx) { |
| /* Same ctx: ignore first request, as second request |
| * will update tail past first request's workload */ |
| cursor->elsp_submitted = req0->elsp_submitted; |
| list_del(&req0->execlist_link); |
| list_add_tail(&req0->execlist_link, |
| &ring->execlist_retired_req_list); |
| req0 = cursor; |
| } else { |
| req1 = cursor; |
| break; |
| } |
| } |
| |
| if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) { |
| /* |
| * WaIdleLiteRestore: make sure we never cause a lite |
| * restore with HEAD==TAIL |
| */ |
| if (req0->elsp_submitted) { |
| /* |
| * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL |
| * as we resubmit the request. See gen8_emit_request() |
| * for where we prepare the padding after the end of the |
| * request. |
| */ |
| struct intel_ringbuffer *ringbuf; |
| |
| ringbuf = req0->ctx->engine[ring->id].ringbuf; |
| req0->tail += 8; |
| req0->tail &= ringbuf->size - 1; |
| } |
| } |
| |
| WARN_ON(req1 && req1->elsp_submitted); |
| |
| execlists_submit_contexts(ring, req0->ctx, req0->tail, |
| req1 ? req1->ctx : NULL, |
| req1 ? req1->tail : 0); |
| |
| req0->elsp_submitted++; |
| if (req1) |
| req1->elsp_submitted++; |
| } |
| |
| static bool execlists_check_remove_request(struct intel_engine_cs *ring, |
| u32 request_id) |
| { |
| struct drm_i915_gem_request *head_req; |
| |
| assert_spin_locked(&ring->execlist_lock); |
| |
| head_req = list_first_entry_or_null(&ring->execlist_queue, |
| struct drm_i915_gem_request, |
| execlist_link); |
| |
| if (head_req != NULL) { |
| struct drm_i915_gem_object *ctx_obj = |
| head_req->ctx->engine[ring->id].state; |
| if (intel_execlists_ctx_id(ctx_obj) == request_id) { |
| WARN(head_req->elsp_submitted == 0, |
| "Never submitted head request\n"); |
| |
| if (--head_req->elsp_submitted <= 0) { |
| list_del(&head_req->execlist_link); |
| list_add_tail(&head_req->execlist_link, |
| &ring->execlist_retired_req_list); |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| /** |
| * intel_lrc_irq_handler() - handle Context Switch interrupts |
| * @ring: Engine Command Streamer to handle. |
| * |
| * Check the unread Context Status Buffers and manage the submission of new |
| * contexts to the ELSP accordingly. |
| */ |
| void intel_lrc_irq_handler(struct intel_engine_cs *ring) |
| { |
| struct drm_i915_private *dev_priv = ring->dev->dev_private; |
| u32 status_pointer; |
| u8 read_pointer; |
| u8 write_pointer; |
| u32 status; |
| u32 status_id; |
| u32 submit_contexts = 0; |
| |
| status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring)); |
| |
| read_pointer = ring->next_context_status_buffer; |
| write_pointer = status_pointer & 0x07; |
| if (read_pointer > write_pointer) |
| write_pointer += 6; |
| |
| spin_lock(&ring->execlist_lock); |
| |
| while (read_pointer < write_pointer) { |
| read_pointer++; |
| status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) + |
| (read_pointer % 6) * 8); |
| status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) + |
| (read_pointer % 6) * 8 + 4); |
| |
| if (status & GEN8_CTX_STATUS_PREEMPTED) { |
| if (status & GEN8_CTX_STATUS_LITE_RESTORE) { |
| if (execlists_check_remove_request(ring, status_id)) |
| WARN(1, "Lite Restored request removed from queue\n"); |
| } else |
| WARN(1, "Preemption without Lite Restore\n"); |
| } |
| |
| if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) || |
| (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) { |
| if (execlists_check_remove_request(ring, status_id)) |
| submit_contexts++; |
| } |
| } |
| |
| if (submit_contexts != 0) |
| execlists_context_unqueue(ring); |
| |
| spin_unlock(&ring->execlist_lock); |
| |
| WARN(submit_contexts > 2, "More than two context complete events?\n"); |
| ring->next_context_status_buffer = write_pointer % 6; |
| |
| I915_WRITE(RING_CONTEXT_STATUS_PTR(ring), |
| ((u32)ring->next_context_status_buffer & 0x07) << 8); |
| } |
| |
| static int execlists_context_queue(struct intel_engine_cs *ring, |
| struct intel_context *to, |
| u32 tail, |
| struct drm_i915_gem_request *request) |
| { |
| struct drm_i915_gem_request *cursor; |
| int num_elements = 0; |
| |
| if (to != ring->default_context) |
| intel_lr_context_pin(ring, to); |
| |
| if (!request) { |
| /* |
| * If there isn't a request associated with this submission, |
| * create one as a temporary holder. |
| */ |
| request = kzalloc(sizeof(*request), GFP_KERNEL); |
| if (request == NULL) |
| return -ENOMEM; |
| request->ring = ring; |
| request->ctx = to; |
| kref_init(&request->ref); |
| i915_gem_context_reference(request->ctx); |
| } else { |
| i915_gem_request_reference(request); |
| WARN_ON(to != request->ctx); |
| } |
| request->tail = tail; |
| |
| spin_lock_irq(&ring->execlist_lock); |
| |
| list_for_each_entry(cursor, &ring->execlist_queue, execlist_link) |
| if (++num_elements > 2) |
| break; |
| |
| if (num_elements > 2) { |
| struct drm_i915_gem_request *tail_req; |
| |
| tail_req = list_last_entry(&ring->execlist_queue, |
| struct drm_i915_gem_request, |
| execlist_link); |
| |
| if (to == tail_req->ctx) { |
| WARN(tail_req->elsp_submitted != 0, |
| "More than 2 already-submitted reqs queued\n"); |
| list_del(&tail_req->execlist_link); |
| list_add_tail(&tail_req->execlist_link, |
| &ring->execlist_retired_req_list); |
| } |
| } |
| |
| list_add_tail(&request->execlist_link, &ring->execlist_queue); |
| if (num_elements == 0) |
| execlists_context_unqueue(ring); |
| |
| spin_unlock_irq(&ring->execlist_lock); |
| |
| return 0; |
| } |
| |
| static int logical_ring_invalidate_all_caches(struct intel_ringbuffer *ringbuf, |
| struct intel_context *ctx) |
| { |
| struct intel_engine_cs *ring = ringbuf->ring; |
| uint32_t flush_domains; |
| int ret; |
| |
| flush_domains = 0; |
| if (ring->gpu_caches_dirty) |
| flush_domains = I915_GEM_GPU_DOMAINS; |
| |
| ret = ring->emit_flush(ringbuf, ctx, |
| I915_GEM_GPU_DOMAINS, flush_domains); |
| if (ret) |
| return ret; |
| |
| ring->gpu_caches_dirty = false; |
| return 0; |
| } |
| |
| static int execlists_move_to_gpu(struct intel_ringbuffer *ringbuf, |
| struct intel_context *ctx, |
| struct list_head *vmas) |
| { |
| struct intel_engine_cs *ring = ringbuf->ring; |
| const unsigned other_rings = ~intel_ring_flag(ring); |
| struct i915_vma *vma; |
| uint32_t flush_domains = 0; |
| bool flush_chipset = false; |
| int ret; |
| |
| list_for_each_entry(vma, vmas, exec_list) { |
| struct drm_i915_gem_object *obj = vma->obj; |
| |
| if (obj->active & other_rings) { |
| ret = i915_gem_object_sync(obj, ring); |
| if (ret) |
| return ret; |
| } |
| |
| if (obj->base.write_domain & I915_GEM_DOMAIN_CPU) |
| flush_chipset |= i915_gem_clflush_object(obj, false); |
| |
| flush_domains |= obj->base.write_domain; |
| } |
| |
| if (flush_domains & I915_GEM_DOMAIN_GTT) |
| wmb(); |
| |
| /* Unconditionally invalidate gpu caches and ensure that we do flush |
| * any residual writes from the previous batch. |
| */ |
| return logical_ring_invalidate_all_caches(ringbuf, ctx); |
| } |
| |
| int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request) |
| { |
