| /****************************************************************************** |
| * |
| * Copyright(c) 2009-2012 Realtek Corporation. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of version 2 of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * You should have received a copy of the GNU General Public License along with |
| * this program; if not, write to the Free Software Foundation, Inc., |
| * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA |
| * |
| * The full GNU General Public License is included in this distribution in the |
| * file called LICENSE. |
| * |
| * Contact Information: |
| * wlanfae <wlanfae@realtek.com> |
| * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park, |
| * Hsinchu 300, Taiwan. |
| * |
| * Larry Finger <Larry.Finger@lwfinger.net> |
| * |
| *****************************************************************************/ |
| |
| #include "../wifi.h" |
| #include "../efuse.h" |
| #include "../base.h" |
| #include "../regd.h" |
| #include "../cam.h" |
| #include "../ps.h" |
| #include "../pci.h" |
| #include "reg.h" |
| #include "def.h" |
| #include "phy.h" |
| #include "dm.h" |
| #include "fw.h" |
| #include "led.h" |
| #include "sw.h" |
| #include "hw.h" |
| |
| u32 rtl92de_read_dword_dbi(struct ieee80211_hw *hw, u16 offset, u8 direct) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| u32 value; |
| |
| rtl_write_word(rtlpriv, REG_DBI_CTRL, (offset & 0xFFC)); |
| rtl_write_byte(rtlpriv, REG_DBI_FLAG, BIT(1) | direct); |
| udelay(10); |
| value = rtl_read_dword(rtlpriv, REG_DBI_RDATA); |
| return value; |
| } |
| |
| void rtl92de_write_dword_dbi(struct ieee80211_hw *hw, |
| u16 offset, u32 value, u8 direct) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| |
| rtl_write_word(rtlpriv, REG_DBI_CTRL, ((offset & 0xFFC) | 0xF000)); |
| rtl_write_dword(rtlpriv, REG_DBI_WDATA, value); |
| rtl_write_byte(rtlpriv, REG_DBI_FLAG, BIT(0) | direct); |
| } |
| |
| static void _rtl92de_set_bcn_ctrl_reg(struct ieee80211_hw *hw, |
| u8 set_bits, u8 clear_bits) |
| { |
| struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| |
| rtlpci->reg_bcn_ctrl_val |= set_bits; |
| rtlpci->reg_bcn_ctrl_val &= ~clear_bits; |
| rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8) rtlpci->reg_bcn_ctrl_val); |
| } |
| |
| static void _rtl92de_stop_tx_beacon(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| u8 tmp1byte; |
| |
| tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2); |
| rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte & (~BIT(6))); |
| rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0xff); |
| rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0x64); |
| tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2); |
| tmp1byte &= ~(BIT(0)); |
| rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte); |
| } |
| |
| static void _rtl92de_resume_tx_beacon(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| u8 tmp1byte; |
| |
| tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2); |
| rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte | BIT(6)); |
| rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0x0a); |
| rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff); |
| tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2); |
| tmp1byte |= BIT(0); |
| rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte); |
| } |
| |
| static void _rtl92de_enable_bcn_sub_func(struct ieee80211_hw *hw) |
| { |
| _rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(1)); |
| } |
| |
| static void _rtl92de_disable_bcn_sub_func(struct ieee80211_hw *hw) |
| { |
| _rtl92de_set_bcn_ctrl_reg(hw, BIT(1), 0); |
| } |
| |
| void rtl92de_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); |
| struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); |
| |
| switch (variable) { |
| case HW_VAR_RCR: |
| *((u32 *) (val)) = rtlpci->receive_config; |
| break; |
| case HW_VAR_RF_STATE: |
| *((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state; |
| break; |
| case HW_VAR_FWLPS_RF_ON:{ |
| enum rf_pwrstate rfState; |
| u32 val_rcr; |
| |
| rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RF_STATE, |
| (u8 *) (&rfState)); |
| if (rfState == ERFOFF) { |
| *((bool *) (val)) = true; |
| } else { |
| val_rcr = rtl_read_dword(rtlpriv, REG_RCR); |
| val_rcr &= 0x00070000; |
| if (val_rcr) |
| *((bool *) (val)) = false; |
| else |
| *((bool *) (val)) = true; |
| } |
| break; |
| } |
| case HW_VAR_FW_PSMODE_STATUS: |
| *((bool *) (val)) = ppsc->fw_current_inpsmode; |
| break; |
| case HW_VAR_CORRECT_TSF:{ |
| u64 tsf; |
| u32 *ptsf_low = (u32 *)&tsf; |
| u32 *ptsf_high = ((u32 *)&tsf) + 1; |
| |
| *ptsf_high = rtl_read_dword(rtlpriv, (REG_TSFTR + 4)); |
| *ptsf_low = rtl_read_dword(rtlpriv, REG_TSFTR); |
| *((u64 *) (val)) = tsf; |
| break; |
| } |
| case HW_VAR_INT_MIGRATION: |
| *((bool *)(val)) = rtlpriv->dm.interrupt_migration; |
| break; |
| case HW_VAR_INT_AC: |
| *((bool *)(val)) = rtlpriv->dm.disable_tx_int; |
| break; |
| default: |
| RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, |
| "switch case not processed\n"); |
| break; |
| } |
| } |
| |
| void rtl92de_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); |
| struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); |
| struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); |
| struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); |
| struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); |
| u8 idx; |
| |
| switch (variable) { |
| case HW_VAR_ETHER_ADDR: |
| for (idx = 0; idx < ETH_ALEN; idx++) { |
| rtl_write_byte(rtlpriv, (REG_MACID + idx), |
| val[idx]); |
| } |
| break; |
| case HW_VAR_BASIC_RATE: { |
| u16 rate_cfg = ((u16 *) val)[0]; |
| u8 rate_index = 0; |
| |
| rate_cfg = rate_cfg & 0x15f; |
| if (mac->vendor == PEER_CISCO && |
| ((rate_cfg & 0x150) == 0)) |
| rate_cfg |= 0x01; |
| rtl_write_byte(rtlpriv, REG_RRSR, rate_cfg & 0xff); |
| rtl_write_byte(rtlpriv, REG_RRSR + 1, |
| (rate_cfg >> 8) & 0xff); |
| while (rate_cfg > 0x1) { |
| rate_cfg = (rate_cfg >> 1); |
| rate_index++; |
| } |
| if (rtlhal->fw_version > 0xe) |
| rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL, |
| rate_index); |
| break; |
| } |
| case HW_VAR_BSSID: |
| for (idx = 0; idx < ETH_ALEN; idx++) { |
| rtl_write_byte(rtlpriv, (REG_BSSID + idx), |
| val[idx]); |
| } |
| break; |
| case HW_VAR_SIFS: |
| rtl_write_byte(rtlpriv, REG_SIFS_CTX + 1, val[0]); |
| rtl_write_byte(rtlpriv, REG_SIFS_TRX + 1, val[1]); |
| rtl_write_byte(rtlpriv, REG_SPEC_SIFS + 1, val[0]); |
| rtl_write_byte(rtlpriv, REG_MAC_SPEC_SIFS + 1, val[0]); |
| if (!mac->ht_enable) |
| rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM, |
| 0x0e0e); |
| else |
| rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM, |
| *((u16 *) val)); |
| break; |
| case HW_VAR_SLOT_TIME: { |
| u8 e_aci; |
| |
| RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD, |
| "HW_VAR_SLOT_TIME %x\n", val[0]); |
| rtl_write_byte(rtlpriv, REG_SLOT, val[0]); |
| for (e_aci = 0; e_aci < AC_MAX; e_aci++) |
| rtlpriv->cfg->ops->set_hw_reg(hw, |
| HW_VAR_AC_PARAM, |
| (u8 *) (&e_aci)); |
| break; |
| } |
| case HW_VAR_ACK_PREAMBLE: { |
| u8 reg_tmp; |
| u8 short_preamble = (bool) (*(u8 *) val); |
| |
| reg_tmp = (mac->cur_40_prime_sc) << 5; |
| if (short_preamble) |
| reg_tmp |= 0x80; |
| rtl_write_byte(rtlpriv, REG_RRSR + 2, reg_tmp); |
| break; |
| } |
| case HW_VAR_AMPDU_MIN_SPACE: { |
| u8 min_spacing_to_set; |
| u8 sec_min_space; |
| |
| min_spacing_to_set = *((u8 *) val); |
| if (min_spacing_to_set <= 7) { |
| sec_min_space = 0; |
| if (min_spacing_to_set < sec_min_space) |
| min_spacing_to_set = sec_min_space; |
| mac->min_space_cfg = ((mac->min_space_cfg & 0xf8) | |
| min_spacing_to_set); |
| *val = min_spacing_to_set; |
| RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD, |
| "Set HW_VAR_AMPDU_MIN_SPACE: %#x\n", |
| mac->min_space_cfg); |
| rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE, |
| mac->min_space_cfg); |
| } |
| break; |
| } |
| case HW_VAR_SHORTGI_DENSITY: { |
| u8 density_to_set; |
| |
| density_to_set = *((u8 *) val); |
| mac->min_space_cfg = rtlpriv->rtlhal.minspace_cfg; |
| mac->min_space_cfg |= (density_to_set << 3); |
| RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD, |
| "Set HW_VAR_SHORTGI_DENSITY: %#x\n", |
| mac->min_space_cfg); |
| rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE, |
| mac->min_space_cfg); |
| break; |
| } |
| case HW_VAR_AMPDU_FACTOR: { |
| u8 factor_toset; |
| u32 regtoSet; |
| u8 *ptmp_byte = NULL; |
| u8 index; |
| |
| if (rtlhal->macphymode == DUALMAC_DUALPHY) |
| regtoSet = 0xb9726641; |
| else if (rtlhal->macphymode == DUALMAC_SINGLEPHY) |
| regtoSet = 0x66626641; |
| else |
| regtoSet = 0xb972a841; |
| factor_toset = *((u8 *) val); |
| if (factor_toset <= 3) { |
| factor_toset = (1 << (factor_toset + 2)); |
| if (factor_toset > 0xf) |
| factor_toset = 0xf; |
| for (index = 0; index < 4; index++) { |
| ptmp_byte = (u8 *) (®toSet) + index; |
| if ((*ptmp_byte & 0xf0) > |
| (factor_toset << 4)) |
| *ptmp_byte = (*ptmp_byte & 0x0f) |
| | (factor_toset << 4); |
| if ((*ptmp_byte & 0x0f) > factor_toset) |
| *ptmp_byte = (*ptmp_byte & 0xf0) |
| | (factor_toset); |
| } |
| rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, regtoSet); |
| RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD, |
