| /* |
| * S3C24XX DMA handling |
| * |
| * Copyright (c) 2013 Heiko Stuebner <heiko@sntech.de> |
| * |
| * based on amba-pl08x.c |
| * |
| * Copyright (c) 2006 ARM Ltd. |
| * Copyright (c) 2010 ST-Ericsson SA |
| * |
| * Author: Peter Pearse <peter.pearse@arm.com> |
| * Author: Linus Walleij <linus.walleij@stericsson.com> |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License as published by the Free |
| * Software Foundation; either version 2 of the License, or (at your option) |
| * any later version. |
| * |
| * The DMA controllers in S3C24XX SoCs have a varying number of DMA signals |
| * that can be routed to any of the 4 to 8 hardware-channels. |
| * |
| * Therefore on these DMA controllers the number of channels |
| * and the number of incoming DMA signals are two totally different things. |
| * It is usually not possible to theoretically handle all physical signals, |
| * so a multiplexing scheme with possible denial of use is necessary. |
| * |
| * Open items: |
| * - bursts |
| */ |
| |
| #include <linux/platform_device.h> |
| #include <linux/types.h> |
| #include <linux/dmaengine.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/interrupt.h> |
| #include <linux/clk.h> |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| #include <linux/platform_data/dma-s3c24xx.h> |
| |
| #include "dmaengine.h" |
| #include "virt-dma.h" |
| |
| #define MAX_DMA_CHANNELS 8 |
| |
| #define S3C24XX_DISRC 0x00 |
| #define S3C24XX_DISRCC 0x04 |
| #define S3C24XX_DISRCC_INC_INCREMENT 0 |
| #define S3C24XX_DISRCC_INC_FIXED BIT(0) |
| #define S3C24XX_DISRCC_LOC_AHB 0 |
| #define S3C24XX_DISRCC_LOC_APB BIT(1) |
| |
| #define S3C24XX_DIDST 0x08 |
| #define S3C24XX_DIDSTC 0x0c |
| #define S3C24XX_DIDSTC_INC_INCREMENT 0 |
| #define S3C24XX_DIDSTC_INC_FIXED BIT(0) |
| #define S3C24XX_DIDSTC_LOC_AHB 0 |
| #define S3C24XX_DIDSTC_LOC_APB BIT(1) |
| #define S3C24XX_DIDSTC_INT_TC0 0 |
| #define S3C24XX_DIDSTC_INT_RELOAD BIT(2) |
| |
| #define S3C24XX_DCON 0x10 |
| |
| #define S3C24XX_DCON_TC_MASK 0xfffff |
| #define S3C24XX_DCON_DSZ_BYTE (0 << 20) |
| #define S3C24XX_DCON_DSZ_HALFWORD (1 << 20) |
| #define S3C24XX_DCON_DSZ_WORD (2 << 20) |
| #define S3C24XX_DCON_DSZ_MASK (3 << 20) |
| #define S3C24XX_DCON_DSZ_SHIFT 20 |
| #define S3C24XX_DCON_AUTORELOAD 0 |
| #define S3C24XX_DCON_NORELOAD BIT(22) |
| #define S3C24XX_DCON_HWTRIG BIT(23) |
| #define S3C24XX_DCON_HWSRC_SHIFT 24 |
| #define S3C24XX_DCON_SERV_SINGLE 0 |
| #define S3C24XX_DCON_SERV_WHOLE BIT(27) |
| #define S3C24XX_DCON_TSZ_UNIT 0 |
| #define S3C24XX_DCON_TSZ_BURST4 BIT(28) |
| #define S3C24XX_DCON_INT BIT(29) |
| #define S3C24XX_DCON_SYNC_PCLK 0 |
| #define S3C24XX_DCON_SYNC_HCLK BIT(30) |
| #define S3C24XX_DCON_DEMAND 0 |
| #define S3C24XX_DCON_HANDSHAKE BIT(31) |
| |
| #define S3C24XX_DSTAT 0x14 |
| #define S3C24XX_DSTAT_STAT_BUSY BIT(20) |
| #define S3C24XX_DSTAT_CURRTC_MASK 0xfffff |
| |
| #define S3C24XX_DMASKTRIG 0x20 |
| #define S3C24XX_DMASKTRIG_SWTRIG BIT(0) |
| #define S3C24XX_DMASKTRIG_ON BIT(1) |
| #define S3C24XX_DMASKTRIG_STOP BIT(2) |
| |
| #define S3C24XX_DMAREQSEL 0x24 |
| #define S3C24XX_DMAREQSEL_HW BIT(0) |
| |
| /* |
| * S3C2410, S3C2440 and S3C2442 SoCs cannot select any physical channel |
| * for a DMA source. Instead only specific channels are valid. |
| * All of these SoCs have 4 physical channels and the number of request |
| * source bits is 3. Additionally we also need 1 bit to mark the channel |
| * as valid. |
| * Therefore we separate the chansel element of the channel data into 4 |
| * parts of 4 bits each, to hold the information if the channel is valid |
| * and the hw request source to use. |
| * |
| * Example: |
| * SDI is valid on channels 0, 2 and 3 - with varying hw request sources. |
| * For it the chansel field would look like |
| * |
| * ((BIT(3) | 1) << 3 * 4) | // channel 3, with request source 1 |
| * ((BIT(3) | 2) << 2 * 4) | // channel 2, with request source 2 |
| * ((BIT(3) | 2) << 0 * 4) // channel 0, with request source 2 |
| */ |
| #define S3C24XX_CHANSEL_WIDTH 4 |
| #define S3C24XX_CHANSEL_VALID BIT(3) |
| #define S3C24XX_CHANSEL_REQ_MASK 7 |
| |
| /* |
| * struct soc_data - vendor-specific config parameters for individual SoCs |
| * @stride: spacing between the registers of each channel |
| * @has_reqsel: does the controller use the newer requestselection mechanism |
| * @has_clocks: are controllable dma-clocks present |
| */ |
| struct soc_data { |
| int stride; |
| bool has_reqsel; |
| bool has_clocks; |
| }; |
| |
| /* |
| * enum s3c24xx_dma_chan_state - holds the virtual channel states |
| * @S3C24XX_DMA_CHAN_IDLE: the channel is idle |
| * @S3C24XX_DMA_CHAN_RUNNING: the channel has allocated a physical transport |
| * channel and is running a transfer on it |
| * @S3C24XX_DMA_CHAN_WAITING: the channel is waiting for a physical transport |
| * channel to become available (only pertains to memcpy channels) |
| */ |
| enum s3c24xx_dma_chan_state { |
| S3C24XX_DMA_CHAN_IDLE, |
| S3C24XX_DMA_CHAN_RUNNING, |
| S3C24XX_DMA_CHAN_WAITING, |
| }; |
| |
| /* |
| * struct s3c24xx_sg - structure containing data per sg |
| * @src_addr: src address of sg |
| * @dst_addr: dst address of sg |
| * @len: transfer len in bytes |
