blob: 15a15d00a6bfa07cbe93ac2669cefaee3cb5ed2c [file] [log] [blame]
/*
* Copyright © 2008,2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
* Chris Wilson <chris@chris-wilson.co.uk>
*
*/
#include <linux/dma_remapping.h>
#include <linux/reservation.h>
#include <linux/uaccess.h>
#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
#include "i915_trace.h"
#include "intel_drv.h"
#include "intel_frontbuffer.h"
#define DBG_USE_CPU_RELOC 0 /* -1 force GTT relocs; 1 force CPU relocs */
#define __EXEC_OBJECT_HAS_PIN (1<<31)
#define __EXEC_OBJECT_HAS_FENCE (1<<30)
#define __EXEC_OBJECT_NEEDS_MAP (1<<29)
#define __EXEC_OBJECT_NEEDS_BIAS (1<<28)
#define __EXEC_OBJECT_INTERNAL_FLAGS (0xf<<28) /* all of the above */
#define BATCH_OFFSET_BIAS (256*1024)
struct i915_execbuffer_params {
struct drm_device *dev;
struct drm_file *file;
struct i915_vma *batch;
u32 dispatch_flags;
u32 args_batch_start_offset;
struct intel_engine_cs *engine;
struct i915_gem_context *ctx;
struct drm_i915_gem_request *request;
};
struct eb_vmas {
struct drm_i915_private *i915;
struct list_head vmas;
int and;
union {
struct i915_vma *lut[0];
struct hlist_head buckets[0];
};
};
static struct eb_vmas *
eb_create(struct drm_i915_private *i915,
struct drm_i915_gem_execbuffer2 *args)
{
struct eb_vmas *eb = NULL;
if (args->flags & I915_EXEC_HANDLE_LUT) {
unsigned size = args->buffer_count;
size *= sizeof(struct i915_vma *);
size += sizeof(struct eb_vmas);
eb = kmalloc(size, GFP_TEMPORARY | __GFP_NOWARN | __GFP_NORETRY);
}
if (eb == NULL) {
unsigned size = args->buffer_count;
unsigned count = PAGE_SIZE / sizeof(struct hlist_head) / 2;
BUILD_BUG_ON_NOT_POWER_OF_2(PAGE_SIZE / sizeof(struct hlist_head));
while (count > 2*size)
count >>= 1;
eb = kzalloc(count*sizeof(struct hlist_head) +
sizeof(struct eb_vmas),
GFP_TEMPORARY);
if (eb == NULL)
return eb;
eb->and = count - 1;
} else
eb->and = -args->buffer_count;
eb->i915 = i915;
INIT_LIST_HEAD(&eb->vmas);
return eb;
}
static void
eb_reset(struct eb_vmas *eb)
{
if (eb->and >= 0)
memset(eb->buckets, 0, (eb->and+1)*sizeof(struct hlist_head));
}
static struct i915_vma *
eb_get_batch(struct eb_vmas *eb)
{
struct i915_vma *vma = list_entry(eb->vmas.prev, typeof(*vma), exec_list);
/*
* SNA is doing fancy tricks with compressing batch buffers, which leads
* to negative relocation deltas. Usually that works out ok since the
* relocate address is still positive, except when the batch is placed
* very low in the GTT. Ensure this doesn't happen.
*
* Note that actual hangs have only been observed on gen7, but for
* paranoia do it everywhere.
*/
if ((vma->exec_entry->flags & EXEC_OBJECT_PINNED) == 0)
vma->exec_entry->flags |= __EXEC_OBJECT_NEEDS_BIAS;
return vma;
}
static int
eb_lookup_vmas(struct eb_vmas *eb,
struct drm_i915_gem_exec_object2 *exec,
const struct drm_i915_gem_execbuffer2 *args,
struct i915_address_space *vm,
struct drm_file *file)
{
struct drm_i915_gem_object *obj;
struct list_head objects;
int i, ret;
INIT_LIST_HEAD(&objects);
spin_lock(&file->table_lock);
/* Grab a reference to the object and release the lock so we can lookup
* or create the VMA without using GFP_ATOMIC */
for (i = 0; i < args->buffer_count; i++) {
obj = to_intel_bo(idr_find(&file->object_idr, exec[i].handle));
if (obj == NULL) {
spin_unlock(&file->table_lock);
DRM_DEBUG("Invalid object handle %d at index %d\n",
exec[i].handle, i);
ret = -ENOENT;
goto err;
}
if (!list_empty(&obj->obj_exec_link)) {
spin_unlock(&file->table_lock);
DRM_DEBUG("Object %p [handle %d, index %d] appears more than once in object list\n",
obj, exec[i].handle, i);
ret = -EINVAL;
goto err;
}
i915_gem_object_get(obj);
list_add_tail(&obj->obj_exec_link, &objects);
}
spin_unlock(&file->table_lock);
i = 0;
while (!list_empty(&objects)) {
struct i915_vma *vma;
obj = list_first_entry(&objects,
struct drm_i915_gem_object,
obj_exec_link);
/*
* NOTE: We can leak any vmas created here when something fails
* later on. But that's no issue since vma_unbind can deal with
* vmas which are not actually bound. And since only
* lookup_or_create exists as an interface to get at the vma
* from the (obj, vm) we don't run the risk of creating
* duplicated vmas for the same vm.
*/
vma = i915_vma_instance(obj, vm, NULL);
if (unlikely(IS_ERR(vma))) {
DRM_DEBUG("Failed to lookup VMA\n");
ret = PTR_ERR(vma);
goto err;
}
/* Transfer ownership from the objects list to the vmas list. */
list_add_tail(&vma->exec_list, &eb->vmas);
list_del_init(&obj->obj_exec_link);
vma->exec_entry = &exec[i];
if (eb->and < 0) {
eb->lut[i] = vma;
} else {
uint32_t handle = args->flags & I915_EXEC_HANDLE_LUT ? i : exec[i].handle;
vma->exec_handle = handle;
hlist_add_head(&vma->exec_node,
&eb->buckets[handle & eb->and]);
}
++i;
}
return 0;
err:
while (!list_empty(&objects)) {
obj = list_first_entry(&objects,
struct drm_i915_gem_object,
obj_exec_link);
list_del_init(&obj->obj_exec_link);
i915_gem_object_put(obj);
}
/*
* Objects already transfered to the vmas list will be unreferenced by
* eb_destroy.
