blob: ef66eccc2aa280530769dfd66b4e6c19df5511d3 [file] [log] [blame]
/*
* NVM Express device driver
* Copyright (c) 2011, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <linux/nvme.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/errno.h>
#include <linux/fs.h>
#include <linux/genhd.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kdev_t.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/pci.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/version.h>
#define NVME_Q_DEPTH 1024
#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
#define NVME_MINORS 64
static int nvme_major;
module_param(nvme_major, int, 0);
/*
* Represents an NVM Express device. Each nvme_dev is a PCI function.
*/
struct nvme_dev {
struct list_head node;
struct nvme_queue **queues;
u32 __iomem *dbs;
struct pci_dev *pci_dev;
int instance;
int queue_count;
u32 ctrl_config;
struct msix_entry *entry;
struct nvme_bar __iomem *bar;
struct list_head namespaces;
};
/*
* An NVM Express namespace is equivalent to a SCSI LUN
*/
struct nvme_ns {
struct list_head list;
struct nvme_dev *dev;
struct request_queue *queue;
struct gendisk *disk;
int ns_id;
int lba_shift;
};
/*
* An NVM Express queue. Each device has at least two (one for admin
* commands and one for I/O commands).
*/
struct nvme_queue {
struct device *q_dmadev;
spinlock_t q_lock;
struct nvme_command *sq_cmds;
volatile struct nvme_completion *cqes;
dma_addr_t sq_dma_addr;
dma_addr_t cq_dma_addr;
wait_queue_head_t sq_full;
struct bio_list sq_cong;
u32 __iomem *q_db;
u16 q_depth;
u16 cq_vector;
u16 sq_head;
u16 sq_tail;
u16 cq_head;
u16 cq_cycle;
unsigned long cmdid_data[];
};
/*
* Check we didin't inadvertently grow the command struct
*/
static inline void _nvme_check_size(void)
{
BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
}
/**
* alloc_cmdid - Allocate a Command ID
* @param nvmeq The queue that will be used for this command
* @param ctx A pointer that will be passed to the handler
* @param handler The ID of the handler to call
*
* Allocate a Command ID for a queue. The data passed in will
* be passed to the completion handler. This is implemented by using
* the bottom two bits of the ctx pointer to store the handler ID.
* Passing in a pointer that's not 4-byte aligned will cause a BUG.
* We can change this if it becomes a problem.
*/
static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx, int handler)
{
int depth = nvmeq->q_depth;
unsigned long data = (unsigned long)ctx | handler;
int cmdid;
BUG_ON((unsigned long)ctx & 3);
do {
cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
if (cmdid >= depth)
return -EBUSY;
} while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
nvmeq->cmdid_data[cmdid + BITS_TO_LONGS(depth)] = data;
return cmdid;
}
static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
int handler)
{
int cmdid;
wait_event_killable(nvmeq->sq_full,
(cmdid = alloc_cmdid(nvmeq, ctx, handler)) >= 0);
return (cmdid < 0) ? -EINTR : cmdid;
}
/* If you need more than four handlers, you'll need to change how
* alloc_cmdid and nvme_process_cq work
*/
enum {
sync_completion_id = 0,
bio_completion_id,
};
static unsigned long free_cmdid(struct nvme_queue *nvmeq, int cmdid)
{
unsigned long data;
data = nvmeq->cmdid_data[cmdid + BITS_TO_LONGS(nvmeq->q_depth)];
clear_bit(cmdid, nvmeq->cmdid_data);
wake_up(&nvmeq->sq_full);
return data;
}
static struct nvme_queue *get_nvmeq(struct nvme_ns *ns)
{
return ns->dev->queues[1];
}