| * @node: node for txd's dsg_list |
| */ |
| struct s3c24xx_sg { |
| dma_addr_t src_addr; |
| dma_addr_t dst_addr; |
| size_t len; |
| struct list_head node; |
| }; |
| |
| /* |
| * struct s3c24xx_txd - wrapper for struct dma_async_tx_descriptor |
| * @vd: virtual DMA descriptor |
| * @dsg_list: list of children sg's |
| * @at: sg currently being transfered |
| * @width: transfer width |
| * @disrcc: value for source control register |
| * @didstc: value for destination control register |
| * @dcon: base value for dcon register |
| * @cyclic: indicate cyclic transfer |
| */ |
| struct s3c24xx_txd { |
| struct virt_dma_desc vd; |
| struct list_head dsg_list; |
| struct list_head *at; |
| u8 width; |
| u32 disrcc; |
| u32 didstc; |
| u32 dcon; |
| bool cyclic; |
| }; |
| |
| struct s3c24xx_dma_chan; |
| |
| /* |
| * struct s3c24xx_dma_phy - holder for the physical channels |
| * @id: physical index to this channel |
| * @valid: does the channel have all required elements |
| * @base: virtual memory base (remapped) for the this channel |
| * @irq: interrupt for this channel |
| * @clk: clock for this channel |
| * @lock: a lock to use when altering an instance of this struct |
| * @serving: virtual channel currently being served by this physicalchannel |
| * @host: a pointer to the host (internal use) |
| */ |
| struct s3c24xx_dma_phy { |
| unsigned int id; |
| bool valid; |
| void __iomem *base; |
| int irq; |
| struct clk *clk; |
| spinlock_t lock; |
| struct s3c24xx_dma_chan *serving; |
| struct s3c24xx_dma_engine *host; |
| }; |
| |
| /* |
| * struct s3c24xx_dma_chan - this structure wraps a DMA ENGINE channel |
| * @id: the id of the channel |
| * @name: name of the channel |
| * @vc: wrappped virtual channel |
| * @phy: the physical channel utilized by this channel, if there is one |
| * @runtime_addr: address for RX/TX according to the runtime config |
| * @at: active transaction on this channel |
| * @lock: a lock for this channel data |
| * @host: a pointer to the host (internal use) |
| * @state: whether the channel is idle, running etc |
| * @slave: whether this channel is a device (slave) or for memcpy |
| */ |
| struct s3c24xx_dma_chan { |
| int id; |
| const char *name; |
| struct virt_dma_chan vc; |
| struct s3c24xx_dma_phy *phy; |
| struct dma_slave_config cfg; |
| struct s3c24xx_txd *at; |
| struct s3c24xx_dma_engine *host; |
| enum s3c24xx_dma_chan_state state; |
| bool slave; |
| }; |
| |
| /* |
| * struct s3c24xx_dma_engine - the local state holder for the S3C24XX |
| * @pdev: the corresponding platform device |
| * @pdata: platform data passed in from the platform/machine |
| * @base: virtual memory base (remapped) |
| * @slave: slave engine for this instance |
| * @memcpy: memcpy engine for this instance |
| * @phy_chans: array of data for the physical channels |
| */ |
| struct s3c24xx_dma_engine { |
| struct platform_device *pdev; |
| const struct s3c24xx_dma_platdata *pdata; |
| struct soc_data *sdata; |
| void __iomem *base; |
| struct dma_device slave; |
| struct dma_device memcpy; |
| struct s3c24xx_dma_phy *phy_chans; |
| }; |
| |
| /* |
| * Physical channel handling |
| */ |
| |
| /* |
| * Check whether a certain channel is busy or not. |
| */ |
| static int s3c24xx_dma_phy_busy(struct s3c24xx_dma_phy *phy) |
| { |
| unsigned int val = readl(phy->base + S3C24XX_DSTAT); |
| return val & S3C24XX_DSTAT_STAT_BUSY; |
| } |
| |
| static bool s3c24xx_dma_phy_valid(struct s3c24xx_dma_chan *s3cchan, |
| struct s3c24xx_dma_phy *phy) |
| { |
| struct s3c24xx_dma_engine *s3cdma = s3cchan->host; |
| const struct s3c24xx_dma_platdata *pdata = s3cdma->pdata; |
| struct s3c24xx_dma_channel *cdata = &pdata->channels[s3cchan->id]; |
| int phyvalid; |
| |
| /* every phy is valid for memcopy channels */ |
| if (!s3cchan->slave) |
| return true; |
| |
| /* On newer variants all phys can be used for all virtual channels */ |
| if (s3cdma->sdata->has_reqsel) |
| return true; |
| |
| phyvalid = (cdata->chansel >> (phy->id * S3C24XX_CHANSEL_WIDTH)); |
| return (phyvalid & S3C24XX_CHANSEL_VALID) ? true : false; |
| } |
| |
| /* |
| * Allocate a physical channel for a virtual channel |
| * |
| * Try to locate a physical channel to be used for this transfer. If all |
| * are taken return NULL and the requester will have to cope by using |
| * some fallback PIO mode or retrying later. |
| */ |
| static |
| struct s3c24xx_dma_phy *s3c24xx_dma_get_phy(struct s3c24xx_dma_chan *s3cchan) |
| { |
| struct s3c24xx_dma_engine *s3cdma = s3cchan->host; |
| const struct s3c24xx_dma_platdata *pdata = s3cdma->pdata; |
| struct s3c24xx_dma_channel *cdata; |
| struct s3c24xx_dma_phy *phy = NULL; |
| unsigned long flags; |
| int i; |
| int ret; |
| |
| if (s3cchan->slave) |
| cdata = &pdata->channels[s3cchan->id]; |
| |
| for (i = 0; i < s3cdma->pdata->num_phy_channels; i++) { |
| phy = &s3cdma->phy_chans[i]; |
| |
| if (!phy->valid) |
| continue; |
| |
| if (!s3c24xx_dma_phy_valid(s3cchan, phy)) |
| continue; |
| |
| spin_lock_irqsave(&phy->lock, flags); |
| |
| if (!phy->serving) { |
| phy->serving = s3cchan; |
| spin_unlock_irqrestore(&phy->lock, flags); |
| break; |
| } |
| |
| spin_unlock_irqrestore(&phy->lock, flags); |
| } |
| |
| /* No physical channel available, cope with it */ |