| "Set HW_VAR_AMPDU_FACTOR: %#x\n", |
| factor_toset); |
| } |
| break; |
| } |
| case HW_VAR_AC_PARAM: { |
| u8 e_aci = *((u8 *) val); |
| rtl92d_dm_init_edca_turbo(hw); |
| if (rtlpci->acm_method != eAcmWay2_SW) |
| rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ACM_CTRL, |
| (u8 *) (&e_aci)); |
| break; |
| } |
| case HW_VAR_ACM_CTRL: { |
| u8 e_aci = *((u8 *) val); |
| union aci_aifsn *p_aci_aifsn = |
| (union aci_aifsn *)(&(mac->ac[0].aifs)); |
| u8 acm = p_aci_aifsn->f.acm; |
| u8 acm_ctrl = rtl_read_byte(rtlpriv, REG_ACMHWCTRL); |
| |
| acm_ctrl = acm_ctrl | ((rtlpci->acm_method == 2) ? 0x0 : 0x1); |
| if (acm) { |
| switch (e_aci) { |
| case AC0_BE: |
| acm_ctrl |= ACMHW_BEQEN; |
| break; |
| case AC2_VI: |
| acm_ctrl |= ACMHW_VIQEN; |
| break; |
| case AC3_VO: |
| acm_ctrl |= ACMHW_VOQEN; |
| break; |
| default: |
| RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, |
| "HW_VAR_ACM_CTRL acm set failed: eACI is %d\n", |
| acm); |
| break; |
| } |
| } else { |
| switch (e_aci) { |
| case AC0_BE: |
| acm_ctrl &= (~ACMHW_BEQEN); |
| break; |
| case AC2_VI: |
| acm_ctrl &= (~ACMHW_VIQEN); |
| break; |
| case AC3_VO: |
| acm_ctrl &= (~ACMHW_VOQEN); |
| break; |
| default: |
| RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, |
| "switch case not processed\n"); |
| break; |
| } |
| } |
| RT_TRACE(rtlpriv, COMP_QOS, DBG_TRACE, |
| "SetHwReg8190pci(): [HW_VAR_ACM_CTRL] Write 0x%X\n", |
| acm_ctrl); |
| rtl_write_byte(rtlpriv, REG_ACMHWCTRL, acm_ctrl); |
| break; |
| } |
| case HW_VAR_RCR: |
| rtl_write_dword(rtlpriv, REG_RCR, ((u32 *) (val))[0]); |
| rtlpci->receive_config = ((u32 *) (val))[0]; |
| break; |
| case HW_VAR_RETRY_LIMIT: { |
| u8 retry_limit = ((u8 *) (val))[0]; |
| |
| rtl_write_word(rtlpriv, REG_RL, |
| retry_limit << RETRY_LIMIT_SHORT_SHIFT | |
| retry_limit << RETRY_LIMIT_LONG_SHIFT); |
| break; |
| } |
| case HW_VAR_DUAL_TSF_RST: |
| rtl_write_byte(rtlpriv, REG_DUAL_TSF_RST, (BIT(0) | BIT(1))); |
| break; |
| case HW_VAR_EFUSE_BYTES: |
| rtlefuse->efuse_usedbytes = *((u16 *) val); |
| break; |
| case HW_VAR_EFUSE_USAGE: |
| rtlefuse->efuse_usedpercentage = *((u8 *) val); |
| break; |
| case HW_VAR_IO_CMD: |
| rtl92d_phy_set_io_cmd(hw, (*(enum io_type *)val)); |
| break; |
| case HW_VAR_WPA_CONFIG: |
| rtl_write_byte(rtlpriv, REG_SECCFG, *((u8 *) val)); |
| break; |
| case HW_VAR_SET_RPWM: |
| rtl92d_fill_h2c_cmd(hw, H2C_PWRM, 1, (u8 *) (val)); |
| break; |
| case HW_VAR_H2C_FW_PWRMODE: |
| break; |
| case HW_VAR_FW_PSMODE_STATUS: |
| ppsc->fw_current_inpsmode = *((bool *) val); |
| break; |
| case HW_VAR_H2C_FW_JOINBSSRPT: { |
| u8 mstatus = (*(u8 *) val); |
| u8 tmp_regcr, tmp_reg422; |
| bool recover = false; |
| |
| if (mstatus == RT_MEDIA_CONNECT) { |
| rtlpriv->cfg->ops->set_hw_reg(hw, |
| HW_VAR_AID, NULL); |
| tmp_regcr = rtl_read_byte(rtlpriv, REG_CR + 1); |
| rtl_write_byte(rtlpriv, REG_CR + 1, |
| (tmp_regcr | BIT(0))); |
| _rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(3)); |
| _rtl92de_set_bcn_ctrl_reg(hw, BIT(4), 0); |
| tmp_reg422 = rtl_read_byte(rtlpriv, |
| REG_FWHW_TXQ_CTRL + 2); |
| if (tmp_reg422 & BIT(6)) |
| recover = true; |
| rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, |
| tmp_reg422 & (~BIT(6))); |
| rtl92d_set_fw_rsvdpagepkt(hw, 0); |
| _rtl92de_set_bcn_ctrl_reg(hw, BIT(3), 0); |
| _rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(4)); |
| if (recover) |
| rtl_write_byte(rtlpriv, |
| REG_FWHW_TXQ_CTRL + 2, |
| tmp_reg422); |
| rtl_write_byte(rtlpriv, REG_CR + 1, |
| (tmp_regcr & ~(BIT(0)))); |
| } |
| rtl92d_set_fw_joinbss_report_cmd(hw, (*(u8 *) val)); |
| break; |
| } |
| case HW_VAR_AID: { |
| u16 u2btmp; |
| u2btmp = rtl_read_word(rtlpriv, REG_BCN_PSR_RPT); |
| u2btmp &= 0xC000; |
| rtl_write_word(rtlpriv, REG_BCN_PSR_RPT, (u2btmp | |
| mac->assoc_id)); |
| break; |
| } |
| case HW_VAR_CORRECT_TSF: { |
| u8 btype_ibss = ((u8 *) (val))[0]; |
| |
| if (btype_ibss) |
| _rtl92de_stop_tx_beacon(hw); |
| _rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(3)); |
| rtl_write_dword(rtlpriv, REG_TSFTR, |
| (u32) (mac->tsf & 0xffffffff)); |
| rtl_write_dword(rtlpriv, REG_TSFTR + 4, |
| (u32) ((mac->tsf >> 32) & 0xffffffff)); |
| _rtl92de_set_bcn_ctrl_reg(hw, BIT(3), 0); |
| if (btype_ibss) |
| _rtl92de_resume_tx_beacon(hw); |
| |
| break; |
| } |
| case HW_VAR_INT_MIGRATION: { |
| bool int_migration = *(bool *) (val); |
| |
| if (int_migration) { |
| /* Set interrupt migration timer and |
| * corresponding Tx/Rx counter. |
| * timer 25ns*0xfa0=100us for 0xf packets. |
| * 0x306:Rx, 0x307:Tx */ |
| rtl_write_dword(rtlpriv, REG_INT_MIG, 0xfe000fa0); |
| rtlpriv->dm.interrupt_migration = int_migration; |
| } else { |
| /* Reset all interrupt migration settings. */ |
| rtl_write_dword(rtlpriv, REG_INT_MIG, 0); |
| rtlpriv->dm.interrupt_migration = int_migration; |
| } |
| break; |
| } |
| case HW_VAR_INT_AC: { |
| bool disable_ac_int = *((bool *) val); |
| |
| /* Disable four ACs interrupts. */ |
| if (disable_ac_int) { |
| /* Disable VO, VI, BE and BK four AC interrupts |
| * to gain more efficient CPU utilization. |
| * When extremely highly Rx OK occurs, |
| * we will disable Tx interrupts. |
| */ |
| rtlpriv->cfg->ops->update_interrupt_mask(hw, 0, |
| RT_AC_INT_MASKS); |
| rtlpriv->dm.disable_tx_int = disable_ac_int; |
| /* Enable four ACs interrupts. */ |
| } else { |
| rtlpriv->cfg->ops->update_interrupt_mask(hw, |
| RT_AC_INT_MASKS, 0); |
| rtlpriv->dm.disable_tx_int = disable_ac_int; |
| } |
| break; |
| } |
| default: |
| RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, |
| "switch case not processed\n"); |
| break; |
| } |
| } |
| |
| static bool _rtl92de_llt_write(struct ieee80211_hw *hw, u32 address, u32 data) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| bool status = true; |
| long count = 0; |
| u32 value = _LLT_INIT_ADDR(address) | |
| _LLT_INIT_DATA(data) | _LLT_OP(_LLT_WRITE_ACCESS); |
| |
| rtl_write_dword(rtlpriv, REG_LLT_INIT, value); |
| do { |
| value = rtl_read_dword(rtlpriv, REG_LLT_INIT); |
| if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value)) |
| break; |
| if (count > POLLING_LLT_THRESHOLD) { |
| RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, |
| "Failed to polling write LLT done at address %d!\n", |
| address); |
| status = false; |
| break; |
| } |
| } while (++count); |
| return status; |
| } |
| |
| static bool _rtl92de_llt_table_init(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| unsigned short i; |
| u8 txpktbuf_bndy; |
| u8 maxPage; |
| bool status; |
| u32 value32; /* High+low page number */ |
| u8 value8; /* normal page number */ |
| |
| if (rtlpriv->rtlhal.macphymode == SINGLEMAC_SINGLEPHY) { |
| maxPage = 255; |
| txpktbuf_bndy = 246; |
| value8 = 0; |
| value32 = 0x80bf0d29; |
| } else if (rtlpriv->rtlhal.macphymode != SINGLEMAC_SINGLEPHY) { |
| maxPage = 127; |
| txpktbuf_bndy = 123; |
| value8 = 0; |
| value32 = 0x80750005; |
| } |
| |
| /* Set reserved page for each queue */ |
| /* 11. RQPN 0x200[31:0] = 0x80BD1C1C */ |
| /* load RQPN */ |
| rtl_write_byte(rtlpriv, REG_RQPN_NPQ, value8); |
| rtl_write_dword(rtlpriv, REG_RQPN, value32); |
| |
| /* 12. TXRKTBUG_PG_BNDY 0x114[31:0] = 0x27FF00F6 */ |
| /* TXRKTBUG_PG_BNDY */ |
| rtl_write_dword(rtlpriv, REG_TRXFF_BNDY, |
| (rtl_read_word(rtlpriv, REG_TRXFF_BNDY + 2) << 16 | |
| txpktbuf_bndy)); |
| |
| /* 13. TDECTRL[15:8] 0x209[7:0] = 0xF6 */ |
| /* Beacon Head for TXDMA */ |
| rtl_write_byte(rtlpriv, REG_TDECTRL + 1, txpktbuf_bndy); |
| |
| /* 14. BCNQ_PGBNDY 0x424[7:0] = 0xF6 */ |
| /* BCNQ_PGBNDY */ |
| rtl_write_byte(rtlpriv, REG_TXPKTBUF_BCNQ_BDNY, txpktbuf_bndy); |
| rtl_write_byte(rtlpriv, REG_TXPKTBUF_MGQ_BDNY, txpktbuf_bndy); |
| |
| /* 15. WMAC_LBK_BF_HD 0x45D[7:0] = 0xF6 */ |
| /* WMAC_LBK_BF_HD */ |
| rtl_write_byte(rtlpriv, 0x45D, txpktbuf_bndy); |
| |
| /* Set Tx/Rx page size (Tx must be 128 Bytes, */ |
| /* Rx can be 64,128,256,512,1024 bytes) */ |
| /* 16. PBP [7:0] = 0x11 */ |
| /* TRX page size */ |
| rtl_write_byte(rtlpriv, REG_PBP, 0x11); |
| |
| /* 17. DRV_INFO_SZ = 0x04 */ |
| rtl_write_byte(rtlpriv, REG_RX_DRVINFO_SZ, 0x4); |
| |
| /* 18. LLT_table_init(Adapter); */ |
| for (i = 0; i < (txpktbuf_bndy - 1); i++) { |
| status = _rtl92de_llt_write(hw, i, i + 1); |
| if (true != status) |
| return status; |
| } |
| |
| /* end of list */ |
| status = _rtl92de_llt_write(hw, (txpktbuf_bndy - 1), 0xFF); |
| if (true != status) |
| return status; |
| |
| /* Make the other pages as ring buffer */ |
| /* This ring buffer is used as beacon buffer if we */ |
| /* config this MAC as two MAC transfer. */ |
| /* Otherwise used as local loopback buffer. */ |
| for (i = txpktbuf_bndy; i < maxPage; i++) { |
| status = _rtl92de_llt_write(hw, i, (i + 1)); |
| if (true != status) |
| return status; |
| } |
| |
| /* Let last entry point to the start entry of ring buffer */ |
| status = _rtl92de_llt_write(hw, maxPage, txpktbuf_bndy); |
| if (true != status) |
| return status; |
| |
| return true; |
| } |
| |
| static void _rtl92de_gen_refresh_led_state(struct ieee80211_hw *hw) |
| { |
| struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw); |
| struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); |
| struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); |
| struct rtl_led *pLed0 = &(pcipriv->ledctl.sw_led0); |
| |
| if (rtlpci->up_first_time) |
