blob: 84d94f572a463b294ed542476eb22e922eab81b9 [file] [log] [blame]
/* ZD1211 USB-WLAN driver for Linux
*
* Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
* Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
* Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/firmware.h>
#include <linux/device.h>
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/skbuff.h>
#include <linux/usb.h>
#include <linux/workqueue.h>
#include <linux/module.h>
#include <net/mac80211.h>
#include <asm/unaligned.h>
#include "zd_def.h"
#include "zd_mac.h"
#include "zd_usb.h"
static struct usb_device_id usb_ids[] = {
/* ZD1211 */
{ USB_DEVICE(0x0105, 0x145f), .driver_info = DEVICE_ZD1211 },
{ USB_DEVICE(0x0586, 0x3401), .driver_info = DEVICE_ZD1211 },
{ USB_DEVICE(0x0586, 0x3402), .driver_info = DEVICE_ZD1211 },
{ USB_DEVICE(0x0586, 0x3407), .driver_info = DEVICE_ZD1211 },
{ USB_DEVICE(0x0586, 0x3409), .driver_info = DEVICE_ZD1211 },
{ USB_DEVICE(0x079b, 0x004a), .driver_info = DEVICE_ZD1211 },
{ USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211 },
{ USB_DEVICE(0x0ace, 0x1211), .driver_info = DEVICE_ZD1211 },
{ USB_DEVICE(0x0ace, 0xa211), .driver_info = DEVICE_ZD1211 },
{ USB_DEVICE(0x0b05, 0x170c), .driver_info = DEVICE_ZD1211 },
{ USB_DEVICE(0x0b3b, 0x1630), .driver_info = DEVICE_ZD1211 },
{ USB_DEVICE(0x0b3b, 0x5630), .driver_info = DEVICE_ZD1211 },
{ USB_DEVICE(0x0df6, 0x9071), .driver_info = DEVICE_ZD1211 },
{ USB_DEVICE(0x0df6, 0x9075), .driver_info = DEVICE_ZD1211 },
{ USB_DEVICE(0x126f, 0xa006), .driver_info = DEVICE_ZD1211 },
{ USB_DEVICE(0x129b, 0x1666), .driver_info = DEVICE_ZD1211 },
{ USB_DEVICE(0x13b1, 0x001e), .driver_info = DEVICE_ZD1211 },
{ USB_DEVICE(0x1435, 0x0711), .driver_info = DEVICE_ZD1211 },
{ USB_DEVICE(0x14ea, 0xab10), .driver_info = DEVICE_ZD1211 },
{ USB_DEVICE(0x14ea, 0xab13), .driver_info = DEVICE_ZD1211 },
{ USB_DEVICE(0x157e, 0x300a), .driver_info = DEVICE_ZD1211 },
{ USB_DEVICE(0x157e, 0x300b), .driver_info = DEVICE_ZD1211 },
{ USB_DEVICE(0x157e, 0x3204), .driver_info = DEVICE_ZD1211 },
{ USB_DEVICE(0x157e, 0x3207), .driver_info = DEVICE_ZD1211 },
{ USB_DEVICE(0x1740, 0x2000), .driver_info = DEVICE_ZD1211 },
{ USB_DEVICE(0x6891, 0xa727), .driver_info = DEVICE_ZD1211 },
/* ZD1211B */
{ USB_DEVICE(0x0053, 0x5301), .driver_info = DEVICE_ZD1211B },
{ USB_DEVICE(0x0409, 0x0248), .driver_info = DEVICE_ZD1211B },
{ USB_DEVICE(0x0411, 0x00da), .driver_info = DEVICE_ZD1211B },
{ USB_DEVICE(0x0471, 0x1236), .driver_info = DEVICE_ZD1211B },
{ USB_DEVICE(0x0471, 0x1237), .driver_info = DEVICE_ZD1211B },
{ USB_DEVICE(0x050d, 0x705c), .driver_info = DEVICE_ZD1211B },
{ USB_DEVICE(0x054c, 0x0257), .driver_info = DEVICE_ZD1211B },
{ USB_DEVICE(0x0586, 0x340a), .driver_info = DEVICE_ZD1211B },
{ USB_DEVICE(0x0586, 0x340f), .driver_info = DEVICE_ZD1211B },
{ USB_DEVICE(0x0586, 0x3410), .driver_info = DEVICE_ZD1211B },
{ USB_DEVICE(0x0586, 0x3412), .driver_info = DEVICE_ZD1211B },
{ USB_DEVICE(0x0586, 0x3413), .driver_info = DEVICE_ZD1211B },
{ USB_DEVICE(0x079b, 0x0062), .driver_info = DEVICE_ZD1211B },
{ USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211B },
{ USB_DEVICE(0x07fa, 0x1196), .driver_info = DEVICE_ZD1211B },
{ USB_DEVICE(0x083a, 0x4505), .driver_info = DEVICE_ZD1211B },
{ USB_DEVICE(0x083a, 0xe501), .driver_info = DEVICE_ZD1211B },
{ USB_DEVICE(0x083a, 0xe503), .driver_info = DEVICE_ZD1211B },
{ USB_DEVICE(0x083a, 0xe506), .driver_info = DEVICE_ZD1211B },
{ USB_DEVICE(0x0ace, 0x1215), .driver_info = DEVICE_ZD1211B },
{ USB_DEVICE(0x0ace, 0xb215), .driver_info = DEVICE_ZD1211B },
{ USB_DEVICE(0x0b05, 0x171b), .driver_info = DEVICE_ZD1211B },
{ USB_DEVICE(0x0baf, 0x0121), .driver_info = DEVICE_ZD1211B },
{ USB_DEVICE(0x0cde, 0x001a), .driver_info = DEVICE_ZD1211B },
{ USB_DEVICE(0x0df6, 0x0036), .driver_info = DEVICE_ZD1211B },
{ USB_DEVICE(0x129b, 0x1667), .driver_info = DEVICE_ZD1211B },
{ USB_DEVICE(0x13b1, 0x0024), .driver_info = DEVICE_ZD1211B },
{ USB_DEVICE(0x157e, 0x300d), .driver_info = DEVICE_ZD1211B },
{ USB_DEVICE(0x1582, 0x6003), .driver_info = DEVICE_ZD1211B },
{ USB_DEVICE(0x2019, 0x5303), .driver_info = DEVICE_ZD1211B },
{ USB_DEVICE(0x2019, 0xed01), .driver_info = DEVICE_ZD1211B },
/* "Driverless" devices that need ejecting */
{ USB_DEVICE(0x0ace, 0x2011), .driver_info = DEVICE_INSTALLER },
{ USB_DEVICE(0x0ace, 0x20ff), .driver_info = DEVICE_INSTALLER },
{}
};
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("USB driver for devices with the ZD1211 chip.");
MODULE_AUTHOR("Ulrich Kunitz");
MODULE_AUTHOR("Daniel Drake");
MODULE_VERSION("1.0");
MODULE_DEVICE_TABLE(usb, usb_ids);
#define FW_ZD1211_PREFIX "zd1211/zd1211_"
#define FW_ZD1211B_PREFIX "zd1211/zd1211b_"
static bool check_read_regs(struct zd_usb *usb, struct usb_req_read_regs *req,
unsigned int count);
/* USB device initialization */
static void int_urb_complete(struct urb *urb);
static int request_fw_file(
const struct firmware **fw, const char *name, struct device *device)
{
int r;
dev_dbg_f(device, "fw name %s\n", name);
r = request_firmware(fw, name, device);
if (r)
dev_err(device,
"Could not load firmware file %s. Error number %d\n",
name, r);
return r;
}
static inline u16 get_bcdDevice(const struct usb_device *udev)
{
return le16_to_cpu(udev->descriptor.bcdDevice);
}
enum upload_code_flags {
REBOOT = 1,
};
/* Ensures that MAX_TRANSFER_SIZE is even. */
#define MAX_TRANSFER_SIZE (USB_MAX_TRANSFER_SIZE & ~1)
static int upload_code(struct usb_device *udev,
const u8 *data, size_t size, u16 code_offset, int flags)
{
u8 *p;
int r;
/* USB request blocks need "kmalloced" buffers.