| if (i == s3cdma->pdata->num_phy_channels) { |
| dev_warn(&s3cdma->pdev->dev, "no phy channel available\n"); |
| return NULL; |
| } |
| |
| /* start the phy clock */ |
| if (s3cdma->sdata->has_clocks) { |
| ret = clk_enable(phy->clk); |
| if (ret) { |
| dev_err(&s3cdma->pdev->dev, "could not enable clock for channel %d, err %d\n", |
| phy->id, ret); |
| phy->serving = NULL; |
| return NULL; |
| } |
| } |
| |
| return phy; |
| } |
| |
| /* |
| * Mark the physical channel as free. |
| * |
| * This drops the link between the physical and virtual channel. |
| */ |
| static inline void s3c24xx_dma_put_phy(struct s3c24xx_dma_phy *phy) |
| { |
| struct s3c24xx_dma_engine *s3cdma = phy->host; |
| |
| if (s3cdma->sdata->has_clocks) |
| clk_disable(phy->clk); |
| |
| phy->serving = NULL; |
| } |
| |
| /* |
| * Stops the channel by writing the stop bit. |
| * This should not be used for an on-going transfer, but as a method of |
| * shutting down a channel (eg, when it's no longer used) or terminating a |
| * transfer. |
| */ |
| static void s3c24xx_dma_terminate_phy(struct s3c24xx_dma_phy *phy) |
| { |
| writel(S3C24XX_DMASKTRIG_STOP, phy->base + S3C24XX_DMASKTRIG); |
| } |
| |
| /* |
| * Virtual channel handling |
| */ |
| |
| static inline |
| struct s3c24xx_dma_chan *to_s3c24xx_dma_chan(struct dma_chan *chan) |
| { |
| return container_of(chan, struct s3c24xx_dma_chan, vc.chan); |
| } |
| |
| static u32 s3c24xx_dma_getbytes_chan(struct s3c24xx_dma_chan *s3cchan) |
| { |
| struct s3c24xx_dma_phy *phy = s3cchan->phy; |
| struct s3c24xx_txd *txd = s3cchan->at; |
| u32 tc = readl(phy->base + S3C24XX_DSTAT) & S3C24XX_DSTAT_CURRTC_MASK; |
| |
| return tc * txd->width; |
| } |
| |
| static int s3c24xx_dma_set_runtime_config(struct dma_chan *chan, |
| struct dma_slave_config *config) |
| { |
| struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan); |
| unsigned long flags; |
| int ret = 0; |
| |
| /* Reject definitely invalid configurations */ |
| if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES || |
| config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES) |
| return -EINVAL; |
| |
| spin_lock_irqsave(&s3cchan->vc.lock, flags); |
| |
| if (!s3cchan->slave) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| s3cchan->cfg = *config; |
| |
| out: |
| spin_unlock_irqrestore(&s3cchan->vc.lock, flags); |
| return ret; |
| } |
| |
| /* |
| * Transfer handling |
| */ |
| |
| static inline |
| struct s3c24xx_txd *to_s3c24xx_txd(struct dma_async_tx_descriptor *tx) |
| { |
| return container_of(tx, struct s3c24xx_txd, vd.tx); |
| } |
| |
| static struct s3c24xx_txd *s3c24xx_dma_get_txd(void) |
| { |
| struct s3c24xx_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT); |
| |
| if (txd) { |
| INIT_LIST_HEAD(&txd->dsg_list); |
| txd->dcon = S3C24XX_DCON_INT | S3C24XX_DCON_NORELOAD; |
| } |
| |
| return txd; |
| } |
| |
| static void s3c24xx_dma_free_txd(struct s3c24xx_txd *txd) |
| { |
| struct s3c24xx_sg *dsg, *_dsg; |
| |
| list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) { |
| list_del(&dsg->node); |
| kfree(dsg); |
| } |
| |
| kfree(txd); |
| } |
| |
| static void s3c24xx_dma_start_next_sg(struct s3c24xx_dma_chan *s3cchan, |
| struct s3c24xx_txd *txd) |
| { |
| struct s3c24xx_dma_engine *s3cdma = s3cchan->host; |
| struct s3c24xx_dma_phy *phy = s3cchan->phy; |
| const struct s3c24xx_dma_platdata *pdata = s3cdma->pdata; |
| struct s3c24xx_sg *dsg = list_entry(txd->at, struct s3c24xx_sg, node); |
| u32 dcon = txd->dcon; |
| u32 val; |
| |
| /* transfer-size and -count from len and width */ |
| switch (txd->width) { |
| case 1: |
| dcon |= S3C24XX_DCON_DSZ_BYTE | dsg->len; |
| break; |
| case 2: |
| dcon |= S3C24XX_DCON_DSZ_HALFWORD | (dsg->len / 2); |
| break; |
| case 4: |
| dcon |= S3C24XX_DCON_DSZ_WORD | (dsg->len / 4); |
| break; |
| } |
| |
| if (s3cchan->slave) { |
| struct s3c24xx_dma_channel *cdata = |
| &pdata->channels[s3cchan->id]; |
| |
| if (s3cdma->sdata->has_reqsel) { |
| writel_relaxed((cdata->chansel << 1) | |
| S3C24XX_DMAREQSEL_HW, |
| phy->base + S3C24XX_DMAREQSEL); |
| } else { |
| int csel = cdata->chansel >> (phy->id * |
| S3C24XX_CHANSEL_WIDTH); |
| |
| csel &= S3C24XX_CHANSEL_REQ_MASK; |
| dcon |= csel << S3C24XX_DCON_HWSRC_SHIFT; |
| dcon |= S3C24XX_DCON_HWTRIG; |
| } |
| } else { |
| if (s3cdma->sdata->has_reqsel) |
| writel_relaxed(0, phy->base + S3C24XX_DMAREQSEL); |
| } |
| |
| writel_relaxed(dsg->src_addr, phy->base + S3C24XX_DISRC); |
| writel_relaxed(txd->disrcc, phy->base + S3C24XX_DISRCC); |
| writel_relaxed(dsg->dst_addr, phy->base + S3C24XX_DIDST); |
| writel_relaxed(txd->didstc, phy->base + S3C24XX_DIDSTC); |
| writel_relaxed(dcon, phy->base + S3C24XX_DCON); |
| |
| val = readl_relaxed(phy->base + S3C24XX_DMASKTRIG); |
| val &= ~S3C24XX_DMASKTRIG_STOP; |
| val |= S3C24XX_DMASKTRIG_ON; |
| |
| /* trigger the dma operation for memcpy transfers */ |
| if (!s3cchan->slave) |
| val |= S3C24XX_DMASKTRIG_SWTRIG; |
| |
| writel(val, phy->base + S3C24XX_DMASKTRIG); |
| } |
| |
| /* |
| * Set the initial DMA register values and start first sg. |
| */ |
| static void s3c24xx_dma_start_next_txd(struct s3c24xx_dma_chan *s3cchan) |
| { |
| struct s3c24xx_dma_phy *phy = s3cchan->phy; |