| return; |
| if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS) |
| rtl92de_sw_led_on(hw, pLed0); |
| else if (ppsc->rfoff_reason == RF_CHANGE_BY_INIT) |
| rtl92de_sw_led_on(hw, pLed0); |
| else |
| rtl92de_sw_led_off(hw, pLed0); |
| } |
| |
| static bool _rtl92de_init_mac(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); |
| unsigned char bytetmp; |
| unsigned short wordtmp; |
| u16 retry; |
| |
| rtl92d_phy_set_poweron(hw); |
| /* Add for resume sequence of power domain according |
| * to power document V11. Chapter V.11.... */ |
| /* 0. RSV_CTRL 0x1C[7:0] = 0x00 */ |
| /* unlock ISO/CLK/Power control register */ |
| rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x00); |
| rtl_write_byte(rtlpriv, REG_LDOA15_CTRL, 0x05); |
| |
| /* 1. AFE_XTAL_CTRL [7:0] = 0x0F enable XTAL */ |
| /* 2. SPS0_CTRL 0x11[7:0] = 0x2b enable SPS into PWM mode */ |
| /* 3. delay (1ms) this is not necessary when initially power on */ |
| |
| /* C. Resume Sequence */ |
| /* a. SPS0_CTRL 0x11[7:0] = 0x2b */ |
| rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x2b); |
| |
| /* b. AFE_XTAL_CTRL [7:0] = 0x0F */ |
| rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL, 0x0F); |
| |
| /* c. DRV runs power on init flow */ |
| |
| /* auto enable WLAN */ |
| /* 4. APS_FSMCO 0x04[8] = 1; wait till 0x04[8] = 0 */ |
| /* Power On Reset for MAC Block */ |
| bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1) | BIT(0); |
| udelay(2); |
| rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, bytetmp); |
| udelay(2); |
| |
| /* 5. Wait while 0x04[8] == 0 goto 2, otherwise goto 1 */ |
| bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1); |
| udelay(50); |
| retry = 0; |
| while ((bytetmp & BIT(0)) && retry < 1000) { |
| retry++; |
| bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1); |
| udelay(50); |
| } |
| |
| /* Enable Radio off, GPIO, and LED function */ |
| /* 6. APS_FSMCO 0x04[15:0] = 0x0012 when enable HWPDN */ |
| rtl_write_word(rtlpriv, REG_APS_FSMCO, 0x1012); |
| |
| /* release RF digital isolation */ |
| /* 7. SYS_ISO_CTRL 0x01[1] = 0x0; */ |
| /*Set REG_SYS_ISO_CTRL 0x1=0x82 to prevent wake# problem. */ |
| rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x82); |
| udelay(2); |
| |
| /* make sure that BB reset OK. */ |
| /* rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE3); */ |
| |
| /* Disable REG_CR before enable it to assure reset */ |
| rtl_write_word(rtlpriv, REG_CR, 0x0); |
| |
| /* Release MAC IO register reset */ |
| rtl_write_word(rtlpriv, REG_CR, 0x2ff); |
| |
| /* clear stopping tx/rx dma */ |
| rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0x0); |
| |
| /* rtl_write_word(rtlpriv,REG_CR+2, 0x2); */ |
| |
| /* System init */ |
| /* 18. LLT_table_init(Adapter); */ |
| if (_rtl92de_llt_table_init(hw) == false) |
| return false; |
| |
| /* Clear interrupt and enable interrupt */ |
| /* 19. HISR 0x124[31:0] = 0xffffffff; */ |
| /* HISRE 0x12C[7:0] = 0xFF */ |
| rtl_write_dword(rtlpriv, REG_HISR, 0xffffffff); |
| rtl_write_byte(rtlpriv, REG_HISRE, 0xff); |
| |
| /* 20. HIMR 0x120[31:0] |= [enable INT mask bit map]; */ |
| /* 21. HIMRE 0x128[7:0] = [enable INT mask bit map] */ |
| /* The IMR should be enabled later after all init sequence |
| * is finished. */ |
| |
| /* 22. PCIE configuration space configuration */ |
| /* 23. Ensure PCIe Device 0x80[15:0] = 0x0143 (ASPM+CLKREQ), */ |
| /* and PCIe gated clock function is enabled. */ |
| /* PCIE configuration space will be written after |
| * all init sequence.(Or by BIOS) */ |
| |
| rtl92d_phy_config_maccoexist_rfpage(hw); |
| |
| /* THe below section is not related to power document Vxx . */ |
| /* This is only useful for driver and OS setting. */ |
| /* -------------------Software Relative Setting---------------------- */ |
| wordtmp = rtl_read_word(rtlpriv, REG_TRXDMA_CTRL); |
| wordtmp &= 0xf; |
| wordtmp |= 0xF771; |
| rtl_write_word(rtlpriv, REG_TRXDMA_CTRL, wordtmp); |
| |
| /* Reported Tx status from HW for rate adaptive. */ |
| /* This should be realtive to power on step 14. But in document V11 */ |
| /* still not contain the description.!!! */ |
| rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 1, 0x1F); |
| |
| /* Set Tx/Rx page size (Tx must be 128 Bytes, |
| * Rx can be 64,128,256,512,1024 bytes) */ |
| /* rtl_write_byte(rtlpriv,REG_PBP, 0x11); */ |
| |
| /* Set RCR register */ |
| rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config); |
| /* rtl_write_byte(rtlpriv,REG_RX_DRVINFO_SZ, 4); */ |
| |
| /* Set TCR register */ |
| rtl_write_dword(rtlpriv, REG_TCR, rtlpci->transmit_config); |
| |
| /* disable earlymode */ |
| rtl_write_byte(rtlpriv, 0x4d0, 0x0); |
| |
| /* Set TX/RX descriptor physical address(from OS API). */ |
| rtl_write_dword(rtlpriv, REG_BCNQ_DESA, |
| rtlpci->tx_ring[BEACON_QUEUE].dma); |
| rtl_write_dword(rtlpriv, REG_MGQ_DESA, rtlpci->tx_ring[MGNT_QUEUE].dma); |
| rtl_write_dword(rtlpriv, REG_VOQ_DESA, rtlpci->tx_ring[VO_QUEUE].dma); |
| rtl_write_dword(rtlpriv, REG_VIQ_DESA, rtlpci->tx_ring[VI_QUEUE].dma); |
| rtl_write_dword(rtlpriv, REG_BEQ_DESA, rtlpci->tx_ring[BE_QUEUE].dma); |
| rtl_write_dword(rtlpriv, REG_BKQ_DESA, rtlpci->tx_ring[BK_QUEUE].dma); |
| rtl_write_dword(rtlpriv, REG_HQ_DESA, rtlpci->tx_ring[HIGH_QUEUE].dma); |
| /* Set RX Desc Address */ |
| rtl_write_dword(rtlpriv, REG_RX_DESA, |
| rtlpci->rx_ring[RX_MPDU_QUEUE].dma); |
| |
| /* if we want to support 64 bit DMA, we should set it here, |
| * but now we do not support 64 bit DMA*/ |
| |
| rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 3, 0x33); |
| |
| /* Reset interrupt migration setting when initialization */ |
| rtl_write_dword(rtlpriv, REG_INT_MIG, 0); |
| |
| /* Reconsider when to do this operation after asking HWSD. */ |
| bytetmp = rtl_read_byte(rtlpriv, REG_APSD_CTRL); |
| rtl_write_byte(rtlpriv, REG_APSD_CTRL, bytetmp & ~BIT(6)); |
| do { |
| retry++; |
| bytetmp = rtl_read_byte(rtlpriv, REG_APSD_CTRL); |
| } while ((retry < 200) && !(bytetmp & BIT(7))); |
| |
| /* After MACIO reset,we must refresh LED state. */ |
| _rtl92de_gen_refresh_led_state(hw); |
| |
| /* Reset H2C protection register */ |
| rtl_write_dword(rtlpriv, REG_MCUTST_1, 0x0); |
| |
| return true; |
| } |
| |
| static void _rtl92de_hw_configure(struct ieee80211_hw *hw) |
| { |
| struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); |
| u8 reg_bw_opmode = BW_OPMODE_20MHZ; |
| u32 reg_rrsr; |
| |
| reg_rrsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG; |
| rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL, 0x8); |
| rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode); |
| rtl_write_dword(rtlpriv, REG_RRSR, reg_rrsr); |
| rtl_write_byte(rtlpriv, REG_SLOT, 0x09); |
| rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE, 0x0); |
| rtl_write_word(rtlpriv, REG_FWHW_TXQ_CTRL, 0x1F80); |
| rtl_write_word(rtlpriv, REG_RL, 0x0707); |
| rtl_write_dword(rtlpriv, REG_BAR_MODE_CTRL, 0x02012802); |
| rtl_write_byte(rtlpriv, REG_HWSEQ_CTRL, 0xFF); |
| rtl_write_dword(rtlpriv, REG_DARFRC, 0x01000000); |
| rtl_write_dword(rtlpriv, REG_DARFRC + 4, 0x07060504); |
| rtl_write_dword(rtlpriv, REG_RARFRC, 0x01000000); |
| rtl_write_dword(rtlpriv, REG_RARFRC + 4, 0x07060504); |
| /* Aggregation threshold */ |
| if (rtlhal->macphymode == DUALMAC_DUALPHY) |
| rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0xb9726641); |
| else if (rtlhal->macphymode == DUALMAC_SINGLEPHY) |
| rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0x66626641); |
| else |
| rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0xb972a841); |
| rtl_write_byte(rtlpriv, REG_ATIMWND, 0x2); |
| rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0x0a); |
| rtlpci->reg_bcn_ctrl_val = 0x1f; |
| rtl_write_byte(rtlpriv, REG_BCN_CTRL, rtlpci->reg_bcn_ctrl_val); |
| rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff); |
| rtl_write_byte(rtlpriv, REG_PIFS, 0x1C); |
| rtl_write_byte(rtlpriv, REG_AGGR_BREAK_TIME, 0x16); |
| rtl_write_word(rtlpriv, REG_NAV_PROT_LEN, 0x0020); |
| /* For throughput */ |
| rtl_write_word(rtlpriv, REG_FAST_EDCA_CTRL, 0x6666); |
| /* ACKTO for IOT issue. */ |
| rtl_write_byte(rtlpriv, REG_ACKTO, 0x40); |
| /* Set Spec SIFS (used in NAV) */ |
| rtl_write_word(rtlpriv, REG_SPEC_SIFS, 0x1010); |
| rtl_write_word(rtlpriv, REG_MAC_SPEC_SIFS, 0x1010); |
| /* Set SIFS for CCK */ |
| rtl_write_word(rtlpriv, REG_SIFS_CTX, 0x1010); |
| /* Set SIFS for OFDM */ |
| rtl_write_word(rtlpriv, REG_SIFS_TRX, 0x1010); |
| /* Set Multicast Address. */ |
| rtl_write_dword(rtlpriv, REG_MAR, 0xffffffff); |
| rtl_write_dword(rtlpriv, REG_MAR + 4, 0xffffffff); |
| switch (rtlpriv->phy.rf_type) { |
| case RF_1T2R: |
| case RF_1T1R: |
| rtlhal->minspace_cfg = (MAX_MSS_DENSITY_1T << 3); |
| break; |
| case RF_2T2R: |
| case RF_2T2R_GREEN: |
| rtlhal->minspace_cfg = (MAX_MSS_DENSITY_2T << 3); |
| break; |
| } |
| } |
| |
| static void _rtl92de_enable_aspm_back_door(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); |
| |
| rtl_write_byte(rtlpriv, 0x34b, 0x93); |
| rtl_write_word(rtlpriv, 0x350, 0x870c); |
| rtl_write_byte(rtlpriv, 0x352, 0x1); |
| if (ppsc->support_backdoor) |
| rtl_write_byte(rtlpriv, 0x349, 0x1b); |
| else |
| rtl_write_byte(rtlpriv, 0x349, 0x03); |
| rtl_write_word(rtlpriv, 0x350, 0x2718); |
| rtl_write_byte(rtlpriv, 0x352, 0x1); |
| } |
| |