static void put_nvmeq(struct nvme_queue *nvmeq)
{
}
/**
* nvme_submit_cmd: Copy a command into a queue and ring the doorbell
* @nvmeq: The queue to use
* @cmd: The command to send
*
* Safe to use from interrupt context
*/
static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
{
unsigned long flags;
u16 tail;
/* XXX: Need to check tail isn't going to overrun head */
spin_lock_irqsave(&nvmeq->q_lock, flags);
tail = nvmeq->sq_tail;
memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
writel(tail, nvmeq->q_db);
if (++tail == nvmeq->q_depth)
tail = 0;
nvmeq->sq_tail = tail;
spin_unlock_irqrestore(&nvmeq->q_lock, flags);
return 0;
}
struct nvme_req_info {
struct bio *bio;
int nents;
struct scatterlist sg[0];
};
/* XXX: use a mempool */
static struct nvme_req_info *alloc_info(unsigned nseg, gfp_t gfp)
{
return kmalloc(sizeof(struct nvme_req_info) +
sizeof(struct scatterlist) * nseg, gfp);
}
static void free_info(struct nvme_req_info *info)
{
kfree(info);
}
static void bio_completion(struct nvme_queue *nvmeq, void *ctx,
struct nvme_completion *cqe)
{
struct nvme_req_info *info = ctx;
struct bio *bio = info->bio;
u16 status = le16_to_cpup(&cqe->status) >> 1;
dma_unmap_sg(nvmeq->q_dmadev, info->sg, info->nents,
bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
free_info(info);
bio_endio(bio, status ? -EIO : 0);
}
static int nvme_map_bio(struct device *dev, struct nvme_req_info *info,
struct bio *bio, enum dma_data_direction dma_dir, int psegs)
{
struct bio_vec *bvec;
struct scatterlist *sg = info->sg;
int i, nsegs;
sg_init_table(sg, psegs);
bio_for_each_segment(bvec, bio, i) {
sg_set_page(sg, bvec->bv_page, bvec->bv_len, bvec->bv_offset);
/* XXX: handle non-mergable here */
nsegs++;
}
info->nents = nsegs;
return dma_map_sg(dev, info->sg, info->nents, dma_dir);
}
static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
struct bio *bio)
{
struct nvme_rw_command *cmnd;
struct nvme_req_info *info;
enum dma_data_direction dma_dir;
int cmdid;
u16 control;
u32 dsmgmt;
unsigned long flags;
int psegs = bio_phys_segments(ns->queue, bio);
info = alloc_info(psegs, GFP_NOIO);
if (!info)
goto congestion;
info->bio = bio;
cmdid = alloc_cmdid(nvmeq, info, bio_completion_id);
if (unlikely(cmdid < 0))
goto free_info;
control = 0;
if (bio->bi_rw & REQ_FUA)
control |= NVME_RW_FUA;
if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
control |= NVME_RW_LR;
dsmgmt = 0;
if (bio->bi_rw & REQ_RAHEAD)
dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
spin_lock_irqsave(&nvmeq->q_lock, flags);
cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail].rw;
if (bio_data_dir(bio)) {
cmnd->opcode = nvme_cmd_write;
dma_dir = DMA_TO_DEVICE;
} else {
cmnd->opcode = nvme_cmd_read;
dma_dir = DMA_FROM_DEVICE;
}
nvme_map_bio(nvmeq->q_dmadev, info, bio, dma_dir, psegs);
cmnd->flags = 1;
cmnd->command_id = cmdid;
cmnd->nsid = cpu_to_le32(ns->ns_id);
cmnd->prp1 = cpu_to_le64(sg_phys(info->sg));
/* XXX: Support more than one PRP */
cmnd->slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
cmnd->length = cpu_to_le16((bio->bi_size >> ns->lba_shift) - 1);
cmnd->control = cpu_to_le16(control);
cmnd->dsmgmt = cpu_to_le32(dsmgmt);
writel(nvmeq->sq_tail, nvmeq->q_db);
if (++nvmeq->sq_tail == nvmeq->q_depth)
nvmeq->sq_tail = 0;
spin_unlock_irqrestore(&nvmeq->q_lock, flags);
return 0;
free_info:
free_info(info);
congestion:
return -EBUSY;
}
/*
* NB: return value of non-zero would mean that we were a stacking driver.
* make_request must always succeed.
