| /* |
| * Cryptographic API. |
| * |
| * Glue code for the SHA256 Secure Hash Algorithm assembler |
| * implementation using supplemental SSE3 / AVX / AVX2 instructions. |
| * |
| * This file is based on sha256_generic.c |
| * |
| * Copyright (C) 2013 Intel Corporation. |
| * |
| * Author: |
| * Tim Chen <tim.c.chen@linux.intel.com> |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License as published by the Free |
| * Software Foundation; either version 2 of the License, or (at your option) |
| * any later version. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| */ |
| |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <crypto/internal/hash.h> |
| #include <linux/init.h> |
| #include <linux/module.h> |
| #include <linux/mm.h> |
| #include <linux/cryptohash.h> |
| #include <linux/types.h> |
| #include <crypto/sha.h> |
| #include <asm/byteorder.h> |
| #include <asm/i387.h> |
| #include <asm/xcr.h> |
| #include <asm/xsave.h> |
| #include <linux/string.h> |
| |
| asmlinkage void sha256_transform_ssse3(const char *data, u32 *digest, |
| u64 rounds); |
| #ifdef CONFIG_AS_AVX |
| asmlinkage void sha256_transform_avx(const char *data, u32 *digest, |
| u64 rounds); |
| #endif |
| #ifdef CONFIG_AS_AVX2 |
| asmlinkage void sha256_transform_rorx(const char *data, u32 *digest, |
| u64 rounds); |
| #endif |
| |
| static asmlinkage void (*sha256_transform_asm)(const char *, u32 *, u64); |
| |
| |
| static int sha256_ssse3_init(struct shash_desc *desc) |
| { |
| struct sha256_state *sctx = shash_desc_ctx(desc); |
| |
| sctx->state[0] = SHA256_H0; |
| sctx->state[1] = SHA256_H1; |
| sctx->state[2] = SHA256_H2; |
| sctx->state[3] = SHA256_H3; |
| sctx->state[4] = SHA256_H4; |
| sctx->state[5] = SHA256_H5; |
| sctx->state[6] = SHA256_H6; |
| sctx->state[7] = SHA256_H7; |
| sctx->count = 0; |
| |
| return 0; |
| } |
| |
| static int __sha256_ssse3_update(struct shash_desc *desc, const u8 *data, |
| unsigned int len, unsigned int partial) |
| { |
| struct sha256_state *sctx = shash_desc_ctx(desc); |
| unsigned int done = 0; |
| |
| sctx->count += len; |
| |
| if (partial) { |
| done = SHA256_BLOCK_SIZE - partial; |
| memcpy(sctx->buf + partial, data, done); |
| sha256_transform_asm(sctx->buf, sctx->state, 1); |
| } |
| |
| if (len - done >= SHA256_BLOCK_SIZE) { |
| const unsigned int rounds = (len - done) / SHA256_BLOCK_SIZE; |
| |
| sha256_transform_asm(data + done, sctx->state, (u64) rounds); |
| |
| done += rounds * SHA256_BLOCK_SIZE; |
| } |
| |
| memcpy(sctx->buf, data + done, len - done); |
| |
| return 0; |
| } |
| |
| static int sha256_ssse3_update(struct shash_desc *desc, const u8 *data, |
| unsigned int len) |
| { |
| struct sha256_state *sctx = shash_desc_ctx(desc); |
| unsigned int partial = sctx->count % SHA256_BLOCK_SIZE; |
| int res; |
| |
| /* Handle the fast case right here */ |
| if (partial + len < SHA256_BLOCK_SIZE) { |
| sctx->count += len; |
| memcpy(sctx->buf + partial, data, len); |
| |
| return 0; |
| } |
| |
| if (!irq_fpu_usable()) { |
| res = crypto_sha256_update(desc, data, len); |
| } else { |
| kernel_fpu_begin(); |
| res = __sha256_ssse3_update(desc, data, len, partial); |
| kernel_fpu_end(); |
| } |
| |
| return res; |
| } |
| |
| |
| /* Add padding and return the message digest. */ |
| static int sha256_ssse3_final(struct shash_desc *desc, u8 *out) |
| { |
| struct sha256_state *sctx = shash_desc_ctx(desc); |
| unsigned int i, index, padlen; |
| __be32 *dst = (__be32 *)out; |
| __be64 bits; |
| static const u8 padding[SHA256_BLOCK_SIZE] = { 0x80, }; |
| |
| bits = cpu_to_be64(sctx->count << 3); |
| |
| /* Pad out to 56 mod 64 and append length */ |