| void rtl92de_enable_hw_security_config(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| u8 sec_reg_value; |
| |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, |
| "PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n", |
| rtlpriv->sec.pairwise_enc_algorithm, |
| rtlpriv->sec.group_enc_algorithm); |
| if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) { |
| RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, |
| "not open hw encryption\n"); |
| return; |
| } |
| sec_reg_value = SCR_TXENCENABLE | SCR_RXENCENABLE; |
| if (rtlpriv->sec.use_defaultkey) { |
| sec_reg_value |= SCR_TXUSEDK; |
| sec_reg_value |= SCR_RXUSEDK; |
| } |
| sec_reg_value |= (SCR_RXBCUSEDK | SCR_TXBCUSEDK); |
| rtl_write_byte(rtlpriv, REG_CR + 1, 0x02); |
| RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD, |
| "The SECR-value %x\n", sec_reg_value); |
| rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value); |
| } |
| |
| int rtl92de_hw_init(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); |
| struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); |
| struct rtl_phy *rtlphy = &(rtlpriv->phy); |
| struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); |
| struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); |
| bool rtstatus = true; |
| u8 tmp_u1b; |
| int i; |
| int err; |
| unsigned long flags; |
| |
| rtlpci->being_init_adapter = true; |
| rtlpci->init_ready = false; |
| spin_lock_irqsave(&globalmutex_for_power_and_efuse, flags); |
| /* we should do iqk after disable/enable */ |
| rtl92d_phy_reset_iqk_result(hw); |
| /* rtlpriv->intf_ops->disable_aspm(hw); */ |
| rtstatus = _rtl92de_init_mac(hw); |
| if (rtstatus != true) { |
| RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Init MAC failed\n"); |
| err = 1; |
| spin_unlock_irqrestore(&globalmutex_for_power_and_efuse, flags); |
| return err; |
| } |
| err = rtl92d_download_fw(hw); |
| spin_unlock_irqrestore(&globalmutex_for_power_and_efuse, flags); |
| if (err) { |
| RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, |
| "Failed to download FW. Init HW without FW..\n"); |
| return 1; |
| } |
| rtlhal->last_hmeboxnum = 0; |
| rtlpriv->psc.fw_current_inpsmode = false; |
| |
| tmp_u1b = rtl_read_byte(rtlpriv, 0x605); |
| tmp_u1b = tmp_u1b | 0x30; |
| rtl_write_byte(rtlpriv, 0x605, tmp_u1b); |
| |
| if (rtlhal->earlymode_enable) { |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, |
| "EarlyMode Enabled!!!\n"); |
| |
| tmp_u1b = rtl_read_byte(rtlpriv, 0x4d0); |
| tmp_u1b = tmp_u1b | 0x1f; |
| rtl_write_byte(rtlpriv, 0x4d0, tmp_u1b); |
| |
| rtl_write_byte(rtlpriv, 0x4d3, 0x80); |
| |
| tmp_u1b = rtl_read_byte(rtlpriv, 0x605); |
| tmp_u1b = tmp_u1b | 0x40; |
| rtl_write_byte(rtlpriv, 0x605, tmp_u1b); |
| } |
| |
| if (mac->rdg_en) { |
| rtl_write_byte(rtlpriv, REG_RD_CTRL, 0xff); |
| rtl_write_word(rtlpriv, REG_RD_NAV_NXT, 0x200); |
| rtl_write_byte(rtlpriv, REG_RD_RESP_PKT_TH, 0x05); |
| } |
| |
| rtl92d_phy_mac_config(hw); |
| /* because last function modify RCR, so we update |
| * rcr var here, or TP will unstable for receive_config |
| * is wrong, RX RCR_ACRC32 will cause TP unstabel & Rx |
| * RCR_APP_ICV will cause mac80211 unassoc for cisco 1252*/ |
| rtlpci->receive_config = rtl_read_dword(rtlpriv, REG_RCR); |
| rtlpci->receive_config &= ~(RCR_ACRC32 | RCR_AICV); |
| |
| rtl92d_phy_bb_config(hw); |
| |
| rtlphy->rf_mode = RF_OP_BY_SW_3WIRE; |
| /* set before initialize RF */ |
| rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0xf); |
| |
| /* config RF */ |
| rtl92d_phy_rf_config(hw); |
| |
| /* After read predefined TXT, we must set BB/MAC/RF |
| * register as our requirement */ |
| /* After load BB,RF params,we need do more for 92D. */ |
| rtl92d_update_bbrf_configuration(hw); |
| /* set default value after initialize RF, */ |
| rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0); |
| rtlphy->rfreg_chnlval[0] = rtl_get_rfreg(hw, (enum radio_path)0, |
| RF_CHNLBW, BRFREGOFFSETMASK); |
| rtlphy->rfreg_chnlval[1] = rtl_get_rfreg(hw, (enum radio_path)1, |
| RF_CHNLBW, BRFREGOFFSETMASK); |
| |
| /*---- Set CCK and OFDM Block "ON"----*/ |
| if (rtlhal->current_bandtype == BAND_ON_2_4G) |
| rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1); |
| rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1); |
| if (rtlhal->interfaceindex == 0) { |
| /* RFPGA0_ANALOGPARAMETER2: cck clock select, |
| * set to 20MHz by default */ |
| rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10) | |
| BIT(11), 3); |
| } else { |
| /* Mac1 */ |
| rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(11) | |
| BIT(10), 3); |
| } |
| |
| _rtl92de_hw_configure(hw); |
| |
| /* reset hw sec */ |
| rtl_cam_reset_all_entry(hw); |
| rtl92de_enable_hw_security_config(hw); |
| |
| /* Read EEPROM TX power index and PHY_REG_PG.txt to capture correct */ |
| /* TX power index for different rate set. */ |
| rtl92d_phy_get_hw_reg_originalvalue(hw); |
| rtl92d_phy_set_txpower_level(hw, rtlphy->current_channel); |
| |
| ppsc->rfpwr_state = ERFON; |
| |
| rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR, mac->mac_addr); |
| |
| _rtl92de_enable_aspm_back_door(hw); |
| /* rtlpriv->intf_ops->enable_aspm(hw); */ |
| |
| rtl92d_dm_init(hw); |
| rtlpci->being_init_adapter = false; |
| |
| if (ppsc->rfpwr_state == ERFON) { |
| rtl92d_phy_lc_calibrate(hw); |
| /* 5G and 2.4G must wait sometime to let RF LO ready */ |
| if (rtlhal->macphymode == DUALMAC_DUALPHY) { |
| u32 tmp_rega; |
| for (i = 0; i < 10000; i++) { |
| udelay(MAX_STALL_TIME); |
| |
| tmp_rega = rtl_get_rfreg(hw, |
| (enum radio_path)RF90_PATH_A, |
| 0x2a, BMASKDWORD); |
| |
| if (((tmp_rega & BIT(11)) == BIT(11))) |
| break; |
| } |
| /* check that loop was successful. If not, exit now */ |
| if (i == 10000) { |
| rtlpci->init_ready = false; |
| return 1; |
| } |
| } |
| } |
| rtlpci->init_ready = true; |
| return err; |
| } |
| |
| static enum version_8192d _rtl92de_read_chip_version(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| enum version_8192d version = VERSION_NORMAL_CHIP_92D_SINGLEPHY; |
| u32 value32; |
| |
| value32 = rtl_read_dword(rtlpriv, REG_SYS_CFG); |
| if (!(value32 & 0x000f0000)) { |
| version = VERSION_TEST_CHIP_92D_SINGLEPHY; |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "TEST CHIP!!!\n"); |
| } else { |
| version = VERSION_NORMAL_CHIP_92D_SINGLEPHY; |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Normal CHIP!!!\n"); |
| } |
| return version; |
| } |
| |
| static int _rtl92de_set_media_status(struct ieee80211_hw *hw, |
| enum nl80211_iftype type) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| u8 bt_msr = rtl_read_byte(rtlpriv, MSR); |
| enum led_ctl_mode ledaction = LED_CTL_NO_LINK; |
| u8 bcnfunc_enable; |
| |
| bt_msr &= 0xfc; |
| |
| if (type == NL80211_IFTYPE_UNSPECIFIED || |
| type == NL80211_IFTYPE_STATION) { |
| _rtl92de_stop_tx_beacon(hw); |
| _rtl92de_enable_bcn_sub_func(hw); |
| } else if (type == NL80211_IFTYPE_ADHOC || |
| type == NL80211_IFTYPE_AP) { |
| _rtl92de_resume_tx_beacon(hw); |
| _rtl92de_disable_bcn_sub_func(hw); |
| } else { |
| RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, |
| "Set HW_VAR_MEDIA_STATUS: No such media status(%x)\n", |
| type); |
| } |
| bcnfunc_enable = rtl_read_byte(rtlpriv, REG_BCN_CTRL); |
| switch (type) { |
| case NL80211_IFTYPE_UNSPECIFIED: |
| bt_msr |= MSR_NOLINK; |
| ledaction = LED_CTL_LINK; |
| bcnfunc_enable &= 0xF7; |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, |
| "Set Network type to NO LINK!\n"); |
| break; |
| case NL80211_IFTYPE_ADHOC: |
| bt_msr |= MSR_ADHOC; |
| bcnfunc_enable |= 0x08; |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, |
| "Set Network type to Ad Hoc!\n"); |
| break; |
| case NL80211_IFTYPE_STATION: |
| bt_msr |= MSR_INFRA; |
| ledaction = LED_CTL_LINK; |
| bcnfunc_enable &= 0xF7; |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, |
| "Set Network type to STA!\n"); |
| break; |
| case NL80211_IFTYPE_AP: |
| bt_msr |= MSR_AP; |
| bcnfunc_enable |= 0x08; |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, |
| "Set Network type to AP!\n"); |
| break; |
| default: |
| RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, |
| "Network type %d not supported!\n", type); |
| return 1; |
| break; |
| |
| } |
| rtl_write_byte(rtlpriv, REG_CR + 2, bt_msr); |
| rtlpriv->cfg->ops->led_control(hw, ledaction); |
| if ((bt_msr & 0xfc) == MSR_AP) |
| rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x00); |
| else |
| rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x66); |
| return 0; |
| } |
| |
| void rtl92de_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); |
| u32 reg_rcr = rtlpci->receive_config; |
| |
| if (rtlpriv->psc.rfpwr_state != ERFON) |
| return; |
| if (check_bssid) { |
| reg_rcr |= (RCR_CBSSID_DATA | RCR_CBSSID_BCN); |
| rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(®_rcr)); |
| _rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(4)); |
| } else if (check_bssid == false) { |
| reg_rcr &= (~(RCR_CBSSID_DATA | RCR_CBSSID_BCN)); |
| _rtl92de_set_bcn_ctrl_reg(hw, BIT(4), 0); |
| rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(®_rcr)); |
| } |
| } |
| |
| int rtl92de_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| |
| if (_rtl92de_set_media_status(hw, type)) |
| return -EOPNOTSUPP; |
| |
| /* check bssid */ |
| if (rtlpriv->mac80211.link_state == MAC80211_LINKED) { |