| struct virt_dma_desc *vd = vchan_next_desc(&s3cchan->vc); |
| struct s3c24xx_txd *txd = to_s3c24xx_txd(&vd->tx); |
| |
| list_del(&txd->vd.node); |
| |
| s3cchan->at = txd; |
| |
| /* Wait for channel inactive */ |
| while (s3c24xx_dma_phy_busy(phy)) |
| cpu_relax(); |
| |
| /* point to the first element of the sg list */ |
| txd->at = txd->dsg_list.next; |
| s3c24xx_dma_start_next_sg(s3cchan, txd); |
| } |
| |
| static void s3c24xx_dma_free_txd_list(struct s3c24xx_dma_engine *s3cdma, |
| struct s3c24xx_dma_chan *s3cchan) |
| { |
| LIST_HEAD(head); |
| |
| vchan_get_all_descriptors(&s3cchan->vc, &head); |
| vchan_dma_desc_free_list(&s3cchan->vc, &head); |
| } |
| |
| /* |
| * Try to allocate a physical channel. When successful, assign it to |
| * this virtual channel, and initiate the next descriptor. The |
| * virtual channel lock must be held at this point. |
| */ |
| static void s3c24xx_dma_phy_alloc_and_start(struct s3c24xx_dma_chan *s3cchan) |
| { |
| struct s3c24xx_dma_engine *s3cdma = s3cchan->host; |
| struct s3c24xx_dma_phy *phy; |
| |
| phy = s3c24xx_dma_get_phy(s3cchan); |
| if (!phy) { |
| dev_dbg(&s3cdma->pdev->dev, "no physical channel available for xfer on %s\n", |
| s3cchan->name); |
| s3cchan->state = S3C24XX_DMA_CHAN_WAITING; |
| return; |
| } |
| |
| dev_dbg(&s3cdma->pdev->dev, "allocated physical channel %d for xfer on %s\n", |
| phy->id, s3cchan->name); |
| |
| s3cchan->phy = phy; |
| s3cchan->state = S3C24XX_DMA_CHAN_RUNNING; |
| |
| s3c24xx_dma_start_next_txd(s3cchan); |
| } |
| |
| static void s3c24xx_dma_phy_reassign_start(struct s3c24xx_dma_phy *phy, |
| struct s3c24xx_dma_chan *s3cchan) |
| { |
| struct s3c24xx_dma_engine *s3cdma = s3cchan->host; |
| |
| dev_dbg(&s3cdma->pdev->dev, "reassigned physical channel %d for xfer on %s\n", |
| phy->id, s3cchan->name); |
| |
| /* |
| * We do this without taking the lock; we're really only concerned |
| * about whether this pointer is NULL or not, and we're guaranteed |
| * that this will only be called when it _already_ is non-NULL. |
| */ |
| phy->serving = s3cchan; |
| s3cchan->phy = phy; |
| s3cchan->state = S3C24XX_DMA_CHAN_RUNNING; |
| s3c24xx_dma_start_next_txd(s3cchan); |
| } |
| |
| /* |
| * Free a physical DMA channel, potentially reallocating it to another |
| * virtual channel if we have any pending. |
| */ |
| static void s3c24xx_dma_phy_free(struct s3c24xx_dma_chan *s3cchan) |
| { |
| struct s3c24xx_dma_engine *s3cdma = s3cchan->host; |
| struct s3c24xx_dma_chan *p, *next; |
| |
| retry: |
| next = NULL; |
| |
| /* Find a waiting virtual channel for the next transfer. */ |
| list_for_each_entry(p, &s3cdma->memcpy.channels, vc.chan.device_node) |
| if (p->state == S3C24XX_DMA_CHAN_WAITING) { |
| next = p; |
| break; |
| } |
| |
| if (!next) { |
| list_for_each_entry(p, &s3cdma->slave.channels, |
| vc.chan.device_node) |
| if (p->state == S3C24XX_DMA_CHAN_WAITING && |
| s3c24xx_dma_phy_valid(p, s3cchan->phy)) { |
| next = p; |
| break; |
| } |
| } |
| |
| /* Ensure that the physical channel is stopped */ |
| s3c24xx_dma_terminate_phy(s3cchan->phy); |
| |
| if (next) { |
| bool success; |
| |
| /* |
| * Eww. We know this isn't going to deadlock |
| * but lockdep probably doesn't. |
| */ |
| spin_lock(&next->vc.lock); |
| /* Re-check the state now that we have the lock */ |
| success = next->state == S3C24XX_DMA_CHAN_WAITING; |
| if (success) |
| s3c24xx_dma_phy_reassign_start(s3cchan->phy, next); |
| spin_unlock(&next->vc.lock); |
| |
| /* If the state changed, try to find another channel */ |
| if (!success) |
| goto retry; |
| } else { |
| /* No more jobs, so free up the physical channel */ |
| s3c24xx_dma_put_phy(s3cchan->phy); |
| } |
| |
| s3cchan->phy = NULL; |
| s3cchan->state = S3C24XX_DMA_CHAN_IDLE; |
| } |
| |
| static void s3c24xx_dma_desc_free(struct virt_dma_desc *vd) |
| { |
| struct s3c24xx_txd *txd = to_s3c24xx_txd(&vd->tx); |
| struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(vd->tx.chan); |
| |
| if (!s3cchan->slave) |
| dma_descriptor_unmap(&vd->tx); |
| |
| s3c24xx_dma_free_txd(txd); |
| } |
| |
| static irqreturn_t s3c24xx_dma_irq(int irq, void *data) |
| { |
| struct s3c24xx_dma_phy *phy = data; |
| struct s3c24xx_dma_chan *s3cchan = phy->serving; |
| struct s3c24xx_txd *txd; |
| |
| dev_dbg(&phy->host->pdev->dev, "interrupt on channel %d\n", phy->id); |
| |
| /* |
| * Interrupts happen to notify the completion of a transfer and the |
| * channel should have moved into its stop state already on its own. |
| * Therefore interrupts on channels not bound to a virtual channel |
| * should never happen. Nevertheless send a terminate command to the |
| * channel if the unlikely case happens. |
| */ |
| if (unlikely(!s3cchan)) { |
| dev_err(&phy->host->pdev->dev, "interrupt on unused channel %d\n", |
| phy->id); |
| |
| s3c24xx_dma_terminate_phy(phy); |
| |
| return IRQ_HANDLED; |
| } |
| |
| spin_lock(&s3cchan->vc.lock); |
| txd = s3cchan->at; |
| if (txd) { |
| /* when more sg's are in this txd, start the next one */ |
| if (!list_is_last(txd->at, &txd->dsg_list)) { |
| txd->at = txd->at->next; |
| if (txd->cyclic) |
| vchan_cyclic_callback(&txd->vd); |
| s3c24xx_dma_start_next_sg(s3cchan, txd); |
| } else if (!txd->cyclic) { |