*/
p = kmalloc(MAX_TRANSFER_SIZE, GFP_KERNEL);
if (!p) {
r = -ENOMEM;
goto error;
}
size &= ~1;
while (size > 0) {
size_t transfer_size = size <= MAX_TRANSFER_SIZE ?
size : MAX_TRANSFER_SIZE;
dev_dbg_f(&udev->dev, "transfer size %zu\n", transfer_size);
memcpy(p, data, transfer_size);
r = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
USB_REQ_FIRMWARE_DOWNLOAD,
USB_DIR_OUT | USB_TYPE_VENDOR,
code_offset, 0, p, transfer_size, 1000 /* ms */);
if (r < 0) {
dev_err(&udev->dev,
"USB control request for firmware upload"
" failed. Error number %d\n", r);
goto error;
}
transfer_size = r & ~1;
size -= transfer_size;
data += transfer_size;
code_offset += transfer_size/sizeof(u16);
}
if (flags & REBOOT) {
u8 ret;
/* Use "DMA-aware" buffer. */
r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
USB_REQ_FIRMWARE_CONFIRM,
USB_DIR_IN | USB_TYPE_VENDOR,
0, 0, p, sizeof(ret), 5000 /* ms */);
if (r != sizeof(ret)) {
dev_err(&udev->dev,
"control request firmeware confirmation failed."
" Return value %d\n", r);
if (r >= 0)
r = -ENODEV;
goto error;
}
ret = p[0];
if (ret & 0x80) {
dev_err(&udev->dev,
"Internal error while downloading."
" Firmware confirm return value %#04x\n",
(unsigned int)ret);
r = -ENODEV;
goto error;
}
dev_dbg_f(&udev->dev, "firmware confirm return value %#04x\n",
(unsigned int)ret);
}
r = 0;
error:
kfree(p);
return r;
}
static u16 get_word(const void *data, u16 offset)
{
const __le16 *p = data;
return le16_to_cpu(p[offset]);
}
static char *get_fw_name(struct zd_usb *usb, char *buffer, size_t size,
const char* postfix)
{
scnprintf(buffer, size, "%s%s",
usb->is_zd1211b ?
FW_ZD1211B_PREFIX : FW_ZD1211_PREFIX,
postfix);
return buffer;
}
static int handle_version_mismatch(struct zd_usb *usb,
const struct firmware *ub_fw)
{
struct usb_device *udev = zd_usb_to_usbdev(usb);
const struct firmware *ur_fw = NULL;
int offset;
int r = 0;
char fw_name[128];
r = request_fw_file(&ur_fw,
get_fw_name(usb, fw_name, sizeof(fw_name), "ur"),
&udev->dev);
if (r)
goto error;
r = upload_code(udev, ur_fw->data, ur_fw->size, FW_START, REBOOT);
if (r)
goto error;
offset = (E2P_BOOT_CODE_OFFSET * sizeof(u16));
r = upload_code(udev, ub_fw->data + offset, ub_fw->size - offset,
E2P_START + E2P_BOOT_CODE_OFFSET, REBOOT);
/* At this point, the vendor driver downloads the whole firmware
* image, hacks around with version IDs, and uploads it again,
* completely overwriting the boot code. We do not do this here as
* it is not required on any tested devices, and it is suspected to
* cause problems. */
error:
release_firmware(ur_fw);
return r;
}
static int upload_firmware(struct zd_usb *usb)
{
int r;
u16 fw_bcdDevice;
u16 bcdDevice;
struct usb_device *udev = zd_usb_to_usbdev(usb);
const struct firmware *ub_fw = NULL;
const struct firmware *uph_fw = NULL;
char fw_name[128];
bcdDevice = get_bcdDevice(udev);
r = request_fw_file(&ub_fw,
get_fw_name(usb, fw_name, sizeof(fw_name), "ub"),
&udev->dev);
if (r)
goto error;
fw_bcdDevice = get_word(ub_fw->data, E2P_DATA_OFFSET);
if (fw_bcdDevice != bcdDevice) {
dev_info(&udev->dev,
"firmware version %#06x and device bootcode version "
"%#06x differ\n", fw_bcdDevice, bcdDevice);
if (bcdDevice <= 0x4313)
dev_warn(&udev->dev, "device has old bootcode, please "
"report success or failure\n");
r = handle_version_mismatch(usb, ub_fw);
if (r)
goto error;
} else {
dev_dbg_f(&udev->dev,
"firmware device id %#06x is equal to the "
"actual device id\n", fw_bcdDevice);
}
r = request_fw_file(&uph_fw,
get_fw_name(usb, fw_name, sizeof(fw_name), "uphr"),
&udev->dev);
if (r)
goto error;
r = upload_code(udev, uph_fw->data, uph_fw->size, FW_START, REBOOT);
if (r) {
dev_err(&udev->dev,
"Could not upload firmware code uph. Error number %d\n",
r);
}
/* FALL-THROUGH */
error:
release_firmware(ub_fw);
release_firmware(uph_fw);
return r;
}
MODULE_FIRMWARE(FW_ZD1211B_PREFIX "ur");
MODULE_FIRMWARE(FW_ZD1211_PREFIX "ur");
MODULE_FIRMWARE(FW_ZD1211B_PREFIX "ub");
MODULE_FIRMWARE(FW_ZD1211_PREFIX "ub");
MODULE_FIRMWARE(FW_ZD1211B_PREFIX "uphr");
MODULE_FIRMWARE(FW_ZD1211_PREFIX "uphr");
/* Read data from device address space using "firmware interface" which does
* not require firmware to be loaded. */
int zd_usb_read_fw(struct zd_usb *usb, zd_addr_t addr, u8 *data, u16 len)
{
int r;
struct usb_device *udev = zd_usb_to_usbdev(usb);
u8 *buf;
/* Use "DMA-aware" buffer. */
buf = kmalloc(len, GFP_KERNEL);
if (!buf)
return -ENOMEM;
r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
USB_REQ_FIRMWARE_READ_DATA, USB_DIR_IN | 0x40, addr, 0,
buf, len, 5000);
if (r < 0) {
dev_err(&udev->dev,
"read over firmware interface failed: %d\n", r);
goto exit;
} else if (r != len) {
dev_err(&udev->dev,
"incomplete read over firmware interface: %d/%d\n",
r, len);
r = -EIO;
goto exit;
}
r = 0;
memcpy(data, buf, len);
exit:
kfree(buf);
return r;
}
#define urb_dev(urb) (&(urb)->dev->dev)
static inline void handle_regs_int_override(struct urb *urb)
{
struct zd_usb *usb = urb->context;
struct zd_usb_interrupt *intr = &usb->intr;
spin_lock(&intr->lock);
if (atomic_read(&intr->read_regs_enabled)) {
atomic_set(&intr->read_regs_enabled, 0);
intr->read_regs_int_overridden = 1;
complete(&intr->read_regs.completion);
}
spin_unlock(&intr->lock);
}
static inline void handle_regs_int(struct urb *urb)
{
struct zd_usb *usb = urb->context;
struct zd_usb_interrupt *intr = &usb->intr;
int len;
u16 int_num;
ZD_ASSERT(in_interrupt());
spin_lock(&intr->lock);
int_num = le16_to_cpu(*(__le16 *)(urb->transfer_buffer+2));
if (int_num == CR_INTERRUPT) {
struct zd_mac *mac = zd_hw_mac(zd_usb_to_hw(urb->context));
spin_lock(&mac->lock);
memcpy(&mac->intr_buffer, urb->transfer_buffer,
USB_MAX_EP_INT_BUFFER);
spin_unlock(&mac->lock);
schedule_work(&mac->process_intr);
} else if (atomic_read(&intr->read_regs_enabled)) {
len = urb->actual_length;
intr->read_regs.length = urb->actual_length;
if (len > sizeof(intr->read_regs.buffer))
len = sizeof(intr->read_regs.buffer);
memcpy(intr->read_regs.buffer, urb->transfer_buffer, len);
/* Sometimes USB_INT_ID_REGS is not overridden, but comes after
* USB_INT_ID_RETRY_FAILED. Read-reg retry then gets this
* delayed USB_INT_ID_REGS, but leaves USB_INT_ID_REGS of
* retry unhandled. Next read-reg command then might catch
* this wrong USB_INT_ID_REGS. Fix by ignoring wrong reads.