| int ret; |
| |
| if (request->ctx != request->ring->default_context) { |
| ret = intel_lr_context_pin(request->ring, request->ctx); |
| if (ret) |
| return ret; |
| } |
| |
| request->ringbuf = request->ctx->engine[request->ring->id].ringbuf; |
| |
| return 0; |
| } |
| |
| static int logical_ring_wait_for_space(struct intel_ringbuffer *ringbuf, |
| struct intel_context *ctx, |
| int bytes) |
| { |
| struct intel_engine_cs *ring = ringbuf->ring; |
| struct drm_i915_gem_request *request; |
| unsigned space; |
| int ret; |
| |
| /* The whole point of reserving space is to not wait! */ |
| WARN_ON(ringbuf->reserved_in_use); |
| |
| if (intel_ring_space(ringbuf) >= bytes) |
| return 0; |
| |
| list_for_each_entry(request, &ring->request_list, list) { |
| /* |
| * The request queue is per-engine, so can contain requests |
| * from multiple ringbuffers. Here, we must ignore any that |
| * aren't from the ringbuffer we're considering. |
| */ |
| if (request->ringbuf != ringbuf) |
| continue; |
| |
| /* Would completion of this request free enough space? */ |
| space = __intel_ring_space(request->postfix, ringbuf->tail, |
| ringbuf->size); |
| if (space >= bytes) |
| break; |
| } |
| |
| if (WARN_ON(&request->list == &ring->request_list)) |
| return -ENOSPC; |
| |
| ret = i915_wait_request(request); |
| if (ret) |
| return ret; |
| |
| ringbuf->space = space; |
| return 0; |
| } |
| |
| /* |
| * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload |
| * @ringbuf: Logical Ringbuffer to advance. |
| * |
| * The tail is updated in our logical ringbuffer struct, not in the actual context. What |
| * really happens during submission is that the context and current tail will be placed |
| * on a queue waiting for the ELSP to be ready to accept a new context submission. At that |
| * point, the tail *inside* the context is updated and the ELSP written to. |
| */ |
| static void |
| intel_logical_ring_advance_and_submit(struct intel_ringbuffer *ringbuf, |
| struct intel_context *ctx, |
| struct drm_i915_gem_request *request) |
| { |
| struct intel_engine_cs *ring = ringbuf->ring; |
| |
| intel_logical_ring_advance(ringbuf); |
| |
| if (intel_ring_stopped(ring)) |
| return; |
| |
| execlists_context_queue(ring, ctx, ringbuf->tail, request); |
| } |
| |
| static int logical_ring_wrap_buffer(struct intel_ringbuffer *ringbuf, |
| struct intel_context *ctx) |
| { |
| uint32_t __iomem *virt; |
| int rem = ringbuf->size - ringbuf->tail; |
| |
| /* Can't wrap if space has already been reserved! */ |
| WARN_ON(ringbuf->reserved_in_use); |
| |
| if (ringbuf->space < rem) { |
| int ret = logical_ring_wait_for_space(ringbuf, ctx, rem); |
| |
| if (ret) |
| return ret; |
| } |
| |
| virt = ringbuf->virtual_start + ringbuf->tail; |
| rem /= 4; |
| while (rem--) |
| iowrite32(MI_NOOP, virt++); |
| |
| ringbuf->tail = 0; |
| intel_ring_update_space(ringbuf); |
| |
| return 0; |
| } |
| |
| static int logical_ring_prepare(struct intel_ringbuffer *ringbuf, |
| struct intel_context *ctx, int bytes) |
| { |
| int ret; |
| |
| /* |
| * Add on the reserved size to the request to make sure that after |
| * the intended commands have been emitted, there is guaranteed to |
| * still be enough free space to send them to the hardware. |
| */ |
| if (!ringbuf->reserved_in_use) |
| bytes += ringbuf->reserved_size; |
| |
| if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) { |
| ret = logical_ring_wrap_buffer(ringbuf, ctx); |
| if (unlikely(ret)) |
| return ret; |
| |
| if(ringbuf->reserved_size) { |
| uint32_t size = ringbuf->reserved_size; |
| |
| intel_ring_reserved_space_cancel(ringbuf); |
| intel_ring_reserved_space_reserve(ringbuf, size); |
| } |
| } |
| |
| if (unlikely(ringbuf->space < bytes)) { |
| ret = logical_ring_wait_for_space(ringbuf, ctx, bytes); |
| if (unlikely(ret)) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands |
| * |
| * @ringbuf: Logical ringbuffer. |
| * @num_dwords: number of DWORDs that we plan to write to the ringbuffer. |
| * |
| * The ringbuffer might not be ready to accept the commands right away (maybe it needs to |
| * be wrapped, or wait a bit for the tail to be updated). This function takes care of that |
| * and also preallocates a request (every workload submission is still mediated through |
| * requests, same as it did with legacy ringbuffer submission). |
| * |
| * Return: non-zero if the ringbuffer is not ready to be written to. |
| */ |
| static int intel_logical_ring_begin(struct intel_ringbuffer *ringbuf, |
| struct intel_context *ctx, int num_dwords) |
| { |
| struct intel_engine_cs *ring = ringbuf->ring; |
| struct drm_device *dev = ring->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int ret; |
| |
| ret = i915_gem_check_wedge(&dev_priv->gpu_error, |
| dev_priv->mm.interruptible); |
| if (ret) |
| return ret; |
| |
| ret = logical_ring_prepare(ringbuf, ctx, num_dwords * sizeof(uint32_t)); |
| if (ret) |
| return ret; |
| |
| /* Preallocate the olr before touching the ring */ |
| ret = i915_gem_request_alloc(ring, ctx); |
| if (ret) |
| return ret; |
| |
| ringbuf->space -= num_dwords * sizeof(uint32_t); |
| return 0; |
| } |
| |
| /** |
| * execlists_submission() - submit a batchbuffer for execution, Execlists style |
| * @dev: DRM device. |
| * @file: DRM file. |
| * @ring: Engine Command Streamer to submit to. |
| * @ctx: Context to employ for this submission. |
| * @args: execbuffer call arguments. |
| * @vmas: list of vmas. |
| * @batch_obj: the batchbuffer to submit. |
| * @exec_start: batchbuffer start virtual address pointer. |
| * @dispatch_flags: translated execbuffer call flags. |
| * |
| * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts |
| * away the submission details of the execbuffer ioctl call. |
| * |
| * Return: non-zero if the submission fails. |
| */ |
| int intel_execlists_submission(struct i915_execbuffer_params *params, |
| struct drm_i915_gem_execbuffer2 *args, |
| struct list_head *vmas) |
| { |
| struct drm_device *dev = params->dev; |
| struct intel_engine_cs *ring = params->ring; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf; |
| u64 exec_start; |
| int instp_mode; |
| u32 instp_mask; |
| int ret; |
| |
| instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK; |
| instp_mask = I915_EXEC_CONSTANTS_MASK; |
| switch (instp_mode) { |
| case I915_EXEC_CONSTANTS_REL_GENERAL: |
| case I915_EXEC_CONSTANTS_ABSOLUTE: |
| case I915_EXEC_CONSTANTS_REL_SURFACE: |
| if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) { |
| DRM_DEBUG("non-0 rel constants mode on non-RCS\n"); |
| return -EINVAL; |
| } |
| |
| if (instp_mode != dev_priv->relative_constants_mode) { |
| if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) { |
| DRM_DEBUG("rel surface constants mode invalid on gen5+\n"); |
| return -EINVAL; |
| } |
| |
| /* The HW changed the meaning on this bit on gen6 */ |
| instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE; |
| } |
| break; |
| default: |
| DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode); |
| return -EINVAL; |
| } |
| |
