| /* PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580 |
| * |
| * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License along with |
| * this program; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| #include <linux/module.h> |
| #include <linux/device.h> |
| #include <linux/pci.h> |
| #include <linux/ptp_classify.h> |
| |
| #include "igb.h" |
| |
| #define INCVALUE_MASK 0x7fffffff |
| #define ISGN 0x80000000 |
| |
| /* The 82580 timesync updates the system timer every 8ns by 8ns, |
| * and this update value cannot be reprogrammed. |
| * |
| * Neither the 82576 nor the 82580 offer registers wide enough to hold |
| * nanoseconds time values for very long. For the 82580, SYSTIM always |
| * counts nanoseconds, but the upper 24 bits are not availible. The |
| * frequency is adjusted by changing the 32 bit fractional nanoseconds |
| * register, TIMINCA. |
| * |
| * For the 82576, the SYSTIM register time unit is affect by the |
| * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this |
| * field are needed to provide the nominal 16 nanosecond period, |
| * leaving 19 bits for fractional nanoseconds. |
| * |
| * We scale the NIC clock cycle by a large factor so that relatively |
| * small clock corrections can be added or subtracted at each clock |
| * tick. The drawbacks of a large factor are a) that the clock |
| * register overflows more quickly (not such a big deal) and b) that |
| * the increment per tick has to fit into 24 bits. As a result we |
| * need to use a shift of 19 so we can fit a value of 16 into the |
| * TIMINCA register. |
| * |
| * |
| * SYSTIMH SYSTIML |
| * +--------------+ +---+---+------+ |
| * 82576 | 32 | | 8 | 5 | 19 | |
| * +--------------+ +---+---+------+ |
| * \________ 45 bits _______/ fract |
| * |
| * +----------+---+ +--------------+ |
| * 82580 | 24 | 8 | | 32 | |
| * +----------+---+ +--------------+ |
| * reserved \______ 40 bits _____/ |
| * |
| * |
| * The 45 bit 82576 SYSTIM overflows every |
| * 2^45 * 10^-9 / 3600 = 9.77 hours. |
| * |
| * The 40 bit 82580 SYSTIM overflows every |
| * 2^40 * 10^-9 / 60 = 18.3 minutes. |
| */ |
| |
| #define IGB_SYSTIM_OVERFLOW_PERIOD (HZ * 60 * 9) |
| #define IGB_PTP_TX_TIMEOUT (HZ * 15) |
| #define INCPERIOD_82576 (1 << E1000_TIMINCA_16NS_SHIFT) |
| #define INCVALUE_82576_MASK ((1 << E1000_TIMINCA_16NS_SHIFT) - 1) |
| #define INCVALUE_82576 (16 << IGB_82576_TSYNC_SHIFT) |
| #define IGB_NBITS_82580 40 |
| |
| static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter); |
| |
| /* SYSTIM read access for the 82576 */ |
| static cycle_t igb_ptp_read_82576(const struct cyclecounter *cc) |
| { |
| struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc); |
| struct e1000_hw *hw = &igb->hw; |
| u64 val; |
| u32 lo, hi; |
| |
| lo = rd32(E1000_SYSTIML); |
| hi = rd32(E1000_SYSTIMH); |
| |
| val = ((u64) hi) << 32; |
| val |= lo; |
| |
| return val; |
| } |
| |
| /* SYSTIM read access for the 82580 */ |
| static cycle_t igb_ptp_read_82580(const struct cyclecounter *cc) |
| { |
| struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc); |
| struct e1000_hw *hw = &igb->hw; |
| u32 lo, hi; |
| u64 val; |
| |
| /* The timestamp latches on lowest register read. For the 82580 |
| * the lowest register is SYSTIMR instead of SYSTIML. However we only |
| * need to provide nanosecond resolution, so we just ignore it. |
| */ |
| rd32(E1000_SYSTIMR); |
| lo = rd32(E1000_SYSTIML); |
| hi = rd32(E1000_SYSTIMH); |
| |
| val = ((u64) hi) << 32; |
| val |= lo; |
| |
| return val; |
| } |
| |
| /* SYSTIM read access for I210/I211 */ |
| static void igb_ptp_read_i210(struct igb_adapter *adapter, struct timespec *ts) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 sec, nsec; |