*/
if (!check_read_regs(usb, intr->read_regs.req,
intr->read_regs.req_count))
goto out;
atomic_set(&intr->read_regs_enabled, 0);
intr->read_regs_int_overridden = 0;
complete(&intr->read_regs.completion);
goto out;
}
out:
spin_unlock(&intr->lock);
/* CR_INTERRUPT might override read_reg too. */
if (int_num == CR_INTERRUPT && atomic_read(&intr->read_regs_enabled))
handle_regs_int_override(urb);
}
static void int_urb_complete(struct urb *urb)
{
int r;
struct usb_int_header *hdr;
struct zd_usb *usb;
struct zd_usb_interrupt *intr;
switch (urb->status) {
case 0:
break;
case -ESHUTDOWN:
case -EINVAL:
case -ENODEV:
case -ENOENT:
case -ECONNRESET:
case -EPIPE:
dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
return;
default:
dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
goto resubmit;
}
if (urb->actual_length < sizeof(hdr)) {
dev_dbg_f(urb_dev(urb), "error: urb %p to small\n", urb);
goto resubmit;
}
hdr = urb->transfer_buffer;
if (hdr->type != USB_INT_TYPE) {
dev_dbg_f(urb_dev(urb), "error: urb %p wrong type\n", urb);
goto resubmit;
}
/* USB_INT_ID_RETRY_FAILED triggered by tx-urb submit can override
* pending USB_INT_ID_REGS causing read command timeout.
*/
usb = urb->context;
intr = &usb->intr;
if (hdr->id != USB_INT_ID_REGS && atomic_read(&intr->read_regs_enabled))
handle_regs_int_override(urb);
switch (hdr->id) {
case USB_INT_ID_REGS:
handle_regs_int(urb);
break;
case USB_INT_ID_RETRY_FAILED:
zd_mac_tx_failed(urb);
break;
default:
dev_dbg_f(urb_dev(urb), "error: urb %p unknown id %x\n", urb,
(unsigned int)hdr->id);
goto resubmit;
}
resubmit:
r = usb_submit_urb(urb, GFP_ATOMIC);
if (r) {
dev_dbg_f(urb_dev(urb), "error: resubmit urb %p err code %d\n",
urb, r);
/* TODO: add worker to reset intr->urb */
}
return;
}
static inline int int_urb_interval(struct usb_device *udev)
{
switch (udev->speed) {
case USB_SPEED_HIGH:
return 4;
case USB_SPEED_LOW:
return 10;
case USB_SPEED_FULL:
default:
return 1;
}
}
static inline int usb_int_enabled(struct zd_usb *usb)
{
unsigned long flags;
struct zd_usb_interrupt *intr = &usb->intr;
struct urb *urb;
spin_lock_irqsave(&intr->lock, flags);
urb = intr->urb;
spin_unlock_irqrestore(&intr->lock, flags);
return urb != NULL;
}
int zd_usb_enable_int(struct zd_usb *usb)
{
int r;
struct usb_device *udev = zd_usb_to_usbdev(usb);
struct zd_usb_interrupt *intr = &usb->intr;
struct urb *urb;
dev_dbg_f(zd_usb_dev(usb), "\n");
urb = usb_alloc_urb(0, GFP_KERNEL);
if (!urb) {
r = -ENOMEM;
goto out;
}
ZD_ASSERT(!irqs_disabled());
spin_lock_irq(&intr->lock);
if (intr->urb) {
spin_unlock_irq(&intr->lock);
r = 0;
goto error_free_urb;
}
intr->urb = urb;
spin_unlock_irq(&intr->lock);
r = -ENOMEM;
intr->buffer = usb_alloc_coherent(udev, USB_MAX_EP_INT_BUFFER,
GFP_KERNEL, &intr->buffer_dma);
if (!intr->buffer) {
dev_dbg_f(zd_usb_dev(usb),
"couldn't allocate transfer_buffer\n");
goto error_set_urb_null;
}
usb_fill_int_urb(urb, udev, usb_rcvintpipe(udev, EP_INT_IN),
intr->buffer, USB_MAX_EP_INT_BUFFER,
int_urb_complete, usb,
intr->interval);
urb->transfer_dma = intr->buffer_dma;
urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
dev_dbg_f(zd_usb_dev(usb), "submit urb %p\n", intr->urb);
r = usb_submit_urb(urb, GFP_KERNEL);
if (r) {
dev_dbg_f(zd_usb_dev(usb),
"Couldn't submit urb. Error number %d\n", r);
goto error;
}
return 0;
error:
usb_free_coherent(udev, USB_MAX_EP_INT_BUFFER,
intr->buffer, intr->buffer_dma);
error_set_urb_null:
spin_lock_irq(&intr->lock);
intr->urb = NULL;
spin_unlock_irq(&intr->lock);
error_free_urb:
usb_free_urb(urb);
out:
return r;
}
void zd_usb_disable_int(struct zd_usb *usb)
{
unsigned long flags;
struct usb_device *udev = zd_usb_to_usbdev(usb);
struct zd_usb_interrupt *intr = &usb->intr;
struct urb *urb;
void *buffer;
dma_addr_t buffer_dma;
spin_lock_irqsave(&intr->lock, flags);
urb = intr->urb;
if (!urb) {
spin_unlock_irqrestore(&intr->lock, flags);
return;
}
intr->urb = NULL;
buffer = intr->buffer;
buffer_dma = intr->buffer_dma;
intr->buffer = NULL;
spin_unlock_irqrestore(&intr->lock, flags);
usb_kill_urb(urb);
dev_dbg_f(zd_usb_dev(usb), "urb %p killed\n", urb);
usb_free_urb(urb);
if (buffer)
usb_free_coherent(udev, USB_MAX_EP_INT_BUFFER,
buffer, buffer_dma);
}
static void handle_rx_packet(struct zd_usb *usb, const u8 *buffer,
unsigned int length)
{
int i;
const struct rx_length_info *length_info;
if (length < sizeof(struct rx_length_info)) {
/* It's not a complete packet anyhow. */
dev_dbg_f(zd_usb_dev(usb), "invalid, small RX packet : %d\n",
length);
return;
}
length_info = (struct rx_length_info *)
(buffer + length - sizeof(struct rx_length_info));
/* It might be that three frames are merged into a single URB
* transaction. We have to check for the length info tag.
*
* While testing we discovered that length_info might be unaligned,
* because if USB transactions are merged, the last packet will not
* be padded. Unaligned access might also happen if the length_info
* structure is not present.