| s3cchan->at = NULL; |
| vchan_cookie_complete(&txd->vd); |
| |
| /* |
| * And start the next descriptor (if any), |
| * otherwise free this channel. |
| */ |
| if (vchan_next_desc(&s3cchan->vc)) |
| s3c24xx_dma_start_next_txd(s3cchan); |
| else |
| s3c24xx_dma_phy_free(s3cchan); |
| } else { |
| vchan_cyclic_callback(&txd->vd); |
| |
| /* Cyclic: reset at beginning */ |
| txd->at = txd->dsg_list.next; |
| s3c24xx_dma_start_next_sg(s3cchan, txd); |
| } |
| } |
| spin_unlock(&s3cchan->vc.lock); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * The DMA ENGINE API |
| */ |
| |
| static int s3c24xx_dma_terminate_all(struct dma_chan *chan) |
| { |
| struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan); |
| struct s3c24xx_dma_engine *s3cdma = s3cchan->host; |
| unsigned long flags; |
| int ret = 0; |
| |
| spin_lock_irqsave(&s3cchan->vc.lock, flags); |
| |
| if (!s3cchan->phy && !s3cchan->at) { |
| dev_err(&s3cdma->pdev->dev, "trying to terminate already stopped channel %d\n", |
| s3cchan->id); |
| ret = -EINVAL; |
| goto unlock; |
| } |
| |
| s3cchan->state = S3C24XX_DMA_CHAN_IDLE; |
| |
| /* Mark physical channel as free */ |
| if (s3cchan->phy) |
| s3c24xx_dma_phy_free(s3cchan); |
| |
| /* Dequeue current job */ |
| if (s3cchan->at) { |
| s3c24xx_dma_desc_free(&s3cchan->at->vd); |
| s3cchan->at = NULL; |
| } |
| |
| /* Dequeue jobs not yet fired as well */ |
| s3c24xx_dma_free_txd_list(s3cdma, s3cchan); |
| unlock: |
| spin_unlock_irqrestore(&s3cchan->vc.lock, flags); |
| |
| return ret; |
| } |
| |
| static void s3c24xx_dma_free_chan_resources(struct dma_chan *chan) |
| { |
| /* Ensure all queued descriptors are freed */ |
| vchan_free_chan_resources(to_virt_chan(chan)); |
| } |
| |
| static enum dma_status s3c24xx_dma_tx_status(struct dma_chan *chan, |
| dma_cookie_t cookie, struct dma_tx_state *txstate) |
| { |
| struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan); |
| struct s3c24xx_txd *txd; |
| struct s3c24xx_sg *dsg; |
| struct virt_dma_desc *vd; |
| unsigned long flags; |
| enum dma_status ret; |
| size_t bytes = 0; |
| |
| spin_lock_irqsave(&s3cchan->vc.lock, flags); |
| ret = dma_cookie_status(chan, cookie, txstate); |
| |
| /* |
| * There's no point calculating the residue if there's |
| * no txstate to store the value. |
| */ |
| if (ret == DMA_COMPLETE || !txstate) { |
| spin_unlock_irqrestore(&s3cchan->vc.lock, flags); |
| return ret; |
| } |
| |
| vd = vchan_find_desc(&s3cchan->vc, cookie); |
| if (vd) { |
| /* On the issued list, so hasn't been processed yet */ |
| txd = to_s3c24xx_txd(&vd->tx); |
| |
| list_for_each_entry(dsg, &txd->dsg_list, node) |
| bytes += dsg->len; |
| } else { |
| /* |
| * Currently running, so sum over the pending sg's and |
| * the currently active one. |
| */ |
| txd = s3cchan->at; |
| |
| dsg = list_entry(txd->at, struct s3c24xx_sg, node); |
| list_for_each_entry_from(dsg, &txd->dsg_list, node) |
| bytes += dsg->len; |
| |
| bytes += s3c24xx_dma_getbytes_chan(s3cchan); |
| } |
| spin_unlock_irqrestore(&s3cchan->vc.lock, flags); |
| |
| /* |
| * This cookie not complete yet |
| * Get number of bytes left in the active transactions and queue |
| */ |
| dma_set_residue(txstate, bytes); |
| |
| /* Whether waiting or running, we're in progress */ |
| return ret; |
| } |
| |
| /* |
| * Initialize a descriptor to be used by memcpy submit |
| */ |
| static struct dma_async_tx_descriptor *s3c24xx_dma_prep_memcpy( |
| struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, |
| size_t len, unsigned long flags) |
| { |
| struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan); |
| struct s3c24xx_dma_engine *s3cdma = s3cchan->host; |
| struct s3c24xx_txd *txd; |
| struct s3c24xx_sg *dsg; |
| int src_mod, dest_mod; |
| |
| dev_dbg(&s3cdma->pdev->dev, "prepare memcpy of %d bytes from %s\n", |
| len, s3cchan->name); |
| |
| if ((len & S3C24XX_DCON_TC_MASK) != len) { |
| dev_err(&s3cdma->pdev->dev, "memcpy size %d to large\n", len); |
| return NULL; |
| } |
| |
| txd = s3c24xx_dma_get_txd(); |
| if (!txd) |
| return NULL; |
| |
| dsg = kzalloc(sizeof(*dsg), GFP_NOWAIT); |
| if (!dsg) { |
| s3c24xx_dma_free_txd(txd); |
| return NULL; |
| } |
| list_add_tail(&dsg->node, &txd->dsg_list); |
| |
| dsg->src_addr = src; |
| dsg->dst_addr = dest; |
| dsg->len = len; |
| |
| /* |
| * Determine a suitable transfer width. |
| * The DMA controller cannot fetch/store information which is not |
| * naturally aligned on the bus, i.e., a 4 byte fetch must start at |
| * an address divisible by 4 - more generally addr % width must be 0. |
| */ |
| src_mod = src % 4; |
| dest_mod = dest % 4; |
| switch (len % 4) { |
| case 0: |
| txd->width = (src_mod == 0 && dest_mod == 0) ? 4 : 1; |
| break; |
| case 2: |
| txd->width = ((src_mod == 2 || src_mod == 0) && |
| (dest_mod == 2 || dest_mod == 0)) ? 2 : 1; |
| break; |
| default: |
| txd->width = 1; |
| break; |
| } |
| |
| txd->disrcc = S3C24XX_DISRCC_LOC_AHB | S3C24XX_DISRCC_INC_INCREMENT; |
| txd->didstc = S3C24XX_DIDSTC_LOC_AHB | S3C24XX_DIDSTC_INC_INCREMENT; |
| txd->dcon |= S3C24XX_DCON_DEMAND | S3C24XX_DCON_SYNC_HCLK | |
| S3C24XX_DCON_SERV_WHOLE; |
| |
| return vchan_tx_prep(&s3cchan->vc, &txd->vd, flags); |
| } |
| |