| |
| /* The timestamp latches on lowest register read. For I210/I211, the |
| * lowest register is SYSTIMR. Since we only need to provide nanosecond |
| * resolution, we can ignore it. |
| */ |
| rd32(E1000_SYSTIMR); |
| nsec = rd32(E1000_SYSTIML); |
| sec = rd32(E1000_SYSTIMH); |
| |
| ts->tv_sec = sec; |
| ts->tv_nsec = nsec; |
| } |
| |
| static void igb_ptp_write_i210(struct igb_adapter *adapter, |
| const struct timespec *ts) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| |
| /* Writing the SYSTIMR register is not necessary as it only provides |
| * sub-nanosecond resolution. |
| */ |
| wr32(E1000_SYSTIML, ts->tv_nsec); |
| wr32(E1000_SYSTIMH, ts->tv_sec); |
| } |
| |
| /** |
| * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp |
| * @adapter: board private structure |
| * @hwtstamps: timestamp structure to update |
| * @systim: unsigned 64bit system time value. |
| * |
| * We need to convert the system time value stored in the RX/TXSTMP registers |
| * into a hwtstamp which can be used by the upper level timestamping functions. |
| * |
| * The 'tmreg_lock' spinlock is used to protect the consistency of the |
| * system time value. This is needed because reading the 64 bit time |
| * value involves reading two (or three) 32 bit registers. The first |
| * read latches the value. Ditto for writing. |
| * |
| * In addition, here have extended the system time with an overflow |
| * counter in software. |
| **/ |
| static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter, |
| struct skb_shared_hwtstamps *hwtstamps, |
| u64 systim) |
| { |
| unsigned long flags; |
| u64 ns; |
| |
| switch (adapter->hw.mac.type) { |
| case e1000_82576: |
| case e1000_82580: |
| case e1000_i354: |
| case e1000_i350: |
| spin_lock_irqsave(&adapter->tmreg_lock, flags); |
| |
| ns = timecounter_cyc2time(&adapter->tc, systim); |
| |
| spin_unlock_irqrestore(&adapter->tmreg_lock, flags); |
| |
| memset(hwtstamps, 0, sizeof(*hwtstamps)); |
| hwtstamps->hwtstamp = ns_to_ktime(ns); |
| break; |
| case e1000_i210: |
| case e1000_i211: |
| memset(hwtstamps, 0, sizeof(*hwtstamps)); |
| /* Upper 32 bits contain s, lower 32 bits contain ns. */ |
| hwtstamps->hwtstamp = ktime_set(systim >> 32, |
| systim & 0xFFFFFFFF); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| /* PTP clock operations */ |
| static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb) |
| { |
| struct igb_adapter *igb = container_of(ptp, struct igb_adapter, |
| ptp_caps); |
| struct e1000_hw *hw = &igb->hw; |
| int neg_adj = 0; |
| u64 rate; |
| u32 incvalue; |
| |
| if (ppb < 0) { |
| neg_adj = 1; |
| ppb = -ppb; |
| } |
| rate = ppb; |
| rate <<= 14; |
| rate = div_u64(rate, 1953125); |
| |
| incvalue = 16 << IGB_82576_TSYNC_SHIFT; |
| |
| if (neg_adj) |
| incvalue -= rate; |
| else |
| incvalue += rate; |
| |
| wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK)); |
| |
| return 0; |
| } |
| |
| static int igb_ptp_adjfreq_82580(struct ptp_clock_info *ptp, s32 ppb) |
| { |
| struct igb_adapter *igb = container_of(ptp, struct igb_adapter, |
| ptp_caps); |
| struct e1000_hw *hw = &igb->hw; |
| int neg_adj = 0; |
| u64 rate; |
| u32 inca; |
| |
| if (ppb < 0) { |
| neg_adj = 1; |
| ppb = -ppb; |
| } |
| rate = ppb; |
| rate <<= 26; |
| rate = div_u64(rate, 1953125); |
| |
| inca = rate & INCVALUE_MASK; |
| if (neg_adj) |
| inca |= ISGN; |
| |
| wr32(E1000_TIMINCA, inca); |
| |
| return 0; |
| } |
| |
| static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta) |
| { |
| struct igb_adapter *igb = container_of(ptp, struct igb_adapter, |
| ptp_caps); |
| unsigned long flags; |
| s64 now; |
| |
| spin_lock_irqsave(&igb->tmreg_lock, flags); |