*/
if (get_unaligned_le16(&length_info->tag) == RX_LENGTH_INFO_TAG)
{
unsigned int l, k, n;
for (i = 0, l = 0;; i++) {
k = get_unaligned_le16(&length_info->length[i]);
if (k == 0)
return;
n = l+k;
if (n > length)
return;
zd_mac_rx(zd_usb_to_hw(usb), buffer+l, k);
if (i >= 2)
return;
l = (n+3) & ~3;
}
} else {
zd_mac_rx(zd_usb_to_hw(usb), buffer, length);
}
}
static void rx_urb_complete(struct urb *urb)
{
int r;
struct zd_usb *usb;
struct zd_usb_rx *rx;
const u8 *buffer;
unsigned int length;
switch (urb->status) {
case 0:
break;
case -ESHUTDOWN:
case -EINVAL:
case -ENODEV:
case -ENOENT:
case -ECONNRESET:
case -EPIPE:
dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
return;
default:
dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
goto resubmit;
}
buffer = urb->transfer_buffer;
length = urb->actual_length;
usb = urb->context;
rx = &usb->rx;
tasklet_schedule(&rx->reset_timer_tasklet);
if (length%rx->usb_packet_size > rx->usb_packet_size-4) {
/* If there is an old first fragment, we don't care. */
dev_dbg_f(urb_dev(urb), "*** first fragment ***\n");
ZD_ASSERT(length <= ARRAY_SIZE(rx->fragment));
spin_lock(&rx->lock);
memcpy(rx->fragment, buffer, length);
rx->fragment_length = length;
spin_unlock(&rx->lock);
goto resubmit;
}
spin_lock(&rx->lock);
if (rx->fragment_length > 0) {
/* We are on a second fragment, we believe */
ZD_ASSERT(length + rx->fragment_length <=
ARRAY_SIZE(rx->fragment));
dev_dbg_f(urb_dev(urb), "*** second fragment ***\n");
memcpy(rx->fragment+rx->fragment_length, buffer, length);
handle_rx_packet(usb, rx->fragment,
rx->fragment_length + length);
rx->fragment_length = 0;
spin_unlock(&rx->lock);
} else {
spin_unlock(&rx->lock);
handle_rx_packet(usb, buffer, length);
}
resubmit:
r = usb_submit_urb(urb, GFP_ATOMIC);
if (r)
dev_dbg_f(urb_dev(urb), "urb %p resubmit error %d\n", urb, r);
}
static struct urb *alloc_rx_urb(struct zd_usb *usb)
{
struct usb_device *udev = zd_usb_to_usbdev(usb);
struct urb *urb;
void *buffer;
urb = usb_alloc_urb(0, GFP_KERNEL);
if (!urb)
return NULL;
buffer = usb_alloc_coherent(udev, USB_MAX_RX_SIZE, GFP_KERNEL,
&urb->transfer_dma);
if (!buffer) {
usb_free_urb(urb);
return NULL;
}
usb_fill_bulk_urb(urb, udev, usb_rcvbulkpipe(udev, EP_DATA_IN),
buffer, USB_MAX_RX_SIZE,
rx_urb_complete, usb);
urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
return urb;
}
static void free_rx_urb(struct urb *urb)
{
if (!urb)
return;
usb_free_coherent(urb->dev, urb->transfer_buffer_length,
urb->transfer_buffer, urb->transfer_dma);
usb_free_urb(urb);
}
static int __zd_usb_enable_rx(struct zd_usb *usb)
{
int i, r;
struct zd_usb_rx *rx = &usb->rx;
struct urb **urbs;
dev_dbg_f(zd_usb_dev(usb), "\n");
r = -ENOMEM;
urbs = kcalloc(RX_URBS_COUNT, sizeof(struct urb *), GFP_KERNEL);
if (!urbs)
goto error;
for (i = 0; i < RX_URBS_COUNT; i++) {
urbs[i] = alloc_rx_urb(usb);
if (!urbs[i])
goto error;
}
ZD_ASSERT(!irqs_disabled());
spin_lock_irq(&rx->lock);
if (rx->urbs) {
spin_unlock_irq(&rx->lock);
r = 0;
goto error;
}
rx->urbs = urbs;
rx->urbs_count = RX_URBS_COUNT;
spin_unlock_irq(&rx->lock);
for (i = 0; i < RX_URBS_COUNT; i++) {
r = usb_submit_urb(urbs[i], GFP_KERNEL);
if (r)
goto error_submit;
}
return 0;
error_submit:
for (i = 0; i < RX_URBS_COUNT; i++) {
usb_kill_urb(urbs[i]);
}
spin_lock_irq(&rx->lock);
rx->urbs = NULL;
rx->urbs_count = 0;
spin_unlock_irq(&rx->lock);
error:
if (urbs) {
for (i = 0; i < RX_URBS_COUNT; i++)
free_rx_urb(urbs[i]);
}
return r;
}
int zd_usb_enable_rx(struct zd_usb *usb)
{
int r;
struct zd_usb_rx *rx = &usb->rx;
mutex_lock(&rx->setup_mutex);
r = __zd_usb_enable_rx(usb);
mutex_unlock(&rx->setup_mutex);
zd_usb_reset_rx_idle_timer(usb);
return r;
}
static void __zd_usb_disable_rx(struct zd_usb *usb)
{
int i;
unsigned long flags;
struct urb **urbs;
unsigned int count;
struct zd_usb_rx *rx = &usb->rx;
spin_lock_irqsave(&rx->lock, flags);
urbs = rx->urbs;
count = rx->urbs_count;
spin_unlock_irqrestore(&rx->lock, flags);
if (!urbs)
return;
for (i = 0; i < count; i++) {
usb_kill_urb(urbs[i]);
free_rx_urb(urbs[i]);
}
kfree(urbs);
spin_lock_irqsave(&rx->lock, flags);
rx->urbs = NULL;
rx->urbs_count = 0;
spin_unlock_irqrestore(&rx->lock, flags);
}
void zd_usb_disable_rx(struct zd_usb *usb)
{
struct zd_usb_rx *rx = &usb->rx;
mutex_lock(&rx->setup_mutex);
__zd_usb_disable_rx(usb);
mutex_unlock(&rx->setup_mutex);
tasklet_kill(&rx->reset_timer_tasklet);
cancel_delayed_work_sync(&rx->idle_work);
}
static void zd_usb_reset_rx(struct zd_usb *usb)
{
bool do_reset;
struct zd_usb_rx *rx = &usb->rx;
unsigned long flags;
mutex_lock(&rx->setup_mutex);
spin_lock_irqsave(&rx->lock, flags);
do_reset = rx->urbs != NULL;
spin_unlock_irqrestore(&rx->lock, flags);
if (do_reset) {
__zd_usb_disable_rx(usb);
__zd_usb_enable_rx(usb);
}
mutex_unlock(&rx->setup_mutex);
if (do_reset)
zd_usb_reset_rx_idle_timer(usb);
}
/**
* zd_usb_disable_tx - disable transmission
* @usb: the zd1211rw-private USB structure
*
* Frees all URBs in the free list and marks the transmission as disabled.
*/
void zd_usb_disable_tx(struct zd_usb *usb)
{
struct zd_usb_tx *tx = &usb->tx;
unsigned long flags;
atomic_set(&tx->enabled, 0);
/* kill all submitted tx-urbs */
usb_kill_anchored_urbs(&tx->submitted);
spin_lock_irqsave(&tx->lock, flags);
WARN_ON(!skb_queue_empty(&tx->submitted_skbs));
WARN_ON(tx->submitted_urbs != 0);
tx->submitted_urbs = 0;
spin_unlock_irqrestore(&tx->lock, flags);
/* The stopped state is ignored, relying on ieee80211_wake_queues()
* in a potentionally following zd_usb_enable_tx().
*/
}
/**
* zd_usb_enable_tx - enables transmission
* @usb: a &struct zd_usb pointer
*
* This function enables transmission and prepares the &zd_usb_tx data
* structure.
*/
void zd_usb_enable_tx(struct zd_usb *usb)
{
unsigned long flags;
struct zd_usb_tx *tx = &usb->tx;
spin_lock_irqsave(&tx->lock, flags);
atomic_set(&tx->enabled, 1);
tx->submitted_urbs = 0;
ieee80211_wake_queues(zd_usb_to_hw(usb));
tx->stopped = 0;
spin_unlock_irqrestore(&tx->lock, flags);
}
static void tx_dec_submitted_urbs(struct zd_usb *usb)
{
struct zd_usb_tx *tx = &usb->tx;
unsigned long flags;
spin_lock_irqsave(&tx->lock, flags);
--tx->submitted_urbs;
if (tx->stopped && tx->submitted_urbs <= ZD_USB_TX_LOW) {
ieee80211_wake_queues(zd_usb_to_hw(usb));
tx->stopped = 0;
}
spin_unlock_irqrestore(&tx->lock, flags);
}
static void tx_inc_submitted_urbs(struct zd_usb *usb)
{
struct zd_usb_tx *tx = &usb->tx;
unsigned long flags;
spin_lock_irqsave(&tx->lock, flags);
++tx->submitted_urbs;
if (!tx->stopped && tx->submitted_urbs > ZD_USB_TX_HIGH) {
ieee80211_stop_queues(zd_usb_to_hw(usb));
tx->stopped = 1;
}
spin_unlock_irqrestore(&tx->lock, flags);
}
/**
* tx_urb_complete - completes the execution of an URB
* @urb: a URB
*
* This function is called if the URB has been transferred to a device or an
* error has happened.