| if (args->num_cliprects != 0) { |
| DRM_DEBUG("clip rectangles are only valid on pre-gen5\n"); |
| return -EINVAL; |
| } else { |
| if (args->DR4 == 0xffffffff) { |
| DRM_DEBUG("UXA submitting garbage DR4, fixing up\n"); |
| args->DR4 = 0; |
| } |
| |
| if (args->DR1 || args->DR4 || args->cliprects_ptr) { |
| DRM_DEBUG("0 cliprects but dirt in cliprects fields\n"); |
| return -EINVAL; |
| } |
| } |
| |
| if (args->flags & I915_EXEC_GEN7_SOL_RESET) { |
| DRM_DEBUG("sol reset is gen7 only\n"); |
| return -EINVAL; |
| } |
| |
| ret = execlists_move_to_gpu(ringbuf, params->ctx, vmas); |
| if (ret) |
| return ret; |
| |
| if (ring == &dev_priv->ring[RCS] && |
| instp_mode != dev_priv->relative_constants_mode) { |
| ret = intel_logical_ring_begin(ringbuf, params->ctx, 4); |
| if (ret) |
| return ret; |
| |
| intel_logical_ring_emit(ringbuf, MI_NOOP); |
| intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1)); |
| intel_logical_ring_emit(ringbuf, INSTPM); |
| intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode); |
| intel_logical_ring_advance(ringbuf); |
| |
| dev_priv->relative_constants_mode = instp_mode; |
| } |
| |
| exec_start = params->batch_obj_vm_offset + |
| args->batch_start_offset; |
| |
| ret = ring->emit_bb_start(ringbuf, params->ctx, exec_start, params->dispatch_flags); |
| if (ret) |
| return ret; |
| |
| trace_i915_gem_ring_dispatch(intel_ring_get_request(ring), params->dispatch_flags); |
| |
| i915_gem_execbuffer_move_to_active(vmas, ring); |
| i915_gem_execbuffer_retire_commands(params); |
| |
| return 0; |
| } |
| |
| void intel_execlists_retire_requests(struct intel_engine_cs *ring) |
| { |
| struct drm_i915_gem_request *req, *tmp; |
| struct list_head retired_list; |
| |
| WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex)); |
| if (list_empty(&ring->execlist_retired_req_list)) |
| return; |
| |
| INIT_LIST_HEAD(&retired_list); |
| spin_lock_irq(&ring->execlist_lock); |
| list_replace_init(&ring->execlist_retired_req_list, &retired_list); |
| spin_unlock_irq(&ring->execlist_lock); |
| |
| list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) { |
| struct intel_context *ctx = req->ctx; |
| struct drm_i915_gem_object *ctx_obj = |
| ctx->engine[ring->id].state; |
| |
| if (ctx_obj && (ctx != ring->default_context)) |
| intel_lr_context_unpin(ring, ctx); |
| list_del(&req->execlist_link); |
| i915_gem_request_unreference(req); |
| } |
| } |
| |
| void intel_logical_ring_stop(struct intel_engine_cs *ring) |
| { |
| struct drm_i915_private *dev_priv = ring->dev->dev_private; |
| int ret; |
| |
| if (!intel_ring_initialized(ring)) |
| return; |
| |
| ret = intel_ring_idle(ring); |
| if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error)) |
| DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n", |
| ring->name, ret); |
| |
| /* TODO: Is this correct with Execlists enabled? */ |
| I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING)); |
| if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) { |
| DRM_ERROR("%s :timed out trying to stop ring\n", ring->name); |
| return; |
| } |
| I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING)); |
| } |
| |
| int logical_ring_flush_all_caches(struct intel_ringbuffer *ringbuf, |
| struct intel_context *ctx) |
| { |
| struct intel_engine_cs *ring = ringbuf->ring; |
| int ret; |
| |
| if (!ring->gpu_caches_dirty) |
| return 0; |
| |
| ret = ring->emit_flush(ringbuf, ctx, 0, I915_GEM_GPU_DOMAINS); |
| if (ret) |
| return ret; |
| |
| ring->gpu_caches_dirty = false; |
| return 0; |
| } |
| |
| static int intel_lr_context_pin(struct intel_engine_cs *ring, |
| struct intel_context *ctx) |
| { |
| struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state; |
| struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf; |
| int ret = 0; |
| |
| WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex)); |
| if (ctx->engine[ring->id].pin_count++ == 0) { |
| ret = i915_gem_obj_ggtt_pin(ctx_obj, |
| GEN8_LR_CONTEXT_ALIGN, 0); |
| if (ret) |
| goto reset_pin_count; |
| |
| ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf); |
| if (ret) |
| goto unpin_ctx_obj; |
| } |
| |
| return ret; |
| |
| unpin_ctx_obj: |
| i915_gem_object_ggtt_unpin(ctx_obj); |
| reset_pin_count: |
| ctx->engine[ring->id].pin_count = 0; |
| |
| return ret; |
| } |
| |
| void intel_lr_context_unpin(struct intel_engine_cs *ring, |
| struct intel_context *ctx) |
| { |
| struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state; |
| struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf; |
| |
| if (ctx_obj) { |
| WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex)); |
| if (--ctx->engine[ring->id].pin_count == 0) { |
| intel_unpin_ringbuffer_obj(ringbuf); |
| i915_gem_object_ggtt_unpin(ctx_obj); |
| } |
| } |
| } |
| |
| static int intel_logical_ring_workarounds_emit(struct intel_engine_cs *ring, |
| struct intel_context *ctx) |
| { |
| int ret, i; |
| struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf; |
| struct drm_device *dev = ring->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct i915_workarounds *w = &dev_priv->workarounds; |
| |
| if (WARN_ON_ONCE(w->count == 0)) |
| return 0; |
| |
| ring->gpu_caches_dirty = true; |
| ret = logical_ring_flush_all_caches(ringbuf, ctx); |
| if (ret) |
| return ret; |
| |
| ret = intel_logical_ring_begin(ringbuf, ctx, w->count * 2 + 2); |
| if (ret) |
| return ret; |
| |
| intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count)); |
| for (i = 0; i < w->count; i++) { |
| intel_logical_ring_emit(ringbuf, w->reg[i].addr); |
| intel_logical_ring_emit(ringbuf, w->reg[i].value); |
| } |
| intel_logical_ring_emit(ringbuf, MI_NOOP); |
| |
| intel_logical_ring_advance(ringbuf); |
| |
| ring->gpu_caches_dirty = true; |
| ret = logical_ring_flush_all_caches(ringbuf, ctx); |
| if (ret) |
| return ret; |
| |
| return 0; |
| } |
| |
| #define wa_ctx_emit(batch, cmd) \ |
| do { \ |
| if (WARN_ON(index >= (PAGE_SIZE / sizeof(uint32_t)))) { \ |
| return -ENOSPC; \ |
| } \ |
| batch[index++] = (cmd); \ |
| } while (0) |
| |
| static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx, |
| uint32_t offset, |
| uint32_t start_alignment) |
| { |
| return wa_ctx->offset = ALIGN(offset, start_alignment); |
| } |
| |
| static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx, |
| uint32_t offset, |
| uint32_t size_alignment) |
| { |
| wa_ctx->size = offset - wa_ctx->offset; |
| |
| WARN(wa_ctx->size % size_alignment, |
| "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n", |
| wa_ctx->size, size_alignment); |
| return 0; |
| } |
| |
| /** |
| * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA |
| * |
| * @ring: only applicable for RCS |
| * @wa_ctx: structure representing wa_ctx |
| * offset: specifies start of the batch, should be cache-aligned. This is updated |
| * with the offset value received as input. |
| * size: size of the batch in DWORDS but HW expects in terms of cachelines |
| * @batch: page in which WA are loaded |
| * @offset: This field specifies the start of the batch, it should be |
| * cache-aligned otherwise it is adjusted accordingly. |