| |
| now = timecounter_read(&igb->tc); |
| now += delta; |
| timecounter_init(&igb->tc, &igb->cc, now); |
| |
| spin_unlock_irqrestore(&igb->tmreg_lock, flags); |
| |
| return 0; |
| } |
| |
| static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta) |
| { |
| struct igb_adapter *igb = container_of(ptp, struct igb_adapter, |
| ptp_caps); |
| unsigned long flags; |
| struct timespec now, then = ns_to_timespec(delta); |
| |
| spin_lock_irqsave(&igb->tmreg_lock, flags); |
| |
| igb_ptp_read_i210(igb, &now); |
| now = timespec_add(now, then); |
| igb_ptp_write_i210(igb, (const struct timespec *)&now); |
| |
| spin_unlock_irqrestore(&igb->tmreg_lock, flags); |
| |
| return 0; |
| } |
| |
| static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp, |
| struct timespec *ts) |
| { |
| struct igb_adapter *igb = container_of(ptp, struct igb_adapter, |
| ptp_caps); |
| unsigned long flags; |
| u64 ns; |
| u32 remainder; |
| |
| spin_lock_irqsave(&igb->tmreg_lock, flags); |
| |
| ns = timecounter_read(&igb->tc); |
| |
| spin_unlock_irqrestore(&igb->tmreg_lock, flags); |
| |
| ts->tv_sec = div_u64_rem(ns, 1000000000, &remainder); |
| ts->tv_nsec = remainder; |
| |
| return 0; |
| } |
| |
| static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp, |
| struct timespec *ts) |
| { |
| struct igb_adapter *igb = container_of(ptp, struct igb_adapter, |
| ptp_caps); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&igb->tmreg_lock, flags); |
| |
| igb_ptp_read_i210(igb, ts); |
| |
| spin_unlock_irqrestore(&igb->tmreg_lock, flags); |
| |
| return 0; |
| } |
| |
| static int igb_ptp_settime_82576(struct ptp_clock_info *ptp, |
| const struct timespec *ts) |
| { |
| struct igb_adapter *igb = container_of(ptp, struct igb_adapter, |
| ptp_caps); |
| unsigned long flags; |
| u64 ns; |
| |
| ns = ts->tv_sec * 1000000000ULL; |
| ns += ts->tv_nsec; |
| |
| spin_lock_irqsave(&igb->tmreg_lock, flags); |
| |
| timecounter_init(&igb->tc, &igb->cc, ns); |
| |
| spin_unlock_irqrestore(&igb->tmreg_lock, flags); |
| |
| return 0; |
| } |
| |
| static int igb_ptp_settime_i210(struct ptp_clock_info *ptp, |
| const struct timespec *ts) |
| { |
| struct igb_adapter *igb = container_of(ptp, struct igb_adapter, |
| ptp_caps); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&igb->tmreg_lock, flags); |
| |
| igb_ptp_write_i210(igb, ts); |
| |
| spin_unlock_irqrestore(&igb->tmreg_lock, flags); |
| |
| return 0; |
| } |
| |
| static int igb_ptp_enable(struct ptp_clock_info *ptp, |
| struct ptp_clock_request *rq, int on) |
| { |
| return -EOPNOTSUPP; |
| } |
| |
| /** |
| * igb_ptp_tx_work |
| * @work: pointer to work struct |
| * |
| * This work function polls the TSYNCTXCTL valid bit to determine when a |
| * timestamp has been taken for the current stored skb. |
| **/ |
| static void igb_ptp_tx_work(struct work_struct *work) |
| { |
| struct igb_adapter *adapter = container_of(work, struct igb_adapter, |
| ptp_tx_work); |
| struct e1000_hw *hw = &adapter->hw; |
| u32 tsynctxctl; |
| |
| if (!adapter->ptp_tx_skb) |
| return; |
| |
| if (time_is_before_jiffies(adapter->ptp_tx_start + |
| IGB_PTP_TX_TIMEOUT)) { |
| dev_kfree_skb_any(adapter->ptp_tx_skb); |
| adapter->ptp_tx_skb = NULL; |
| clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state); |
| adapter->tx_hwtstamp_timeouts++; |
| dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang"); |
| return; |
| } |
| |
| tsynctxctl = rd32(E1000_TSYNCTXCTL); |
| if (tsynctxctl & E1000_TSYNCTXCTL_VALID) |
| igb_ptp_tx_hwtstamp(adapter); |
| else |
| /* reschedule to check later */ |
| schedule_work(&adapter->ptp_tx_work); |
| } |
| |
| static void igb_ptp_overflow_check(struct work_struct *work) |
