| /* $Id: uaccess.h,v 1.11 2003/10/13 07:21:20 lethal Exp $ |
| * |
| * User space memory access functions |
| * |
| * Copyright (C) 1999, 2002 Niibe Yutaka |
| * Copyright (C) 2003 Paul Mundt |
| * |
| * Based on: |
| * MIPS implementation version 1.15 by |
| * Copyright (C) 1996, 1997, 1998 by Ralf Baechle |
| * and i386 version. |
| */ |
| #ifndef __ASM_SH_UACCESS_H |
| #define __ASM_SH_UACCESS_H |
| |
| #include <linux/errno.h> |
| #include <linux/sched.h> |
| |
| /* |
| * NOTE: Macro/functions in this file depends on threads_info.h implementation. |
| * Assumes: |
| * TI_FLAGS == 8 |
| * TIF_USERSPACE == 31 |
| * USER_ADDR_LIMIT == 0x80000000 |
| */ |
| |
| #define VERIFY_READ 0 |
| #define VERIFY_WRITE 1 |
| |
| typedef struct { |
| unsigned int is_user_space; |
| } mm_segment_t; |
| |
| /* |
| * The fs value determines whether argument validity checking should be |
| * performed or not. If get_fs() == USER_DS, checking is performed, with |
| * get_fs() == KERNEL_DS, checking is bypassed. |
| * |
| * For historical reasons (Data Segment Register?), these macros are misnamed. |
| */ |
| |
| #define MAKE_MM_SEG(s) ((mm_segment_t) { (s) }) |
| #define segment_eq(a,b) ((a).is_user_space == (b).is_user_space) |
| |
| #define USER_ADDR_LIMIT 0x80000000 |
| |
| #define KERNEL_DS MAKE_MM_SEG(0) |
| #define USER_DS MAKE_MM_SEG(1) |
| |
| #define get_ds() (KERNEL_DS) |
| |
| #if !defined(CONFIG_MMU) |
| static inline mm_segment_t get_fs(void) |
| { |
| return USER_DS; |
| } |
| |
| static inline void set_fs(mm_segment_t s) |
| { |
| } |
| |
| /* |
| * __access_ok: Check if address with size is OK or not. |
| * |
| * If we don't have an MMU (or if its disabled) the only thing we really have |
| * to look out for is if the address resides somewhere outside of what |
| * available RAM we have. |
| * |
| * TODO: This check could probably also stand to be restricted somewhat more.. |
| * though it still does the Right Thing(tm) for the time being. |
| */ |
| static inline int __access_ok(unsigned long addr, unsigned long size) |
| { |
| extern unsigned long memory_start, memory_end; |
| |
| return ((addr >= memory_start) && ((addr + size) < memory_end)); |
| } |
| #else /* CONFIG_MMU */ |
| static inline mm_segment_t get_fs(void) |
| { |
| return MAKE_MM_SEG(test_thread_flag(TIF_USERSPACE)); |
| } |
| |
| static inline void set_fs(mm_segment_t s) |
| { |
| unsigned long ti, flag; |
| __asm__ __volatile__( |
| "stc r7_bank, %0\n\t" |
| "mov.l @(8,%0), %1\n\t" |
| "shal %1\n\t" |
| "cmp/pl %2\n\t" |
| "rotcr %1\n\t" |
| "mov.l %1, @(8,%0)" |
| : "=&r" (ti), "=&r" (flag) |
| : "r" (s.is_user_space) |
| : "t"); |
| /**** |
| if (s.is_user_space) |
| set_thread_flag(TIF_USERSPACE); |
| else |
| clear_thread_flag(TIF_USERSPACE); |
| ****/ |
| } |
| |
| /* |
| * __access_ok: Check if address with size is OK or not. |
| * |
| * We do three checks: |
| * (1) is it user space? |
| * (2) addr + size --> carry? |
| * (3) addr + size >= 0x80000000 (USER_ADDR_LIMIT) |
| * |
| * (1) (2) (3) | RESULT |
| * 0 0 0 | ok |
| * 0 0 1 | ok |
| * 0 1 0 | bad |