| static struct dma_async_tx_descriptor *s3c24xx_dma_prep_dma_cyclic( |
| struct dma_chan *chan, dma_addr_t addr, size_t size, size_t period, |
| enum dma_transfer_direction direction, unsigned long flags) |
| { |
| struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan); |
| struct s3c24xx_dma_engine *s3cdma = s3cchan->host; |
| const struct s3c24xx_dma_platdata *pdata = s3cdma->pdata; |
| struct s3c24xx_dma_channel *cdata = &pdata->channels[s3cchan->id]; |
| struct s3c24xx_txd *txd; |
| struct s3c24xx_sg *dsg; |
| unsigned sg_len; |
| dma_addr_t slave_addr; |
| u32 hwcfg = 0; |
| int i; |
| |
| dev_dbg(&s3cdma->pdev->dev, |
| "prepare cyclic transaction of %zu bytes with period %zu from %s\n", |
| size, period, s3cchan->name); |
| |
| if (!is_slave_direction(direction)) { |
| dev_err(&s3cdma->pdev->dev, |
| "direction %d unsupported\n", direction); |
| return NULL; |
| } |
| |
| txd = s3c24xx_dma_get_txd(); |
| if (!txd) |
| return NULL; |
| |
| txd->cyclic = 1; |
| |
| if (cdata->handshake) |
| txd->dcon |= S3C24XX_DCON_HANDSHAKE; |
| |
| switch (cdata->bus) { |
| case S3C24XX_DMA_APB: |
| txd->dcon |= S3C24XX_DCON_SYNC_PCLK; |
| hwcfg |= S3C24XX_DISRCC_LOC_APB; |
| break; |
| case S3C24XX_DMA_AHB: |
| txd->dcon |= S3C24XX_DCON_SYNC_HCLK; |
| hwcfg |= S3C24XX_DISRCC_LOC_AHB; |
| break; |
| } |
| |
| /* |
| * Always assume our peripheral desintation is a fixed |
| * address in memory. |
| */ |
| hwcfg |= S3C24XX_DISRCC_INC_FIXED; |
| |
| /* |
| * Individual dma operations are requested by the slave, |
| * so serve only single atomic operations (S3C24XX_DCON_SERV_SINGLE). |
| */ |
| txd->dcon |= S3C24XX_DCON_SERV_SINGLE; |
| |
| if (direction == DMA_MEM_TO_DEV) { |
| txd->disrcc = S3C24XX_DISRCC_LOC_AHB | |
| S3C24XX_DISRCC_INC_INCREMENT; |
| txd->didstc = hwcfg; |
| slave_addr = s3cchan->cfg.dst_addr; |
| txd->width = s3cchan->cfg.dst_addr_width; |
| } else { |
| txd->disrcc = hwcfg; |
| txd->didstc = S3C24XX_DIDSTC_LOC_AHB | |
| S3C24XX_DIDSTC_INC_INCREMENT; |
| slave_addr = s3cchan->cfg.src_addr; |
| txd->width = s3cchan->cfg.src_addr_width; |
| } |
| |
| sg_len = size / period; |
| |
| for (i = 0; i < sg_len; i++) { |
| dsg = kzalloc(sizeof(*dsg), GFP_NOWAIT); |
| if (!dsg) { |
| s3c24xx_dma_free_txd(txd); |
| return NULL; |
| } |
| list_add_tail(&dsg->node, &txd->dsg_list); |
| |
| dsg->len = period; |
| /* Check last period length */ |
| if (i == sg_len - 1) |
| dsg->len = size - period * i; |
| if (direction == DMA_MEM_TO_DEV) { |
| dsg->src_addr = addr + period * i; |
| dsg->dst_addr = slave_addr; |
| } else { /* DMA_DEV_TO_MEM */ |
| dsg->src_addr = slave_addr; |
| dsg->dst_addr = addr + period * i; |
| } |
| } |
| |
| return vchan_tx_prep(&s3cchan->vc, &txd->vd, flags); |
| } |
| |
| static struct dma_async_tx_descriptor *s3c24xx_dma_prep_slave_sg( |
| struct dma_chan *chan, struct scatterlist *sgl, |
| unsigned int sg_len, enum dma_transfer_direction direction, |
| unsigned long flags, void *context) |
| { |
| struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan); |
| struct s3c24xx_dma_engine *s3cdma = s3cchan->host; |
| const struct s3c24xx_dma_platdata *pdata = s3cdma->pdata; |
| struct s3c24xx_dma_channel *cdata = &pdata->channels[s3cchan->id]; |
| struct s3c24xx_txd *txd; |
| struct s3c24xx_sg *dsg; |
| struct scatterlist *sg; |
| dma_addr_t slave_addr; |
| u32 hwcfg = 0; |
| int tmp; |
| |
| dev_dbg(&s3cdma->pdev->dev, "prepare transaction of %d bytes from %s\n", |
| sg_dma_len(sgl), s3cchan->name); |
| |
| txd = s3c24xx_dma_get_txd(); |
| if (!txd) |
| return NULL; |
| |
| if (cdata->handshake) |
| txd->dcon |= S3C24XX_DCON_HANDSHAKE; |
| |
| switch (cdata->bus) { |
| case S3C24XX_DMA_APB: |
| txd->dcon |= S3C24XX_DCON_SYNC_PCLK; |
| hwcfg |= S3C24XX_DISRCC_LOC_APB; |
| break; |
| case S3C24XX_DMA_AHB: |
| txd->dcon |= S3C24XX_DCON_SYNC_HCLK; |
| hwcfg |= S3C24XX_DISRCC_LOC_AHB; |
| break; |
| } |
| |
| /* |
| * Always assume our peripheral desintation is a fixed |
| * address in memory. |
| */ |
| hwcfg |= S3C24XX_DISRCC_INC_FIXED; |
| |
| /* |
| * Individual dma operations are requested by the slave, |
| * so serve only single atomic operations (S3C24XX_DCON_SERV_SINGLE). |
| */ |
| txd->dcon |= S3C24XX_DCON_SERV_SINGLE; |
| |
| if (direction == DMA_MEM_TO_DEV) { |
| txd->disrcc = S3C24XX_DISRCC_LOC_AHB | |
| S3C24XX_DISRCC_INC_INCREMENT; |
| txd->didstc = hwcfg; |
| slave_addr = s3cchan->cfg.dst_addr; |
| txd->width = s3cchan->cfg.dst_addr_width; |
| } else if (direction == DMA_DEV_TO_MEM) { |
| txd->disrcc = hwcfg; |
| txd->didstc = S3C24XX_DIDSTC_LOC_AHB | |
| S3C24XX_DIDSTC_INC_INCREMENT; |
| slave_addr = s3cchan->cfg.src_addr; |
| txd->width = s3cchan->cfg.src_addr_width; |
| } else { |
| s3c24xx_dma_free_txd(txd); |
| dev_err(&s3cdma->pdev->dev, |
| "direction %d unsupported\n", direction); |
| return NULL; |
| } |
| |
| for_each_sg(sgl, sg, sg_len, tmp) { |
| dsg = kzalloc(sizeof(*dsg), GFP_NOWAIT); |
| if (!dsg) { |
| s3c24xx_dma_free_txd(txd); |
| return NULL; |
| } |
| list_add_tail(&dsg->node, &txd->dsg_list); |
| |
| dsg->len = sg_dma_len(sg); |
| if (direction == DMA_MEM_TO_DEV) { |
| dsg->src_addr = sg_dma_address(sg); |
| dsg->dst_addr = slave_addr; |
| } else { /* DMA_DEV_TO_MEM */ |