*/
static void tx_urb_complete(struct urb *urb)
{
int r;
struct sk_buff *skb;
struct ieee80211_tx_info *info;
struct zd_usb *usb;
struct zd_usb_tx *tx;
skb = (struct sk_buff *)urb->context;
info = IEEE80211_SKB_CB(skb);
/*
* grab 'usb' pointer before handing off the skb (since
* it might be freed by zd_mac_tx_to_dev or mac80211)
*/
usb = &zd_hw_mac(info->rate_driver_data[0])->chip.usb;
tx = &usb->tx;
switch (urb->status) {
case 0:
break;
case -ESHUTDOWN:
case -EINVAL:
case -ENODEV:
case -ENOENT:
case -ECONNRESET:
case -EPIPE:
dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
break;
default:
dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
goto resubmit;
}
free_urb:
skb_unlink(skb, &usb->tx.submitted_skbs);
zd_mac_tx_to_dev(skb, urb->status);
usb_free_urb(urb);
tx_dec_submitted_urbs(usb);
return;
resubmit:
usb_anchor_urb(urb, &tx->submitted);
r = usb_submit_urb(urb, GFP_ATOMIC);
if (r) {
usb_unanchor_urb(urb);
dev_dbg_f(urb_dev(urb), "error resubmit urb %p %d\n", urb, r);
goto free_urb;
}
}
/**
* zd_usb_tx: initiates transfer of a frame of the device
*
* @usb: the zd1211rw-private USB structure
* @skb: a &struct sk_buff pointer
*
* This function tranmits a frame to the device. It doesn't wait for
* completion. The frame must contain the control set and have all the
* control set information available.
*
* The function returns 0 if the transfer has been successfully initiated.
*/
int zd_usb_tx(struct zd_usb *usb, struct sk_buff *skb)
{
int r;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct usb_device *udev = zd_usb_to_usbdev(usb);
struct urb *urb;
struct zd_usb_tx *tx = &usb->tx;
if (!atomic_read(&tx->enabled)) {
r = -ENOENT;
goto out;
}
urb = usb_alloc_urb(0, GFP_ATOMIC);
if (!urb) {
r = -ENOMEM;
goto out;
}
usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_DATA_OUT),
skb->data, skb->len, tx_urb_complete, skb);
info->rate_driver_data[1] = (void *)jiffies;
skb_queue_tail(&tx->submitted_skbs, skb);
usb_anchor_urb(urb, &tx->submitted);
r = usb_submit_urb(urb, GFP_ATOMIC);
if (r) {
dev_dbg_f(zd_usb_dev(usb), "error submit urb %p %d\n", urb, r);
usb_unanchor_urb(urb);
skb_unlink(skb, &tx->submitted_skbs);
goto error;
}
tx_inc_submitted_urbs(usb);
return 0;
error:
usb_free_urb(urb);
out:
return r;
}
static bool zd_tx_timeout(struct zd_usb *usb)
{
struct zd_usb_tx *tx = &usb->tx;
struct sk_buff_head *q = &tx->submitted_skbs;
struct sk_buff *skb, *skbnext;
struct ieee80211_tx_info *info;
unsigned long flags, trans_start;
bool have_timedout = false;
spin_lock_irqsave(&q->lock, flags);
skb_queue_walk_safe(q, skb, skbnext) {
info = IEEE80211_SKB_CB(skb);
trans_start = (unsigned long)info->rate_driver_data[1];
if (time_is_before_jiffies(trans_start + ZD_TX_TIMEOUT)) {
have_timedout = true;
break;
}
}
spin_unlock_irqrestore(&q->lock, flags);
return have_timedout;
}
static void zd_tx_watchdog_handler(struct work_struct *work)
{
struct zd_usb *usb =
container_of(work, struct zd_usb, tx.watchdog_work.work);
struct zd_usb_tx *tx = &usb->tx;
if (!atomic_read(&tx->enabled) || !tx->watchdog_enabled)
goto out;
if (!zd_tx_timeout(usb))
goto out;
/* TX halted, try reset */
dev_warn(zd_usb_dev(usb), "TX-stall detected, resetting device...");
usb_queue_reset_device(usb->intf);
/* reset will stop this worker, don't rearm */
return;
out:
queue_delayed_work(zd_workqueue, &tx->watchdog_work,
ZD_TX_WATCHDOG_INTERVAL);
}
void zd_tx_watchdog_enable(struct zd_usb *usb)
{
struct zd_usb_tx *tx = &usb->tx;
if (!tx->watchdog_enabled) {
dev_dbg_f(zd_usb_dev(usb), "\n");
queue_delayed_work(zd_workqueue, &tx->watchdog_work,
ZD_TX_WATCHDOG_INTERVAL);
tx->watchdog_enabled = 1;
}
}
void zd_tx_watchdog_disable(struct zd_usb *usb)
{
struct zd_usb_tx *tx = &usb->tx;
if (tx->watchdog_enabled) {
dev_dbg_f(zd_usb_dev(usb), "\n");
tx->watchdog_enabled = 0;
cancel_delayed_work_sync(&tx->watchdog_work);
}
}
static void zd_rx_idle_timer_handler(struct work_struct *work)
{
struct zd_usb *usb =
container_of(work, struct zd_usb, rx.idle_work.work);
struct zd_mac *mac = zd_usb_to_mac(usb);
if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
return;
dev_dbg_f(zd_usb_dev(usb), "\n");
/* 30 seconds since last rx, reset rx */
zd_usb_reset_rx(usb);
}
static void zd_usb_reset_rx_idle_timer_tasklet(unsigned long param)
{
struct zd_usb *usb = (struct zd_usb *)param;
zd_usb_reset_rx_idle_timer(usb);
}
void zd_usb_reset_rx_idle_timer(struct zd_usb *usb)
{
struct zd_usb_rx *rx = &usb->rx;
mod_delayed_work(zd_workqueue, &rx->idle_work, ZD_RX_IDLE_INTERVAL);
}
static inline void init_usb_interrupt(struct zd_usb *usb)
{
struct zd_usb_interrupt *intr = &usb->intr;
spin_lock_init(&intr->lock);
intr->interval = int_urb_interval(zd_usb_to_usbdev(usb));
init_completion(&intr->read_regs.completion);
atomic_set(&intr->read_regs_enabled, 0);
intr->read_regs.cr_int_addr = cpu_to_le16((u16)CR_INTERRUPT);
}
static inline void init_usb_rx(struct zd_usb *usb)
{
struct zd_usb_rx *rx = &usb->rx;
spin_lock_init(&rx->lock);
mutex_init(&rx->setup_mutex);
if (interface_to_usbdev(usb->intf)->speed == USB_SPEED_HIGH) {
rx->usb_packet_size = 512;
} else {
rx->usb_packet_size = 64;
}
ZD_ASSERT(rx->fragment_length == 0);
INIT_DELAYED_WORK(&rx->idle_work, zd_rx_idle_timer_handler);
rx->reset_timer_tasklet.func = zd_usb_reset_rx_idle_timer_tasklet;
rx->reset_timer_tasklet.data = (unsigned long)usb;
}
static inline void init_usb_tx(struct zd_usb *usb)
{
struct zd_usb_tx *tx = &usb->tx;
spin_lock_init(&tx->lock);
atomic_set(&tx->enabled, 0);
tx->stopped = 0;
skb_queue_head_init(&tx->submitted_skbs);
init_usb_anchor(&tx->submitted);
tx->submitted_urbs = 0;
tx->watchdog_enabled = 0;
INIT_DELAYED_WORK(&tx->watchdog_work, zd_tx_watchdog_handler);
}
void zd_usb_init(struct zd_usb *usb, struct ieee80211_hw *hw,
struct usb_interface *intf)
{
memset(usb, 0, sizeof(*usb));
usb->intf = usb_get_intf(intf);
usb_set_intfdata(usb->intf, hw);
init_usb_anchor(&usb->submitted_cmds);
init_usb_interrupt(usb);
init_usb_tx(usb);
init_usb_rx(usb);
}
void zd_usb_clear(struct zd_usb *usb)
{
usb_set_intfdata(usb->intf, NULL);
usb_put_intf(usb->intf);
ZD_MEMCLEAR(usb, sizeof(*usb));
/* FIXME: usb_interrupt, usb_tx, usb_rx? */
}
static const char *speed(enum usb_device_speed speed)
{
switch (speed) {
case USB_SPEED_LOW:
return "low";
case USB_SPEED_FULL:
return "full";
case USB_SPEED_HIGH:
return "high";
default:
return "unknown speed";
}
}
static int scnprint_id(struct usb_device *udev, char *buffer, size_t size)
{
return scnprintf(buffer, size, "%04hx:%04hx v%04hx %s",
le16_to_cpu(udev->descriptor.idVendor),
le16_to_cpu(udev->descriptor.idProduct),
get_bcdDevice(udev),
speed(udev->speed));
}
int zd_usb_scnprint_id(struct zd_usb *usb, char *buffer, size_t size)
{
struct usb_device *udev = interface_to_usbdev(usb->intf);
return scnprint_id(udev, buffer, size);
}