| if (type != NL80211_IFTYPE_AP) |
| rtl92de_set_check_bssid(hw, true); |
| } else { |
| rtl92de_set_check_bssid(hw, false); |
| } |
| return 0; |
| } |
| |
| /* do iqk or reload iqk */ |
| /* windows just rtl92d_phy_reload_iqk_setting in set channel, |
| * but it's very strict for time sequence so we add |
| * rtl92d_phy_reload_iqk_setting here */ |
| void rtl92d_linked_set_reg(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_phy *rtlphy = &(rtlpriv->phy); |
| u8 indexforchannel; |
| u8 channel = rtlphy->current_channel; |
| |
| indexforchannel = rtl92d_get_rightchnlplace_for_iqk(channel); |
| if (!rtlphy->iqk_matrix_regsetting[indexforchannel].iqk_done) { |
| RT_TRACE(rtlpriv, COMP_SCAN | COMP_INIT, DBG_DMESG, |
| "Do IQK for channel:%d\n", channel); |
| rtl92d_phy_iq_calibrate(hw); |
| } |
| } |
| |
| /* don't set REG_EDCA_BE_PARAM here because |
| * mac80211 will send pkt when scan */ |
| void rtl92de_set_qos(struct ieee80211_hw *hw, int aci) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| rtl92d_dm_init_edca_turbo(hw); |
| return; |
| switch (aci) { |
| case AC1_BK: |
| rtl_write_dword(rtlpriv, REG_EDCA_BK_PARAM, 0xa44f); |
| break; |
| case AC0_BE: |
| break; |
| case AC2_VI: |
| rtl_write_dword(rtlpriv, REG_EDCA_VI_PARAM, 0x5e4322); |
| break; |
| case AC3_VO: |
| rtl_write_dword(rtlpriv, REG_EDCA_VO_PARAM, 0x2f3222); |
| break; |
| default: |
| RT_ASSERT(false, "invalid aci: %d !\n", aci); |
| break; |
| } |
| } |
| |
| void rtl92de_enable_interrupt(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); |
| |
| rtl_write_dword(rtlpriv, REG_HIMR, rtlpci->irq_mask[0] & 0xFFFFFFFF); |
| rtl_write_dword(rtlpriv, REG_HIMRE, rtlpci->irq_mask[1] & 0xFFFFFFFF); |
| } |
| |
| void rtl92de_disable_interrupt(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); |
| |
| rtl_write_dword(rtlpriv, REG_HIMR, IMR8190_DISABLED); |
| rtl_write_dword(rtlpriv, REG_HIMRE, IMR8190_DISABLED); |
| synchronize_irq(rtlpci->pdev->irq); |
| } |
| |
| static void _rtl92de_poweroff_adapter(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| u8 u1b_tmp; |
| unsigned long flags; |
| |
| rtlpriv->intf_ops->enable_aspm(hw); |
| rtl_write_byte(rtlpriv, REG_RF_CTRL, 0x00); |
| rtl_set_bbreg(hw, RFPGA0_XCD_RFPARAMETER, BIT(3), 0); |
| rtl_set_bbreg(hw, RFPGA0_XCD_RFPARAMETER, BIT(15), 0); |
| |
| /* 0x20:value 05-->04 */ |
| rtl_write_byte(rtlpriv, REG_LDOA15_CTRL, 0x04); |
| |
| /* ==== Reset digital sequence ====== */ |
| rtl92d_firmware_selfreset(hw); |
| |
| /* f. SYS_FUNC_EN 0x03[7:0]=0x51 reset MCU, MAC register, DCORE */ |
| rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, 0x51); |
| |
| /* g. MCUFWDL 0x80[1:0]=0 reset MCU ready status */ |
| rtl_write_byte(rtlpriv, REG_MCUFWDL, 0x00); |
| |
| /* ==== Pull GPIO PIN to balance level and LED control ====== */ |
| |
| /* h. GPIO_PIN_CTRL 0x44[31:0]=0x000 */ |
| rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL, 0x00000000); |
| |
| /* i. Value = GPIO_PIN_CTRL[7:0] */ |
| u1b_tmp = rtl_read_byte(rtlpriv, REG_GPIO_PIN_CTRL); |
| |
| /* j. GPIO_PIN_CTRL 0x44[31:0] = 0x00FF0000 | (value <<8); */ |
| /* write external PIN level */ |
| rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL, |
| 0x00FF0000 | (u1b_tmp << 8)); |
| |
| /* k. GPIO_MUXCFG 0x42 [15:0] = 0x0780 */ |
| rtl_write_word(rtlpriv, REG_GPIO_IO_SEL, 0x0790); |
| |
| /* l. LEDCFG 0x4C[15:0] = 0x8080 */ |
| rtl_write_word(rtlpriv, REG_LEDCFG0, 0x8080); |
| |
| /* ==== Disable analog sequence === */ |
| |
| /* m. AFE_PLL_CTRL[7:0] = 0x80 disable PLL */ |
| rtl_write_byte(rtlpriv, REG_AFE_PLL_CTRL, 0x80); |
| |
| /* n. SPS0_CTRL 0x11[7:0] = 0x22 enter PFM mode */ |
| rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x23); |
| |
| /* o. AFE_XTAL_CTRL 0x24[7:0] = 0x0E disable XTAL, if No BT COEX */ |
| rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL, 0x0e); |
| |
| /* p. RSV_CTRL 0x1C[7:0] = 0x0E lock ISO/CLK/Power control register */ |
| rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0e); |
| |
| /* ==== interface into suspend === */ |
| |
| /* q. APS_FSMCO[15:8] = 0x58 PCIe suspend mode */ |
| /* According to power document V11, we need to set this */ |
| /* value as 0x18. Otherwise, we may not L0s sometimes. */ |
| /* This indluences power consumption. Bases on SD1's test, */ |
| /* set as 0x00 do not affect power current. And if it */ |
| /* is set as 0x18, they had ever met auto load fail problem. */ |
| rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, 0x10); |
| |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, |
| "In PowerOff,reg0x%x=%X\n", |
| REG_SPS0_CTRL, rtl_read_byte(rtlpriv, REG_SPS0_CTRL)); |
| /* r. Note: for PCIe interface, PON will not turn */ |
| /* off m-bias and BandGap in PCIe suspend mode. */ |
| |
| /* 0x17[7] 1b': power off in process 0b' : power off over */ |
| if (rtlpriv->rtlhal.macphymode != SINGLEMAC_SINGLEPHY) { |
| spin_lock_irqsave(&globalmutex_power, flags); |
| u1b_tmp = rtl_read_byte(rtlpriv, REG_POWER_OFF_IN_PROCESS); |
| u1b_tmp &= (~BIT(7)); |
| rtl_write_byte(rtlpriv, REG_POWER_OFF_IN_PROCESS, u1b_tmp); |
| spin_unlock_irqrestore(&globalmutex_power, flags); |
| } |
| |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "<=======\n"); |
| } |
| |
| void rtl92de_card_disable(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); |
| struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); |
| struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); |
| enum nl80211_iftype opmode; |
| |
| mac->link_state = MAC80211_NOLINK; |
| opmode = NL80211_IFTYPE_UNSPECIFIED; |
| _rtl92de_set_media_status(hw, opmode); |
| |
| if (rtlpci->driver_is_goingto_unload || |
| ppsc->rfoff_reason > RF_CHANGE_BY_PS) |
| rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF); |
| RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC); |
| /* Power sequence for each MAC. */ |
| /* a. stop tx DMA */ |
| /* b. close RF */ |
| /* c. clear rx buf */ |
| /* d. stop rx DMA */ |
| /* e. reset MAC */ |
| |
| /* a. stop tx DMA */ |
| rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0xFE); |
| udelay(50); |
| |
| /* b. TXPAUSE 0x522[7:0] = 0xFF Pause MAC TX queue */ |
| |
| /* c. ========RF OFF sequence========== */ |
| /* 0x88c[23:20] = 0xf. */ |
| rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0xf); |
| rtl_set_rfreg(hw, RF90_PATH_A, 0x00, BRFREGOFFSETMASK, 0x00); |
| |
| /* APSD_CTRL 0x600[7:0] = 0x40 */ |
| rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x40); |
| |
| /* Close antenna 0,0xc04,0xd04 */ |
| rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, BMASKBYTE0, 0); |
| rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE, BDWORD, 0); |
| |
| /* SYS_FUNC_EN 0x02[7:0] = 0xE2 reset BB state machine */ |
| rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2); |
| |
| /* Mac0 can not do Global reset. Mac1 can do. */ |
| /* SYS_FUNC_EN 0x02[7:0] = 0xE0 reset BB state machine */ |
| if (rtlpriv->rtlhal.interfaceindex == 1) |
| rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE0); |
| udelay(50); |
| |
| /* d. stop tx/rx dma before disable REG_CR (0x100) to fix */ |
| /* dma hang issue when disable/enable device. */ |
| rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0xff); |
| udelay(50); |
| rtl_write_byte(rtlpriv, REG_CR, 0x0); |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "==> Do power off.......\n"); |
| if (rtl92d_phy_check_poweroff(hw)) |
| _rtl92de_poweroff_adapter(hw); |
| return; |
| } |
| |
| void rtl92de_interrupt_recognized(struct ieee80211_hw *hw, |
| u32 *p_inta, u32 *p_intb) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); |
| |
| *p_inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0]; |
| rtl_write_dword(rtlpriv, ISR, *p_inta); |
| |
| /* |
| * *p_intb = rtl_read_dword(rtlpriv, REG_HISRE) & rtlpci->irq_mask[1]; |
| * rtl_write_dword(rtlpriv, ISR + 4, *p_intb); |
| */ |
| } |
| |
| void rtl92de_set_beacon_related_registers(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); |
| u16 bcn_interval, atim_window; |
| |
| bcn_interval = mac->beacon_interval; |
| atim_window = 2; |
| /*rtl92de_disable_interrupt(hw); */ |
| rtl_write_word(rtlpriv, REG_ATIMWND, atim_window); |
| rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval); |
| rtl_write_word(rtlpriv, REG_BCNTCFG, 0x660f); |
| rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_CCK, 0x20); |
| if (rtlpriv->rtlhal.current_bandtype == BAND_ON_5G) |
| rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x30); |
| else |
| rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x20); |
| rtl_write_byte(rtlpriv, 0x606, 0x30); |
| } |
| |
| void rtl92de_set_beacon_interval(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); |
| u16 bcn_interval = mac->beacon_interval; |
| |
| RT_TRACE(rtlpriv, COMP_BEACON, DBG_DMESG, |
| "beacon_interval:%d\n", bcn_interval); |
| /* rtl92de_disable_interrupt(hw); */ |
| rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval); |
| /* rtl92de_enable_interrupt(hw); */ |
| } |
| |
| void rtl92de_update_interrupt_mask(struct ieee80211_hw *hw, |
| u32 add_msr, u32 rm_msr) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); |
| |
| RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD, "add_msr:%x, rm_msr:%x\n", |
| add_msr, rm_msr); |
| if (add_msr) |
| rtlpci->irq_mask[0] |= add_msr; |
| if (rm_msr) |