*/
return ret;
}
static struct i915_vma *eb_get_vma(struct eb_vmas *eb, unsigned long handle)
{
if (eb->and < 0) {
if (handle >= -eb->and)
return NULL;
return eb->lut[handle];
} else {
struct hlist_head *head;
struct i915_vma *vma;
head = &eb->buckets[handle & eb->and];
hlist_for_each_entry(vma, head, exec_node) {
if (vma->exec_handle == handle)
return vma;
}
return NULL;
}
}
static void
i915_gem_execbuffer_unreserve_vma(struct i915_vma *vma)
{
struct drm_i915_gem_exec_object2 *entry;
if (!drm_mm_node_allocated(&vma->node))
return;
entry = vma->exec_entry;
if (entry->flags & __EXEC_OBJECT_HAS_FENCE)
i915_vma_unpin_fence(vma);
if (entry->flags & __EXEC_OBJECT_HAS_PIN)
__i915_vma_unpin(vma);
entry->flags &= ~(__EXEC_OBJECT_HAS_FENCE | __EXEC_OBJECT_HAS_PIN);
}
static void eb_destroy(struct eb_vmas *eb)
{
while (!list_empty(&eb->vmas)) {
struct i915_vma *vma;
vma = list_first_entry(&eb->vmas,
struct i915_vma,
exec_list);
list_del_init(&vma->exec_list);
i915_gem_execbuffer_unreserve_vma(vma);
vma->exec_entry = NULL;
i915_vma_put(vma);
}
kfree(eb);
}
static inline int use_cpu_reloc(struct drm_i915_gem_object *obj)
{
if (!i915_gem_object_has_struct_page(obj))
return false;
if (DBG_USE_CPU_RELOC)
return DBG_USE_CPU_RELOC > 0;
return (HAS_LLC(to_i915(obj->base.dev)) ||
obj->base.write_domain == I915_GEM_DOMAIN_CPU ||
obj->cache_level != I915_CACHE_NONE);
}
/* Used to convert any address to canonical form.
* Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
* MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
* addresses to be in a canonical form:
* "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
* canonical form [63:48] == [47]."
*/
#define GEN8_HIGH_ADDRESS_BIT 47
static inline uint64_t gen8_canonical_addr(uint64_t address)
{
return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
}
static inline uint64_t gen8_noncanonical_addr(uint64_t address)
{
return address & ((1ULL << (GEN8_HIGH_ADDRESS_BIT + 1)) - 1);
}
static inline uint64_t
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
uint64_t target_offset)
{
return gen8_canonical_addr((int)reloc->delta + target_offset);
}
struct reloc_cache {
struct drm_i915_private *i915;
struct drm_mm_node node;
unsigned long vaddr;
unsigned int page;
bool use_64bit_reloc;
};
static void reloc_cache_init(struct reloc_cache *cache,
struct drm_i915_private *i915)
{
cache->page = -1;
cache->vaddr = 0;
cache->i915 = i915;
/* Must be a variable in the struct to allow GCC to unroll. */
cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
cache->node.allocated = false;
}
static inline void *unmask_page(unsigned long p)
{
return (void *)(uintptr_t)(p & PAGE_MASK);
}
static inline unsigned int unmask_flags(unsigned long p)
{
return p & ~PAGE_MASK;
}
#define KMAP 0x4 /* after CLFLUSH_FLAGS */
static void reloc_cache_fini(struct reloc_cache *cache)
{
void *vaddr;
if (!cache->vaddr)
return;
vaddr = unmask_page(cache->vaddr);
if (cache->vaddr & KMAP) {
if (cache->vaddr & CLFLUSH_AFTER)
mb();
kunmap_atomic(vaddr);
i915_gem_obj_finish_shmem_access((struct drm_i915_gem_object *)cache->node.mm);
} else {
wmb();
io_mapping_unmap_atomic((void __iomem *)vaddr);
if (cache->node.allocated) {
struct i915_ggtt *ggtt = &cache->i915->ggtt;
ggtt->base.clear_range(&ggtt->base,
cache->node.start,
cache->node.size);
drm_mm_remove_node(&cache->node);
} else {
i915_vma_unpin((struct i915_vma *)cache->node.mm);
}
}
}
static void *reloc_kmap(struct drm_i915_gem_object *obj,
struct reloc_cache *cache,
int page)
{
void *vaddr;
if (cache->vaddr) {
kunmap_atomic(unmask_page(cache->vaddr));
} else {
unsigned int flushes;
int ret;
ret = i915_gem_obj_prepare_shmem_write(obj, &flushes);
if (ret)
return ERR_PTR(ret);
BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
cache->vaddr = flushes | KMAP;
cache->node.mm = (void *)obj;
if (flushes)
mb();
}
vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
cache->page = page;
return vaddr;
}
static void *reloc_iomap(struct drm_i915_gem_object *obj,
struct reloc_cache *cache,
int page)
{
struct i915_ggtt *ggtt = &cache->i915->ggtt;
unsigned long offset;
void *vaddr;
if (cache->vaddr) {
io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
} else {
struct i915_vma *vma;
int ret;
if (use_cpu_reloc(obj))
return NULL;
ret = i915_gem_object_set_to_gtt_domain(obj, true);
if (ret)
return ERR_PTR(ret);
vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
PIN_MAPPABLE | PIN_NONBLOCK);
if (IS_ERR(vma)) {
memset(&cache->node, 0, sizeof(cache->node));
ret = drm_mm_insert_node_in_range
(&ggtt->base.mm, &cache->node,
PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
0, ggtt->mappable_end,
DRM_MM_INSERT_LOW);
if (ret) /* no inactive aperture space, use cpu reloc */
return NULL;
} else {
ret = i915_vma_put_fence(vma);
if (ret) {
i915_vma_unpin(vma);
return ERR_PTR(ret);
}
cache->node.start = vma->node.start;
cache->node.mm = (void *)vma;
}
}
offset = cache->node.start;
if (cache->node.allocated) {
wmb();
ggtt->base.insert_page(&ggtt->base,
i915_gem_object_get_dma_address(obj, page),
offset, I915_CACHE_NONE, 0);
} else {
offset += page << PAGE_SHIFT;
}
vaddr = (void __force *) io_mapping_map_atomic_wc(&cache->i915->ggtt.mappable, offset);
cache->page = page;
cache->vaddr = (unsigned long)vaddr;
return vaddr;
}
static void *reloc_vaddr(struct drm_i915_gem_object *obj,
struct reloc_cache *cache,
int page)
{
void *vaddr;
if (cache->page == page) {
vaddr = unmask_page(cache->vaddr);
} else {
vaddr = NULL;
if ((cache->vaddr & KMAP) == 0)
vaddr = reloc_iomap(obj, cache, page);
if (!vaddr)
vaddr = reloc_kmap(obj, cache, page);
}
return vaddr;
}
static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
{
if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
if (flushes & CLFLUSH_BEFORE) {
clflushopt(addr);
mb();
}
*addr = value;
/* Writes to the same cacheline are serialised by the CPU
* (including clflush). On the write path, we only require
* that it hits memory in an orderly fashion and place
* mb barriers at the start and end of the relocation phase
* to ensure ordering of clflush wrt to the system.
