| /* |
| * RTC related functions |
| */ |
| #include <linux/platform_device.h> |
| #include <linux/mc146818rtc.h> |
| #include <linux/acpi.h> |
| #include <linux/bcd.h> |
| #include <linux/export.h> |
| #include <linux/pnp.h> |
| #include <linux/of.h> |
| |
| #include <asm/vsyscall.h> |
| #include <asm/x86_init.h> |
| #include <asm/time.h> |
| #include <asm/intel-mid.h> |
| #include <asm/rtc.h> |
| #include <asm/setup.h> |
| |
| #ifdef CONFIG_X86_32 |
| /* |
| * This is a special lock that is owned by the CPU and holds the index |
| * register we are working with. It is required for NMI access to the |
| * CMOS/RTC registers. See include/asm-i386/mc146818rtc.h for details. |
| */ |
| volatile unsigned long cmos_lock; |
| EXPORT_SYMBOL(cmos_lock); |
| #endif /* CONFIG_X86_32 */ |
| |
| /* For two digit years assume time is always after that */ |
| #define CMOS_YEARS_OFFS 2000 |
| |
| DEFINE_SPINLOCK(rtc_lock); |
| EXPORT_SYMBOL(rtc_lock); |
| |
| /* |
| * In order to set the CMOS clock precisely, set_rtc_mmss has to be |
| * called 500 ms after the second nowtime has started, because when |
| * nowtime is written into the registers of the CMOS clock, it will |
| * jump to the next second precisely 500 ms later. Check the Motorola |
| * MC146818A or Dallas DS12887 data sheet for details. |
| */ |
| int mach_set_rtc_mmss(const struct timespec *now) |
| { |
| unsigned long nowtime = now->tv_sec; |
| struct rtc_time tm; |
| int retval = 0; |
| |
| rtc_time_to_tm(nowtime, &tm); |
| if (!rtc_valid_tm(&tm)) { |
| retval = set_rtc_time(&tm); |
| if (retval) |
| printk(KERN_ERR "%s: RTC write failed with error %d\n", |
| __func__, retval); |
| } else { |
| printk(KERN_ERR |
| "%s: Invalid RTC value: write of %lx to RTC failed\n", |
| __func__, nowtime); |
| retval = -EINVAL; |
| } |
| return retval; |
| } |
| |
| void mach_get_cmos_time(struct timespec *now) |
| { |
| unsigned int status, year, mon, day, hour, min, sec, century = 0; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&rtc_lock, flags); |
| |
| /* |
| * If UIP is clear, then we have >= 244 microseconds before |
| * RTC registers will be updated. Spec sheet says that this |
| * is the reliable way to read RTC - registers. If UIP is set |
| * then the register access might be invalid. |
| */ |
| while ((CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP)) |
| cpu_relax(); |
| |
| sec = CMOS_READ(RTC_SECONDS); |
| min = CMOS_READ(RTC_MINUTES); |
| hour = CMOS_READ(RTC_HOURS); |
| day = CMOS_READ(RTC_DAY_OF_MONTH); |
| mon = CMOS_READ(RTC_MONTH); |
| year = CMOS_READ(RTC_YEAR); |
| |
| #ifdef CONFIG_ACPI |
| if (acpi_gbl_FADT.header.revision >= FADT2_REVISION_ID && |
| acpi_gbl_FADT.century) |
| century = CMOS_READ(acpi_gbl_FADT.century); |
| #endif |
| |
| status = CMOS_READ(RTC_CONTROL); |
| WARN_ON_ONCE(RTC_ALWAYS_BCD && (status & RTC_DM_BINARY)); |
| |
| spin_unlock_irqrestore(&rtc_lock, flags); |
| |
| if (RTC_ALWAYS_BCD || !(status & RTC_DM_BINARY)) { |
| sec = bcd2bin(sec); |
| min = bcd2bin(min); |
| hour = bcd2bin(hour); |
| day = bcd2bin(day); |
| mon = bcd2bin(mon); |
| year = bcd2bin(year); |
| } |
| |
| if (century) { |
| century = bcd2bin(century); |
| year += century * 100; |
| } else |
| year += CMOS_YEARS_OFFS; |
| |
| now->tv_sec = mktime(year, mon, day, hour, min, sec); |
| now->tv_nsec = 0; |
| } |
| |
| /* Routines for accessing the CMOS RAM/RTC. */ |
| unsigned char rtc_cmos_read(unsigned char addr) |
| { |
| unsigned char val; |
| |
| lock_cmos_prefix(addr); |
| outb(addr, RTC_PORT(0)); |
| val = inb(RTC_PORT(1)); |
| lock_cmos_suffix(addr); |
| |
| return val; |
| } |
| EXPORT_SYMBOL(rtc_cmos_read); |
| |
| void rtc_cmos_write(unsigned char val, unsigned char addr) |
| { |
| lock_cmos_prefix(addr); |
| outb(addr, RTC_PORT(0)); |
| outb(val, RTC_PORT(1)); |
| lock_cmos_suffix(addr); |
| } |
| EXPORT_SYMBOL(rtc_cmos_write); |
| |
| int update_persistent_clock(struct timespec now) |
| { |
| return x86_platform.set_wallclock(&now); |
| } |
| |
| /* not static: needed by APM */ |
| void read_persistent_clock(struct timespec *ts) |
| { |
| x86_platform.get_wallclock(ts); |
| } |
| |
| |
| static struct resource rtc_resources[] = { |
| [0] = { |
| .start = RTC_PORT(0), |
| .end = RTC_PORT(1), |
| .flags = IORESOURCE_IO, |
| }, |
| [1] = { |
| .start = RTC_IRQ, |
| .end = RTC_IRQ, |
| .flags = IORESOURCE_IRQ, |
| } |
| }; |
| |
| static struct platform_device rtc_device = { |
| .name = "rtc_cmos", |
| .id = -1, |
| .resource = rtc_resources, |
| .num_resources = ARRAY_SIZE(rtc_resources), |
| }; |
| |
| static __init int add_rtc_cmos(void) |
| { |
| #ifdef CONFIG_PNP |
| static const char * const ids[] __initconst = |
| { "PNP0b00", "PNP0b01", "PNP0b02", }; |
| struct pnp_dev *dev; |
| struct pnp_id *id; |
| int i; |
| |
| pnp_for_each_dev(dev) { |
| for (id = dev->id; id; id = id->next) { |
| for (i = 0; i < ARRAY_SIZE(ids); i++) { |
| if (compare_pnp_id(id, ids[i]) != 0) |
| return 0; |
| } |
| } |
| } |
| #endif |
| if (!x86_platform.legacy.rtc) |
| return -ENODEV; |
| |
| platform_device_register(&rtc_device); |
| dev_info(&rtc_device.dev, |
| "registered platform RTC device (no PNP device found)\n"); |
| |
| return 0; |
| } |
| device_initcall(add_rtc_cmos); |