| /* |
| * Copyright (c) 2010-2011 Samsung Electronics Co., Ltd. |
| * http://www.samsung.com |
| * |
| * Cloned from linux/arch/arm/mach-vexpress/platsmp.c |
| * |
| * Copyright (C) 2002 ARM Ltd. |
| * All Rights Reserved |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| |
| #include <linux/init.h> |
| #include <linux/errno.h> |
| #include <linux/delay.h> |
| #include <linux/device.h> |
| #include <linux/jiffies.h> |
| #include <linux/smp.h> |
| #include <linux/io.h> |
| #include <linux/of_address.h> |
| |
| #include <asm/cacheflush.h> |
| #include <asm/smp_plat.h> |
| #include <asm/smp_scu.h> |
| #include <asm/firmware.h> |
| |
| #include <mach/map.h> |
| |
| #include "common.h" |
| #include "regs-pmu.h" |
| |
| extern void exynos4_secondary_startup(void); |
| |
| /** |
| * exynos_core_power_down : power down the specified cpu |
| * @cpu : the cpu to power down |
| * |
| * Power down the specified cpu. The sequence must be finished by a |
| * call to cpu_do_idle() |
| * |
| */ |
| void exynos_cpu_power_down(int cpu) |
| { |
| pmu_raw_writel(0, EXYNOS_ARM_CORE_CONFIGURATION(cpu)); |
| } |
| |
| /** |
| * exynos_cpu_power_up : power up the specified cpu |
| * @cpu : the cpu to power up |
| * |
| * Power up the specified cpu |
| */ |
| void exynos_cpu_power_up(int cpu) |
| { |
| pmu_raw_writel(S5P_CORE_LOCAL_PWR_EN, |
| EXYNOS_ARM_CORE_CONFIGURATION(cpu)); |
| } |
| |
| /** |
| * exynos_cpu_power_state : returns the power state of the cpu |
| * @cpu : the cpu to retrieve the power state from |
| * |
| */ |
| int exynos_cpu_power_state(int cpu) |
| { |
| return (pmu_raw_readl(EXYNOS_ARM_CORE_STATUS(cpu)) & |
| S5P_CORE_LOCAL_PWR_EN); |
| } |
| |
| /** |
| * exynos_cluster_power_down : power down the specified cluster |
| * @cluster : the cluster to power down |
| */ |
| void exynos_cluster_power_down(int cluster) |
| { |
| pmu_raw_writel(0, EXYNOS_COMMON_CONFIGURATION(cluster)); |
| } |
| |
| /** |
| * exynos_cluster_power_up : power up the specified cluster |
| * @cluster : the cluster to power up |
| */ |
| void exynos_cluster_power_up(int cluster) |
| { |
| pmu_raw_writel(S5P_CORE_LOCAL_PWR_EN, |
| EXYNOS_COMMON_CONFIGURATION(cluster)); |
| } |
| |
| /** |
| * exynos_cluster_power_state : returns the power state of the cluster |
| * @cluster : the cluster to retrieve the power state from |
| * |
| */ |
| int exynos_cluster_power_state(int cluster) |
| { |
| return (pmu_raw_readl(EXYNOS_COMMON_STATUS(cluster)) & |
| S5P_CORE_LOCAL_PWR_EN); |
| } |
| |
| static inline void __iomem *cpu_boot_reg_base(void) |
| { |
| if (soc_is_exynos4210() && samsung_rev() == EXYNOS4210_REV_1_1) |
| return pmu_base_addr + S5P_INFORM5; |
| return sysram_base_addr; |
| } |
| |
| static inline void __iomem *cpu_boot_reg(int cpu) |
| { |
| void __iomem *boot_reg; |
| |
| boot_reg = cpu_boot_reg_base(); |
| if (!boot_reg) |
| return ERR_PTR(-ENODEV); |
| if (soc_is_exynos4412()) |
| boot_reg += 4*cpu; |
| else if (soc_is_exynos5420() || soc_is_exynos5800()) |
| boot_reg += 4; |