*/
static int nvme_make_request(struct request_queue *q, struct bio *bio)
{
struct nvme_ns *ns = q->queuedata;
struct nvme_queue *nvmeq = get_nvmeq(ns);
if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
blk_set_queue_congested(q, rw_is_sync(bio->bi_rw));
bio_list_add(&nvmeq->sq_cong, bio);
}
put_nvmeq(nvmeq);
return 0;
}
struct sync_cmd_info {
struct task_struct *task;
u32 result;
int status;
};
static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
struct nvme_completion *cqe)
{
struct sync_cmd_info *cmdinfo = ctx;
cmdinfo->result = le32_to_cpup(&cqe->result);
cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
wake_up_process(cmdinfo->task);
}
typedef void (*completion_fn)(struct nvme_queue *, void *,
struct nvme_completion *);
static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
{
u16 head, cycle;
static const completion_fn completions[4] = {
[sync_completion_id] = sync_completion,
[bio_completion_id] = bio_completion,
};
head = nvmeq->cq_head;
cycle = nvmeq->cq_cycle;
for (;;) {
unsigned long data;
void *ptr;
unsigned char handler;
struct nvme_completion cqe = nvmeq->cqes[head];
if ((le16_to_cpu(cqe.status) & 1) != cycle)
break;
nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
if (++head == nvmeq->q_depth) {
head = 0;
cycle = !cycle;
}
data = free_cmdid(nvmeq, cqe.command_id);
handler = data & 3;
ptr = (void *)(data & ~3UL);
completions[handler](nvmeq, ptr, &cqe);
}
/* If the controller ignores the cq head doorbell and continuously
* writes to the queue, it is theoretically possible to wrap around
* the queue twice and mistakenly return IRQ_NONE. Linux only
* requires that 0.1% of your interrupts are handled, so this isn't
* a big problem.
*/
if (head == nvmeq->cq_head && cycle == nvmeq->cq_cycle)
return IRQ_NONE;
writel(head, nvmeq->q_db + 1);
nvmeq->cq_head = head;
nvmeq->cq_cycle = cycle;
return IRQ_HANDLED;
}
static irqreturn_t nvme_irq(int irq, void *data)
{
return nvme_process_cq(data);
}
/*
* Returns 0 on success. If the result is negative, it's a Linux error code;
* if the result is positive, it's an NVM Express status code
*/
static int nvme_submit_sync_cmd(struct nvme_queue *q, struct nvme_command *cmd,
u32 *result)
{
int cmdid;
struct sync_cmd_info cmdinfo;
cmdinfo.task = current;
cmdinfo.status = -EINTR;
cmdid = alloc_cmdid_killable(q, &cmdinfo, sync_completion_id);
if (cmdid < 0)
return cmdid;
cmd->common.command_id = cmdid;
set_current_state(TASK_UNINTERRUPTIBLE);
nvme_submit_cmd(q, cmd);
schedule();
if (result)
*result = cmdinfo.result;
return cmdinfo.status;
}
static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
u32 *result)
{
return nvme_submit_sync_cmd(dev->queues[0], cmd, result);
}
static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
{
int status;
struct nvme_command c;
memset(&c, 0, sizeof(c));
c.delete_queue.opcode = opcode;
c.delete_queue.qid = cpu_to_le16(id);
status = nvme_submit_admin_cmd(dev, &c, NULL);
if (status)
return -EIO;
return 0;
}
static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
struct nvme_queue *nvmeq)
{
int status;
struct nvme_command c;
int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
memset(&c, 0, sizeof(c));
c.create_cq.opcode = nvme_admin_create_cq;
c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
c.create_cq.cqid = cpu_to_le16(qid);
c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
c.create_cq.cq_flags = cpu_to_le16(flags);
c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
status = nvme_submit_admin_cmd(dev, &c, NULL);
if (status)
return -EIO;
return 0;
}
static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
struct nvme_queue *nvmeq)
{
int status;
struct nvme_command c;
int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
memset(&c, 0, sizeof(c));
c.create_sq.opcode = nvme_admin_create_sq;
c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
c.create_sq.sqid = cpu_to_le16(qid);
c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