*/
if (flushes & CLFLUSH_AFTER)
clflushopt(addr);
} else
*addr = value;
}
static int
relocate_entry(struct drm_i915_gem_object *obj,
const struct drm_i915_gem_relocation_entry *reloc,
struct reloc_cache *cache,
u64 target_offset)
{
u64 offset = reloc->offset;
bool wide = cache->use_64bit_reloc;
void *vaddr;
target_offset = relocation_target(reloc, target_offset);
repeat:
vaddr = reloc_vaddr(obj, cache, offset >> PAGE_SHIFT);
if (IS_ERR(vaddr))
return PTR_ERR(vaddr);
clflush_write32(vaddr + offset_in_page(offset),
lower_32_bits(target_offset),
cache->vaddr);
if (wide) {
offset += sizeof(u32);
target_offset >>= 32;
wide = false;
goto repeat;
}
return 0;
}
static int
i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
struct eb_vmas *eb,
struct drm_i915_gem_relocation_entry *reloc,
struct reloc_cache *cache)
{
struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
struct drm_gem_object *target_obj;
struct drm_i915_gem_object *target_i915_obj;
struct i915_vma *target_vma;
uint64_t target_offset;
int ret;
/* we've already hold a reference to all valid objects */
target_vma = eb_get_vma(eb, reloc->target_handle);
if (unlikely(target_vma == NULL))
return -ENOENT;
target_i915_obj = target_vma->obj;
target_obj = &target_vma->obj->base;
target_offset = gen8_canonical_addr(target_vma->node.start);
/* Sandybridge PPGTT errata: We need a global gtt mapping for MI and
* pipe_control writes because the gpu doesn't properly redirect them
* through the ppgtt for non_secure batchbuffers. */
if (unlikely(IS_GEN6(dev_priv) &&
reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION)) {
ret = i915_vma_bind(target_vma, target_i915_obj->cache_level,
PIN_GLOBAL);
if (WARN_ONCE(ret, "Unexpected failure to bind target VMA!"))
return ret;
}
/* Validate that the target is in a valid r/w GPU domain */
if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
DRM_DEBUG("reloc with multiple write domains: "
"obj %p target %d offset %d "
"read %08x write %08x",
obj, reloc->target_handle,
(int) reloc->offset,
reloc->read_domains,
reloc->write_domain);
return -EINVAL;
}
if (unlikely((reloc->write_domain | reloc->read_domains)
& ~I915_GEM_GPU_DOMAINS)) {
DRM_DEBUG("reloc with read/write non-GPU domains: "
"obj %p target %d offset %d "
"read %08x write %08x",
obj, reloc->target_handle,
(int) reloc->offset,
reloc->read_domains,
reloc->write_domain);
return -EINVAL;
}
target_obj->pending_read_domains |= reloc->read_domains;
target_obj->pending_write_domain |= reloc->write_domain;
/* If the relocation already has the right value in it, no
* more work needs to be done.
*/
if (target_offset == reloc->presumed_offset)
return 0;
/* Check that the relocation address is valid... */
if (unlikely(reloc->offset >
obj->base.size - (cache->use_64bit_reloc ? 8 : 4))) {
DRM_DEBUG("Relocation beyond object bounds: "
"obj %p target %d offset %d size %d.\n",
obj, reloc->target_handle,
(int) reloc->offset,
(int) obj->base.size);
return -EINVAL;
}
if (unlikely(reloc->offset & 3)) {
DRM_DEBUG("Relocation not 4-byte aligned: "
"obj %p target %d offset %d.\n",
obj, reloc->target_handle,
(int) reloc->offset);
return -EINVAL;
}
ret = relocate_entry(obj, reloc, cache, target_offset);
if (ret)
return ret;
/* and update the user's relocation entry */
reloc->presumed_offset = target_offset;
return 0;
}
static int
i915_gem_execbuffer_relocate_vma(struct i915_vma *vma,
struct eb_vmas *eb)
{
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
struct drm_i915_gem_relocation_entry stack_reloc[N_RELOC(512)];
struct drm_i915_gem_relocation_entry __user *user_relocs;
struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
struct reloc_cache cache;
int remain, ret = 0;
user_relocs = u64_to_user_ptr(entry->relocs_ptr);
reloc_cache_init(&cache, eb->i915);
remain = entry->relocation_count;
while (remain) {
struct drm_i915_gem_relocation_entry *r = stack_reloc;
unsigned long unwritten;
unsigned int count;
count = min_t(unsigned int, remain, ARRAY_SIZE(stack_reloc));
remain -= count;
/* This is the fast path and we cannot handle a pagefault
* whilst holding the struct mutex lest the user pass in the
* relocations contained within a mmaped bo. For in such a case
* we, the page fault handler would call i915_gem_fault() and
* we would try to acquire the struct mutex again. Obviously
* this is bad and so lockdep complains vehemently.
*/
pagefault_disable();
unwritten = __copy_from_user_inatomic(r, user_relocs, count*sizeof(r[0]));
pagefault_enable();
if (unlikely(unwritten)) {
ret = -EFAULT;
goto out;
}
do {
u64 offset = r->presumed_offset;
ret = i915_gem_execbuffer_relocate_entry(vma->obj, eb, r, &cache);
if (ret)
goto out;
if (r->presumed_offset != offset) {
pagefault_disable();
unwritten = __put_user(r->presumed_offset,
&user_relocs->presumed_offset);
pagefault_enable();
if (unlikely(unwritten)) {
/* Note that reporting an error now
* leaves everything in an inconsistent
* state as we have *already* changed
* the relocation value inside the
* object. As we have not changed the
* reloc.presumed_offset or will not
* change the execobject.offset, on the
* call we may not rewrite the value
* inside the object, leaving it
* dangling and causing a GPU hang.
*/
ret = -EFAULT;
goto out;
}
}
user_relocs++;
r++;
} while (--count);
}
out:
reloc_cache_fini(&cache);
return ret;
#undef N_RELOC
}
static int
i915_gem_execbuffer_relocate_vma_slow(struct i915_vma *vma,
struct eb_vmas *eb,
struct drm_i915_gem_relocation_entry *relocs)
{
const struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
struct reloc_cache cache;
int i, ret = 0;
reloc_cache_init(&cache, eb->i915);
for (i = 0; i < entry->relocation_count; i++) {
ret = i915_gem_execbuffer_relocate_entry(vma->obj, eb, &relocs[i], &cache);
if (ret)
break;
}
reloc_cache_fini(&cache);
return ret;
}
static int
i915_gem_execbuffer_relocate(struct eb_vmas *eb)
{
struct i915_vma *vma;
int ret = 0;
list_for_each_entry(vma, &eb->vmas, exec_list) {
ret = i915_gem_execbuffer_relocate_vma(vma, eb);
if (ret)
break;
}
return ret;
}
static bool only_mappable_for_reloc(unsigned int flags)
{
return (flags & (EXEC_OBJECT_NEEDS_FENCE | __EXEC_OBJECT_NEEDS_MAP)) ==
__EXEC_OBJECT_NEEDS_MAP;
}
static int
i915_gem_execbuffer_reserve_vma(struct i915_vma *vma,
struct intel_engine_cs *engine,
bool *need_reloc)
{
struct drm_i915_gem_object *obj = vma->obj;
struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
uint64_t flags;
int ret;
flags = PIN_USER;
if (entry->flags & EXEC_OBJECT_NEEDS_GTT)
flags |= PIN_GLOBAL;
if (!drm_mm_node_allocated(&vma->node)) {
/* Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
* limit address to the first 4GBs for unflagged objects.