| * 0 1 1 | bad |
| * 1 0 0 | ok |
| * 1 0 1 | bad |
| * 1 1 0 | bad |
| * 1 1 1 | bad |
| */ |
| static inline int __access_ok(unsigned long addr, unsigned long size) |
| { |
| unsigned long flag, tmp; |
| |
| __asm__("stc r7_bank, %0\n\t" |
| "mov.l @(8,%0), %0\n\t" |
| "clrt\n\t" |
| "addc %2, %1\n\t" |
| "and %1, %0\n\t" |
| "rotcl %0\n\t" |
| "rotcl %0\n\t" |
| "and #3, %0" |
| : "=&z" (flag), "=r" (tmp) |
| : "r" (addr), "1" (size) |
| : "t"); |
| |
| return flag == 0; |
| } |
| #endif /* CONFIG_MMU */ |
| |
| static inline int access_ok(int type, const void __user *p, unsigned long size) |
| { |
| unsigned long addr = (unsigned long)p; |
| return __access_ok(addr, size); |
| } |
| |
| /* |
| * Uh, these should become the main single-value transfer routines ... |
| * They automatically use the right size if we just have the right |
| * pointer type ... |
| * |
| * As SuperH uses the same address space for kernel and user data, we |
| * can just do these as direct assignments. |
| * |
| * Careful to not |
| * (a) re-use the arguments for side effects (sizeof is ok) |
| * (b) require any knowledge of processes at this stage |
| */ |
| #define put_user(x,ptr) __put_user_check((x),(ptr),sizeof(*(ptr))) |
| #define get_user(x,ptr) __get_user_check((x),(ptr),sizeof(*(ptr))) |
| |
| /* |
| * The "__xxx" versions do not do address space checking, useful when |
| * doing multiple accesses to the same area (the user has to do the |
| * checks by hand with "access_ok()") |
| */ |
| #define __put_user(x,ptr) \ |
| __put_user_nocheck((__typeof__(*(ptr)))(x),(ptr),sizeof(*(ptr))) |
| #define __get_user(x,ptr) \ |
| __get_user_nocheck((x),(ptr),sizeof(*(ptr))) |
| |
| struct __large_struct { unsigned long buf[100]; }; |
| #define __m(x) (*(struct __large_struct *)(x)) |
| |
| #define __get_user_size(x,ptr,size,retval) \ |
| do { \ |
| retval = 0; \ |
| switch (size) { \ |
| case 1: \ |
| __get_user_asm(x, ptr, retval, "b"); \ |
| break; \ |
| case 2: \ |
| __get_user_asm(x, ptr, retval, "w"); \ |
| break; \ |
| case 4: \ |
| __get_user_asm(x, ptr, retval, "l"); \ |
| break; \ |
| default: \ |
| __get_user_unknown(); \ |
| break; \ |
| } \ |
| } while (0) |
| |
| #define __get_user_nocheck(x,ptr,size) \ |
| ({ \ |
| long __gu_err, __gu_val; \ |
| __get_user_size(__gu_val, (ptr), (size), __gu_err); \ |
| (x) = (__typeof__(*(ptr)))__gu_val; \ |
| __gu_err; \ |
| }) |
| |
| #define __get_user_check(x,ptr,size) \ |
| ({ \ |
| long __gu_err, __gu_val; \ |
| switch (size) { \ |
| case 1: \ |
| __get_user_1(__gu_val, (ptr), __gu_err); \ |
| break; \ |
| case 2: \ |
| __get_user_2(__gu_val, (ptr), __gu_err); \ |
| break; \ |
| case 4: \ |
| __get_user_4(__gu_val, (ptr), __gu_err); \ |
| break; \ |
| default: \ |
| __get_user_unknown(); \ |
| break; \ |
| } \ |
| \ |
| (x) = (__typeof__(*(ptr)))__gu_val; \ |
| __gu_err; \ |
| }) |
| |
| #define __get_user_1(x,addr,err) ({ \ |
| __asm__("stc r7_bank, %1\n\t" \ |
| "mov.l @(8,%1), %1\n\t" \ |
| "and %2, %1\n\t" \ |
| "cmp/pz %1\n\t" \ |
| "bt/s 1f\n\t" \ |
| " mov #0, %0\n\t" \ |
| "0:\n" \ |