| { |
| struct igb_adapter *igb = |
| container_of(work, struct igb_adapter, ptp_overflow_work.work); |
| struct timespec ts; |
| |
| igb->ptp_caps.gettime(&igb->ptp_caps, &ts); |
| |
| pr_debug("igb overflow check at %ld.%09lu\n", ts.tv_sec, ts.tv_nsec); |
| |
| schedule_delayed_work(&igb->ptp_overflow_work, |
| IGB_SYSTIM_OVERFLOW_PERIOD); |
| } |
| |
| /** |
| * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched |
| * @adapter: private network adapter structure |
| * |
| * This watchdog task is scheduled to detect error case where hardware has |
| * dropped an Rx packet that was timestamped when the ring is full. The |
| * particular error is rare but leaves the device in a state unable to timestamp |
| * any future packets. |
| **/ |
| void igb_ptp_rx_hang(struct igb_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| struct igb_ring *rx_ring; |
| u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL); |
| unsigned long rx_event; |
| int n; |
| |
| if (hw->mac.type != e1000_82576) |
| return; |
| |
| /* If we don't have a valid timestamp in the registers, just update the |
| * timeout counter and exit |
| */ |
| if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) { |
| adapter->last_rx_ptp_check = jiffies; |
| return; |
| } |
| |
| /* Determine the most recent watchdog or rx_timestamp event */ |
| rx_event = adapter->last_rx_ptp_check; |
| for (n = 0; n < adapter->num_rx_queues; n++) { |
| rx_ring = adapter->rx_ring[n]; |
| if (time_after(rx_ring->last_rx_timestamp, rx_event)) |
| rx_event = rx_ring->last_rx_timestamp; |
| } |
| |
| /* Only need to read the high RXSTMP register to clear the lock */ |
| if (time_is_before_jiffies(rx_event + 5 * HZ)) { |
| rd32(E1000_RXSTMPH); |
| adapter->last_rx_ptp_check = jiffies; |
| adapter->rx_hwtstamp_cleared++; |
| dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang"); |
| } |
| } |
| |
| /** |
| * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp |
| * @adapter: Board private structure. |
| * |
| * If we were asked to do hardware stamping and such a time stamp is |
| * available, then it must have been for this skb here because we only |
| * allow only one such packet into the queue. |
| **/ |
| static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| struct skb_shared_hwtstamps shhwtstamps; |
| u64 regval; |
| |
| regval = rd32(E1000_TXSTMPL); |
| regval |= (u64)rd32(E1000_TXSTMPH) << 32; |
| |
| igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval); |
| skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps); |
| dev_kfree_skb_any(adapter->ptp_tx_skb); |
| adapter->ptp_tx_skb = NULL; |
| clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state); |
| } |
| |
| /** |
| * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp |
| * @q_vector: Pointer to interrupt specific structure |
| * @va: Pointer to address containing Rx buffer |
| * @skb: Buffer containing timestamp and packet |
| * |
| * This function is meant to retrieve a timestamp from the first buffer of an |
| * incoming frame. The value is stored in little endian format starting on |
| * byte 8. |
| **/ |
| void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, |
| unsigned char *va, |
| struct sk_buff *skb) |
| { |
| __le64 *regval = (__le64 *)va; |
| |
| /* The timestamp is recorded in little endian format. |
| * DWORD: 0 1 2 3 |
| * Field: Reserved Reserved SYSTIML SYSTIMH |
| */ |
| igb_ptp_systim_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb), |
| le64_to_cpu(regval[1])); |
| } |
| |
| /** |
| * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register |
| * @q_vector: Pointer to interrupt specific structure |