*/
if ((entry->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) == 0)
flags |= PIN_ZONE_4G;
if (entry->flags & __EXEC_OBJECT_NEEDS_MAP)
flags |= PIN_GLOBAL | PIN_MAPPABLE;
if (entry->flags & __EXEC_OBJECT_NEEDS_BIAS)
flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
if (entry->flags & EXEC_OBJECT_PINNED)
flags |= entry->offset | PIN_OFFSET_FIXED;
if ((flags & PIN_MAPPABLE) == 0)
flags |= PIN_HIGH;
}
ret = i915_vma_pin(vma,
entry->pad_to_size,
entry->alignment,
flags);
if ((ret == -ENOSPC || ret == -E2BIG) &&
only_mappable_for_reloc(entry->flags))
ret = i915_vma_pin(vma,
entry->pad_to_size,
entry->alignment,
flags & ~PIN_MAPPABLE);
if (ret)
return ret;
entry->flags |= __EXEC_OBJECT_HAS_PIN;
if (entry->flags & EXEC_OBJECT_NEEDS_FENCE) {
ret = i915_vma_get_fence(vma);
if (ret)
return ret;
if (i915_vma_pin_fence(vma))
entry->flags |= __EXEC_OBJECT_HAS_FENCE;
}
if (entry->offset != vma->node.start) {
entry->offset = vma->node.start;
*need_reloc = true;
}
if (entry->flags & EXEC_OBJECT_WRITE) {
obj->base.pending_read_domains = I915_GEM_DOMAIN_RENDER;
obj->base.pending_write_domain = I915_GEM_DOMAIN_RENDER;
}
return 0;
}
static bool
need_reloc_mappable(struct i915_vma *vma)
{
struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
if (entry->relocation_count == 0)
return false;
if (!i915_vma_is_ggtt(vma))
return false;
/* See also use_cpu_reloc() */
if (HAS_LLC(to_i915(vma->obj->base.dev)))
return false;
if (vma->obj->base.write_domain == I915_GEM_DOMAIN_CPU)
return false;
return true;
}
static bool
eb_vma_misplaced(struct i915_vma *vma)
{
struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
WARN_ON(entry->flags & __EXEC_OBJECT_NEEDS_MAP &&
!i915_vma_is_ggtt(vma));
if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
return true;
if (vma->node.size < entry->pad_to_size)
return true;
if (entry->flags & EXEC_OBJECT_PINNED &&
vma->node.start != entry->offset)
return true;
if (entry->flags & __EXEC_OBJECT_NEEDS_BIAS &&
vma->node.start < BATCH_OFFSET_BIAS)
return true;
/* avoid costly ping-pong once a batch bo ended up non-mappable */
if (entry->flags & __EXEC_OBJECT_NEEDS_MAP &&
!i915_vma_is_map_and_fenceable(vma))
return !only_mappable_for_reloc(entry->flags);
if ((entry->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) == 0 &&
(vma->node.start + vma->node.size - 1) >> 32)
return true;
return false;
}
static int
i915_gem_execbuffer_reserve(struct intel_engine_cs *engine,
struct list_head *vmas,
struct i915_gem_context *ctx,
bool *need_relocs)
{
struct drm_i915_gem_object *obj;
struct i915_vma *vma;
struct i915_address_space *vm;
struct list_head ordered_vmas;
struct list_head pinned_vmas;
bool has_fenced_gpu_access = INTEL_GEN(engine->i915) < 4;
bool needs_unfenced_map = INTEL_INFO(engine->i915)->unfenced_needs_alignment;
int retry;
vm = list_first_entry(vmas, struct i915_vma, exec_list)->vm;
INIT_LIST_HEAD(&ordered_vmas);
INIT_LIST_HEAD(&pinned_vmas);
while (!list_empty(vmas)) {
struct drm_i915_gem_exec_object2 *entry;
bool need_fence, need_mappable;
vma = list_first_entry(vmas, struct i915_vma, exec_list);
obj = vma->obj;
entry = vma->exec_entry;
if (ctx->flags & CONTEXT_NO_ZEROMAP)
entry->flags |= __EXEC_OBJECT_NEEDS_BIAS;
if (!has_fenced_gpu_access)
entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
need_fence =
(entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
needs_unfenced_map) &&
i915_gem_object_is_tiled(obj);
need_mappable = need_fence || need_reloc_mappable(vma);
if (entry->flags & EXEC_OBJECT_PINNED)
list_move_tail(&vma->exec_list, &pinned_vmas);
else if (need_mappable) {
entry->flags |= __EXEC_OBJECT_NEEDS_MAP;
list_move(&vma->exec_list, &ordered_vmas);
} else
list_move_tail(&vma->exec_list, &ordered_vmas);
obj->base.pending_read_domains = I915_GEM_GPU_DOMAINS & ~I915_GEM_DOMAIN_COMMAND;
obj->base.pending_write_domain = 0;
}
list_splice(&ordered_vmas, vmas);
list_splice(&pinned_vmas, vmas);
/* Attempt to pin all of the buffers into the GTT.
* This is done in 3 phases:
*
* 1a. Unbind all objects that do not match the GTT constraints for
* the execbuffer (fenceable, mappable, alignment etc).
* 1b. Increment pin count for already bound objects.
* 2. Bind new objects.
* 3. Decrement pin count.
*
* This avoid unnecessary unbinding of later objects in order to make
* room for the earlier objects *unless* we need to defragment.