| dsg->src_addr = slave_addr; |
| dsg->dst_addr = sg_dma_address(sg); |
| } |
| } |
| |
| return vchan_tx_prep(&s3cchan->vc, &txd->vd, flags); |
| } |
| |
| /* |
| * Slave transactions callback to the slave device to allow |
| * synchronization of slave DMA signals with the DMAC enable |
| */ |
| static void s3c24xx_dma_issue_pending(struct dma_chan *chan) |
| { |
| struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&s3cchan->vc.lock, flags); |
| if (vchan_issue_pending(&s3cchan->vc)) { |
| if (!s3cchan->phy && s3cchan->state != S3C24XX_DMA_CHAN_WAITING) |
| s3c24xx_dma_phy_alloc_and_start(s3cchan); |
| } |
| spin_unlock_irqrestore(&s3cchan->vc.lock, flags); |
| } |
| |
| /* |
| * Bringup and teardown |
| */ |
| |
| /* |
| * Initialise the DMAC memcpy/slave channels. |
| * Make a local wrapper to hold required data |
| */ |
| static int s3c24xx_dma_init_virtual_channels(struct s3c24xx_dma_engine *s3cdma, |
| struct dma_device *dmadev, unsigned int channels, bool slave) |
| { |
| struct s3c24xx_dma_chan *chan; |
| int i; |
| |
| INIT_LIST_HEAD(&dmadev->channels); |
| |
| /* |
| * Register as many many memcpy as we have physical channels, |
| * we won't always be able to use all but the code will have |
| * to cope with that situation. |
| */ |
| for (i = 0; i < channels; i++) { |
| chan = devm_kzalloc(dmadev->dev, sizeof(*chan), GFP_KERNEL); |
| if (!chan) |
| return -ENOMEM; |
| |
| chan->id = i; |
| chan->host = s3cdma; |
| chan->state = S3C24XX_DMA_CHAN_IDLE; |
| |
| if (slave) { |
| chan->slave = true; |
| chan->name = kasprintf(GFP_KERNEL, "slave%d", i); |
| if (!chan->name) |
| return -ENOMEM; |
| } else { |
| chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i); |
| if (!chan->name) |
| return -ENOMEM; |
| } |
| dev_dbg(dmadev->dev, |
| "initialize virtual channel \"%s\"\n", |
| chan->name); |
| |
| chan->vc.desc_free = s3c24xx_dma_desc_free; |
| vchan_init(&chan->vc, dmadev); |
| } |
| dev_info(dmadev->dev, "initialized %d virtual %s channels\n", |
| i, slave ? "slave" : "memcpy"); |
| return i; |
| } |
| |
| static void s3c24xx_dma_free_virtual_channels(struct dma_device *dmadev) |
| { |
| struct s3c24xx_dma_chan *chan = NULL; |
| struct s3c24xx_dma_chan *next; |
| |
| list_for_each_entry_safe(chan, |
| next, &dmadev->channels, vc.chan.device_node) |
| list_del(&chan->vc.chan.device_node); |
| } |
| |
| /* s3c2410, s3c2440 and s3c2442 have a 0x40 stride without separate clocks */ |
| static struct soc_data soc_s3c2410 = { |
| .stride = 0x40, |
| .has_reqsel = false, |
| .has_clocks = false, |
| }; |
| |
| /* s3c2412 and s3c2413 have a 0x40 stride and dmareqsel mechanism */ |
| static struct soc_data soc_s3c2412 = { |
| .stride = 0x40, |
| .has_reqsel = true, |
| .has_clocks = true, |
| }; |
| |
| /* s3c2443 and following have a 0x100 stride and dmareqsel mechanism */ |
| static struct soc_data soc_s3c2443 = { |
| .stride = 0x100, |
| .has_reqsel = true, |
| .has_clocks = true, |
| }; |
| |
| static const struct platform_device_id s3c24xx_dma_driver_ids[] = { |
| { |
| .name = "s3c2410-dma", |
| .driver_data = (kernel_ulong_t)&soc_s3c2410, |
| }, { |
| .name = "s3c2412-dma", |
| .driver_data = (kernel_ulong_t)&soc_s3c2412, |
| }, { |
| .name = "s3c2443-dma", |
| .driver_data = (kernel_ulong_t)&soc_s3c2443, |
| }, |
| { }, |
| }; |
| |
| static struct soc_data *s3c24xx_dma_get_soc_data(struct platform_device *pdev) |
| { |
| return (struct soc_data *) |
| platform_get_device_id(pdev)->driver_data; |
| } |
| |
| static int s3c24xx_dma_probe(struct platform_device *pdev) |
| { |
| const struct s3c24xx_dma_platdata *pdata = dev_get_platdata(&pdev->dev); |
| struct s3c24xx_dma_engine *s3cdma; |
| struct soc_data *sdata; |
| struct resource *res; |
| int ret; |
| int i; |
| |
| if (!pdata) { |
| dev_err(&pdev->dev, "platform data missing\n"); |
| return -ENODEV; |
| } |
| |
| /* Basic sanity check */ |
| if (pdata->num_phy_channels > MAX_DMA_CHANNELS) { |
| dev_err(&pdev->dev, "to many dma channels %d, max %d\n", |
| pdata->num_phy_channels, MAX_DMA_CHANNELS); |
| return -EINVAL; |
| } |
| |
| sdata = s3c24xx_dma_get_soc_data(pdev); |
| if (!sdata) |
| return -EINVAL; |
| |
| s3cdma = devm_kzalloc(&pdev->dev, sizeof(*s3cdma), GFP_KERNEL); |
| if (!s3cdma) |
| return -ENOMEM; |
| |
| s3cdma->pdev = pdev; |
| s3cdma->pdata = pdata; |
| s3cdma->sdata = sdata; |
| |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| s3cdma->base = devm_ioremap_resource(&pdev->dev, res); |
| if (IS_ERR(s3cdma->base)) |
| return PTR_ERR(s3cdma->base); |
| |
| s3cdma->phy_chans = devm_kzalloc(&pdev->dev, |
| sizeof(struct s3c24xx_dma_phy) * |
| pdata->num_phy_channels, |
| GFP_KERNEL); |
| if (!s3cdma->phy_chans) |
| return -ENOMEM; |
| |
| /* acquire irqs and clocks for all physical channels */ |
| for (i = 0; i < pdata->num_phy_channels; i++) { |
| struct s3c24xx_dma_phy *phy = &s3cdma->phy_chans[i]; |
| char clk_name[6]; |
| |
| phy->id = i; |
| phy->base = s3cdma->base + (i * sdata->stride); |
| phy->host = s3cdma; |
| |
| phy->irq = platform_get_irq(pdev, i); |
| if (phy->irq < 0) { |
| dev_err(&pdev->dev, "failed to get irq %d, err %d\n", |
| i, phy->irq); |
| continue; |
| } |
| |
| ret = devm_request_irq(&pdev->dev, phy->irq, s3c24xx_dma_irq, |