| * Typically we only have one indirect_ctx and per_ctx batch buffer which are |
| * initialized at the beginning and shared across all contexts but this field |
| * helps us to have multiple batches at different offsets and select them based |
| * on a criteria. At the moment this batch always start at the beginning of the page |
| * and at this point we don't have multiple wa_ctx batch buffers. |
| * |
| * The number of WA applied are not known at the beginning; we use this field |
| * to return the no of DWORDS written. |
| |
| * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END |
| * so it adds NOOPs as padding to make it cacheline aligned. |
| * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together |
| * makes a complete batch buffer. |
| * |
| * Return: non-zero if we exceed the PAGE_SIZE limit. |
| */ |
| |
| static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring, |
| struct i915_wa_ctx_bb *wa_ctx, |
| uint32_t *const batch, |
| uint32_t *offset) |
| { |
| uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS); |
| |
| /* WaDisableCtxRestoreArbitration:bdw,chv */ |
| wa_ctx_emit(batch, MI_ARB_ON_OFF | MI_ARB_DISABLE); |
| |
| /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */ |
| if (IS_BROADWELL(ring->dev)) { |
| struct drm_i915_private *dev_priv = to_i915(ring->dev); |
| uint32_t l3sqc4_flush = (I915_READ(GEN8_L3SQCREG4) | |
| GEN8_LQSC_FLUSH_COHERENT_LINES); |
| |
| wa_ctx_emit(batch, MI_LOAD_REGISTER_IMM(1)); |
| wa_ctx_emit(batch, GEN8_L3SQCREG4); |
| wa_ctx_emit(batch, l3sqc4_flush); |
| |
| wa_ctx_emit(batch, GFX_OP_PIPE_CONTROL(6)); |
| wa_ctx_emit(batch, (PIPE_CONTROL_CS_STALL | |
| PIPE_CONTROL_DC_FLUSH_ENABLE)); |
| wa_ctx_emit(batch, 0); |
| wa_ctx_emit(batch, 0); |
| wa_ctx_emit(batch, 0); |
| wa_ctx_emit(batch, 0); |
| |
| wa_ctx_emit(batch, MI_LOAD_REGISTER_IMM(1)); |
| wa_ctx_emit(batch, GEN8_L3SQCREG4); |
| wa_ctx_emit(batch, l3sqc4_flush & ~GEN8_LQSC_FLUSH_COHERENT_LINES); |
| } |
| |
| /* Pad to end of cacheline */ |
| while (index % CACHELINE_DWORDS) |
| wa_ctx_emit(batch, MI_NOOP); |
| |
| /* |
| * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because |
| * execution depends on the length specified in terms of cache lines |
| * in the register CTX_RCS_INDIRECT_CTX |
| */ |
| |
| return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS); |
| } |
| |
| /** |
| * gen8_init_perctx_bb() - initialize per ctx batch with WA |
| * |
| * @ring: only applicable for RCS |
| * @wa_ctx: structure representing wa_ctx |
| * offset: specifies start of the batch, should be cache-aligned. |
| * size: size of the batch in DWORDS but HW expects in terms of cachelines |
| * @offset: This field specifies the start of this batch. |
| * This batch is started immediately after indirect_ctx batch. Since we ensure |
| * that indirect_ctx ends on a cacheline this batch is aligned automatically. |
| * |
| * The number of DWORDS written are returned using this field. |
| * |
| * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding |
| * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant. |
| */ |
| static int gen8_init_perctx_bb(struct intel_engine_cs *ring, |
| struct i915_wa_ctx_bb *wa_ctx, |
| uint32_t *const batch, |
| uint32_t *offset) |
| { |
| uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS); |
| |
| /* WaDisableCtxRestoreArbitration:bdw,chv */ |
| wa_ctx_emit(batch, MI_ARB_ON_OFF | MI_ARB_ENABLE); |
| |
| wa_ctx_emit(batch, MI_BATCH_BUFFER_END); |
| |
| return wa_ctx_end(wa_ctx, *offset = index, 1); |
| } |
| |
| static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size) |
| { |
| int ret; |
| |
| ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size)); |
| if (!ring->wa_ctx.obj) { |
| DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n"); |
| return -ENOMEM; |
| } |
| |
| ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0); |
| if (ret) { |
| DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n", |
| ret); |
| drm_gem_object_unreference(&ring->wa_ctx.obj->base); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring) |
| { |
| if (ring->wa_ctx.obj) { |
| i915_gem_object_ggtt_unpin(ring->wa_ctx.obj); |
| drm_gem_object_unreference(&ring->wa_ctx.obj->base); |
| ring->wa_ctx.obj = NULL; |
| } |
| } |
| |
| static int intel_init_workaround_bb(struct intel_engine_cs *ring) |
| { |
| int ret; |
| uint32_t *batch; |
| uint32_t offset; |
| struct page *page; |
| struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx; |
| |
| WARN_ON(ring->id != RCS); |
| |
| /* some WA perform writes to scratch page, ensure it is valid */ |
| if (ring->scratch.obj == NULL) { |
| DRM_ERROR("scratch page not allocated for %s\n", ring->name); |
| return -EINVAL; |
| } |
| |
| ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE); |
| if (ret) { |
| DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret); |
| return ret; |
| } |
| |
| page = i915_gem_object_get_page(wa_ctx->obj, 0); |
| batch = kmap_atomic(page); |
| offset = 0; |
| |
| if (INTEL_INFO(ring->dev)->gen == 8) { |
| ret = gen8_init_indirectctx_bb(ring, |
| &wa_ctx->indirect_ctx, |
| batch, |
| &offset); |
| if (ret) |
| goto out; |
| |
| ret = gen8_init_perctx_bb(ring, |
| &wa_ctx->per_ctx, |
| batch, |
| &offset); |
| if (ret) |
| goto out; |
| } else { |
| WARN(INTEL_INFO(ring->dev)->gen >= 8, |
| "WA batch buffer is not initialized for Gen%d\n", |
| INTEL_INFO(ring->dev)->gen); |
| lrc_destroy_wa_ctx_obj(ring); |
| } |
| |
| out: |
| kunmap_atomic(batch); |
| if (ret) |
| lrc_destroy_wa_ctx_obj(ring); |
| |
| return ret; |
| } |
| |
| static int gen8_init_common_ring(struct intel_engine_cs *ring) |
| { |
| struct drm_device *dev = ring->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask)); |
| I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff); |
| |
| I915_WRITE(RING_MODE_GEN7(ring), |
| _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) | |
| _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE)); |
| POSTING_READ(RING_MODE_GEN7(ring)); |
| ring->next_context_status_buffer = 0; |
| DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name); |
| |
| memset(&ring->hangcheck, 0, sizeof(ring->hangcheck)); |
| |
| return 0; |
| } |
| |
| static int gen8_init_render_ring(struct intel_engine_cs *ring) |
| { |
| struct drm_device *dev = ring->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int ret; |
| |
| ret = gen8_init_common_ring(ring); |
| if (ret) |
| return ret; |
| |
| /* We need to disable the AsyncFlip performance optimisations in order |
| * to use MI_WAIT_FOR_EVENT within the CS. It should already be |
| * programmed to '1' on all products. |
| * |
| * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv |
| */ |
| I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE)); |
| |
| I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING)); |
| |
| return init_workarounds_ring(ring); |
| } |
| |
| static int gen9_init_render_ring(struct intel_engine_cs *ring) |
| { |
| int ret; |
| |
| ret = gen8_init_common_ring(ring); |
| if (ret) |
| return ret; |