*/
retry = 0;
do {
int ret = 0;
/* Unbind any ill-fitting objects or pin. */
list_for_each_entry(vma, vmas, exec_list) {
if (!drm_mm_node_allocated(&vma->node))
continue;
if (eb_vma_misplaced(vma))
ret = i915_vma_unbind(vma);
else
ret = i915_gem_execbuffer_reserve_vma(vma,
engine,
need_relocs);
if (ret)
goto err;
}
/* Bind fresh objects */
list_for_each_entry(vma, vmas, exec_list) {
if (drm_mm_node_allocated(&vma->node))
continue;
ret = i915_gem_execbuffer_reserve_vma(vma, engine,
need_relocs);
if (ret)
goto err;
}
err:
if (ret != -ENOSPC || retry++)
return ret;
/* Decrement pin count for bound objects */
list_for_each_entry(vma, vmas, exec_list)
i915_gem_execbuffer_unreserve_vma(vma);
ret = i915_gem_evict_vm(vm, true);
if (ret)
return ret;
} while (1);
}
static int
i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
struct drm_i915_gem_execbuffer2 *args,
struct drm_file *file,
struct intel_engine_cs *engine,
struct eb_vmas *eb,
struct drm_i915_gem_exec_object2 *exec,
struct i915_gem_context *ctx)
{
struct drm_i915_gem_relocation_entry *reloc;
struct i915_address_space *vm;
struct i915_vma *vma;
bool need_relocs;
int *reloc_offset;
int i, total, ret;
unsigned count = args->buffer_count;
vm = list_first_entry(&eb->vmas, struct i915_vma, exec_list)->vm;
/* We may process another execbuffer during the unlock... */
while (!list_empty(&eb->vmas)) {
vma = list_first_entry(&eb->vmas, struct i915_vma, exec_list);
list_del_init(&vma->exec_list);
i915_gem_execbuffer_unreserve_vma(vma);
i915_vma_put(vma);
}
mutex_unlock(&dev->struct_mutex);
total = 0;
for (i = 0; i < count; i++)
total += exec[i].relocation_count;
reloc_offset = drm_malloc_ab(count, sizeof(*reloc_offset));
reloc = drm_malloc_ab(total, sizeof(*reloc));
if (reloc == NULL || reloc_offset == NULL) {
drm_free_large(reloc);
drm_free_large(reloc_offset);
mutex_lock(&dev->struct_mutex);
return -ENOMEM;
}
total = 0;
for (i = 0; i < count; i++) {
struct drm_i915_gem_relocation_entry __user *user_relocs;
u64 invalid_offset = (u64)-1;
int j;
user_relocs = u64_to_user_ptr(exec[i].relocs_ptr);
if (copy_from_user(reloc+total, user_relocs,
exec[i].relocation_count * sizeof(*reloc))) {
ret = -EFAULT;
mutex_lock(&dev->struct_mutex);
goto err;
}
/* As we do not update the known relocation offsets after
* relocating (due to the complexities in lock handling),
* we need to mark them as invalid now so that we force the
* relocation processing next time. Just in case the target
* object is evicted and then rebound into its old
* presumed_offset before the next execbuffer - if that
* happened we would make the mistake of assuming that the
* relocations were valid.
*/
for (j = 0; j < exec[i].relocation_count; j++) {
if (__copy_to_user(&user_relocs[j].presumed_offset,
&invalid_offset,
sizeof(invalid_offset))) {
ret = -EFAULT;
mutex_lock(&dev->struct_mutex);
goto err;
}
}
reloc_offset[i] = total;
total += exec[i].relocation_count;
}
ret = i915_mutex_lock_interruptible(dev);
if (ret) {
mutex_lock(&dev->struct_mutex);
goto err;
}
/* reacquire the objects */
eb_reset(eb);
ret = eb_lookup_vmas(eb, exec, args, vm, file);
if (ret)
goto err;
need_relocs = (args->flags & I915_EXEC_NO_RELOC) == 0;
ret = i915_gem_execbuffer_reserve(engine, &eb->vmas, ctx,
&need_relocs);
if (ret)
goto err;
list_for_each_entry(vma, &eb->vmas, exec_list) {
int offset = vma->exec_entry - exec;
ret = i915_gem_execbuffer_relocate_vma_slow(vma, eb,
reloc + reloc_offset[offset]);
if (ret)
goto err;
}
/* Leave the user relocations as are, this is the painfully slow path,
* and we want to avoid the complication of dropping the lock whilst
* having buffers reserved in the aperture and so causing spurious
* ENOSPC for random operations.
*/
err:
drm_free_large(reloc);
drm_free_large(reloc_offset);
return ret;
}
static int
i915_gem_execbuffer_move_to_gpu(struct drm_i915_gem_request *req,
struct list_head *vmas)
{
struct i915_vma *vma;
int ret;
list_for_each_entry(vma, vmas, exec_list) {
struct drm_i915_gem_object *obj = vma->obj;
ret = i915_gem_request_await_object
(req, obj, obj->base.pending_write_domain);
if (ret)
return ret;
if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
i915_gem_clflush_object(obj, false);
}
/* Unconditionally flush any chipset caches (for streaming writes). */
i915_gem_chipset_flush(req->engine->i915);
/* Unconditionally invalidate GPU caches and TLBs. */
return req->engine->emit_flush(req, EMIT_INVALIDATE);
}
static bool
i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
{
if (exec->flags & __I915_EXEC_UNKNOWN_FLAGS)
return false;
/* Kernel clipping was a DRI1 misfeature */
if (exec->num_cliprects || exec->cliprects_ptr)
return false;
if (exec->DR4 == 0xffffffff) {
DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
exec->DR4 = 0;
}
if (exec->DR1 || exec->DR4)
return false;
if ((exec->batch_start_offset | exec->batch_len) & 0x7)
return false;
return true;
}
static int
validate_exec_list(struct drm_device *dev,
struct drm_i915_gem_exec_object2 *exec,
int count)
{
unsigned relocs_total = 0;
unsigned relocs_max = UINT_MAX / sizeof(struct drm_i915_gem_relocation_entry);
unsigned invalid_flags;
int i;
/* INTERNAL flags must not overlap with external ones */
BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS & ~__EXEC_OBJECT_UNKNOWN_FLAGS);
invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
if (USES_FULL_PPGTT(dev))
invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
for (i = 0; i < count; i++) {
char __user *ptr = u64_to_user_ptr(exec[i].relocs_ptr);
int length; /* limited by fault_in_pages_readable() */
if (exec[i].flags & invalid_flags)
return -EINVAL;
/* Offset can be used as input (EXEC_OBJECT_PINNED), reject
* any non-page-aligned or non-canonical addresses.
*/
if (exec[i].flags & EXEC_OBJECT_PINNED) {
if (exec[i].offset !=
gen8_canonical_addr(exec[i].offset & PAGE_MASK))
return -EINVAL;
}
/* From drm_mm perspective address space is continuous,
* so from this point we're always using non-canonical
* form internally.
*/
exec[i].offset = gen8_noncanonical_addr(exec[i].offset);
if (exec[i].alignment && !is_power_of_2(exec[i].alignment))
return -EINVAL;
/* pad_to_size was once a reserved field, so sanitize it */
if (exec[i].flags & EXEC_OBJECT_PAD_TO_SIZE) {
if (offset_in_page(exec[i].pad_to_size))
return -EINVAL;
} else {
exec[i].pad_to_size = 0;
}
/* First check for malicious input causing overflow in
* the worst case where we need to allocate the entire
* relocation tree as a single array.
*/
if (exec[i].relocation_count > relocs_max - relocs_total)
return -EINVAL;
relocs_total += exec[i].relocation_count;
length = exec[i].relocation_count *
sizeof(struct drm_i915_gem_relocation_entry);
/*
* We must check that the entire relocation array is safe
* to read, but since we may need to update the presumed
* offsets during execution, check for full write access.