| return boot_reg; |
| } |
| |
| /* |
| * Set wake up by local power mode and execute software reset for given core. |
| * |
| * Currently this is needed only when booting secondary CPU on Exynos3250. |
| */ |
| static void exynos_core_restart(u32 core_id) |
| { |
| u32 val; |
| |
| if (!of_machine_is_compatible("samsung,exynos3250")) |
| return; |
| |
| val = pmu_raw_readl(EXYNOS_ARM_CORE_STATUS(core_id)); |
| val |= S5P_CORE_WAKEUP_FROM_LOCAL_CFG; |
| pmu_raw_writel(val, EXYNOS_ARM_CORE_STATUS(core_id)); |
| |
| pr_info("CPU%u: Software reset\n", core_id); |
| pmu_raw_writel(EXYNOS_CORE_PO_RESET(core_id), EXYNOS_SWRESET); |
| } |
| |
| /* |
| * Write pen_release in a way that is guaranteed to be visible to all |
| * observers, irrespective of whether they're taking part in coherency |
| * or not. This is necessary for the hotplug code to work reliably. |
| */ |
| static void write_pen_release(int val) |
| { |
| pen_release = val; |
| smp_wmb(); |
| sync_cache_w(&pen_release); |
| } |
| |
| static void __iomem *scu_base_addr(void) |
| { |
| return (void __iomem *)(S5P_VA_SCU); |
| } |
| |
| static DEFINE_SPINLOCK(boot_lock); |
| |
| static void exynos_secondary_init(unsigned int cpu) |
| { |
| /* |
| * let the primary processor know we're out of the |
| * pen, then head off into the C entry point |
| */ |
| write_pen_release(-1); |
| |
| /* |
| * Synchronise with the boot thread. |
| */ |
| spin_lock(&boot_lock); |
| spin_unlock(&boot_lock); |
| } |
| |
| static int exynos_boot_secondary(unsigned int cpu, struct task_struct *idle) |
| { |
| unsigned long timeout; |
| u32 mpidr = cpu_logical_map(cpu); |
| u32 core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0); |
| int ret = -ENOSYS; |
| |
| /* |
| * Set synchronisation state between this boot processor |
| * and the secondary one |
| */ |
| spin_lock(&boot_lock); |
| |
| /* |
| * The secondary processor is waiting to be released from |
| * the holding pen - release it, then wait for it to flag |
| * that it has been released by resetting pen_release. |
| * |
| * Note that "pen_release" is the hardware CPU core ID, whereas |
| * "cpu" is Linux's internal ID. |
| */ |
| write_pen_release(core_id); |
| |
| if (!exynos_cpu_power_state(core_id)) { |
| exynos_cpu_power_up(core_id); |
| timeout = 10; |
| |
| /* wait max 10 ms until cpu1 is on */ |
| while (exynos_cpu_power_state(core_id) |
| != S5P_CORE_LOCAL_PWR_EN) { |
| if (timeout-- == 0) |
| break; |
| |
| mdelay(1); |
| } |
| |
| if (timeout == 0) { |
| printk(KERN_ERR "cpu1 power enable failed"); |
| spin_unlock(&boot_lock); |
| return -ETIMEDOUT; |
| } |
| } |
| |
| exynos_core_restart(core_id); |
| |
| /* |
| * Send the secondary CPU a soft interrupt, thereby causing |
| * the boot monitor to read the system wide flags register, |
| * and branch to the address found there. |
| */ |
| |
| timeout = jiffies + (1 * HZ); |
| while (time_before(jiffies, timeout)) { |
| unsigned long boot_addr; |
| |
| smp_rmb(); |
| |
| boot_addr = virt_to_phys(exynos4_secondary_startup); |