| * @skb: Buffer containing timestamp and packet |
| * |
| * This function is meant to retrieve a timestamp from the internal registers |
| * of the adapter and store it in the skb. |
| **/ |
| void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector, |
| struct sk_buff *skb) |
| { |
| struct igb_adapter *adapter = q_vector->adapter; |
| struct e1000_hw *hw = &adapter->hw; |
| u64 regval; |
| |
| /* If this bit is set, then the RX registers contain the time stamp. No |
| * other packet will be time stamped until we read these registers, so |
| * read the registers to make them available again. Because only one |
| * packet can be time stamped at a time, we know that the register |
| * values must belong to this one here and therefore we don't need to |
| * compare any of the additional attributes stored for it. |
| * |
| * If nothing went wrong, then it should have a shared tx_flags that we |
| * can turn into a skb_shared_hwtstamps. |
| */ |
| if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) |
| return; |
| |
| regval = rd32(E1000_RXSTMPL); |
| regval |= (u64)rd32(E1000_RXSTMPH) << 32; |
| |
| igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval); |
| } |
| |
| /** |
| * igb_ptp_get_ts_config - get hardware time stamping config |
| * @netdev: |
| * @ifreq: |
| * |
| * Get the hwtstamp_config settings to return to the user. Rather than attempt |
| * to deconstruct the settings from the registers, just return a shadow copy |
| * of the last known settings. |
| **/ |
| int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| struct hwtstamp_config *config = &adapter->tstamp_config; |
| |
| return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ? |
| -EFAULT : 0; |
| } |
| /** |
| * igb_ptp_set_ts_config - control hardware time stamping |
| * @netdev: |
| * @ifreq: |
| * |
| * Outgoing time stamping can be enabled and disabled. Play nice and |
| * disable it when requested, although it shouldn't case any overhead |
| * when no packet needs it. At most one packet in the queue may be |
| * marked for time stamping, otherwise it would be impossible to tell |
| * for sure to which packet the hardware time stamp belongs. |
| * |
| * Incoming time stamping has to be configured via the hardware |
| * filters. Not all combinations are supported, in particular event |
| * type has to be specified. Matching the kind of event packet is |
| * not supported, with the exception of "all V2 events regardless of |
| * level 2 or 4". |
| **/ |
| int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr) |
| { |
| struct igb_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| struct hwtstamp_config *config = &adapter->tstamp_config; |
| u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED; |
| u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED; |
| u32 tsync_rx_cfg = 0; |
| bool is_l4 = false; |
| bool is_l2 = false; |
| u32 regval; |
| |
| if (copy_from_user(config, ifr->ifr_data, sizeof(*config))) |
| return -EFAULT; |
| |
| /* reserved for future extensions */ |
| if (config->flags) |
| return -EINVAL; |
| |
| switch (config->tx_type) { |
| case HWTSTAMP_TX_OFF: |
| tsync_tx_ctl = 0; |
| case HWTSTAMP_TX_ON: |
| break; |
| default: |
| return -ERANGE; |
| } |
| |
| switch (config->rx_filter) { |
| case HWTSTAMP_FILTER_NONE: |
| tsync_rx_ctl = 0; |
| break; |
| case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: |
| tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1; |
| tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE; |
| is_l4 = true; |
| break; |
| case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: |
| tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1; |
| tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE; |