#ifdef DEBUG
static void print_id(struct usb_device *udev)
{
char buffer[40];
scnprint_id(udev, buffer, sizeof(buffer));
buffer[sizeof(buffer)-1] = 0;
dev_dbg_f(&udev->dev, "%s\n", buffer);
}
#else
#define print_id(udev) do { } while (0)
#endif
static int eject_installer(struct usb_interface *intf)
{
struct usb_device *udev = interface_to_usbdev(intf);
struct usb_host_interface *iface_desc = &intf->altsetting[0];
struct usb_endpoint_descriptor *endpoint;
unsigned char *cmd;
u8 bulk_out_ep;
int r;
/* Find bulk out endpoint */
for (r = 1; r >= 0; r--) {
endpoint = &iface_desc->endpoint[r].desc;
if (usb_endpoint_dir_out(endpoint) &&
usb_endpoint_xfer_bulk(endpoint)) {
bulk_out_ep = endpoint->bEndpointAddress;
break;
}
}
if (r == -1) {
dev_err(&udev->dev,
"zd1211rw: Could not find bulk out endpoint\n");
return -ENODEV;
}
cmd = kzalloc(31, GFP_KERNEL);
if (cmd == NULL)
return -ENODEV;
/* USB bulk command block */
cmd[0] = 0x55; /* bulk command signature */
cmd[1] = 0x53; /* bulk command signature */
cmd[2] = 0x42; /* bulk command signature */
cmd[3] = 0x43; /* bulk command signature */
cmd[14] = 6; /* command length */
cmd[15] = 0x1b; /* SCSI command: START STOP UNIT */
cmd[19] = 0x2; /* eject disc */
dev_info(&udev->dev, "Ejecting virtual installer media...\n");
r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, bulk_out_ep),
cmd, 31, NULL, 2000);
kfree(cmd);
if (r)
return r;
/* At this point, the device disconnects and reconnects with the real
* ID numbers. */
usb_set_intfdata(intf, NULL);
return 0;
}
int zd_usb_init_hw(struct zd_usb *usb)
{
int r;
struct zd_mac *mac = zd_usb_to_mac(usb);
dev_dbg_f(zd_usb_dev(usb), "\n");
r = upload_firmware(usb);
if (r) {
dev_err(zd_usb_dev(usb),
"couldn't load firmware. Error number %d\n", r);
return r;
}
r = usb_reset_configuration(zd_usb_to_usbdev(usb));
if (r) {
dev_dbg_f(zd_usb_dev(usb),
"couldn't reset configuration. Error number %d\n", r);
return r;
}
r = zd_mac_init_hw(mac->hw);
if (r) {
dev_dbg_f(zd_usb_dev(usb),
"couldn't initialize mac. Error number %d\n", r);
return r;
}
usb->initialized = 1;
return 0;
}
static int probe(struct usb_interface *intf, const struct usb_device_id *id)
{
int r;
struct usb_device *udev = interface_to_usbdev(intf);
struct zd_usb *usb;
struct ieee80211_hw *hw = NULL;
print_id(udev);
if (id->driver_info & DEVICE_INSTALLER)
return eject_installer(intf);
switch (udev->speed) {
case USB_SPEED_LOW:
case USB_SPEED_FULL:
case USB_SPEED_HIGH:
break;
default:
dev_dbg_f(&intf->dev, "Unknown USB speed\n");
r = -ENODEV;
goto error;
}
r = usb_reset_device(udev);
if (r) {
dev_err(&intf->dev,
"couldn't reset usb device. Error number %d\n", r);
goto error;
}
hw = zd_mac_alloc_hw(intf);
if (hw == NULL) {
r = -ENOMEM;
goto error;
}
usb = &zd_hw_mac(hw)->chip.usb;
usb->is_zd1211b = (id->driver_info == DEVICE_ZD1211B) != 0;
r = zd_mac_preinit_hw(hw);
if (r) {
dev_dbg_f(&intf->dev,
"couldn't initialize mac. Error number %d\n", r);
goto error;
}
r = ieee80211_register_hw(hw);
if (r) {
dev_dbg_f(&intf->dev,
"couldn't register device. Error number %d\n", r);
goto error;
}
dev_dbg_f(&intf->dev, "successful\n");
dev_info(&intf->dev, "%s\n", wiphy_name(hw->wiphy));
return 0;
error:
usb_reset_device(interface_to_usbdev(intf));
if (hw) {
zd_mac_clear(zd_hw_mac(hw));
ieee80211_free_hw(hw);
}
return r;
}
static void disconnect(struct usb_interface *intf)
{
struct ieee80211_hw *hw = zd_intf_to_hw(intf);
struct zd_mac *mac;
struct zd_usb *usb;
/* Either something really bad happened, or we're just dealing with
* a DEVICE_INSTALLER. */
if (hw == NULL)
return;
mac = zd_hw_mac(hw);
usb = &mac->chip.usb;
dev_dbg_f(zd_usb_dev(usb), "\n");
ieee80211_unregister_hw(hw);
/* Just in case something has gone wrong! */
zd_usb_disable_tx(usb);
zd_usb_disable_rx(usb);
zd_usb_disable_int(usb);
/* If the disconnect has been caused by a removal of the
* driver module, the reset allows reloading of the driver. If the
* reset will not be executed here, the upload of the firmware in the
* probe function caused by the reloading of the driver will fail.
*/
usb_reset_device(interface_to_usbdev(intf));
zd_mac_clear(mac);
ieee80211_free_hw(hw);
dev_dbg(&intf->dev, "disconnected\n");
}
static void zd_usb_resume(struct zd_usb *usb)
{
struct zd_mac *mac = zd_usb_to_mac(usb);
int r;
dev_dbg_f(zd_usb_dev(usb), "\n");
r = zd_op_start(zd_usb_to_hw(usb));
if (r < 0) {
dev_warn(zd_usb_dev(usb), "Device resume failed "
"with error code %d. Retrying...\n", r);
if (usb->was_running)
set_bit(ZD_DEVICE_RUNNING, &mac->flags);
usb_queue_reset_device(usb->intf);
return;
}
if (mac->type != NL80211_IFTYPE_UNSPECIFIED) {
r = zd_restore_settings(mac);
if (r < 0) {
dev_dbg(zd_usb_dev(usb),
"failed to restore settings, %d\n", r);
return;
}
}
}
static void zd_usb_stop(struct zd_usb *usb)
{
dev_dbg_f(zd_usb_dev(usb), "\n");
zd_op_stop(zd_usb_to_hw(usb));
zd_usb_disable_tx(usb);
zd_usb_disable_rx(usb);
zd_usb_disable_int(usb);
usb->initialized = 0;
}
static int pre_reset(struct usb_interface *intf)
{
struct ieee80211_hw *hw = usb_get_intfdata(intf);
struct zd_mac *mac;
struct zd_usb *usb;
if (!hw || intf->condition != USB_INTERFACE_BOUND)
return 0;
mac = zd_hw_mac(hw);
usb = &mac->chip.usb;
usb->was_running = test_bit(ZD_DEVICE_RUNNING, &mac->flags);
zd_usb_stop(usb);
mutex_lock(&mac->chip.mutex);
return 0;
}
static int post_reset(struct usb_interface *intf)
{
struct ieee80211_hw *hw = usb_get_intfdata(intf);
struct zd_mac *mac;
struct zd_usb *usb;
if (!hw || intf->condition != USB_INTERFACE_BOUND)
return 0;
mac = zd_hw_mac(hw);
usb = &mac->chip.usb;
mutex_unlock(&mac->chip.mutex);
if (usb->was_running)
zd_usb_resume(usb);
return 0;
}
static struct usb_driver driver = {
.name = KBUILD_MODNAME,
.id_table = usb_ids,
.probe = probe,
.disconnect = disconnect,
.pre_reset = pre_reset,
.post_reset = post_reset,
.disable_hub_initiated_lpm = 1,
};
struct workqueue_struct *zd_workqueue;
static int __init usb_init(void)
{
int r;
pr_debug("%s usb_init()\n", driver.name);
zd_workqueue = create_singlethread_workqueue(driver.name);
if (zd_workqueue == NULL) {
printk(KERN_ERR "%s couldn't create workqueue\n", driver.name);
return -ENOMEM;
}
r = usb_register(&driver);
if (r) {
destroy_workqueue(zd_workqueue);
printk(KERN_ERR "%s usb_register() failed. Error number %d\n",
driver.name, r);
return r;
}
pr_debug("%s initialized\n", driver.name);
return 0;
}
static void __exit usb_exit(void)
{
pr_debug("%s usb_exit()\n", driver.name);
usb_deregister(&driver);
destroy_workqueue(zd_workqueue);
}
module_init(usb_init);
module_exit(usb_exit);
static int zd_ep_regs_out_msg(struct usb_device *udev, void *data, int len,
int *actual_length, int timeout)
{
/* In USB 2.0 mode EP_REGS_OUT endpoint is interrupt type. However in
* USB 1.1 mode endpoint is bulk. Select correct type URB by endpoint
* descriptor.