c.create_sq.sq_flags = cpu_to_le16(flags);
c.create_sq.cqid = cpu_to_le16(qid);
status = nvme_submit_admin_cmd(dev, &c, NULL);
if (status)
return -EIO;
return 0;
}
static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
{
return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
}
static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
{
return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
}
static void nvme_free_queue(struct nvme_dev *dev, int qid)
{
struct nvme_queue *nvmeq = dev->queues[qid];
free_irq(dev->entry[nvmeq->cq_vector].vector, nvmeq);
/* Don't tell the adapter to delete the admin queue */
if (qid) {
adapter_delete_sq(dev, qid);
adapter_delete_cq(dev, qid);
}
dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
nvmeq->sq_cmds, nvmeq->sq_dma_addr);
kfree(nvmeq);
}
static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
int depth, int vector)
{
struct device *dmadev = &dev->pci_dev->dev;
unsigned extra = (depth + BITS_TO_LONGS(depth)) * sizeof(long);
struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
if (!nvmeq)
return NULL;
nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
&nvmeq->cq_dma_addr, GFP_KERNEL);
if (!nvmeq->cqes)
goto free_nvmeq;
memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
&nvmeq->sq_dma_addr, GFP_KERNEL);
if (!nvmeq->sq_cmds)
goto free_cqdma;
nvmeq->q_dmadev = dmadev;
spin_lock_init(&nvmeq->q_lock);
nvmeq->cq_head = 0;
nvmeq->cq_cycle = 1;
init_waitqueue_head(&nvmeq->sq_full);
bio_list_init(&nvmeq->sq_cong);
nvmeq->q_db = &dev->dbs[qid * 2];
nvmeq->q_depth = depth;
nvmeq->cq_vector = vector;
return nvmeq;
free_cqdma:
dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
nvmeq->cq_dma_addr);
free_nvmeq:
kfree(nvmeq);
return NULL;
}
static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
int qid, int cq_size, int vector)
{
int result;
struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
result = adapter_alloc_cq(dev, qid, nvmeq);
if (result < 0)
goto free_nvmeq;
result = adapter_alloc_sq(dev, qid, nvmeq);
if (result < 0)
goto release_cq;
result = request_irq(dev->entry[vector].vector, nvme_irq,
IRQF_DISABLED | IRQF_SHARED, "nvme", nvmeq);
if (result < 0)
goto release_sq;
return nvmeq;
release_sq:
adapter_delete_sq(dev, qid);
release_cq:
adapter_delete_cq(dev, qid);
free_nvmeq:
dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
nvmeq->sq_cmds, nvmeq->sq_dma_addr);
kfree(nvmeq);
return NULL;
}
static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
{
int result;
u32 aqa;
struct nvme_queue *nvmeq;
dev->dbs = ((void __iomem *)dev->bar) + 4096;
nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
aqa = nvmeq->q_depth - 1;
aqa |= aqa << 16;
dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
writel(aqa, &dev->bar->aqa);
writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
writel(dev->ctrl_config, &dev->bar->cc);
while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
msleep(100);
if (fatal_signal_pending(current))
return -EINTR;
}
result = request_irq(dev->entry[0].vector, nvme_irq,
IRQF_DISABLED | IRQF_SHARED, "nvme admin", nvmeq);
dev->queues[0] = nvmeq;
return result;
}
static int nvme_identify(struct nvme_ns *ns, void __user *addr, int cns)
{
struct nvme_dev *dev = ns->dev;
int status;
struct nvme_command c;
void *page;
dma_addr_t dma_addr;
page = dma_alloc_coherent(&dev->pci_dev->dev, 4096, &dma_addr,
GFP_KERNEL);
memset(&c, 0, sizeof(c));
c.identify.opcode = nvme_admin_identify;
c.identify.nsid = cns ? 0 : cpu_to_le32(ns->ns_id);
c.identify.prp1 = cpu_to_le64(dma_addr);
c.identify.cns = cpu_to_le32(cns);
status = nvme_submit_admin_cmd(dev, &c, NULL);
if (status)
status = -EIO;
else if (copy_to_user(addr, page, 4096))
status = -EFAULT;
dma_free_coherent(&dev->pci_dev->dev, 4096, page, dma_addr);
return status;
}
static int nvme_get_range_type(struct nvme_ns *ns, void __user *addr)
{
struct nvme_dev *dev = ns->dev;
int status;
struct nvme_command c;
void *page;
dma_addr_t dma_addr;