| |
| return init_workarounds_ring(ring); |
| } |
| |
| static int gen8_emit_bb_start(struct intel_ringbuffer *ringbuf, |
| struct intel_context *ctx, |
| u64 offset, unsigned dispatch_flags) |
| { |
| bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE); |
| int ret; |
| |
| ret = intel_logical_ring_begin(ringbuf, ctx, 4); |
| if (ret) |
| return ret; |
| |
| /* FIXME(BDW): Address space and security selectors. */ |
| intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8)); |
| intel_logical_ring_emit(ringbuf, lower_32_bits(offset)); |
| intel_logical_ring_emit(ringbuf, upper_32_bits(offset)); |
| intel_logical_ring_emit(ringbuf, MI_NOOP); |
| intel_logical_ring_advance(ringbuf); |
| |
| return 0; |
| } |
| |
| static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring) |
| { |
| struct drm_device *dev = ring->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| unsigned long flags; |
| |
| if (WARN_ON(!intel_irqs_enabled(dev_priv))) |
| return false; |
| |
| spin_lock_irqsave(&dev_priv->irq_lock, flags); |
| if (ring->irq_refcount++ == 0) { |
| I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask)); |
| POSTING_READ(RING_IMR(ring->mmio_base)); |
| } |
| spin_unlock_irqrestore(&dev_priv->irq_lock, flags); |
| |
| return true; |
| } |
| |
| static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring) |
| { |
| struct drm_device *dev = ring->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&dev_priv->irq_lock, flags); |
| if (--ring->irq_refcount == 0) { |
| I915_WRITE_IMR(ring, ~ring->irq_keep_mask); |
| POSTING_READ(RING_IMR(ring->mmio_base)); |
| } |
| spin_unlock_irqrestore(&dev_priv->irq_lock, flags); |
| } |
| |
| static int gen8_emit_flush(struct intel_ringbuffer *ringbuf, |
| struct intel_context *ctx, |
| u32 invalidate_domains, |
| u32 unused) |
| { |
| struct intel_engine_cs *ring = ringbuf->ring; |
| struct drm_device *dev = ring->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| uint32_t cmd; |
| int ret; |
| |
| ret = intel_logical_ring_begin(ringbuf, ctx, 4); |
| if (ret) |
| return ret; |
| |
| cmd = MI_FLUSH_DW + 1; |
| |
| /* We always require a command barrier so that subsequent |
| * commands, such as breadcrumb interrupts, are strictly ordered |
| * wrt the contents of the write cache being flushed to memory |
| * (and thus being coherent from the CPU). |
| */ |
| cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW; |
| |
| if (invalidate_domains & I915_GEM_GPU_DOMAINS) { |
| cmd |= MI_INVALIDATE_TLB; |
| if (ring == &dev_priv->ring[VCS]) |
| cmd |= MI_INVALIDATE_BSD; |
| } |
| |
| intel_logical_ring_emit(ringbuf, cmd); |
| intel_logical_ring_emit(ringbuf, |
| I915_GEM_HWS_SCRATCH_ADDR | |
| MI_FLUSH_DW_USE_GTT); |
| intel_logical_ring_emit(ringbuf, 0); /* upper addr */ |
| intel_logical_ring_emit(ringbuf, 0); /* value */ |
| intel_logical_ring_advance(ringbuf); |
| |
| return 0; |
| } |
| |
| static int gen8_emit_flush_render(struct intel_ringbuffer *ringbuf, |
| struct intel_context *ctx, |
| u32 invalidate_domains, |
| u32 flush_domains) |
| { |
| struct intel_engine_cs *ring = ringbuf->ring; |
| u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES; |
| bool vf_flush_wa; |
| u32 flags = 0; |
| int ret; |
| |
| flags |= PIPE_CONTROL_CS_STALL; |
| |
| if (flush_domains) { |
| flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH; |
| flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH; |
| } |
| |
| if (invalidate_domains) { |
| flags |= PIPE_CONTROL_TLB_INVALIDATE; |
| flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE; |
| flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE; |
| flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE; |
| flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE; |
| flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE; |
| flags |= PIPE_CONTROL_QW_WRITE; |
| flags |= PIPE_CONTROL_GLOBAL_GTT_IVB; |
| } |
| |
| /* |
| * On GEN9+ Before VF_CACHE_INVALIDATE we need to emit a NULL pipe |
| * control. |
| */ |
| vf_flush_wa = INTEL_INFO(ring->dev)->gen >= 9 && |
| flags & PIPE_CONTROL_VF_CACHE_INVALIDATE; |
| |
| ret = intel_logical_ring_begin(ringbuf, ctx, vf_flush_wa ? 12 : 6); |
| if (ret) |
| return ret; |
| |
| if (vf_flush_wa) { |
| intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6)); |
| intel_logical_ring_emit(ringbuf, 0); |
| intel_logical_ring_emit(ringbuf, 0); |
| intel_logical_ring_emit(ringbuf, 0); |
| intel_logical_ring_emit(ringbuf, 0); |
| intel_logical_ring_emit(ringbuf, 0); |
| } |
| |
| intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6)); |
| intel_logical_ring_emit(ringbuf, flags); |
| intel_logical_ring_emit(ringbuf, scratch_addr); |
| intel_logical_ring_emit(ringbuf, 0); |
| intel_logical_ring_emit(ringbuf, 0); |
| intel_logical_ring_emit(ringbuf, 0); |
| intel_logical_ring_advance(ringbuf); |
| |
| return 0; |
| } |
| |
| static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency) |
| { |
| return intel_read_status_page(ring, I915_GEM_HWS_INDEX); |
| } |
| |
| static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno) |
| { |
| intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno); |
| } |
| |
| static int gen8_emit_request(struct intel_ringbuffer *ringbuf, |
| struct drm_i915_gem_request *request) |
| { |
| struct intel_engine_cs *ring = ringbuf->ring; |
| u32 cmd; |
| int ret; |
| |
| /* |
| * Reserve space for 2 NOOPs at the end of each request to be |
| * used as a workaround for not being allowed to do lite |
| * restore with HEAD==TAIL (WaIdleLiteRestore). |
| */ |
| ret = intel_logical_ring_begin(ringbuf, request->ctx, 8); |
| if (ret) |
| return ret; |
| |
| cmd = MI_STORE_DWORD_IMM_GEN4; |
| cmd |= MI_GLOBAL_GTT; |
| |
| intel_logical_ring_emit(ringbuf, cmd); |
| intel_logical_ring_emit(ringbuf, |
| (ring->status_page.gfx_addr + |
| (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT))); |
| intel_logical_ring_emit(ringbuf, 0); |
| intel_logical_ring_emit(ringbuf, |
| i915_gem_request_get_seqno(ring->outstanding_lazy_request)); |
| intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT); |
| intel_logical_ring_emit(ringbuf, MI_NOOP); |
| intel_logical_ring_advance_and_submit(ringbuf, request->ctx, request); |
| |
| /* |
| * Here we add two extra NOOPs as padding to avoid |
| * lite restore of a context with HEAD==TAIL. |
| */ |
| intel_logical_ring_emit(ringbuf, MI_NOOP); |
| intel_logical_ring_emit(ringbuf, MI_NOOP); |
| intel_logical_ring_advance(ringbuf); |
| |
| return 0; |
| } |
| |
| static int intel_lr_context_render_state_init(struct intel_engine_cs *ring, |
| struct intel_context *ctx) |
| { |
| struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf; |
| struct render_state so; |
| struct drm_i915_file_private *file_priv = ctx->file_priv; |
| struct drm_file *file = file_priv ? file_priv->file : NULL; |
| int ret; |
| |
| ret = i915_gem_render_state_prepare(ring, &so); |
| if (ret) |
| return ret; |
| |
| if (so.rodata == NULL) |
| return 0; |
| |
| ret = ring->emit_bb_start(ringbuf, |
| ctx, |
| so.ggtt_offset, |
| I915_DISPATCH_SECURE); |