| is_l4 = true; |
| break; |
| case HWTSTAMP_FILTER_PTP_V2_EVENT: |
| case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: |
| case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: |
| case HWTSTAMP_FILTER_PTP_V2_SYNC: |
| case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: |
| case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: |
| case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: |
| case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: |
| case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: |
| tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2; |
| config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; |
| is_l2 = true; |
| is_l4 = true; |
| break; |
| case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: |
| case HWTSTAMP_FILTER_ALL: |
| /* 82576 cannot timestamp all packets, which it needs to do to |
| * support both V1 Sync and Delay_Req messages |
| */ |
| if (hw->mac.type != e1000_82576) { |
| tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL; |
| config->rx_filter = HWTSTAMP_FILTER_ALL; |
| break; |
| } |
| /* fall through */ |
| default: |
| config->rx_filter = HWTSTAMP_FILTER_NONE; |
| return -ERANGE; |
| } |
| |
| if (hw->mac.type == e1000_82575) { |
| if (tsync_rx_ctl | tsync_tx_ctl) |
| return -EINVAL; |
| return 0; |
| } |
| |
| /* Per-packet timestamping only works if all packets are |
| * timestamped, so enable timestamping in all packets as |
| * long as one Rx filter was configured. |
| */ |
| if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) { |
| tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED; |
| tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL; |
| config->rx_filter = HWTSTAMP_FILTER_ALL; |
| is_l2 = true; |
| is_l4 = true; |
| |
| if ((hw->mac.type == e1000_i210) || |
| (hw->mac.type == e1000_i211)) { |
| regval = rd32(E1000_RXPBS); |
| regval |= E1000_RXPBS_CFG_TS_EN; |
| wr32(E1000_RXPBS, regval); |
| } |
| } |
| |
| /* enable/disable TX */ |
| regval = rd32(E1000_TSYNCTXCTL); |
| regval &= ~E1000_TSYNCTXCTL_ENABLED; |
| regval |= tsync_tx_ctl; |
| wr32(E1000_TSYNCTXCTL, regval); |
| |
| /* enable/disable RX */ |
| regval = rd32(E1000_TSYNCRXCTL); |
| regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK); |
| regval |= tsync_rx_ctl; |
| wr32(E1000_TSYNCRXCTL, regval); |
| |
| /* define which PTP packets are time stamped */ |
| wr32(E1000_TSYNCRXCFG, tsync_rx_cfg); |
| |
| /* define ethertype filter for timestamped packets */ |
| if (is_l2) |
| wr32(E1000_ETQF(3), |
| (E1000_ETQF_FILTER_ENABLE | /* enable filter */ |
| E1000_ETQF_1588 | /* enable timestamping */ |
| ETH_P_1588)); /* 1588 eth protocol type */ |
| else |
| wr32(E1000_ETQF(3), 0); |
| |
| /* L4 Queue Filter[3]: filter by destination port and protocol */ |
| if (is_l4) { |
| u32 ftqf = (IPPROTO_UDP /* UDP */ |
| | E1000_FTQF_VF_BP /* VF not compared */ |
| | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */ |
| | E1000_FTQF_MASK); /* mask all inputs */ |
| ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */ |
| |
| wr32(E1000_IMIR(3), htons(PTP_EV_PORT)); |
| wr32(E1000_IMIREXT(3), |
| (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP)); |
| if (hw->mac.type == e1000_82576) { |
| /* enable source port check */ |
| wr32(E1000_SPQF(3), htons(PTP_EV_PORT)); |
| ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP; |
| } |
| wr32(E1000_FTQF(3), ftqf); |
| } else { |
| wr32(E1000_FTQF(3), E1000_FTQF_MASK); |
| } |
| wrfl(); |
| |
| /* clear TX/RX time stamp registers, just to be sure */ |
| regval = rd32(E1000_TXSTMPL); |
| regval = rd32(E1000_TXSTMPH); |
| regval = rd32(E1000_RXSTMPL); |
| regval = rd32(E1000_RXSTMPH); |