page = dma_alloc_coherent(&dev->pci_dev->dev, 4096, &dma_addr,
GFP_KERNEL);
memset(&c, 0, sizeof(c));
c.features.opcode = nvme_admin_get_features;
c.features.nsid = cpu_to_le32(ns->ns_id);
c.features.prp1 = cpu_to_le64(dma_addr);
c.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
status = nvme_submit_admin_cmd(dev, &c, NULL);
/* XXX: Assuming first range for now */
if (status)
status = -EIO;
else if (copy_to_user(addr, page, 64))
status = -EFAULT;
dma_free_coherent(&dev->pci_dev->dev, 4096, page, dma_addr);
return status;
}
static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
unsigned long arg)
{
struct nvme_ns *ns = bdev->bd_disk->private_data;
switch (cmd) {
case NVME_IOCTL_IDENTIFY_NS:
return nvme_identify(ns, (void __user *)arg, 0);
case NVME_IOCTL_IDENTIFY_CTRL:
return nvme_identify(ns, (void __user *)arg, 1);
case NVME_IOCTL_GET_RANGE_TYPE:
return nvme_get_range_type(ns, (void __user *)arg);
default:
return -ENOTTY;
}
}
static const struct block_device_operations nvme_fops = {
.owner = THIS_MODULE,
.ioctl = nvme_ioctl,
};
static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int index,
struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
{
struct nvme_ns *ns;
struct gendisk *disk;
int lbaf;
if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
return NULL;
ns = kzalloc(sizeof(*ns), GFP_KERNEL);
if (!ns)
return NULL;
ns->queue = blk_alloc_queue(GFP_KERNEL);
if (!ns->queue)
goto out_free_ns;
ns->queue->queue_flags = QUEUE_FLAG_DEFAULT | QUEUE_FLAG_NOMERGES |
QUEUE_FLAG_NONROT | QUEUE_FLAG_DISCARD;
blk_queue_make_request(ns->queue, nvme_make_request);
ns->dev = dev;
ns->queue->queuedata = ns;
disk = alloc_disk(NVME_MINORS);
if (!disk)
goto out_free_queue;
ns->ns_id = index;
ns->disk = disk;
lbaf = id->flbas & 0xf;
ns->lba_shift = id->lbaf[lbaf].ds;
disk->major = nvme_major;
disk->minors = NVME_MINORS;
disk->first_minor = NVME_MINORS * index;
disk->fops = &nvme_fops;
disk->private_data = ns;
disk->queue = ns->queue;
sprintf(disk->disk_name, "nvme%dn%d", dev->instance, index);
set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
return ns;
out_free_queue:
blk_cleanup_queue(ns->queue);
out_free_ns:
kfree(ns);
return NULL;
}
static void nvme_ns_free(struct nvme_ns *ns)
{
put_disk(ns->disk);
blk_cleanup_queue(ns->queue);
kfree(ns);
}
static int set_queue_count(struct nvme_dev *dev, int sq_count, int cq_count)
{
int status;
u32 result;
struct nvme_command c;
u32 q_count = (sq_count - 1) | ((cq_count - 1) << 16);
memset(&c, 0, sizeof(c));
c.features.opcode = nvme_admin_get_features;
c.features.fid = cpu_to_le32(NVME_FEAT_NUM_QUEUES);
c.features.dword11 = cpu_to_le32(q_count);
status = nvme_submit_admin_cmd(dev, &c, &result);
if (status)
return -EIO;
return min(result & 0xffff, result >> 16) + 1;
}
/* XXX: Create per-CPU queues */
static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
{
int this_cpu;
set_queue_count(dev, 1, 1);
this_cpu = get_cpu();
dev->queues[1] = nvme_create_queue(dev, 1, NVME_Q_DEPTH, this_cpu);
put_cpu();
if (!dev->queues[1])
return -ENOMEM;
dev->queue_count++;
return 0;
}
static void nvme_free_queues(struct nvme_dev *dev)
{
int i;
for (i = dev->queue_count - 1; i >= 0; i--)
nvme_free_queue(dev, i);
}
static int __devinit nvme_dev_add(struct nvme_dev *dev)
{
int res, nn, i;
struct nvme_ns *ns, *next;
void *id;
dma_addr_t dma_addr;
struct nvme_command cid, crt;
res = nvme_setup_io_queues(dev);
if (res)
return res;
/* XXX: Switch to a SG list once prp2 works */
id = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
GFP_KERNEL);
memset(&cid, 0, sizeof(cid));
cid.identify.opcode = nvme_admin_identify;
cid.identify.nsid = 0;
cid.identify.prp1 = cpu_to_le64(dma_addr);
cid.identify.cns = cpu_to_le32(1);
res = nvme_submit_admin_cmd(dev, &cid, NULL);
if (res) {
res = -EIO;
goto out_free;
}
nn = le32_to_cpup(&((struct nvme_id_ctrl *)id)->nn);
cid.identify.cns = 0;
memset(&crt, 0, sizeof(crt));
crt.features.opcode = nvme_admin_get_features;