*/
struct usb_host_endpoint *ep;
unsigned int pipe;
pipe = usb_sndintpipe(udev, EP_REGS_OUT);
ep = usb_pipe_endpoint(udev, pipe);
if (!ep)
return -EINVAL;
if (usb_endpoint_xfer_int(&ep->desc)) {
return usb_interrupt_msg(udev, pipe, data, len,
actual_length, timeout);
} else {
pipe = usb_sndbulkpipe(udev, EP_REGS_OUT);
return usb_bulk_msg(udev, pipe, data, len, actual_length,
timeout);
}
}
static int usb_int_regs_length(unsigned int count)
{
return sizeof(struct usb_int_regs) + count * sizeof(struct reg_data);
}
static void prepare_read_regs_int(struct zd_usb *usb,
struct usb_req_read_regs *req,
unsigned int count)
{
struct zd_usb_interrupt *intr = &usb->intr;
spin_lock_irq(&intr->lock);
atomic_set(&intr->read_regs_enabled, 1);
intr->read_regs.req = req;
intr->read_regs.req_count = count;
reinit_completion(&intr->read_regs.completion);
spin_unlock_irq(&intr->lock);
}
static void disable_read_regs_int(struct zd_usb *usb)
{
struct zd_usb_interrupt *intr = &usb->intr;
spin_lock_irq(&intr->lock);
atomic_set(&intr->read_regs_enabled, 0);
spin_unlock_irq(&intr->lock);
}
static bool check_read_regs(struct zd_usb *usb, struct usb_req_read_regs *req,
unsigned int count)
{
int i;
struct zd_usb_interrupt *intr = &usb->intr;
struct read_regs_int *rr = &intr->read_regs;
struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer;
/* The created block size seems to be larger than expected.
* However results appear to be correct.
*/
if (rr->length < usb_int_regs_length(count)) {
dev_dbg_f(zd_usb_dev(usb),
"error: actual length %d less than expected %d\n",
rr->length, usb_int_regs_length(count));
return false;
}
if (rr->length > sizeof(rr->buffer)) {
dev_dbg_f(zd_usb_dev(usb),
"error: actual length %d exceeds buffer size %zu\n",
rr->length, sizeof(rr->buffer));
return false;
}
for (i = 0; i < count; i++) {
struct reg_data *rd = &regs->regs[i];
if (rd->addr != req->addr[i]) {
dev_dbg_f(zd_usb_dev(usb),
"rd[%d] addr %#06hx expected %#06hx\n", i,
le16_to_cpu(rd->addr),
le16_to_cpu(req->addr[i]));
return false;
}
}
return true;
}
static int get_results(struct zd_usb *usb, u16 *values,
struct usb_req_read_regs *req, unsigned int count,
bool *retry)
{
int r;
int i;
struct zd_usb_interrupt *intr = &usb->intr;
struct read_regs_int *rr = &intr->read_regs;
struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer;
spin_lock_irq(&intr->lock);
r = -EIO;
/* Read failed because firmware bug? */
*retry = !!intr->read_regs_int_overridden;
if (*retry)
goto error_unlock;
if (!check_read_regs(usb, req, count)) {
dev_dbg_f(zd_usb_dev(usb), "error: invalid read regs\n");
goto error_unlock;
}
for (i = 0; i < count; i++) {
struct reg_data *rd = &regs->regs[i];
values[i] = le16_to_cpu(rd->value);
}
r = 0;
error_unlock:
spin_unlock_irq(&intr->lock);
return r;
}
int zd_usb_ioread16v(struct zd_usb *usb, u16 *values,
const zd_addr_t *addresses, unsigned int count)
{
int r, i, req_len, actual_req_len, try_count = 0;
struct usb_device *udev;
struct usb_req_read_regs *req = NULL;
unsigned long timeout;
bool retry = false;
if (count < 1) {
dev_dbg_f(zd_usb_dev(usb), "error: count is zero\n");
return -EINVAL;
}
if (count > USB_MAX_IOREAD16_COUNT) {
dev_dbg_f(zd_usb_dev(usb),
"error: count %u exceeds possible max %u\n",
count, USB_MAX_IOREAD16_COUNT);
return -EINVAL;
}
if (in_atomic()) {
dev_dbg_f(zd_usb_dev(usb),
"error: io in atomic context not supported\n");
return -EWOULDBLOCK;
}
if (!usb_int_enabled(usb)) {
dev_dbg_f(zd_usb_dev(usb),
"error: usb interrupt not enabled\n");
return -EWOULDBLOCK;
}
ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
BUILD_BUG_ON(sizeof(struct usb_req_read_regs) + USB_MAX_IOREAD16_COUNT *
sizeof(__le16) > sizeof(usb->req_buf));
BUG_ON(sizeof(struct usb_req_read_regs) + count * sizeof(__le16) >
sizeof(usb->req_buf));
req_len = sizeof(struct usb_req_read_regs) + count * sizeof(__le16);
req = (void *)usb->req_buf;
req->id = cpu_to_le16(USB_REQ_READ_REGS);
for (i = 0; i < count; i++)
req->addr[i] = cpu_to_le16((u16)addresses[i]);
retry_read:
try_count++;
udev = zd_usb_to_usbdev(usb);
prepare_read_regs_int(usb, req, count);
r = zd_ep_regs_out_msg(udev, req, req_len, &actual_req_len, 50 /*ms*/);
if (r) {
dev_dbg_f(zd_usb_dev(usb),
"error in zd_ep_regs_out_msg(). Error number %d\n", r);
goto error;
}
if (req_len != actual_req_len) {
dev_dbg_f(zd_usb_dev(usb), "error in zd_ep_regs_out_msg()\n"
" req_len %d != actual_req_len %d\n",
req_len, actual_req_len);
r = -EIO;
goto error;
}
timeout = wait_for_completion_timeout(&usb->intr.read_regs.completion,
msecs_to_jiffies(50));
if (!timeout) {
disable_read_regs_int(usb);
dev_dbg_f(zd_usb_dev(usb), "read timed out\n");
r = -ETIMEDOUT;
goto error;
}
r = get_results(usb, values, req, count, &retry);
if (retry && try_count < 20) {
dev_dbg_f(zd_usb_dev(usb), "read retry, tries so far: %d\n",
try_count);
goto retry_read;
}
error:
return r;
}
static void iowrite16v_urb_complete(struct urb *urb)
{
struct zd_usb *usb = urb->context;
if (urb->status && !usb->cmd_error)
usb->cmd_error = urb->status;
if (!usb->cmd_error &&
urb->actual_length != urb->transfer_buffer_length)
usb->cmd_error = -EIO;
}
static int zd_submit_waiting_urb(struct zd_usb *usb, bool last)
{
int r = 0;
struct urb *urb = usb->urb_async_waiting;
if (!urb)
return 0;
usb->urb_async_waiting = NULL;
if (!last)
urb->transfer_flags |= URB_NO_INTERRUPT;
usb_anchor_urb(urb, &usb->submitted_cmds);
r = usb_submit_urb(urb, GFP_KERNEL);
if (r) {
usb_unanchor_urb(urb);
dev_dbg_f(zd_usb_dev(usb),
"error in usb_submit_urb(). Error number %d\n", r);
goto error;
}