| "mov #-14, %0\n\t" \ |
| "bra 2f\n\t" \ |
| " mov #0, %1\n" \ |
| "1:\n\t" \ |
| "mov.b @%2, %1\n\t" \ |
| "extu.b %1, %1\n" \ |
| "2:\n" \ |
| ".section __ex_table,\"a\"\n\t" \ |
| ".long 1b, 0b\n\t" \ |
| ".previous" \ |
| : "=&r" (err), "=&r" (x) \ |
| : "r" (addr) \ |
| : "t"); \ |
| }) |
| |
| #define __get_user_2(x,addr,err) ({ \ |
| __asm__("stc r7_bank, %1\n\t" \ |
| "mov.l @(8,%1), %1\n\t" \ |
| "and %2, %1\n\t" \ |
| "cmp/pz %1\n\t" \ |
| "bt/s 1f\n\t" \ |
| " mov #0, %0\n\t" \ |
| "0:\n" \ |
| "mov #-14, %0\n\t" \ |
| "bra 2f\n\t" \ |
| " mov #0, %1\n" \ |
| "1:\n\t" \ |
| "mov.w @%2, %1\n\t" \ |
| "extu.w %1, %1\n" \ |
| "2:\n" \ |
| ".section __ex_table,\"a\"\n\t" \ |
| ".long 1b, 0b\n\t" \ |
| ".previous" \ |
| : "=&r" (err), "=&r" (x) \ |
| : "r" (addr) \ |
| : "t"); \ |
| }) |
| |
| #define __get_user_4(x,addr,err) ({ \ |
| __asm__("stc r7_bank, %1\n\t" \ |
| "mov.l @(8,%1), %1\n\t" \ |
| "and %2, %1\n\t" \ |
| "cmp/pz %1\n\t" \ |
| "bt/s 1f\n\t" \ |
| " mov #0, %0\n\t" \ |
| "0:\n" \ |
| "mov #-14, %0\n\t" \ |
| "bra 2f\n\t" \ |
| " mov #0, %1\n" \ |
| "1:\n\t" \ |
| "mov.l @%2, %1\n\t" \ |
| "2:\n" \ |
| ".section __ex_table,\"a\"\n\t" \ |
| ".long 1b, 0b\n\t" \ |
| ".previous" \ |
| : "=&r" (err), "=&r" (x) \ |
| : "r" (addr) \ |
| : "t"); \ |
| }) |
| |
| #define __get_user_asm(x, addr, err, insn) \ |
| ({ \ |
| __asm__ __volatile__( \ |
| "1:\n\t" \ |
| "mov." insn " %2, %1\n\t" \ |
| "mov #0, %0\n" \ |
| "2:\n" \ |
| ".section .fixup,\"ax\"\n" \ |
| "3:\n\t" \ |
| "mov #0, %1\n\t" \ |
| "mov.l 4f, %0\n\t" \ |
| "jmp @%0\n\t" \ |
| " mov %3, %0\n" \ |
| "4: .long 2b\n\t" \ |
| ".previous\n" \ |
| ".section __ex_table,\"a\"\n\t" \ |
| ".long 1b, 3b\n\t" \ |
| ".previous" \ |
| :"=&r" (err), "=&r" (x) \ |
| :"m" (__m(addr)), "i" (-EFAULT)); }) |
| |
| extern void __get_user_unknown(void); |
| |
| #define __put_user_size(x,ptr,size,retval) \ |
| do { \ |
| retval = 0; \ |
| switch (size) { \ |
| case 1: \ |
| __put_user_asm(x, ptr, retval, "b"); \ |
| break; \ |
| case 2: \ |
| __put_user_asm(x, ptr, retval, "w"); \ |
| break; \ |
| case 4: \ |
| __put_user_asm(x, ptr, retval, "l"); \ |
| break; \ |
| case 8: \ |
| __put_user_u64(x, ptr, retval); \ |
| break; \ |
| default: \ |
| __put_user_unknown(); \ |
| } \ |
| } while (0) |
| |
| #define __put_user_nocheck(x,ptr,size) \ |
| ({ \ |
| long __pu_err; \ |
| __put_user_size((x),(ptr),(size),__pu_err); \ |
| __pu_err; \ |
| }) |
| |
| #define __put_user_check(x,ptr,size) \ |
| ({ \ |
| long __pu_err = -EFAULT; \ |
| __typeof__(*(ptr)) *__pu_addr = (ptr); \ |
| \ |
| if (__access_ok((unsigned long)__pu_addr,size)) \ |
| __put_user_size((x),__pu_addr,(size),__pu_err); \ |
| __pu_err; \ |
| }) |
| |
| #define __put_user_asm(x, addr, err, insn) \ |
| ({ \ |
| __asm__ __volatile__( \ |
| "1:\n\t" \ |
| "mov." insn " %1, %2\n\t" \ |
| "mov #0, %0\n" \ |
| "2:\n" \ |
| ".section .fixup,\"ax\"\n" \ |
| "3:\n\t" \ |
| "nop\n\t" \ |
| "mov.l 4f, %0\n\t" \ |
| "jmp @%0\n\t" \ |
| "mov %3, %0\n" \ |
| "4: .long 2b\n\t" \ |
| ".previous\n" \ |
| ".section __ex_table,\"a\"\n\t" \ |