| rtlpci->irq_mask[0] &= (~rm_msr); |
| rtl92de_disable_interrupt(hw); |
| rtl92de_enable_interrupt(hw); |
| } |
| |
| static void _rtl92de_readpowervalue_fromprom(struct txpower_info *pwrinfo, |
| u8 *rom_content, bool autoLoadfail) |
| { |
| u32 rfpath, eeaddr, group, offset1, offset2; |
| u8 i; |
| |
| memset(pwrinfo, 0, sizeof(struct txpower_info)); |
| if (autoLoadfail) { |
| for (group = 0; group < CHANNEL_GROUP_MAX; group++) { |
| for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) { |
| if (group < CHANNEL_GROUP_MAX_2G) { |
| pwrinfo->cck_index[rfpath][group] = |
| EEPROM_DEFAULT_TXPOWERLEVEL_2G; |
| pwrinfo->ht40_1sindex[rfpath][group] = |
| EEPROM_DEFAULT_TXPOWERLEVEL_2G; |
| } else { |
| pwrinfo->ht40_1sindex[rfpath][group] = |
| EEPROM_DEFAULT_TXPOWERLEVEL_5G; |
| } |
| pwrinfo->ht40_2sindexdiff[rfpath][group] = |
| EEPROM_DEFAULT_HT40_2SDIFF; |
| pwrinfo->ht20indexdiff[rfpath][group] = |
| EEPROM_DEFAULT_HT20_DIFF; |
| pwrinfo->ofdmindexdiff[rfpath][group] = |
| EEPROM_DEFAULT_LEGACYHTTXPOWERDIFF; |
| pwrinfo->ht40maxoffset[rfpath][group] = |
| EEPROM_DEFAULT_HT40_PWRMAXOFFSET; |
| pwrinfo->ht20maxoffset[rfpath][group] = |
| EEPROM_DEFAULT_HT20_PWRMAXOFFSET; |
| } |
| } |
| for (i = 0; i < 3; i++) { |
| pwrinfo->tssi_a[i] = EEPROM_DEFAULT_TSSI; |
| pwrinfo->tssi_b[i] = EEPROM_DEFAULT_TSSI; |
| } |
| return; |
| } |
| |
| /* Maybe autoload OK,buf the tx power index value is not filled. |
| * If we find it, we set it to default value. */ |
| for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) { |
| for (group = 0; group < CHANNEL_GROUP_MAX_2G; group++) { |
| eeaddr = EEPROM_CCK_TX_PWR_INX_2G + (rfpath * 3) |
| + group; |
| pwrinfo->cck_index[rfpath][group] = |
| (rom_content[eeaddr] == 0xFF) ? |
| (eeaddr > 0x7B ? |
| EEPROM_DEFAULT_TXPOWERLEVEL_5G : |
| EEPROM_DEFAULT_TXPOWERLEVEL_2G) : |
| rom_content[eeaddr]; |
| } |
| } |
| for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) { |
| for (group = 0; group < CHANNEL_GROUP_MAX; group++) { |
| offset1 = group / 3; |
| offset2 = group % 3; |
| eeaddr = EEPROM_HT40_1S_TX_PWR_INX_2G + (rfpath * 3) + |
| offset2 + offset1 * 21; |
| pwrinfo->ht40_1sindex[rfpath][group] = |
| (rom_content[eeaddr] == 0xFF) ? (eeaddr > 0x7B ? |
| EEPROM_DEFAULT_TXPOWERLEVEL_5G : |
| EEPROM_DEFAULT_TXPOWERLEVEL_2G) : |
| rom_content[eeaddr]; |
| } |
| } |
| /* These just for 92D efuse offset. */ |
| for (group = 0; group < CHANNEL_GROUP_MAX; group++) { |
| for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) { |
| int base1 = EEPROM_HT40_2S_TX_PWR_INX_DIFF_2G; |
| |
| offset1 = group / 3; |
| offset2 = group % 3; |
| |
| if (rom_content[base1 + offset2 + offset1 * 21] != 0xFF) |
| pwrinfo->ht40_2sindexdiff[rfpath][group] = |
| (rom_content[base1 + |
| offset2 + offset1 * 21] >> (rfpath * 4)) |
| & 0xF; |
| else |
| pwrinfo->ht40_2sindexdiff[rfpath][group] = |
| EEPROM_DEFAULT_HT40_2SDIFF; |
| if (rom_content[EEPROM_HT20_TX_PWR_INX_DIFF_2G + offset2 |
| + offset1 * 21] != 0xFF) |
| pwrinfo->ht20indexdiff[rfpath][group] = |
| (rom_content[EEPROM_HT20_TX_PWR_INX_DIFF_2G |
| + offset2 + offset1 * 21] >> (rfpath * 4)) |
| & 0xF; |
| else |
| pwrinfo->ht20indexdiff[rfpath][group] = |
| EEPROM_DEFAULT_HT20_DIFF; |
| if (rom_content[EEPROM_OFDM_TX_PWR_INX_DIFF_2G + offset2 |
| + offset1 * 21] != 0xFF) |
| pwrinfo->ofdmindexdiff[rfpath][group] = |
| (rom_content[EEPROM_OFDM_TX_PWR_INX_DIFF_2G |
| + offset2 + offset1 * 21] >> (rfpath * 4)) |
| & 0xF; |
| else |
| pwrinfo->ofdmindexdiff[rfpath][group] = |
| EEPROM_DEFAULT_LEGACYHTTXPOWERDIFF; |
| if (rom_content[EEPROM_HT40_MAX_PWR_OFFSET_2G + offset2 |
| + offset1 * 21] != 0xFF) |
| pwrinfo->ht40maxoffset[rfpath][group] = |
| (rom_content[EEPROM_HT40_MAX_PWR_OFFSET_2G |
| + offset2 + offset1 * 21] >> (rfpath * 4)) |
| & 0xF; |
| else |
| pwrinfo->ht40maxoffset[rfpath][group] = |
| EEPROM_DEFAULT_HT40_PWRMAXOFFSET; |
| if (rom_content[EEPROM_HT20_MAX_PWR_OFFSET_2G + offset2 |
| + offset1 * 21] != 0xFF) |
| pwrinfo->ht20maxoffset[rfpath][group] = |
| (rom_content[EEPROM_HT20_MAX_PWR_OFFSET_2G + |
| offset2 + offset1 * 21] >> (rfpath * 4)) & |
| 0xF; |
| else |
| pwrinfo->ht20maxoffset[rfpath][group] = |
| EEPROM_DEFAULT_HT20_PWRMAXOFFSET; |
| } |
| } |
| if (rom_content[EEPROM_TSSI_A_5G] != 0xFF) { |
| /* 5GL */ |
| pwrinfo->tssi_a[0] = rom_content[EEPROM_TSSI_A_5G] & 0x3F; |
| pwrinfo->tssi_b[0] = rom_content[EEPROM_TSSI_B_5G] & 0x3F; |
| /* 5GM */ |
| pwrinfo->tssi_a[1] = rom_content[EEPROM_TSSI_AB_5G] & 0x3F; |
| pwrinfo->tssi_b[1] = |
| (rom_content[EEPROM_TSSI_AB_5G] & 0xC0) >> 6 | |
| (rom_content[EEPROM_TSSI_AB_5G + 1] & 0x0F) << 2; |
| /* 5GH */ |
| pwrinfo->tssi_a[2] = (rom_content[EEPROM_TSSI_AB_5G + 1] & |
| 0xF0) >> 4 | |
| (rom_content[EEPROM_TSSI_AB_5G + 2] & 0x03) << 4; |
| pwrinfo->tssi_b[2] = (rom_content[EEPROM_TSSI_AB_5G + 2] & |
| 0xFC) >> 2; |
| } else { |
| for (i = 0; i < 3; i++) { |
| pwrinfo->tssi_a[i] = EEPROM_DEFAULT_TSSI; |
| pwrinfo->tssi_b[i] = EEPROM_DEFAULT_TSSI; |
| } |
| } |
| } |
| |
| static void _rtl92de_read_txpower_info(struct ieee80211_hw *hw, |
| bool autoload_fail, u8 *hwinfo) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); |
| struct txpower_info pwrinfo; |
| u8 tempval[2], i, pwr, diff; |
| u32 ch, rfPath, group; |
| |
| _rtl92de_readpowervalue_fromprom(&pwrinfo, hwinfo, autoload_fail); |
| if (!autoload_fail) { |
| /* bit0~2 */ |
| rtlefuse->eeprom_regulatory = (hwinfo[EEPROM_RF_OPT1] & 0x7); |
| rtlefuse->eeprom_thermalmeter = |
| hwinfo[EEPROM_THERMAL_METER] & 0x1f; |
| rtlefuse->crystalcap = hwinfo[EEPROM_XTAL_K]; |
| tempval[0] = hwinfo[EEPROM_IQK_DELTA] & 0x03; |
| tempval[1] = (hwinfo[EEPROM_LCK_DELTA] & 0x0C) >> 2; |
| rtlefuse->txpwr_fromeprom = true; |
| if (IS_92D_D_CUT(rtlpriv->rtlhal.version) || |
| IS_92D_E_CUT(rtlpriv->rtlhal.version)) { |
| rtlefuse->internal_pa_5g[0] = |
| !((hwinfo[EEPROM_TSSI_A_5G] & BIT(6)) >> 6); |
| rtlefuse->internal_pa_5g[1] = |
| !((hwinfo[EEPROM_TSSI_B_5G] & BIT(6)) >> 6); |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, |
| "Is D cut,Internal PA0 %d Internal PA1 %d\n", |
| rtlefuse->internal_pa_5g[0], |
| rtlefuse->internal_pa_5g[1]); |
| } |
| rtlefuse->eeprom_c9 = hwinfo[EEPROM_RF_OPT6]; |
| rtlefuse->eeprom_cc = hwinfo[EEPROM_RF_OPT7]; |
| } else { |
| rtlefuse->eeprom_regulatory = 0; |
| rtlefuse->eeprom_thermalmeter = EEPROM_DEFAULT_THERMALMETER; |
| rtlefuse->crystalcap = EEPROM_DEFAULT_CRYSTALCAP; |
| tempval[0] = tempval[1] = 3; |
| } |
| |
| /* Use default value to fill parameters if |
| * efuse is not filled on some place. */ |
| |
| /* ThermalMeter from EEPROM */ |
| if (rtlefuse->eeprom_thermalmeter < 0x06 || |
| rtlefuse->eeprom_thermalmeter > 0x1c) |
| rtlefuse->eeprom_thermalmeter = 0x12; |
| rtlefuse->thermalmeter[0] = rtlefuse->eeprom_thermalmeter; |
| |
| /* check XTAL_K */ |
| if (rtlefuse->crystalcap == 0xFF) |
| rtlefuse->crystalcap = 0; |
| if (rtlefuse->eeprom_regulatory > 3) |
| rtlefuse->eeprom_regulatory = 0; |
| |
| for (i = 0; i < 2; i++) { |
| switch (tempval[i]) { |
| case 0: |
| tempval[i] = 5; |
| break; |
| case 1: |
| tempval[i] = 4; |
| break; |
| case 2: |
| tempval[i] = 3; |
| break; |
| case 3: |
| default: |
| tempval[i] = 0; |
| break; |
| } |
| } |
| |
| rtlefuse->delta_iqk = tempval[0]; |
| if (tempval[1] > 0) |
| rtlefuse->delta_lck = tempval[1] - 1; |
| if (rtlefuse->eeprom_c9 == 0xFF) |
| rtlefuse->eeprom_c9 = 0x00; |
| RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD, |
| "EEPROMRegulatory = 0x%x\n", rtlefuse->eeprom_regulatory); |
| RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD, |
| "ThermalMeter = 0x%x\n", rtlefuse->eeprom_thermalmeter); |
| RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD, |
| "CrystalCap = 0x%x\n", rtlefuse->crystalcap); |
| RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD, |
| "Delta_IQK = 0x%x Delta_LCK = 0x%x\n", |
| rtlefuse->delta_iqk, rtlefuse->delta_lck); |
| |
| for (rfPath = 0; rfPath < RF6052_MAX_PATH; rfPath++) { |
| for (ch = 0; ch < CHANNEL_MAX_NUMBER; ch++) { |
| group = rtl92d_get_chnlgroup_fromarray((u8) ch); |
| if (ch < CHANNEL_MAX_NUMBER_2G) |
| rtlefuse->txpwrlevel_cck[rfPath][ch] = |
| pwrinfo.cck_index[rfPath][group]; |
| rtlefuse->txpwrlevel_ht40_1s[rfPath][ch] = |
| pwrinfo.ht40_1sindex[rfPath][group]; |
| rtlefuse->txpwr_ht20diff[rfPath][ch] = |
| pwrinfo.ht20indexdiff[rfPath][group]; |
| rtlefuse->txpwr_legacyhtdiff[rfPath][ch] = |
| pwrinfo.ofdmindexdiff[rfPath][group]; |
| rtlefuse->pwrgroup_ht20[rfPath][ch] = |
| pwrinfo.ht20maxoffset[rfPath][group]; |
| rtlefuse->pwrgroup_ht40[rfPath][ch] = |
| pwrinfo.ht40maxoffset[rfPath][group]; |
| pwr = pwrinfo.ht40_1sindex[rfPath][group]; |
| diff = pwrinfo.ht40_2sindexdiff[rfPath][group]; |
| rtlefuse->txpwrlevel_ht40_2s[rfPath][ch] = |
| (pwr > diff) ? (pwr - diff) : 0; |
| } |
| } |
| } |
| |
| static void _rtl92de_read_macphymode_from_prom(struct ieee80211_hw *hw, |
| u8 *content) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); |
| u8 macphy_crvalue = content[EEPROM_MAC_FUNCTION]; |
| |
| if (macphy_crvalue & BIT(3)) { |
| rtlhal->macphymode = SINGLEMAC_SINGLEPHY; |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, |
| "MacPhyMode SINGLEMAC_SINGLEPHY\n"); |
| } else { |
| rtlhal->macphymode = DUALMAC_DUALPHY; |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, |
| "MacPhyMode DUALMAC_DUALPHY\n"); |
| } |