/* fall-through with r == 0 */
error:
usb_free_urb(urb);
return r;
}
void zd_usb_iowrite16v_async_start(struct zd_usb *usb)
{
ZD_ASSERT(usb_anchor_empty(&usb->submitted_cmds));
ZD_ASSERT(usb->urb_async_waiting == NULL);
ZD_ASSERT(!usb->in_async);
ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
usb->in_async = 1;
usb->cmd_error = 0;
usb->urb_async_waiting = NULL;
}
int zd_usb_iowrite16v_async_end(struct zd_usb *usb, unsigned int timeout)
{
int r;
ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
ZD_ASSERT(usb->in_async);
/* Submit last iowrite16v URB */
r = zd_submit_waiting_urb(usb, true);
if (r) {
dev_dbg_f(zd_usb_dev(usb),
"error in zd_submit_waiting_usb(). "
"Error number %d\n", r);
usb_kill_anchored_urbs(&usb->submitted_cmds);
goto error;
}
if (timeout)
timeout = usb_wait_anchor_empty_timeout(&usb->submitted_cmds,
timeout);
if (!timeout) {
usb_kill_anchored_urbs(&usb->submitted_cmds);
if (usb->cmd_error == -ENOENT) {
dev_dbg_f(zd_usb_dev(usb), "timed out");
r = -ETIMEDOUT;
goto error;
}
}
r = usb->cmd_error;
error:
usb->in_async = 0;
return r;
}
int zd_usb_iowrite16v_async(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
unsigned int count)
{
int r;
struct usb_device *udev;
struct usb_req_write_regs *req = NULL;
int i, req_len;
struct urb *urb;
struct usb_host_endpoint *ep;
ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
ZD_ASSERT(usb->in_async);
if (count == 0)
return 0;
if (count > USB_MAX_IOWRITE16_COUNT) {
dev_dbg_f(zd_usb_dev(usb),
"error: count %u exceeds possible max %u\n",
count, USB_MAX_IOWRITE16_COUNT);
return -EINVAL;
}
if (in_atomic()) {
dev_dbg_f(zd_usb_dev(usb),
"error: io in atomic context not supported\n");
return -EWOULDBLOCK;
}
udev = zd_usb_to_usbdev(usb);
ep = usb_pipe_endpoint(udev, usb_sndintpipe(udev, EP_REGS_OUT));
if (!ep)
return -ENOENT;
urb = usb_alloc_urb(0, GFP_KERNEL);
if (!urb)
return -ENOMEM;
req_len = sizeof(struct usb_req_write_regs) +
count * sizeof(struct reg_data);
req = kmalloc(req_len, GFP_KERNEL);
if (!req) {
r = -ENOMEM;
goto error;
}
req->id = cpu_to_le16(USB_REQ_WRITE_REGS);
for (i = 0; i < count; i++) {
struct reg_data *rw = &req->reg_writes[i];
rw->addr = cpu_to_le16((u16)ioreqs[i].addr);
rw->value = cpu_to_le16(ioreqs[i].value);
}
/* In USB 2.0 mode endpoint is interrupt type. However in USB 1.1 mode
* endpoint is bulk. Select correct type URB by endpoint descriptor.
*/
if (usb_endpoint_xfer_int(&ep->desc))
usb_fill_int_urb(urb, udev, usb_sndintpipe(udev, EP_REGS_OUT),
req, req_len, iowrite16v_urb_complete, usb,
ep->desc.bInterval);
else
usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
req, req_len, iowrite16v_urb_complete, usb);
urb->transfer_flags |= URB_FREE_BUFFER;
/* Submit previous URB */
r = zd_submit_waiting_urb(usb, false);
if (r) {
dev_dbg_f(zd_usb_dev(usb),
"error in zd_submit_waiting_usb(). "
"Error number %d\n", r);
goto error;
}
/* Delay submit so that URB_NO_INTERRUPT flag can be set for all URBs
* of currect batch except for very last.
*/
usb->urb_async_waiting = urb;
return 0;
error:
usb_free_urb(urb);
return r;
}
int zd_usb_iowrite16v(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
unsigned int count)
{
int r;
zd_usb_iowrite16v_async_start(usb);
r = zd_usb_iowrite16v_async(usb, ioreqs, count);
if (r) {
zd_usb_iowrite16v_async_end(usb, 0);
return r;
}
return zd_usb_iowrite16v_async_end(usb, 50 /* ms */);
}
int zd_usb_rfwrite(struct zd_usb *usb, u32 value, u8 bits)
{
int r;
struct usb_device *udev;
struct usb_req_rfwrite *req = NULL;
int i, req_len, actual_req_len;
u16 bit_value_template;
if (in_atomic()) {
dev_dbg_f(zd_usb_dev(usb),
"error: io in atomic context not supported\n");
return -EWOULDBLOCK;
}
if (bits < USB_MIN_RFWRITE_BIT_COUNT) {
dev_dbg_f(zd_usb_dev(usb),
"error: bits %d are smaller than"
" USB_MIN_RFWRITE_BIT_COUNT %d\n",
bits, USB_MIN_RFWRITE_BIT_COUNT);
return -EINVAL;
}
if (bits > USB_MAX_RFWRITE_BIT_COUNT) {
dev_dbg_f(zd_usb_dev(usb),
"error: bits %d exceed USB_MAX_RFWRITE_BIT_COUNT %d\n",
bits, USB_MAX_RFWRITE_BIT_COUNT);
return -EINVAL;
}
#ifdef DEBUG
if (value & (~0UL << bits)) {
dev_dbg_f(zd_usb_dev(usb),
"error: value %#09x has bits >= %d set\n",
value, bits);
return -EINVAL;
}
#endif /* DEBUG */
dev_dbg_f(zd_usb_dev(usb), "value %#09x bits %d\n", value, bits);
r = zd_usb_ioread16(usb, &bit_value_template, ZD_CR203);
if (r) {
dev_dbg_f(zd_usb_dev(usb),
"error %d: Couldn't read ZD_CR203\n", r);
return r;
}
bit_value_template &= ~(RF_IF_LE|RF_CLK|RF_DATA);
ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
BUILD_BUG_ON(sizeof(struct usb_req_rfwrite) +
USB_MAX_RFWRITE_BIT_COUNT * sizeof(__le16) >
sizeof(usb->req_buf));
BUG_ON(sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16) >
sizeof(usb->req_buf));
req_len = sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16);
req = (void *)usb->req_buf;
req->id = cpu_to_le16(USB_REQ_WRITE_RF);
/* 1: 3683a, but not used in ZYDAS driver */
req->value = cpu_to_le16(2);
req->bits = cpu_to_le16(bits);
for (i = 0; i < bits; i++) {
u16 bv = bit_value_template;
if (value & (1 << (bits-1-i)))
bv |= RF_DATA;
req->bit_values[i] = cpu_to_le16(bv);
}
udev = zd_usb_to_usbdev(usb);
r = zd_ep_regs_out_msg(udev, req, req_len, &actual_req_len, 50 /*ms*/);
if (r) {
dev_dbg_f(zd_usb_dev(usb),
"error in zd_ep_regs_out_msg(). Error number %d\n", r);
goto out;
}
if (req_len != actual_req_len) {
dev_dbg_f(zd_usb_dev(usb), "error in zd_ep_regs_out_msg()"
" req_len %d != actual_req_len %d\n",
req_len, actual_req_len);
r = -EIO;
goto out;
}
/* FALL-THROUGH with r == 0 */
out:
return r;
}