*/
if (!access_ok(VERIFY_WRITE, ptr, length))
return -EFAULT;
if (likely(!i915.prefault_disable)) {
if (fault_in_pages_readable(ptr, length))
return -EFAULT;
}
}
return 0;
}
static struct i915_gem_context *
i915_gem_validate_context(struct drm_device *dev, struct drm_file *file,
struct intel_engine_cs *engine, const u32 ctx_id)
{
struct i915_gem_context *ctx;
ctx = i915_gem_context_lookup(file->driver_priv, ctx_id);
if (IS_ERR(ctx))
return ctx;
if (i915_gem_context_is_banned(ctx)) {
DRM_DEBUG("Context %u tried to submit while banned\n", ctx_id);
return ERR_PTR(-EIO);
}
return ctx;
}
static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
return !(obj->cache_level == I915_CACHE_NONE ||
obj->cache_level == I915_CACHE_WT);
}
void i915_vma_move_to_active(struct i915_vma *vma,
struct drm_i915_gem_request *req,
unsigned int flags)
{
struct drm_i915_gem_object *obj = vma->obj;
const unsigned int idx = req->engine->id;
lockdep_assert_held(&req->i915->drm.struct_mutex);
GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
/* Add a reference if we're newly entering the active list.
* The order in which we add operations to the retirement queue is
* vital here: mark_active adds to the start of the callback list,
* such that subsequent callbacks are called first. Therefore we
* add the active reference first and queue for it to be dropped
* *last*.
*/
if (!i915_vma_is_active(vma))
obj->active_count++;
i915_vma_set_active(vma, idx);
i915_gem_active_set(&vma->last_read[idx], req);
list_move_tail(&vma->vm_link, &vma->vm->active_list);
if (flags & EXEC_OBJECT_WRITE) {
if (intel_fb_obj_invalidate(obj, ORIGIN_CS))
i915_gem_active_set(&obj->frontbuffer_write, req);
/* update for the implicit flush after a batch */
obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
if (!obj->cache_dirty && gpu_write_needs_clflush(obj))
obj->cache_dirty = true;
}
if (flags & EXEC_OBJECT_NEEDS_FENCE)
i915_gem_active_set(&vma->last_fence, req);
}
static void eb_export_fence(struct drm_i915_gem_object *obj,
struct drm_i915_gem_request *req,
unsigned int flags)
{
struct reservation_object *resv = obj->resv;
/* Ignore errors from failing to allocate the new fence, we can't
* handle an error right now. Worst case should be missed
* synchronisation leading to rendering corruption.
*/
ww_mutex_lock(&resv->lock, NULL);
if (flags & EXEC_OBJECT_WRITE)
reservation_object_add_excl_fence(resv, &req->fence);
else if (reservation_object_reserve_shared(resv) == 0)
reservation_object_add_shared_fence(resv, &req->fence);
ww_mutex_unlock(&resv->lock);
}
static void
i915_gem_execbuffer_move_to_active(struct list_head *vmas,
struct drm_i915_gem_request *req)
{
struct i915_vma *vma;
list_for_each_entry(vma, vmas, exec_list) {
struct drm_i915_gem_object *obj = vma->obj;
u32 old_read = obj->base.read_domains;
u32 old_write = obj->base.write_domain;
obj->base.write_domain = obj->base.pending_write_domain;
if (obj->base.write_domain)
vma->exec_entry->flags |= EXEC_OBJECT_WRITE;
else
obj->base.pending_read_domains |= obj->base.read_domains;
obj->base.read_domains = obj->base.pending_read_domains;
i915_vma_move_to_active(vma, req, vma->exec_entry->flags);
eb_export_fence(obj, req, vma->exec_entry->flags);
trace_i915_gem_object_change_domain(obj, old_read, old_write);
}
}
static int
i915_reset_gen7_sol_offsets(struct drm_i915_gem_request *req)
{
struct intel_ring *ring = req->ring;
int ret, i;
if (!IS_GEN7(req->i915) || req->engine->id != RCS) {
DRM_DEBUG("sol reset is gen7/rcs only\n");
return -EINVAL;
}
ret = intel_ring_begin(req, 4 * 3);
if (ret)
return ret;
for (i = 0; i < 4; i++) {
intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
intel_ring_emit_reg(ring, GEN7_SO_WRITE_OFFSET(i));
intel_ring_emit(ring, 0);
}
intel_ring_advance(ring);
return 0;
}
static struct i915_vma *
i915_gem_execbuffer_parse(struct intel_engine_cs *engine,
struct drm_i915_gem_exec_object2 *shadow_exec_entry,
struct drm_i915_gem_object *batch_obj,
struct eb_vmas *eb,
u32 batch_start_offset,
u32 batch_len,
bool is_master)
{
struct drm_i915_gem_object *shadow_batch_obj;
struct i915_vma *vma;
int ret;
shadow_batch_obj = i915_gem_batch_pool_get(&engine->batch_pool,
PAGE_ALIGN(batch_len));
if (IS_ERR(shadow_batch_obj))
return ERR_CAST(shadow_batch_obj);
ret = intel_engine_cmd_parser(engine,
batch_obj,
shadow_batch_obj,
batch_start_offset,
batch_len,
is_master);
if (ret) {
if (ret == -EACCES) /* unhandled chained batch */
vma = NULL;
else
vma = ERR_PTR(ret);
goto out;
}
vma = i915_gem_object_ggtt_pin(shadow_batch_obj, NULL, 0, 0, 0);
if (IS_ERR(vma))
goto out;
memset(shadow_exec_entry, 0, sizeof(*shadow_exec_entry));
vma->exec_entry = shadow_exec_entry;
vma->exec_entry->flags = __EXEC_OBJECT_HAS_PIN;
i915_gem_object_get(shadow_batch_obj);
list_add_tail(&vma->exec_list, &eb->vmas);
out:
i915_gem_object_unpin_pages(shadow_batch_obj);
return vma;
}
static int
execbuf_submit(struct i915_execbuffer_params *params,
struct drm_i915_gem_execbuffer2 *args,
struct list_head *vmas)
{
u64 exec_start, exec_len;
int ret;
ret = i915_gem_execbuffer_move_to_gpu(params->request, vmas);
if (ret)
return ret;
ret = i915_switch_context(params->request);
if (ret)
return ret;
if (args->flags & I915_EXEC_CONSTANTS_MASK) {
DRM_DEBUG("I915_EXEC_CONSTANTS_* unsupported\n");
return -EINVAL;
}
if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
ret = i915_reset_gen7_sol_offsets(params->request);
if (ret)
return ret;
}
exec_len = args->batch_len;
exec_start = params->batch->node.start +
params->args_batch_start_offset;
if (exec_len == 0)
exec_len = params->batch->size - params->args_batch_start_offset;
ret = params->engine->emit_bb_start(params->request,
exec_start, exec_len,
params->dispatch_flags);
if (ret)
return ret;
trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
i915_gem_execbuffer_move_to_active(vmas, params->request);
return 0;
}
/**
* Find one BSD ring to dispatch the corresponding BSD command.
* The engine index is returned.