| } |
| |
| static void _rtl92de_read_macphymode_and_bandtype(struct ieee80211_hw *hw, |
| u8 *content) |
| { |
| _rtl92de_read_macphymode_from_prom(hw, content); |
| rtl92d_phy_config_macphymode(hw); |
| rtl92d_phy_config_macphymode_info(hw); |
| } |
| |
| static void _rtl92de_efuse_update_chip_version(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| enum version_8192d chipver = rtlpriv->rtlhal.version; |
| u8 cutvalue[2]; |
| u16 chipvalue; |
| |
| rtlpriv->intf_ops->read_efuse_byte(hw, EEPROME_CHIP_VERSION_H, |
| &cutvalue[1]); |
| rtlpriv->intf_ops->read_efuse_byte(hw, EEPROME_CHIP_VERSION_L, |
| &cutvalue[0]); |
| chipvalue = (cutvalue[1] << 8) | cutvalue[0]; |
| switch (chipvalue) { |
| case 0xAA55: |
| chipver |= CHIP_92D_C_CUT; |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "C-CUT!!!\n"); |
| break; |
| case 0x9966: |
| chipver |= CHIP_92D_D_CUT; |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "D-CUT!!!\n"); |
| break; |
| default: |
| chipver |= CHIP_92D_D_CUT; |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG, "Unkown CUT!\n"); |
| break; |
| } |
| rtlpriv->rtlhal.version = chipver; |
| } |
| |
| static void _rtl92de_read_adapter_info(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); |
| struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); |
| u16 i, usvalue; |
| u8 hwinfo[HWSET_MAX_SIZE]; |
| u16 eeprom_id; |
| unsigned long flags; |
| |
| if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) { |
| spin_lock_irqsave(&globalmutex_for_power_and_efuse, flags); |
| rtl_efuse_shadow_map_update(hw); |
| _rtl92de_efuse_update_chip_version(hw); |
| spin_unlock_irqrestore(&globalmutex_for_power_and_efuse, flags); |
| memcpy((void *)hwinfo, (void *)&rtlefuse->efuse_map |
| [EFUSE_INIT_MAP][0], |
| HWSET_MAX_SIZE); |
| } else if (rtlefuse->epromtype == EEPROM_93C46) { |
| RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, |
| "RTL819X Not boot from eeprom, check it !!\n"); |
| } |
| RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, "MAP", |
| hwinfo, HWSET_MAX_SIZE); |
| |
| eeprom_id = *((u16 *)&hwinfo[0]); |
| if (eeprom_id != RTL8190_EEPROM_ID) { |
| RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, |
| "EEPROM ID(%#x) is invalid!!\n", eeprom_id); |
| rtlefuse->autoload_failflag = true; |
| } else { |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n"); |
| rtlefuse->autoload_failflag = false; |
| } |
| if (rtlefuse->autoload_failflag) { |
| RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, |
| "RTL819X Not boot from eeprom, check it !!\n"); |
| return; |
| } |
| rtlefuse->eeprom_oemid = *(u8 *)&hwinfo[EEPROM_CUSTOMER_ID]; |
| _rtl92de_read_macphymode_and_bandtype(hw, hwinfo); |
| |
| /* VID, DID SE 0xA-D */ |
| rtlefuse->eeprom_vid = *(u16 *)&hwinfo[EEPROM_VID]; |
| rtlefuse->eeprom_did = *(u16 *)&hwinfo[EEPROM_DID]; |
| rtlefuse->eeprom_svid = *(u16 *)&hwinfo[EEPROM_SVID]; |
| rtlefuse->eeprom_smid = *(u16 *)&hwinfo[EEPROM_SMID]; |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "EEPROMId = 0x%4x\n", eeprom_id); |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, |
| "EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid); |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, |
| "EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did); |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, |
| "EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid); |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, |
| "EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid); |
| |
| /* Read Permanent MAC address */ |
| if (rtlhal->interfaceindex == 0) { |
| for (i = 0; i < 6; i += 2) { |
| usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR_MAC0_92D + i]; |
| *((u16 *) (&rtlefuse->dev_addr[i])) = usvalue; |
| } |
| } else { |
| for (i = 0; i < 6; i += 2) { |
| usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR_MAC1_92D + i]; |
| *((u16 *) (&rtlefuse->dev_addr[i])) = usvalue; |
| } |
| } |
| rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR, |
| rtlefuse->dev_addr); |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr); |
| _rtl92de_read_txpower_info(hw, rtlefuse->autoload_failflag, hwinfo); |
| |
| /* Read Channel Plan */ |
| switch (rtlhal->bandset) { |
| case BAND_ON_2_4G: |
| rtlefuse->channel_plan = COUNTRY_CODE_TELEC; |
| break; |
| case BAND_ON_5G: |
| rtlefuse->channel_plan = COUNTRY_CODE_FCC; |
| break; |
| case BAND_ON_BOTH: |
| rtlefuse->channel_plan = COUNTRY_CODE_FCC; |
| break; |
| default: |
| rtlefuse->channel_plan = COUNTRY_CODE_FCC; |
| break; |
| } |
| rtlefuse->eeprom_version = *(u16 *)&hwinfo[EEPROM_VERSION]; |
| rtlefuse->txpwr_fromeprom = true; |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, |
| "EEPROM Customer ID: 0x%2x\n", rtlefuse->eeprom_oemid); |
| } |
| |
| void rtl92de_read_eeprom_info(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); |
| struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); |
| u8 tmp_u1b; |
| |
| rtlhal->version = _rtl92de_read_chip_version(hw); |
| tmp_u1b = rtl_read_byte(rtlpriv, REG_9346CR); |
| rtlefuse->autoload_status = tmp_u1b; |
| if (tmp_u1b & BIT(4)) { |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n"); |
| rtlefuse->epromtype = EEPROM_93C46; |
| } else { |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n"); |
| rtlefuse->epromtype = EEPROM_BOOT_EFUSE; |
| } |
| if (tmp_u1b & BIT(5)) { |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n"); |
| |
| rtlefuse->autoload_failflag = false; |
| _rtl92de_read_adapter_info(hw); |
| } else { |
| RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Autoload ERR!!\n"); |
| } |
| return; |
| } |
| |
| static void rtl92de_update_hal_rate_table(struct ieee80211_hw *hw, |
| struct ieee80211_sta *sta) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_phy *rtlphy = &(rtlpriv->phy); |
| struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); |
| struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); |
| u32 ratr_value; |
| u8 ratr_index = 0; |
| u8 nmode = mac->ht_enable; |
| u8 mimo_ps = IEEE80211_SMPS_OFF; |
| u16 shortgi_rate; |
| u32 tmp_ratr_value; |
| u8 curtxbw_40mhz = mac->bw_40; |
| u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ? |
| 1 : 0; |
| u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ? |
| 1 : 0; |
| enum wireless_mode wirelessmode = mac->mode; |
| |
| if (rtlhal->current_bandtype == BAND_ON_5G) |
| ratr_value = sta->supp_rates[1] << 4; |
| else |
| ratr_value = sta->supp_rates[0]; |
| ratr_value |= (sta->ht_cap.mcs.rx_mask[1] << 20 | |
| sta->ht_cap.mcs.rx_mask[0] << 12); |
| switch (wirelessmode) { |
| case WIRELESS_MODE_A: |
| ratr_value &= 0x00000FF0; |
| break; |
| case WIRELESS_MODE_B: |
| if (ratr_value & 0x0000000c) |
| ratr_value &= 0x0000000d; |
| else |
| ratr_value &= 0x0000000f; |
| break; |
| case WIRELESS_MODE_G: |
| ratr_value &= 0x00000FF5; |
| break; |
| case WIRELESS_MODE_N_24G: |
| case WIRELESS_MODE_N_5G: |
| nmode = 1; |
| if (mimo_ps == IEEE80211_SMPS_STATIC) { |
| ratr_value &= 0x0007F005; |
| } else { |
| u32 ratr_mask; |
| |
| if (get_rf_type(rtlphy) == RF_1T2R || |
| get_rf_type(rtlphy) == RF_1T1R) { |
| ratr_mask = 0x000ff005; |
| } else { |
| ratr_mask = 0x0f0ff005; |
| } |
| |
| ratr_value &= ratr_mask; |
| } |
| break; |
| default: |
| if (rtlphy->rf_type == RF_1T2R) |
| ratr_value &= 0x000ff0ff; |
| else |
| ratr_value &= 0x0f0ff0ff; |
| |
| break; |
| } |
| ratr_value &= 0x0FFFFFFF; |
| if (nmode && ((curtxbw_40mhz && curshortgi_40mhz) || |
| (!curtxbw_40mhz && curshortgi_20mhz))) { |
| ratr_value |= 0x10000000; |
| tmp_ratr_value = (ratr_value >> 12); |
| for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) { |
| if ((1 << shortgi_rate) & tmp_ratr_value) |
| break; |
| } |
| shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) | |
| (shortgi_rate << 4) | (shortgi_rate); |
| } |
| rtl_write_dword(rtlpriv, REG_ARFR0 + ratr_index * 4, ratr_value); |
| RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, "%x\n", |
| rtl_read_dword(rtlpriv, REG_ARFR0)); |
| } |
| |
| static void rtl92de_update_hal_rate_mask(struct ieee80211_hw *hw, |
| struct ieee80211_sta *sta, u8 rssi_level) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_phy *rtlphy = &(rtlpriv->phy); |
| struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); |
| struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); |
| struct rtl_sta_info *sta_entry = NULL; |
| u32 ratr_bitmap; |
| u8 ratr_index; |
| u8 curtxbw_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40) |
| ? 1 : 0; |
| u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ? |
| 1 : 0; |
| u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ? |
| 1 : 0; |
| enum wireless_mode wirelessmode = 0; |
| bool shortgi = false; |
| u32 value[2]; |
| u8 macid = 0; |
| u8 mimo_ps = IEEE80211_SMPS_OFF; |
| |
| sta_entry = (struct rtl_sta_info *) sta->drv_priv; |
| mimo_ps = sta_entry->mimo_ps; |
| wirelessmode = sta_entry->wireless_mode; |
| if (mac->opmode == NL80211_IFTYPE_STATION) |
| curtxbw_40mhz = mac->bw_40; |
| else if (mac->opmode == NL80211_IFTYPE_AP || |
| mac->opmode == NL80211_IFTYPE_ADHOC) |
| macid = sta->aid + 1; |
| |
| if (rtlhal->current_bandtype == BAND_ON_5G) |
| ratr_bitmap = sta->supp_rates[1] << 4; |
| else |
| ratr_bitmap = sta->supp_rates[0]; |
| ratr_bitmap |= (sta->ht_cap.mcs.rx_mask[1] << 20 | |