| ".long 1b, 3b\n\t" \ |
| ".previous" \ |
| :"=&r" (err) \ |
| :"r" (x), "m" (__m(addr)), "i" (-EFAULT) \ |
| :"memory"); }) |
| |
| #if defined(__LITTLE_ENDIAN__) |
| #define __put_user_u64(val,addr,retval) \ |
| ({ \ |
| __asm__ __volatile__( \ |
| "1:\n\t" \ |
| "mov.l %R1,%2\n\t" \ |
| "mov.l %S1,%T2\n\t" \ |
| "mov #0,%0\n" \ |
| "2:\n" \ |
| ".section .fixup,\"ax\"\n" \ |
| "3:\n\t" \ |
| "nop\n\t" \ |
| "mov.l 4f,%0\n\t" \ |
| "jmp @%0\n\t" \ |
| " mov %3,%0\n" \ |
| "4: .long 2b\n\t" \ |
| ".previous\n" \ |
| ".section __ex_table,\"a\"\n\t" \ |
| ".long 1b, 3b\n\t" \ |
| ".previous" \ |
| : "=r" (retval) \ |
| : "r" (val), "m" (__m(addr)), "i" (-EFAULT) \ |
| : "memory"); }) |
| #else |
| #define __put_user_u64(val,addr,retval) \ |
| ({ \ |
| __asm__ __volatile__( \ |
| "1:\n\t" \ |
| "mov.l %S1,%2\n\t" \ |
| "mov.l %R1,%T2\n\t" \ |
| "mov #0,%0\n" \ |
| "2:\n" \ |
| ".section .fixup,\"ax\"\n" \ |
| "3:\n\t" \ |
| "nop\n\t" \ |
| "mov.l 4f,%0\n\t" \ |
| "jmp @%0\n\t" \ |
| " mov %3,%0\n" \ |
| "4: .long 2b\n\t" \ |
| ".previous\n" \ |
| ".section __ex_table,\"a\"\n\t" \ |
| ".long 1b, 3b\n\t" \ |
| ".previous" \ |
| : "=r" (retval) \ |
| : "r" (val), "m" (__m(addr)), "i" (-EFAULT) \ |
| : "memory"); }) |
| #endif |
| |
| extern void __put_user_unknown(void); |
| |
| /* Generic arbitrary sized copy. */ |
| /* Return the number of bytes NOT copied */ |
| extern __kernel_size_t __copy_user(void *to, const void *from, __kernel_size_t n); |
| |
| #define copy_to_user(to,from,n) ({ \ |
| void *__copy_to = (void *) (to); \ |
| __kernel_size_t __copy_size = (__kernel_size_t) (n); \ |
| __kernel_size_t __copy_res; \ |
| if(__copy_size && __access_ok((unsigned long)__copy_to, __copy_size)) { \ |
| __copy_res = __copy_user(__copy_to, (void *) (from), __copy_size); \ |
| } else __copy_res = __copy_size; \ |
| __copy_res; }) |
| |
| #define __copy_to_user(to,from,n) \ |
| __copy_user((void *)(to), \ |
| (void *)(from), n) |
| |
| #define __copy_to_user_inatomic __copy_to_user |
| #define __copy_from_user_inatomic __copy_from_user |
| |
| |
| #define copy_from_user(to,from,n) ({ \ |
| void *__copy_to = (void *) (to); \ |
| void *__copy_from = (void *) (from); \ |
| __kernel_size_t __copy_size = (__kernel_size_t) (n); \ |
| __kernel_size_t __copy_res; \ |
| if(__copy_size && __access_ok((unsigned long)__copy_from, __copy_size)) { \ |
| __copy_res = __copy_user(__copy_to, __copy_from, __copy_size); \ |
| } else __copy_res = __copy_size; \ |
| __copy_res; }) |
| |
| #define __copy_from_user(to,from,n) \ |
| __copy_user((void *)(to), \ |
| (void *)(from), n) |
| |
| /* |
| * Clear the area and return remaining number of bytes |
| * (on failure. Usually it's 0.) |
| */ |
| extern __kernel_size_t __clear_user(void *addr, __kernel_size_t size); |
| |
| #define clear_user(addr,n) ({ \ |
| void * __cl_addr = (addr); \ |
| unsigned long __cl_size = (n); \ |
| if (__cl_size && __access_ok(((unsigned long)(__cl_addr)), __cl_size)) \ |
| __cl_size = __clear_user(__cl_addr, __cl_size); \ |
| __cl_size; }) |
| |
| static __inline__ int |