*/
static unsigned int
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
struct drm_file *file)
{
struct drm_i915_file_private *file_priv = file->driver_priv;
/* Check whether the file_priv has already selected one ring. */
if ((int)file_priv->bsd_engine < 0)
file_priv->bsd_engine = atomic_fetch_xor(1,
&dev_priv->mm.bsd_engine_dispatch_index);
return file_priv->bsd_engine;
}
#define I915_USER_RINGS (4)
static const enum intel_engine_id user_ring_map[I915_USER_RINGS + 1] = {
[I915_EXEC_DEFAULT] = RCS,
[I915_EXEC_RENDER] = RCS,
[I915_EXEC_BLT] = BCS,
[I915_EXEC_BSD] = VCS,
[I915_EXEC_VEBOX] = VECS
};
static struct intel_engine_cs *
eb_select_engine(struct drm_i915_private *dev_priv,
struct drm_file *file,
struct drm_i915_gem_execbuffer2 *args)
{
unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
struct intel_engine_cs *engine;
if (user_ring_id > I915_USER_RINGS) {
DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
return NULL;
}
if ((user_ring_id != I915_EXEC_BSD) &&
((args->flags & I915_EXEC_BSD_MASK) != 0)) {
DRM_DEBUG("execbuf with non bsd ring but with invalid "
"bsd dispatch flags: %d\n", (int)(args->flags));
return NULL;
}
if (user_ring_id == I915_EXEC_BSD && HAS_BSD2(dev_priv)) {
unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
bsd_idx = gen8_dispatch_bsd_engine(dev_priv, file);
} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
bsd_idx <= I915_EXEC_BSD_RING2) {
bsd_idx >>= I915_EXEC_BSD_SHIFT;
bsd_idx--;
} else {
DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
bsd_idx);
return NULL;
}
engine = dev_priv->engine[_VCS(bsd_idx)];
} else {
engine = dev_priv->engine[user_ring_map[user_ring_id]];
}
if (!engine) {
DRM_DEBUG("execbuf with invalid ring: %u\n", user_ring_id);
return NULL;
}
return engine;
}
static int
i915_gem_do_execbuffer(struct drm_device *dev, void *data,
struct drm_file *file,
struct drm_i915_gem_execbuffer2 *args,
struct drm_i915_gem_exec_object2 *exec)
{
struct drm_i915_private *dev_priv = to_i915(dev);
struct i915_ggtt *ggtt = &dev_priv->ggtt;
struct eb_vmas *eb;
struct drm_i915_gem_exec_object2 shadow_exec_entry;
struct intel_engine_cs *engine;
struct i915_gem_context *ctx;
struct i915_address_space *vm;
struct i915_execbuffer_params params_master; /* XXX: will be removed later */
struct i915_execbuffer_params *params = &params_master;
const u32 ctx_id = i915_execbuffer2_get_context_id(*args);
u32 dispatch_flags;
int ret;
bool need_relocs;
if (!i915_gem_check_execbuffer(args))
return -EINVAL;
ret = validate_exec_list(dev, exec, args->buffer_count);
if (ret)
return ret;
dispatch_flags = 0;
if (args->flags & I915_EXEC_SECURE) {
if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
return -EPERM;
dispatch_flags |= I915_DISPATCH_SECURE;
}
if (args->flags & I915_EXEC_IS_PINNED)
dispatch_flags |= I915_DISPATCH_PINNED;
engine = eb_select_engine(dev_priv, file, args);
if (!engine)
return -EINVAL;
if (args->buffer_count < 1) {
DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
return -EINVAL;
}
if (args->flags & I915_EXEC_RESOURCE_STREAMER) {
if (!HAS_RESOURCE_STREAMER(dev_priv)) {
DRM_DEBUG("RS is only allowed for Haswell, Gen8 and above\n");
return -EINVAL;
}
if (engine->id != RCS) {
DRM_DEBUG("RS is not available on %s\n",
engine->name);
return -EINVAL;
}
dispatch_flags |= I915_DISPATCH_RS;
}
/* Take a local wakeref for preparing to dispatch the execbuf as
* we expect to access the hardware fairly frequently in the
* process. Upon first dispatch, we acquire another prolonged
* wakeref that we hold until the GPU has been idle for at least
* 100ms.
*/
intel_runtime_pm_get(dev_priv);
ret = i915_mutex_lock_interruptible(dev);
if (ret)
goto pre_mutex_err;
ctx = i915_gem_validate_context(dev, file, engine, ctx_id);
if (IS_ERR(ctx)) {
mutex_unlock(&dev->struct_mutex);
ret = PTR_ERR(ctx);
goto pre_mutex_err;
}
i915_gem_context_get(ctx);
if (ctx->ppgtt)
vm = &ctx->ppgtt->base;
else
vm = &ggtt->base;
memset(&params_master, 0x00, sizeof(params_master));
eb = eb_create(dev_priv, args);
if (eb == NULL) {
i915_gem_context_put(ctx);
mutex_unlock(&dev->struct_mutex);
ret = -ENOMEM;
goto pre_mutex_err;
}
/* Look up object handles */
ret = eb_lookup_vmas(eb, exec, args, vm, file);
if (ret)
goto err;
/* take note of the batch buffer before we might reorder the lists */
params->batch = eb_get_batch(eb);
/* Move the objects en-masse into the GTT, evicting if necessary. */
need_relocs = (args->flags & I915_EXEC_NO_RELOC) == 0;
ret = i915_gem_execbuffer_reserve(engine, &eb->vmas, ctx,
&need_relocs);
if (ret)
goto err;
/* The objects are in their final locations, apply the relocations. */
if (need_relocs)
ret = i915_gem_execbuffer_relocate(eb);
if (ret) {
if (ret == -EFAULT) {
ret = i915_gem_execbuffer_relocate_slow(dev, args, file,
engine,
eb, exec, ctx);
BUG_ON(!mutex_is_locked(&dev->struct_mutex));
}
if (ret)
goto err;
}
/* Set the pending read domains for the batch buffer to COMMAND */
if (params->batch->obj->base.pending_write_domain) {
DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
ret = -EINVAL;
goto err;
}
if (args->batch_start_offset > params->batch->size ||
args->batch_len > params->batch->size - args->batch_start_offset) {
DRM_DEBUG("Attempting to use out-of-bounds batch\n");
ret = -EINVAL;
goto err;
}
params->args_batch_start_offset = args->batch_start_offset;
if (engine->needs_cmd_parser && args->batch_len) {
struct i915_vma *vma;
vma = i915_gem_execbuffer_parse(engine, &shadow_exec_entry,
params->batch->obj,
eb,
args->batch_start_offset,
args->batch_len,
drm_is_current_master(file));
if (IS_ERR(vma)) {
ret = PTR_ERR(vma);
goto err;
}
if (vma) {
/*
* Batch parsed and accepted:
*
* Set the DISPATCH_SECURE bit to remove the NON_SECURE
* bit from MI_BATCH_BUFFER_START commands issued in
* the dispatch_execbuffer implementations. We
* specifically don't want that set on batches the
* command parser has accepted.
*/
dispatch_flags |= I915_DISPATCH_SECURE;
params->args_batch_start_offset = 0;
params->batch = vma;
}
}
params->batch->obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
/* snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
* batch" bit. Hence we need to pin secure batches into the global gtt.