| sta->ht_cap.mcs.rx_mask[0] << 12); |
| switch (wirelessmode) { |
| case WIRELESS_MODE_B: |
| ratr_index = RATR_INX_WIRELESS_B; |
| if (ratr_bitmap & 0x0000000c) |
| ratr_bitmap &= 0x0000000d; |
| else |
| ratr_bitmap &= 0x0000000f; |
| break; |
| case WIRELESS_MODE_G: |
| ratr_index = RATR_INX_WIRELESS_GB; |
| |
| if (rssi_level == 1) |
| ratr_bitmap &= 0x00000f00; |
| else if (rssi_level == 2) |
| ratr_bitmap &= 0x00000ff0; |
| else |
| ratr_bitmap &= 0x00000ff5; |
| break; |
| case WIRELESS_MODE_A: |
| ratr_index = RATR_INX_WIRELESS_G; |
| ratr_bitmap &= 0x00000ff0; |
| break; |
| case WIRELESS_MODE_N_24G: |
| case WIRELESS_MODE_N_5G: |
| if (wirelessmode == WIRELESS_MODE_N_24G) |
| ratr_index = RATR_INX_WIRELESS_NGB; |
| else |
| ratr_index = RATR_INX_WIRELESS_NG; |
| if (mimo_ps == IEEE80211_SMPS_STATIC) { |
| if (rssi_level == 1) |
| ratr_bitmap &= 0x00070000; |
| else if (rssi_level == 2) |
| ratr_bitmap &= 0x0007f000; |
| else |
| ratr_bitmap &= 0x0007f005; |
| } else { |
| if (rtlphy->rf_type == RF_1T2R || |
| rtlphy->rf_type == RF_1T1R) { |
| if (curtxbw_40mhz) { |
| if (rssi_level == 1) |
| ratr_bitmap &= 0x000f0000; |
| else if (rssi_level == 2) |
| ratr_bitmap &= 0x000ff000; |
| else |
| ratr_bitmap &= 0x000ff015; |
| } else { |
| if (rssi_level == 1) |
| ratr_bitmap &= 0x000f0000; |
| else if (rssi_level == 2) |
| ratr_bitmap &= 0x000ff000; |
| else |
| ratr_bitmap &= 0x000ff005; |
| } |
| } else { |
| if (curtxbw_40mhz) { |
| if (rssi_level == 1) |
| ratr_bitmap &= 0x0f0f0000; |
| else if (rssi_level == 2) |
| ratr_bitmap &= 0x0f0ff000; |
| else |
| ratr_bitmap &= 0x0f0ff015; |
| } else { |
| if (rssi_level == 1) |
| ratr_bitmap &= 0x0f0f0000; |
| else if (rssi_level == 2) |
| ratr_bitmap &= 0x0f0ff000; |
| else |
| ratr_bitmap &= 0x0f0ff005; |
| } |
| } |
| } |
| if ((curtxbw_40mhz && curshortgi_40mhz) || |
| (!curtxbw_40mhz && curshortgi_20mhz)) { |
| |
| if (macid == 0) |
| shortgi = true; |
| else if (macid == 1) |
| shortgi = false; |
| } |
| break; |
| default: |
| ratr_index = RATR_INX_WIRELESS_NGB; |
| |
| if (rtlphy->rf_type == RF_1T2R) |
| ratr_bitmap &= 0x000ff0ff; |
| else |
| ratr_bitmap &= 0x0f0ff0ff; |
| break; |
| } |
| |
| value[0] = (ratr_bitmap & 0x0fffffff) | (ratr_index << 28); |
| value[1] = macid | (shortgi ? 0x20 : 0x00) | 0x80; |
| RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, |
| "ratr_bitmap :%x value0:%x value1:%x\n", |
| ratr_bitmap, value[0], value[1]); |
| rtl92d_fill_h2c_cmd(hw, H2C_RA_MASK, 5, (u8 *) value); |
| if (macid != 0) |
| sta_entry->ratr_index = ratr_index; |
| } |
| |
| void rtl92de_update_hal_rate_tbl(struct ieee80211_hw *hw, |
| struct ieee80211_sta *sta, u8 rssi_level) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| |
| if (rtlpriv->dm.useramask) |
| rtl92de_update_hal_rate_mask(hw, sta, rssi_level); |
| else |
| rtl92de_update_hal_rate_table(hw, sta); |
| } |
| |
| void rtl92de_update_channel_access_setting(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); |
| u16 sifs_timer; |
| |
| rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME, |
| (u8 *)&mac->slot_time); |
| if (!mac->ht_enable) |
| sifs_timer = 0x0a0a; |
| else |
| sifs_timer = 0x1010; |
| rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer); |
| } |
| |
| bool rtl92de_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); |
| struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); |
| enum rf_pwrstate e_rfpowerstate_toset; |
| u8 u1tmp; |
| bool actuallyset = false; |
| unsigned long flag; |
| |
| if (rtlpci->being_init_adapter) |
| return false; |
| if (ppsc->swrf_processing) |
| return false; |
| spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag); |
| if (ppsc->rfchange_inprogress) { |
| spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag); |
| return false; |
| } else { |
| ppsc->rfchange_inprogress = true; |
| spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag); |
| } |
| rtl_write_byte(rtlpriv, REG_MAC_PINMUX_CFG, rtl_read_byte(rtlpriv, |
| REG_MAC_PINMUX_CFG) & ~(BIT(3))); |
| u1tmp = rtl_read_byte(rtlpriv, REG_GPIO_IO_SEL); |
| e_rfpowerstate_toset = (u1tmp & BIT(3)) ? ERFON : ERFOFF; |
| if (ppsc->hwradiooff && (e_rfpowerstate_toset == ERFON)) { |
| RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG, |
| "GPIOChangeRF - HW Radio ON, RF ON\n"); |
| e_rfpowerstate_toset = ERFON; |
| ppsc->hwradiooff = false; |
| actuallyset = true; |
| } else if ((ppsc->hwradiooff == false) |
| && (e_rfpowerstate_toset == ERFOFF)) { |
| RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG, |
| "GPIOChangeRF - HW Radio OFF, RF OFF\n"); |
| e_rfpowerstate_toset = ERFOFF; |
| ppsc->hwradiooff = true; |
| actuallyset = true; |
| } |
| if (actuallyset) { |
| spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag); |
| ppsc->rfchange_inprogress = false; |
| spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag); |
| } else { |
| if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC) |
| RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC); |
| spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag); |
| ppsc->rfchange_inprogress = false; |
| spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag); |
| } |
| *valid = 1; |
| return !ppsc->hwradiooff; |
| } |
| |
| void rtl92de_set_key(struct ieee80211_hw *hw, u32 key_index, |
| u8 *p_macaddr, bool is_group, u8 enc_algo, |
| bool is_wepkey, bool clear_all) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); |
| struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); |
| u8 *macaddr = p_macaddr; |
| u32 entry_id; |
| bool is_pairwise = false; |
| static u8 cam_const_addr[4][6] = { |
| {0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, |
| {0x00, 0x00, 0x00, 0x00, 0x00, 0x01}, |
| {0x00, 0x00, 0x00, 0x00, 0x00, 0x02}, |
| {0x00, 0x00, 0x00, 0x00, 0x00, 0x03} |
| }; |
| static u8 cam_const_broad[] = { |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff |
| }; |
| |
| if (clear_all) { |
| u8 idx; |
| u8 cam_offset = 0; |
| u8 clear_number = 5; |
| RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n"); |
| for (idx = 0; idx < clear_number; idx++) { |
| rtl_cam_mark_invalid(hw, cam_offset + idx); |
| rtl_cam_empty_entry(hw, cam_offset + idx); |
| |
| if (idx < 5) { |
| memset(rtlpriv->sec.key_buf[idx], 0, |
| MAX_KEY_LEN); |
| rtlpriv->sec.key_len[idx] = 0; |
| } |
| } |
| } else { |
| switch (enc_algo) { |
| case WEP40_ENCRYPTION: |
| enc_algo = CAM_WEP40; |
| break; |
| case WEP104_ENCRYPTION: |
| enc_algo = CAM_WEP104; |
| break; |
| case TKIP_ENCRYPTION: |
| enc_algo = CAM_TKIP; |
| break; |
| case AESCCMP_ENCRYPTION: |
| enc_algo = CAM_AES; |
| break; |
| default: |
| RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, |
| "switch case not processed\n"); |
| enc_algo = CAM_TKIP; |
| break; |
| } |
| if (is_wepkey || rtlpriv->sec.use_defaultkey) { |
| macaddr = cam_const_addr[key_index]; |
| entry_id = key_index; |
| } else { |
| if (is_group) { |
| macaddr = cam_const_broad; |
| entry_id = key_index; |
| } else { |
| if (mac->opmode == NL80211_IFTYPE_AP) { |
| entry_id = rtl_cam_get_free_entry(hw, |
| p_macaddr); |
| if (entry_id >= TOTAL_CAM_ENTRY) { |
| RT_TRACE(rtlpriv, COMP_SEC, |
| DBG_EMERG, |
| "Can not find free hw security cam entry\n"); |
| return; |
| } |
| } else { |
| entry_id = CAM_PAIRWISE_KEY_POSITION; |
| } |
| key_index = PAIRWISE_KEYIDX; |
| is_pairwise = true; |
| } |
| } |
| if (rtlpriv->sec.key_len[key_index] == 0) { |
| RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, |
| "delete one entry, entry_id is %d\n", |
| entry_id); |
| if (mac->opmode == NL80211_IFTYPE_AP) |
| rtl_cam_del_entry(hw, p_macaddr); |
| rtl_cam_delete_one_entry(hw, p_macaddr, entry_id); |
| } else { |
| RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD, |
| "The insert KEY length is %d\n", |
| rtlpriv->sec.key_len[PAIRWISE_KEYIDX]); |
| RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD, |
| "The insert KEY is %x %x\n", |
| rtlpriv->sec.key_buf[0][0], |
| rtlpriv->sec.key_buf[0][1]); |
| RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, |
| "add one entry\n"); |
| if (is_pairwise) { |
| RT_PRINT_DATA(rtlpriv, COMP_SEC, DBG_LOUD, |
| "Pairwise Key content", |
| rtlpriv->sec.pairwise_key, |
| rtlpriv-> |
| sec.key_len[PAIRWISE_KEYIDX]); |
| RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, |
| "set Pairwise key\n"); |
| rtl_cam_add_one_entry(hw, macaddr, key_index, |
| entry_id, enc_algo, |
| CAM_CONFIG_NO_USEDK, |
| rtlpriv-> |
| sec.key_buf[key_index]); |
| } else { |
| RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, |
| "set group key\n"); |
| if (mac->opmode == NL80211_IFTYPE_ADHOC) { |
| rtl_cam_add_one_entry(hw, |
| rtlefuse->dev_addr, |
| PAIRWISE_KEYIDX, |
| CAM_PAIRWISE_KEY_POSITION, |
| enc_algo, CAM_CONFIG_NO_USEDK, |
| rtlpriv->sec.key_buf[entry_id]); |
| } |
| rtl_cam_add_one_entry(hw, macaddr, key_index, |
| entry_id, enc_algo, |
| CAM_CONFIG_NO_USEDK, |
| rtlpriv->sec.key_buf |
| [entry_id]); |
| } |
| } |
| } |
| } |
| |
| void rtl92de_suspend(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| |
| rtlpriv->rtlhal.macphyctl_reg = rtl_read_byte(rtlpriv, |
| REG_MAC_PHY_CTRL_NORMAL); |
| } |
| |
| void rtl92de_resume(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| |
| rtl_write_byte(rtlpriv, REG_MAC_PHY_CTRL_NORMAL, |
| rtlpriv->rtlhal.macphyctl_reg); |
| } |