| __strncpy_from_user(unsigned long __dest, unsigned long __user __src, int __count) |
| { |
| __kernel_size_t res; |
| unsigned long __dummy, _d, _s; |
| |
| __asm__ __volatile__( |
| "9:\n" |
| "mov.b @%2+, %1\n\t" |
| "cmp/eq #0, %1\n\t" |
| "bt/s 2f\n" |
| "1:\n" |
| "mov.b %1, @%3\n\t" |
| "dt %7\n\t" |
| "bf/s 9b\n\t" |
| " add #1, %3\n\t" |
| "2:\n\t" |
| "sub %7, %0\n" |
| "3:\n" |
| ".section .fixup,\"ax\"\n" |
| "4:\n\t" |
| "mov.l 5f, %1\n\t" |
| "jmp @%1\n\t" |
| " mov %8, %0\n\t" |
| ".balign 4\n" |
| "5: .long 3b\n" |
| ".previous\n" |
| ".section __ex_table,\"a\"\n" |
| " .balign 4\n" |
| " .long 9b,4b\n" |
| ".previous" |
| : "=r" (res), "=&z" (__dummy), "=r" (_s), "=r" (_d) |
| : "0" (__count), "2" (__src), "3" (__dest), "r" (__count), |
| "i" (-EFAULT) |
| : "memory", "t"); |
| |
| return res; |
| } |
| |
| #define strncpy_from_user(dest,src,count) ({ \ |
| unsigned long __sfu_src = (unsigned long) (src); \ |
| int __sfu_count = (int) (count); \ |
| long __sfu_res = -EFAULT; \ |
| if(__access_ok(__sfu_src, __sfu_count)) { \ |
| __sfu_res = __strncpy_from_user((unsigned long) (dest), __sfu_src, __sfu_count); \ |
| } __sfu_res; }) |
| |
| /* |
| * Return the size of a string (including the ending 0!) |
| */ |
| static __inline__ long __strnlen_user(const char __user *__s, long __n) |
| { |
| unsigned long res; |
| unsigned long __dummy; |
| |
| __asm__ __volatile__( |
| "9:\n" |
| "cmp/eq %4, %0\n\t" |
| "bt 2f\n" |
| "1:\t" |
| "mov.b @(%0,%3), %1\n\t" |
| "tst %1, %1\n\t" |
| "bf/s 9b\n\t" |
| " add #1, %0\n" |
| "2:\n" |
| ".section .fixup,\"ax\"\n" |
| "3:\n\t" |
| "mov.l 4f, %1\n\t" |
| "jmp @%1\n\t" |
| " mov %5, %0\n" |
| ".balign 4\n" |
| "4: .long 2b\n" |
| ".previous\n" |
| ".section __ex_table,\"a\"\n" |
| " .balign 4\n" |
| " .long 1b,3b\n" |
| ".previous" |
| : "=z" (res), "=&r" (__dummy) |
| : "0" (0), "r" (__s), "r" (__n), "i" (-EFAULT) |
| : "t"); |
| return res; |
| } |
| |
| static __inline__ long strnlen_user(const char __user *s, long n) |
| { |
| if (!access_ok(VERIFY_READ, s, n)) |
| return 0; |
| else |
| return __strnlen_user(s, n); |
| } |
| |
| static __inline__ long strlen_user(const char __user *s) |
| { |
| if (!access_ok(VERIFY_READ, s, 0)) |
| return 0; |
| else |
| return __strnlen_user(s, ~0UL >> 1); |
| } |
| |
| /* |
| * The exception table consists of pairs of addresses: the first is the |
| * address of an instruction that is allowed to fault, and the second is |
| * the address at which the program should continue. No registers are |
| * modified, so it is entirely up to the continuation code to figure out |
| * what to do. |
| * |
| * All the routines below use bits of fixup code that are out of line |
| * with the main instruction path. This means when everything is well, |
| * we don't even have to jump over them. Further, they do not intrude |
| * on our cache or tlb entries. |
| */ |
| |
| struct exception_table_entry |
| { |
| unsigned long insn, fixup; |
| }; |
| |
| extern int fixup_exception(struct pt_regs *regs); |
| |
| #endif /* __ASM_SH_UACCESS_H */ |