* hsw should have this fixed, but bdw mucks it up again. */
if (dispatch_flags & I915_DISPATCH_SECURE) {
struct drm_i915_gem_object *obj = params->batch->obj;
struct i915_vma *vma;
/*
* So on first glance it looks freaky that we pin the batch here
* outside of the reservation loop. But:
* - The batch is already pinned into the relevant ppgtt, so we
* already have the backing storage fully allocated.
* - No other BO uses the global gtt (well contexts, but meh),
* so we don't really have issues with multiple objects not
* fitting due to fragmentation.
* So this is actually safe.
*/
vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 0);
if (IS_ERR(vma)) {
ret = PTR_ERR(vma);
goto err;
}
params->batch = vma;
}
/* Allocate a request for this batch buffer nice and early. */
params->request = i915_gem_request_alloc(engine, ctx);
if (IS_ERR(params->request)) {
ret = PTR_ERR(params->request);
goto err_batch_unpin;
}
/* Whilst this request exists, batch_obj will be on the
* active_list, and so will hold the active reference. Only when this
* request is retired will the the batch_obj be moved onto the
* inactive_list and lose its active reference. Hence we do not need
* to explicitly hold another reference here.
*/
params->request->batch = params->batch;
ret = i915_gem_request_add_to_client(params->request, file);
if (ret)
goto err_request;
/*
* Save assorted stuff away to pass through to *_submission().
* NB: This data should be 'persistent' and not local as it will
* kept around beyond the duration of the IOCTL once the GPU
* scheduler arrives.
*/
params->dev = dev;
params->file = file;
params->engine = engine;
params->dispatch_flags = dispatch_flags;
params->ctx = ctx;
ret = execbuf_submit(params, args, &eb->vmas);
err_request:
__i915_add_request(params->request, ret == 0);
err_batch_unpin:
/*
* FIXME: We crucially rely upon the active tracking for the (ppgtt)
* batch vma for correctness. For less ugly and less fragility this
* needs to be adjusted to also track the ggtt batch vma properly as
* active.
*/
if (dispatch_flags & I915_DISPATCH_SECURE)
i915_vma_unpin(params->batch);
err:
/* the request owns the ref now */
i915_gem_context_put(ctx);
eb_destroy(eb);
mutex_unlock(&dev->struct_mutex);
pre_mutex_err:
/* intel_gpu_busy should also get a ref, so it will free when the device
* is really idle. */
intel_runtime_pm_put(dev_priv);
return ret;
}
/*
* Legacy execbuffer just creates an exec2 list from the original exec object
* list array and passes it to the real function.
*/
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_execbuffer *args = data;
struct drm_i915_gem_execbuffer2 exec2;
struct drm_i915_gem_exec_object *exec_list = NULL;
struct drm_i915_gem_exec_object2 *exec2_list = NULL;
int ret, i;
if (args->buffer_count < 1) {
DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
return -EINVAL;
}
/* Copy in the exec list from userland */
exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
if (exec_list == NULL || exec2_list == NULL) {
DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
args->buffer_count);
drm_free_large(exec_list);
drm_free_large(exec2_list);
return -ENOMEM;
}
ret = copy_from_user(exec_list,
u64_to_user_ptr(args->buffers_ptr),
sizeof(*exec_list) * args->buffer_count);
if (ret != 0) {
DRM_DEBUG("copy %d exec entries failed %d\n",
args->buffer_count, ret);
drm_free_large(exec_list);
drm_free_large(exec2_list);
return -EFAULT;
}
for (i = 0; i < args->buffer_count; i++) {
exec2_list[i].handle = exec_list[i].handle;
exec2_list[i].relocation_count = exec_list[i].relocation_count;
exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
exec2_list[i].alignment = exec_list[i].alignment;
exec2_list[i].offset = exec_list[i].offset;
if (INTEL_GEN(to_i915(dev)) < 4)
exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
else
exec2_list[i].flags = 0;
}
exec2.buffers_ptr = args->buffers_ptr;
exec2.buffer_count = args->buffer_count;
exec2.batch_start_offset = args->batch_start_offset;
exec2.batch_len = args->batch_len;
exec2.DR1 = args->DR1;
exec2.DR4 = args->DR4;
exec2.num_cliprects = args->num_cliprects;
exec2.cliprects_ptr = args->cliprects_ptr;
exec2.flags = I915_EXEC_RENDER;
i915_execbuffer2_set_context_id(exec2, 0);
ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
if (!ret) {
struct drm_i915_gem_exec_object __user *user_exec_list =
u64_to_user_ptr(args->buffers_ptr);
/* Copy the new buffer offsets back to the user's exec list. */
for (i = 0; i < args->buffer_count; i++) {
exec2_list[i].offset =
gen8_canonical_addr(exec2_list[i].offset);
ret = __copy_to_user(&user_exec_list[i].offset,
&exec2_list[i].offset,
sizeof(user_exec_list[i].offset));
if (ret) {
ret = -EFAULT;
DRM_DEBUG("failed to copy %d exec entries "
"back to user (%d)\n",
args->buffer_count, ret);
break;
}
}
}
drm_free_large(exec_list);
drm_free_large(exec2_list);
return ret;
}
int
i915_gem_execbuffer2(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_execbuffer2 *args = data;
struct drm_i915_gem_exec_object2 *exec2_list = NULL;
int ret;
if (args->buffer_count < 1 ||
args->buffer_count > UINT_MAX / sizeof(*exec2_list)) {
DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
return -EINVAL;
}
if (args->rsvd2 != 0) {
DRM_DEBUG("dirty rvsd2 field\n");
return -EINVAL;
}
exec2_list = drm_malloc_gfp(args->buffer_count,
sizeof(*exec2_list),
GFP_TEMPORARY);
if (exec2_list == NULL) {
DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
args->buffer_count);
return -ENOMEM;
}
ret = copy_from_user(exec2_list,
u64_to_user_ptr(args->buffers_ptr),
sizeof(*exec2_list) * args->buffer_count);
if (ret != 0) {
DRM_DEBUG("copy %d exec entries failed %d\n",
args->buffer_count, ret);
drm_free_large(exec2_list);
return -EFAULT;
}
ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
if (!ret) {
/* Copy the new buffer offsets back to the user's exec list. */
struct drm_i915_gem_exec_object2 __user *user_exec_list =
u64_to_user_ptr(args->buffers_ptr);
int i;
for (i = 0; i < args->buffer_count; i++) {
exec2_list[i].offset =
gen8_canonical_addr(exec2_list[i].offset);
ret = __copy_to_user(&user_exec_list[i].offset,
&exec2_list[i].offset,
sizeof(user_exec_list[i].offset));
if (ret) {
ret = -EFAULT;
DRM_DEBUG("failed to copy %d exec entries "
"back to user\n",
args->buffer_count);
break;
}
}
}
drm_free_large(exec2_list);
return ret;
}