| if (ret) |
| goto out; |
| |
| i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), ring); |
| |
| __i915_add_request(ring, file, so.obj); |
| /* intel_logical_ring_add_request moves object to inactive if it |
| * fails */ |
| out: |
| i915_gem_render_state_fini(&so); |
| return ret; |
| } |
| |
| static int gen8_init_rcs_context(struct intel_engine_cs *ring, |
| struct intel_context *ctx) |
| { |
| int ret; |
| |
| ret = intel_logical_ring_workarounds_emit(ring, ctx); |
| if (ret) |
| return ret; |
| |
| return intel_lr_context_render_state_init(ring, ctx); |
| } |
| |
| /** |
| * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer |
| * |
| * @ring: Engine Command Streamer. |
| * |
| */ |
| void intel_logical_ring_cleanup(struct intel_engine_cs *ring) |
| { |
| struct drm_i915_private *dev_priv; |
| |
| if (!intel_ring_initialized(ring)) |
| return; |
| |
| dev_priv = ring->dev->dev_private; |
| |
| intel_logical_ring_stop(ring); |
| WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0); |
| i915_gem_request_assign(&ring->outstanding_lazy_request, NULL); |
| |
| if (ring->cleanup) |
| ring->cleanup(ring); |
| |
| i915_cmd_parser_fini_ring(ring); |
| i915_gem_batch_pool_fini(&ring->batch_pool); |
| |
| if (ring->status_page.obj) { |
| kunmap(sg_page(ring->status_page.obj->pages->sgl)); |
| ring->status_page.obj = NULL; |
| } |
| |
| lrc_destroy_wa_ctx_obj(ring); |
| } |
| |
| static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring) |
| { |
| int ret; |
| |
| /* Intentionally left blank. */ |
| ring->buffer = NULL; |
| |
| ring->dev = dev; |
| INIT_LIST_HEAD(&ring->active_list); |
| INIT_LIST_HEAD(&ring->request_list); |
| i915_gem_batch_pool_init(dev, &ring->batch_pool); |
| init_waitqueue_head(&ring->irq_queue); |
| |
| INIT_LIST_HEAD(&ring->execlist_queue); |
| INIT_LIST_HEAD(&ring->execlist_retired_req_list); |
| spin_lock_init(&ring->execlist_lock); |
| |
| ret = i915_cmd_parser_init_ring(ring); |
| if (ret) |
| return ret; |
| |
| ret = intel_lr_context_deferred_create(ring->default_context, ring); |
| |
| return ret; |
| } |
| |
| static int logical_render_ring_init(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_engine_cs *ring = &dev_priv->ring[RCS]; |
| int ret; |
| |
| ring->name = "render ring"; |
| ring->id = RCS; |
| ring->mmio_base = RENDER_RING_BASE; |
| ring->irq_enable_mask = |
| GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT; |
| ring->irq_keep_mask = |
| GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT; |
| if (HAS_L3_DPF(dev)) |
| ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT; |
| |
| if (INTEL_INFO(dev)->gen >= 9) |
| ring->init_hw = gen9_init_render_ring; |
| else |
| ring->init_hw = gen8_init_render_ring; |
| ring->init_context = gen8_init_rcs_context; |
| ring->cleanup = intel_fini_pipe_control; |
| ring->get_seqno = gen8_get_seqno; |
| ring->set_seqno = gen8_set_seqno; |
| ring->emit_request = gen8_emit_request; |
| ring->emit_flush = gen8_emit_flush_render; |
| ring->irq_get = gen8_logical_ring_get_irq; |
| ring->irq_put = gen8_logical_ring_put_irq; |
| ring->emit_bb_start = gen8_emit_bb_start; |
| |
| ring->dev = dev; |
| |
| ret = intel_init_pipe_control(ring); |
| if (ret) |
| return ret; |
| |
| ret = intel_init_workaround_bb(ring); |
| if (ret) { |
| /* |
| * We continue even if we fail to initialize WA batch |
| * because we only expect rare glitches but nothing |
| * critical to prevent us from using GPU |
| */ |
| DRM_ERROR("WA batch buffer initialization failed: %d\n", |
| ret); |
| } |
| |
| ret = logical_ring_init(dev, ring); |
| if (ret) { |
| lrc_destroy_wa_ctx_obj(ring); |
| } |
| |
| return ret; |
| } |
| |
| static int logical_bsd_ring_init(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_engine_cs *ring = &dev_priv->ring[VCS]; |
| |
| ring->name = "bsd ring"; |
| ring->id = VCS; |
| ring->mmio_base = GEN6_BSD_RING_BASE; |
| ring->irq_enable_mask = |
| GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT; |
| ring->irq_keep_mask = |
| GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT; |
| |
| ring->init_hw = gen8_init_common_ring; |
| ring->get_seqno = gen8_get_seqno; |
| ring->set_seqno = gen8_set_seqno; |
| ring->emit_request = gen8_emit_request; |
| ring->emit_flush = gen8_emit_flush; |
| ring->irq_get = gen8_logical_ring_get_irq; |
| ring->irq_put = gen8_logical_ring_put_irq; |
| ring->emit_bb_start = gen8_emit_bb_start; |
| |
| return logical_ring_init(dev, ring); |
| } |
| |
| static int logical_bsd2_ring_init(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_engine_cs *ring = &dev_priv->ring[VCS2]; |
| |
| ring->name = "bds2 ring"; |
| ring->id = VCS2; |
| ring->mmio_base = GEN8_BSD2_RING_BASE; |
| ring->irq_enable_mask = |
| GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT; |
| ring->irq_keep_mask = |
| GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT; |
| |
| ring->init_hw = gen8_init_common_ring; |
| ring->get_seqno = gen8_get_seqno; |
| ring->set_seqno = gen8_set_seqno; |
| ring->emit_request = gen8_emit_request; |
| ring->emit_flush = gen8_emit_flush; |
| ring->irq_get = gen8_logical_ring_get_irq; |
| ring->irq_put = gen8_logical_ring_put_irq; |
| ring->emit_bb_start = gen8_emit_bb_start; |
| |
| return logical_ring_init(dev, ring); |
| } |
| |
| static int logical_blt_ring_init(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_engine_cs *ring = &dev_priv->ring[BCS]; |
| |
| ring->name = "blitter ring"; |
| ring->id = BCS; |
| ring->mmio_base = BLT_RING_BASE; |
| ring->irq_enable_mask = |
| GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT; |
| ring->irq_keep_mask = |
| GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT; |
| |
| ring->init_hw = gen8_init_common_ring; |
| ring->get_seqno = gen8_get_seqno; |
| ring->set_seqno = gen8_set_seqno; |
| ring->emit_request = gen8_emit_request; |
| ring->emit_flush = gen8_emit_flush; |
| ring->irq_get = gen8_logical_ring_get_irq; |
| ring->irq_put = gen8_logical_ring_put_irq; |
| ring->emit_bb_start = gen8_emit_bb_start; |
| |
| return logical_ring_init(dev, ring); |
| } |
| |
| static int logical_vebox_ring_init(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_engine_cs *ring = &dev_priv->ring[VECS]; |
| |
| ring->name = "video enhancement ring"; |
| ring->id = VECS; |
| ring->mmio_base = VEBOX_RING_BASE; |
| ring->irq_enable_mask = |
| GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT; |
| ring->irq_keep_mask = |
| GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT; |
| |
| ring->init_hw = gen8_init_common_ring; |
| ring->get_seqno = gen8_get_seqno; |
| ring->set_seqno = gen8_set_seqno; |
| ring->emit_request = gen8_emit_request; |
| ring->emit_flush = gen8_emit_flush; |
| ring->irq_get = gen8_logical_ring_get_irq; |
| ring->irq_put = gen8_logical_ring_put_irq; |
| ring->emit_bb_start = gen8_emit_bb_start; |
| |
| return logical_ring_init(dev, ring); |
| } |
| |
| /** |
| * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers |
| * @dev: DRM device. |
| * |
| * This function inits the engines for an Execlists submission style (the equivalent in the |
| * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for |
| * those engines that are present in the hardware. |
| * |
| * Return: non-zero if the initialization failed. |
| */ |
| int intel_logical_rings_init(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int ret; |
| |
| ret = logical_render_ring_init(dev); |
| if (ret) |
| return ret; |
| |
| if (HAS_BSD(dev)) { |
| ret = logical_bsd_ring_init(dev); |
| if (ret) |
| goto cleanup_render_ring; |
| } |
| |
| if (HAS_BLT(dev)) { |
| ret = logical_blt_ring_init(dev); |
| if (ret) |
| goto cleanup_bsd_ring; |
| } |
| |
| if (HAS_VEBOX(dev)) { |
| ret = logical_vebox_ring_init(dev); |
| if (ret) |
| goto cleanup_blt_ring; |
| } |
| |
| if (HAS_BSD2(dev)) { |
| ret = logical_bsd2_ring_init(dev); |
| if (ret) |
| goto cleanup_vebox_ring; |
| } |
| |
| ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000)); |
| if (ret) |
| goto cleanup_bsd2_ring; |
| |
| return 0; |
| |
| cleanup_bsd2_ring: |
| intel_logical_ring_cleanup(&dev_priv->ring[VCS2]); |
| cleanup_vebox_ring: |
| intel_logical_ring_cleanup(&dev_priv->ring[VECS]); |
| cleanup_blt_ring: |
| intel_logical_ring_cleanup(&dev_priv->ring[BCS]); |
| cleanup_bsd_ring: |
| intel_logical_ring_cleanup(&dev_priv->ring[VCS]); |
| cleanup_render_ring: |
| intel_logical_ring_cleanup(&dev_priv->ring[RCS]); |
| |
| return ret; |
| } |
| |
| static u32 |
| make_rpcs(struct drm_device *dev) |
| { |
| u32 rpcs = 0; |
| |
| /* |
| * No explicit RPCS request is needed to ensure full |
| * slice/subslice/EU enablement prior to Gen9. |
| */ |
| if (INTEL_INFO(dev)->gen < 9) |
| return 0; |
| |
| /* |
| * Starting in Gen9, render power gating can leave |
| * slice/subslice/EU in a partially enabled state. We |
| * must make an explicit request through RPCS for full |
| * enablement. |
| */ |
| if (INTEL_INFO(dev)->has_slice_pg) { |
| rpcs |= GEN8_RPCS_S_CNT_ENABLE; |
| rpcs |= INTEL_INFO(dev)->slice_total << |
| GEN8_RPCS_S_CNT_SHIFT; |
| rpcs |= GEN8_RPCS_ENABLE; |
| } |
| |
| if (INTEL_INFO(dev)->has_subslice_pg) { |
| rpcs |= GEN8_RPCS_SS_CNT_ENABLE; |
| rpcs |= INTEL_INFO(dev)->subslice_per_slice << |
| GEN8_RPCS_SS_CNT_SHIFT; |
| rpcs |= GEN8_RPCS_ENABLE; |
| } |
| |
| if (INTEL_INFO(dev)->has_eu_pg) { |
| rpcs |= INTEL_INFO(dev)->eu_per_subslice << |
| GEN8_RPCS_EU_MIN_SHIFT; |
| rpcs |= INTEL_INFO(dev)->eu_per_subslice << |
| GEN8_RPCS_EU_MAX_SHIFT; |
| rpcs |= GEN8_RPCS_ENABLE; |
| } |
| |
| return rpcs; |
| } |
| |
| static int |
| populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj, |
| struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf) |
| { |
| struct drm_device *dev = ring->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct i915_hw_ppgtt *ppgtt = ctx->ppgtt; |
| struct page *page; |
| uint32_t *reg_state; |
| int ret; |
| |
| if (!ppgtt) |
| ppgtt = dev_priv->mm.aliasing_ppgtt; |
| |
| ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true); |
| if (ret) { |
| DRM_DEBUG_DRIVER("Could not set to CPU domain\n"); |
| return ret; |
| } |
| |
| ret = i915_gem_object_get_pages(ctx_obj); |
| if (ret) { |
| DRM_DEBUG_DRIVER("Could not get object pages\n"); |
| return ret; |
| } |
| |
| i915_gem_object_pin_pages(ctx_obj); |
| |
| /* The second page of the context object contains some fields which must |
| * be set up prior to the first execution. */ |
| page = i915_gem_object_get_page(ctx_obj, 1); |
| reg_state = kmap_atomic(page); |
| |
| /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM |
| * commands followed by (reg, value) pairs. The values we are setting here are |
| * only for the first context restore: on a subsequent save, the GPU will |
| * recreate this batchbuffer with new values (including all the missing |
| * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */ |
| if (ring->id == RCS) |
| reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14); |
| else |
| reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11); |
| reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED; |
| reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring); |
| reg_state[CTX_CONTEXT_CONTROL+1] = |
| _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH | |
| CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT); |
| reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base); |
| reg_state[CTX_RING_HEAD+1] = 0; |
| reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base); |
| reg_state[CTX_RING_TAIL+1] = 0; |
| reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base); |
| /* Ring buffer start address is not known until the buffer is pinned. |
| * It is written to the context image in execlists_update_context() |
| */ |
| reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base); |
| reg_state[CTX_RING_BUFFER_CONTROL+1] = |
| ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID; |
| reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168; |
| reg_state[CTX_BB_HEAD_U+1] = 0; |
| reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140; |
| reg_state[CTX_BB_HEAD_L+1] = 0; |
| reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110; |
| reg_state[CTX_BB_STATE+1] = (1<<5); |
| reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c; |
| reg_state[CTX_SECOND_BB_HEAD_U+1] = 0; |
| reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114; |
| reg_state[CTX_SECOND_BB_HEAD_L+1] = 0; |
| reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118; |
| reg_state[CTX_SECOND_BB_STATE+1] = 0; |
| if (ring->id == RCS) { |
| reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0; |
| reg_state[CTX_BB_PER_CTX_PTR+1] = 0; |
| reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4; |
| reg_state[CTX_RCS_INDIRECT_CTX+1] = 0; |
| reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8; |
| reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0; |
| if (ring->wa_ctx.obj) { |
| struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx; |
| uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj); |
| |
| reg_state[CTX_RCS_INDIRECT_CTX+1] = |
| (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) | |
| (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS); |
| |
| reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = |
| CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6; |
| |
| reg_state[CTX_BB_PER_CTX_PTR+1] = |
| (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) | |
| 0x01; |
| } |
| } |
| reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9); |
| reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED; |
| reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8; |
| reg_state[CTX_CTX_TIMESTAMP+1] = 0; |
| reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3); |
| reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3); |
| reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2); |
| reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2); |
| reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1); |
| reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1); |
| reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0); |
| reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0); |
| |
| /* With dynamic page allocation, PDPs may not be allocated at this point, |
| * Point the unallocated PDPs to the scratch page |
| */ |
| ASSIGN_CTX_PDP(ppgtt, reg_state, 3); |
| ASSIGN_CTX_PDP(ppgtt, reg_state, 2); |
| ASSIGN_CTX_PDP(ppgtt, reg_state, 1); |
| ASSIGN_CTX_PDP(ppgtt, reg_state, 0); |
| if (ring->id == RCS) { |
| reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1); |
| reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE; |
| reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev); |
| } |
| |
| kunmap_atomic(reg_state); |
| |
| ctx_obj->dirty = 1; |
| set_page_dirty(page); |
| i915_gem_object_unpin_pages(ctx_obj); |
| |
| return 0; |
| } |
| |
| /** |
| * intel_lr_context_free() - free the LRC specific bits of a context |
| * @ctx: the LR context to free. |
| * |
| * The real context freeing is done in i915_gem_context_free: this only |
| * takes care of the bits that are LRC related: the per-engine backing |
| * objects and the logical ringbuffer. |
| */ |
| void intel_lr_context_free(struct intel_context *ctx) |
| { |
| int i; |
| |
| for (i = 0; i < I915_NUM_RINGS; i++) { |
| struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state; |
| |
| if (ctx_obj) { |
| struct intel_ringbuffer *ringbuf = |
| ctx->engine[i].ringbuf; |
| struct intel_engine_cs *ring = ringbuf->ring; |
| |
| if (ctx == ring->default_context) { |
| intel_unpin_ringbuffer_obj(ringbuf); |
| i915_gem_object_ggtt_unpin(ctx_obj); |
| } |
| WARN_ON(ctx->engine[ring->id].pin_count); |
| intel_destroy_ringbuffer_obj(ringbuf); |
| kfree(ringbuf); |
| drm_gem_object_unreference(&ctx_obj->base); |
| } |
| } |
| } |
| |
| static uint32_t get_lr_context_size(struct intel_engine_cs *ring) |
| { |
| int ret = 0; |
| |
| WARN_ON(INTEL_INFO(ring->dev)->gen < 8); |
| |
| switch (ring->id) { |
| case RCS: |
| if (INTEL_INFO(ring->dev)->gen >= 9) |
| ret = GEN9_LR_CONTEXT_RENDER_SIZE; |
| else |
| ret = GEN8_LR_CONTEXT_RENDER_SIZE; |
| break; |
| case VCS: |
| case BCS: |
| case VECS: |
| case VCS2: |
| ret = GEN8_LR_CONTEXT_OTHER_SIZE; |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring, |
| struct drm_i915_gem_object *default_ctx_obj) |
| { |
| struct drm_i915_private *dev_priv = ring->dev->dev_private; |
| |
| /* The status page is offset 0 from the default context object |
| * in LRC mode. */ |
| ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj); |
| ring->status_page.page_addr = |
| kmap(sg_page(default_ctx_obj->pages->sgl)); |
| ring->status_page.obj = default_ctx_obj; |
| |
| I915_WRITE(RING_HWS_PGA(ring->mmio_base), |
| (u32)ring->status_page.gfx_addr); |
| POSTING_READ(RING_HWS_PGA(ring->mmio_base)); |
| } |
| |
| /** |
| * intel_lr_context_deferred_create() - create the LRC specific bits of a context |
| * @ctx: LR context to create. |
| * @ring: engine to be used with the context. |
| * |
| * This function can be called more than once, with different engines, if we plan |
| * to use the context with them. The context backing objects and the ringbuffers |
| * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why |
| * the creation is a deferred call: it's better to make sure first that we need to use |
| * a given ring with the context. |
| * |
| * Return: non-zero on error. |
| */ |
| int intel_lr_context_deferred_create(struct intel_context *ctx, |
| struct intel_engine_cs *ring) |
| { |
| const bool is_global_default_ctx = (ctx == ring->default_context); |
| struct drm_device *dev = ring->dev; |
| struct drm_i915_gem_object *ctx_obj; |
| uint32_t context_size; |
| struct intel_ringbuffer *ringbuf; |
| int ret; |
| |
| WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL); |
| WARN_ON(ctx->engine[ring->id].state); |
| |
| context_size = round_up(get_lr_context_size(ring), 4096); |
| |
| ctx_obj = i915_gem_alloc_object(dev, context_size); |
| if (!ctx_obj) { |
| DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n"); |
| return -ENOMEM; |
| } |
| |
| if (is_global_default_ctx) { |
| ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0); |
| if (ret) { |
| DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n", |
| ret); |
| drm_gem_object_unreference(&ctx_obj->base); |
| return ret; |
| } |
| } |
| |
| ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL); |
| if (!ringbuf) { |
| DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n", |
| ring->name); |
| ret = -ENOMEM; |
| goto error_unpin_ctx; |
| } |
| |
| ringbuf->ring = ring; |
| |
| ringbuf->size = 32 * PAGE_SIZE; |
| ringbuf->effective_size = ringbuf->size; |
| ringbuf->head = 0; |
| ringbuf->tail = 0; |
| ringbuf->last_retired_head = -1; |
| intel_ring_update_space(ringbuf); |
| |
| if (ringbuf->obj == NULL) { |
| ret = intel_alloc_ringbuffer_obj(dev, ringbuf); |
| if (ret) { |
| DRM_DEBUG_DRIVER( |
| "Failed to allocate ringbuffer obj %s: %d\n", |
| ring->name, ret); |
| goto error_free_rbuf; |
| } |
| |
| if (is_global_default_ctx) { |
| ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf); |
| if (ret) { |
| DRM_ERROR( |
| "Failed to pin and map ringbuffer %s: %d\n", |
| ring->name, ret); |
| goto error_destroy_rbuf; |
| } |
| } |
| |
| } |
| |
| ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf); |
| if (ret) { |
| DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret); |
| goto error; |
| } |
| |
| ctx->engine[ring->id].ringbuf = ringbuf; |
| ctx->engine[ring->id].state = ctx_obj; |
| |
| if (ctx == ring->default_context) |
| lrc_setup_hardware_status_page(ring, ctx_obj); |
| else if (ring->id == RCS && !ctx->rcs_initialized) { |
| if (ring->init_context) { |
| ret = ring->init_context(ring, ctx); |
| if (ret) { |
| DRM_ERROR("ring init context: %d\n", ret); |
| ctx->engine[ring->id].ringbuf = NULL; |
| ctx->engine[ring->id].state = NULL; |
| goto error; |
| } |
| } |
| |
| ctx->rcs_initialized = true; |
| } |
| |
| return 0; |
| |
| error: |
| if (is_global_default_ctx) |
| intel_unpin_ringbuffer_obj(ringbuf); |
| error_destroy_rbuf: |
| intel_destroy_ringbuffer_obj(ringbuf); |
| error_free_rbuf: |
| kfree(ringbuf); |
| error_unpin_ctx: |
| if (is_global_default_ctx) |
| i915_gem_object_ggtt_unpin(ctx_obj); |
| drm_gem_object_unreference(&ctx_obj->base); |
| return ret; |
| } |
| |
| void intel_lr_context_reset(struct drm_device *dev, |
| struct intel_context *ctx) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_engine_cs *ring; |
| int i; |
| |
| for_each_ring(ring, dev_priv, i) { |
| struct drm_i915_gem_object *ctx_obj = |
| ctx->engine[ring->id].state; |
| struct intel_ringbuffer *ringbuf = |
| ctx->engine[ring->id].ringbuf; |
| uint32_t *reg_state; |
| struct page *page; |
| |
| if (!ctx_obj) |
| continue; |
| |
| if (i915_gem_object_get_pages(ctx_obj)) { |
| WARN(1, "Failed get_pages for context obj\n"); |
| continue; |
| } |
| page = i915_gem_object_get_page(ctx_obj, 1); |
| reg_state = kmap_atomic(page); |
| |
| reg_state[CTX_RING_HEAD+1] = 0; |
| reg_state[CTX_RING_TAIL+1] = 0; |
| |
| kunmap_atomic(reg_state); |
| |
| ringbuf->head = 0; |
| ringbuf->tail = 0; |
| } |
| } |