crt.features.prp1 = cpu_to_le64(dma_addr + 4096);
crt.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
for (i = 0; i < nn; i++) {
cid.identify.nsid = cpu_to_le32(i);
res = nvme_submit_admin_cmd(dev, &cid, NULL);
if (res)
continue;
if (((struct nvme_id_ns *)id)->ncap == 0)
continue;
crt.features.nsid = cpu_to_le32(i);
res = nvme_submit_admin_cmd(dev, &crt, NULL);
if (res)
continue;
ns = nvme_alloc_ns(dev, i, id, id + 4096);
if (ns)
list_add_tail(&ns->list, &dev->namespaces);
}
list_for_each_entry(ns, &dev->namespaces, list)
add_disk(ns->disk);
dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
return 0;
out_free:
list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
list_del(&ns->list);
nvme_ns_free(ns);
}
dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
return res;
}
static int nvme_dev_remove(struct nvme_dev *dev)
{
struct nvme_ns *ns, *next;
/* TODO: wait all I/O finished or cancel them */
list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
list_del(&ns->list);
del_gendisk(ns->disk);
nvme_ns_free(ns);
}
nvme_free_queues(dev);
return 0;
}
/* XXX: Use an ida or something to let remove / add work correctly */
static void nvme_set_instance(struct nvme_dev *dev)
{
static int instance;
dev->instance = instance++;
}
static void nvme_release_instance(struct nvme_dev *dev)
{
}
static int __devinit nvme_probe(struct pci_dev *pdev,
const struct pci_device_id *id)
{
int result = -ENOMEM;
struct nvme_dev *dev;
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
if (!dev)
return -ENOMEM;
dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
GFP_KERNEL);
if (!dev->entry)
goto free;
dev->queues = kcalloc(2, sizeof(void *), GFP_KERNEL);
if (!dev->queues)
goto free;
INIT_LIST_HEAD(&dev->namespaces);
dev->pci_dev = pdev;
pci_set_drvdata(pdev, dev);
dma_set_mask(&dev->pci_dev->dev, DMA_BIT_MASK(64));
nvme_set_instance(dev);
dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
if (!dev->bar) {
result = -ENOMEM;
goto disable;
}
result = nvme_configure_admin_queue(dev);
if (result)
goto unmap;
dev->queue_count++;
result = nvme_dev_add(dev);
if (result)
goto delete;
return 0;
delete:
nvme_free_queues(dev);
unmap:
iounmap(dev->bar);
disable:
pci_disable_msix(pdev);
nvme_release_instance(dev);
free:
kfree(dev->queues);
kfree(dev->entry);
kfree(dev);
return result;
}
static void __devexit nvme_remove(struct pci_dev *pdev)
{
struct nvme_dev *dev = pci_get_drvdata(pdev);
nvme_dev_remove(dev);
pci_disable_msix(pdev);
iounmap(dev->bar);
nvme_release_instance(dev);
kfree(dev->queues);
kfree(dev->entry);
kfree(dev);
}
/* These functions are yet to be implemented */
#define nvme_error_detected NULL
#define nvme_dump_registers NULL
#define nvme_link_reset NULL
#define nvme_slot_reset NULL
#define nvme_error_resume NULL
#define nvme_suspend NULL
#define nvme_resume NULL
static struct pci_error_handlers nvme_err_handler = {
.error_detected = nvme_error_detected,
.mmio_enabled = nvme_dump_registers,
.link_reset = nvme_link_reset,
.slot_reset = nvme_slot_reset,
.resume = nvme_error_resume,
};
/* Move to pci_ids.h later */
#define PCI_CLASS_STORAGE_EXPRESS 0x010802
static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
{ 0, }
};
MODULE_DEVICE_TABLE(pci, nvme_id_table);
static struct pci_driver nvme_driver = {
.name = "nvme",
.id_table = nvme_id_table,
.probe = nvme_probe,
.remove = __devexit_p(nvme_remove),
.suspend = nvme_suspend,
.resume = nvme_resume,
.err_handler = &nvme_err_handler,
};
static int __init nvme_init(void)
{
int result;
nvme_major = register_blkdev(nvme_major, "nvme");
if (nvme_major <= 0)
return -EBUSY;
result = pci_register_driver(&nvme_driver);
if (!result)
return 0;
unregister_blkdev(nvme_major, "nvme");
return result;
}
static void __exit nvme_exit(void)
{
pci_unregister_driver(&nvme_driver);
unregister_blkdev(nvme_major, "nvme");
}
MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
MODULE_LICENSE("GPL");
MODULE_VERSION("0.1");
module_init(nvme_init);
module_exit(nvme_exit);