| |
| /* |
| * Try to set boot address using firmware first |
| * and fall back to boot register if it fails. |
| */ |
| ret = call_firmware_op(set_cpu_boot_addr, core_id, boot_addr); |
| if (ret && ret != -ENOSYS) |
| goto fail; |
| if (ret == -ENOSYS) { |
| void __iomem *boot_reg = cpu_boot_reg(core_id); |
| |
| if (IS_ERR(boot_reg)) { |
| ret = PTR_ERR(boot_reg); |
| goto fail; |
| } |
| __raw_writel(boot_addr, boot_reg); |
| } |
| |
| call_firmware_op(cpu_boot, core_id); |
| |
| arch_send_wakeup_ipi_mask(cpumask_of(cpu)); |
| |
| if (pen_release == -1) |
| break; |
| |
| udelay(10); |
| } |
| |
| /* |
| * now the secondary core is starting up let it run its |
| * calibrations, then wait for it to finish |
| */ |
| fail: |
| spin_unlock(&boot_lock); |
| |
| return pen_release != -1 ? ret : 0; |
| } |
| |
| /* |
| * Initialise the CPU possible map early - this describes the CPUs |
| * which may be present or become present in the system. |
| */ |
| |
| static void __init exynos_smp_init_cpus(void) |
| { |
| void __iomem *scu_base = scu_base_addr(); |
| unsigned int i, ncores; |
| |
| if (read_cpuid_part() == ARM_CPU_PART_CORTEX_A9) |
| ncores = scu_base ? scu_get_core_count(scu_base) : 1; |
| else |
| /* |
| * CPU Nodes are passed thru DT and set_cpu_possible |
| * is set by "arm_dt_init_cpu_maps". |
| */ |
| return; |
| |
| /* sanity check */ |
| if (ncores > nr_cpu_ids) { |
| pr_warn("SMP: %u cores greater than maximum (%u), clipping\n", |
| ncores, nr_cpu_ids); |
| ncores = nr_cpu_ids; |
| } |
| |
| for (i = 0; i < ncores; i++) |
| set_cpu_possible(i, true); |
| } |
| |
| static void __init exynos_smp_prepare_cpus(unsigned int max_cpus) |
| { |
| int i; |
| |
| exynos_sysram_init(); |
| |
| if (read_cpuid_part() == ARM_CPU_PART_CORTEX_A9) |
| scu_enable(scu_base_addr()); |
| |
| /* |
| * Write the address of secondary startup into the |
| * system-wide flags register. The boot monitor waits |
| * until it receives a soft interrupt, and then the |
| * secondary CPU branches to this address. |
| * |
| * Try using firmware operation first and fall back to |
| * boot register if it fails. |
| */ |
| for (i = 1; i < max_cpus; ++i) { |
| unsigned long boot_addr; |
| u32 mpidr; |
| u32 core_id; |
| int ret; |
| |
| mpidr = cpu_logical_map(i); |
| core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0); |
| boot_addr = virt_to_phys(exynos4_secondary_startup); |
| |
| ret = call_firmware_op(set_cpu_boot_addr, core_id, boot_addr); |
| if (ret && ret != -ENOSYS) |
| break; |
| if (ret == -ENOSYS) { |
| void __iomem *boot_reg = cpu_boot_reg(core_id); |
| |
| if (IS_ERR(boot_reg)) |
| break; |
| __raw_writel(boot_addr, boot_reg); |
| } |
| } |
| } |
| |
| struct smp_operations exynos_smp_ops __initdata = { |
| .smp_init_cpus = exynos_smp_init_cpus, |
| .smp_prepare_cpus = exynos_smp_prepare_cpus, |
| .smp_secondary_init = exynos_secondary_init, |
| .smp_boot_secondary = exynos_boot_secondary, |
| #ifdef CONFIG_HOTPLUG_CPU |
| .cpu_die = exynos_cpu_die, |
| #endif |
| }; |