| 0, pdev->name, phy); |
| if (ret) { |
| dev_err(&pdev->dev, "Unable to request irq for channel %d, error %d\n", |
| i, ret); |
| continue; |
| } |
| |
| if (sdata->has_clocks) { |
| sprintf(clk_name, "dma.%d", i); |
| phy->clk = devm_clk_get(&pdev->dev, clk_name); |
| if (IS_ERR(phy->clk) && sdata->has_clocks) { |
| dev_err(&pdev->dev, "unable to acquire clock for channel %d, error %lu\n", |
| i, PTR_ERR(phy->clk)); |
| continue; |
| } |
| |
| ret = clk_prepare(phy->clk); |
| if (ret) { |
| dev_err(&pdev->dev, "clock for phy %d failed, error %d\n", |
| i, ret); |
| continue; |
| } |
| } |
| |
| spin_lock_init(&phy->lock); |
| phy->valid = true; |
| |
| dev_dbg(&pdev->dev, "physical channel %d is %s\n", |
| i, s3c24xx_dma_phy_busy(phy) ? "BUSY" : "FREE"); |
| } |
| |
| /* Initialize memcpy engine */ |
| dma_cap_set(DMA_MEMCPY, s3cdma->memcpy.cap_mask); |
| dma_cap_set(DMA_PRIVATE, s3cdma->memcpy.cap_mask); |
| s3cdma->memcpy.dev = &pdev->dev; |
| s3cdma->memcpy.device_free_chan_resources = |
| s3c24xx_dma_free_chan_resources; |
| s3cdma->memcpy.device_prep_dma_memcpy = s3c24xx_dma_prep_memcpy; |
| s3cdma->memcpy.device_tx_status = s3c24xx_dma_tx_status; |
| s3cdma->memcpy.device_issue_pending = s3c24xx_dma_issue_pending; |
| s3cdma->memcpy.device_config = s3c24xx_dma_set_runtime_config; |
| s3cdma->memcpy.device_terminate_all = s3c24xx_dma_terminate_all; |
| |
| /* Initialize slave engine for SoC internal dedicated peripherals */ |
| dma_cap_set(DMA_SLAVE, s3cdma->slave.cap_mask); |
| dma_cap_set(DMA_CYCLIC, s3cdma->slave.cap_mask); |
| dma_cap_set(DMA_PRIVATE, s3cdma->slave.cap_mask); |
| s3cdma->slave.dev = &pdev->dev; |
| s3cdma->slave.device_free_chan_resources = |
| s3c24xx_dma_free_chan_resources; |
| s3cdma->slave.device_tx_status = s3c24xx_dma_tx_status; |
| s3cdma->slave.device_issue_pending = s3c24xx_dma_issue_pending; |
| s3cdma->slave.device_prep_slave_sg = s3c24xx_dma_prep_slave_sg; |
| s3cdma->slave.device_prep_dma_cyclic = s3c24xx_dma_prep_dma_cyclic; |
| s3cdma->slave.device_config = s3c24xx_dma_set_runtime_config; |
| s3cdma->slave.device_terminate_all = s3c24xx_dma_terminate_all; |
| |
| /* Register as many memcpy channels as there are physical channels */ |
| ret = s3c24xx_dma_init_virtual_channels(s3cdma, &s3cdma->memcpy, |
| pdata->num_phy_channels, false); |
| if (ret <= 0) { |
| dev_warn(&pdev->dev, |
| "%s failed to enumerate memcpy channels - %d\n", |
| __func__, ret); |
| goto err_memcpy; |
| } |
| |
| /* Register slave channels */ |
| ret = s3c24xx_dma_init_virtual_channels(s3cdma, &s3cdma->slave, |
| pdata->num_channels, true); |
| if (ret <= 0) { |
| dev_warn(&pdev->dev, |
| "%s failed to enumerate slave channels - %d\n", |
| __func__, ret); |
| goto err_slave; |
| } |
| |
| ret = dma_async_device_register(&s3cdma->memcpy); |
| if (ret) { |
| dev_warn(&pdev->dev, |
| "%s failed to register memcpy as an async device - %d\n", |
| __func__, ret); |
| goto err_memcpy_reg; |
| } |
| |
| ret = dma_async_device_register(&s3cdma->slave); |
| if (ret) { |
| dev_warn(&pdev->dev, |
| "%s failed to register slave as an async device - %d\n", |
| __func__, ret); |
| goto err_slave_reg; |
| } |
| |
| platform_set_drvdata(pdev, s3cdma); |
| dev_info(&pdev->dev, "Loaded dma driver with %d physical channels\n", |
| pdata->num_phy_channels); |
| |
| return 0; |
| |
| err_slave_reg: |
| dma_async_device_unregister(&s3cdma->memcpy); |
| err_memcpy_reg: |
| s3c24xx_dma_free_virtual_channels(&s3cdma->slave); |
| err_slave: |
| s3c24xx_dma_free_virtual_channels(&s3cdma->memcpy); |
| err_memcpy: |
| if (sdata->has_clocks) |
| for (i = 0; i < pdata->num_phy_channels; i++) { |
| struct s3c24xx_dma_phy *phy = &s3cdma->phy_chans[i]; |
| if (phy->valid) |
| clk_unprepare(phy->clk); |
| } |
| |
| return ret; |
| } |
| |
| static int s3c24xx_dma_remove(struct platform_device *pdev) |
| { |
| const struct s3c24xx_dma_platdata *pdata = dev_get_platdata(&pdev->dev); |
| struct s3c24xx_dma_engine *s3cdma = platform_get_drvdata(pdev); |
| struct soc_data *sdata = s3c24xx_dma_get_soc_data(pdev); |
| int i; |
| |
| dma_async_device_unregister(&s3cdma->slave); |
| dma_async_device_unregister(&s3cdma->memcpy); |
| |
| s3c24xx_dma_free_virtual_channels(&s3cdma->slave); |
| s3c24xx_dma_free_virtual_channels(&s3cdma->memcpy); |
| |
| if (sdata->has_clocks) |
| for (i = 0; i < pdata->num_phy_channels; i++) { |
| struct s3c24xx_dma_phy *phy = &s3cdma->phy_chans[i]; |
| if (phy->valid) |
| clk_unprepare(phy->clk); |
| } |
| |
| return 0; |
| } |
| |
| static struct platform_driver s3c24xx_dma_driver = { |
| .driver = { |
| .name = "s3c24xx-dma", |
| }, |
| .id_table = s3c24xx_dma_driver_ids, |
| .probe = s3c24xx_dma_probe, |
| .remove = s3c24xx_dma_remove, |
| }; |
| |
| module_platform_driver(s3c24xx_dma_driver); |
| |
| bool s3c24xx_dma_filter(struct dma_chan *chan, void *param) |
| { |
| struct s3c24xx_dma_chan *s3cchan; |
| |
| if (chan->device->dev->driver != &s3c24xx_dma_driver.driver) |
| return false; |
| |
| s3cchan = to_s3c24xx_dma_chan(chan); |
| |
| return s3cchan->id == (int)param; |
| } |
| EXPORT_SYMBOL(s3c24xx_dma_filter); |
| |
| MODULE_DESCRIPTION("S3C24XX DMA Driver"); |
| MODULE_AUTHOR("Heiko Stuebner"); |
| MODULE_LICENSE("GPL v2"); |