| index = sctx->count % SHA256_BLOCK_SIZE; |
| padlen = (index < 56) ? (56 - index) : ((SHA256_BLOCK_SIZE+56)-index); |
| |
| if (!irq_fpu_usable()) { |
| crypto_sha256_update(desc, padding, padlen); |
| crypto_sha256_update(desc, (const u8 *)&bits, sizeof(bits)); |
| } else { |
| kernel_fpu_begin(); |
| /* We need to fill a whole block for __sha256_ssse3_update() */ |
| if (padlen <= 56) { |
| sctx->count += padlen; |
| memcpy(sctx->buf + index, padding, padlen); |
| } else { |
| __sha256_ssse3_update(desc, padding, padlen, index); |
| } |
| __sha256_ssse3_update(desc, (const u8 *)&bits, |
| sizeof(bits), 56); |
| kernel_fpu_end(); |
| } |
| |
| /* Store state in digest */ |
| for (i = 0; i < 8; i++) |
| dst[i] = cpu_to_be32(sctx->state[i]); |
| |
| /* Wipe context */ |
| memset(sctx, 0, sizeof(*sctx)); |
| |
| return 0; |
| } |
| |
| static int sha256_ssse3_export(struct shash_desc *desc, void *out) |
| { |
| struct sha256_state *sctx = shash_desc_ctx(desc); |
| |
| memcpy(out, sctx, sizeof(*sctx)); |
| |
| return 0; |
| } |
| |
| static int sha256_ssse3_import(struct shash_desc *desc, const void *in) |
| { |
| struct sha256_state *sctx = shash_desc_ctx(desc); |
| |
| memcpy(sctx, in, sizeof(*sctx)); |
| |
| return 0; |
| } |
| |
| static struct shash_alg alg = { |
| .digestsize = SHA256_DIGEST_SIZE, |
| .init = sha256_ssse3_init, |
| .update = sha256_ssse3_update, |
| .final = sha256_ssse3_final, |
| .export = sha256_ssse3_export, |
| .import = sha256_ssse3_import, |
| .descsize = sizeof(struct sha256_state), |
| .statesize = sizeof(struct sha256_state), |
| .base = { |
| .cra_name = "sha256", |
| .cra_driver_name = "sha256-ssse3", |
| .cra_priority = 150, |
| .cra_flags = CRYPTO_ALG_TYPE_SHASH, |
| .cra_blocksize = SHA256_BLOCK_SIZE, |
| .cra_module = THIS_MODULE, |
| } |
| }; |
| |
| #ifdef CONFIG_AS_AVX |
| static bool __init avx_usable(void) |
| { |
| u64 xcr0; |
| |
| if (!cpu_has_avx || !cpu_has_osxsave) |
| return false; |
| |
| xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); |
| if ((xcr0 & (XSTATE_SSE | XSTATE_YMM)) != (XSTATE_SSE | XSTATE_YMM)) { |
| pr_info("AVX detected but unusable.\n"); |
| |
| return false; |
| } |
| |
| return true; |
| } |
| #endif |
| |
| static int __init sha256_ssse3_mod_init(void) |
| { |
| /* test for SSE3 first */ |
| if (cpu_has_ssse3) |
| sha256_transform_asm = sha256_transform_ssse3; |
| |
| #ifdef CONFIG_AS_AVX |
| /* allow AVX to override SSSE3, it's a little faster */ |
| if (avx_usable()) { |
| #ifdef CONFIG_AS_AVX2 |
| if (boot_cpu_has(X86_FEATURE_AVX2)) |
| sha256_transform_asm = sha256_transform_rorx; |
| else |
| #endif |
| sha256_transform_asm = sha256_transform_avx; |
| } |
| #endif |
| |
| if (sha256_transform_asm) { |
| #ifdef CONFIG_AS_AVX |
| if (sha256_transform_asm == sha256_transform_avx) |
| pr_info("Using AVX optimized SHA-256 implementation\n"); |
| #ifdef CONFIG_AS_AVX2 |
| else if (sha256_transform_asm == sha256_transform_rorx) |
| pr_info("Using AVX2 optimized SHA-256 implementation\n"); |
| #endif |
| else |
| #endif |
| pr_info("Using SSSE3 optimized SHA-256 implementation\n"); |
| return crypto_register_shash(&alg); |
| } |
| pr_info("Neither AVX nor SSSE3 is available/usable.\n"); |
| |
| return -ENODEV; |
| } |
| |
| static void __exit sha256_ssse3_mod_fini(void) |
| { |
| crypto_unregister_shash(&alg); |
| } |
| |
| module_init(sha256_ssse3_mod_init); |
| module_exit(sha256_ssse3_mod_fini); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_DESCRIPTION("SHA256 Secure Hash Algorithm, Supplemental SSE3 accelerated"); |
| |
| MODULE_ALIAS("sha256"); |