| |
| return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ? |
| -EFAULT : 0; |
| } |
| |
| void igb_ptp_init(struct igb_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| struct net_device *netdev = adapter->netdev; |
| |
| switch (hw->mac.type) { |
| case e1000_82576: |
| snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr); |
| adapter->ptp_caps.owner = THIS_MODULE; |
| adapter->ptp_caps.max_adj = 999999881; |
| adapter->ptp_caps.n_ext_ts = 0; |
| adapter->ptp_caps.pps = 0; |
| adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576; |
| adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576; |
| adapter->ptp_caps.gettime = igb_ptp_gettime_82576; |
| adapter->ptp_caps.settime = igb_ptp_settime_82576; |
| adapter->ptp_caps.enable = igb_ptp_enable; |
| adapter->cc.read = igb_ptp_read_82576; |
| adapter->cc.mask = CLOCKSOURCE_MASK(64); |
| adapter->cc.mult = 1; |
| adapter->cc.shift = IGB_82576_TSYNC_SHIFT; |
| /* Dial the nominal frequency. */ |
| wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576); |
| break; |
| case e1000_82580: |
| case e1000_i354: |
| case e1000_i350: |
| snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr); |
| adapter->ptp_caps.owner = THIS_MODULE; |
| adapter->ptp_caps.max_adj = 62499999; |
| adapter->ptp_caps.n_ext_ts = 0; |
| adapter->ptp_caps.pps = 0; |
| adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580; |
| adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576; |
| adapter->ptp_caps.gettime = igb_ptp_gettime_82576; |
| adapter->ptp_caps.settime = igb_ptp_settime_82576; |
| adapter->ptp_caps.enable = igb_ptp_enable; |
| adapter->cc.read = igb_ptp_read_82580; |
| adapter->cc.mask = CLOCKSOURCE_MASK(IGB_NBITS_82580); |
| adapter->cc.mult = 1; |
| adapter->cc.shift = 0; |
| /* Enable the timer functions by clearing bit 31. */ |
| wr32(E1000_TSAUXC, 0x0); |
| break; |
| case e1000_i210: |
| case e1000_i211: |
| snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr); |
| adapter->ptp_caps.owner = THIS_MODULE; |
| adapter->ptp_caps.max_adj = 62499999; |
| adapter->ptp_caps.n_ext_ts = 0; |
| adapter->ptp_caps.pps = 0; |
| adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580; |
| adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210; |
| adapter->ptp_caps.gettime = igb_ptp_gettime_i210; |
| adapter->ptp_caps.settime = igb_ptp_settime_i210; |
| adapter->ptp_caps.enable = igb_ptp_enable; |
| /* Enable the timer functions by clearing bit 31. */ |
| wr32(E1000_TSAUXC, 0x0); |
| break; |
| default: |
| adapter->ptp_clock = NULL; |
| return; |
| } |
| |
| wrfl(); |
| |
| spin_lock_init(&adapter->tmreg_lock); |
| INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work); |
| |
| /* Initialize the clock and overflow work for devices that need it. */ |
| if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) { |
| struct timespec ts = ktime_to_timespec(ktime_get_real()); |
| |
| igb_ptp_settime_i210(&adapter->ptp_caps, &ts); |
| } else { |
| timecounter_init(&adapter->tc, &adapter->cc, |
| ktime_to_ns(ktime_get_real())); |
| |
| INIT_DELAYED_WORK(&adapter->ptp_overflow_work, |
| igb_ptp_overflow_check); |
| |
| schedule_delayed_work(&adapter->ptp_overflow_work, |
| IGB_SYSTIM_OVERFLOW_PERIOD); |
| } |
| |
| /* Initialize the time sync interrupts for devices that support it. */ |
| if (hw->mac.type >= e1000_82580) { |
| wr32(E1000_TSIM, TSYNC_INTERRUPTS); |
| wr32(E1000_IMS, E1000_IMS_TS); |
| } |
| |
| adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps, |
| &adapter->pdev->dev); |
| if (IS_ERR(adapter->ptp_clock)) { |
| adapter->ptp_clock = NULL; |
| dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n"); |
| } else { |
| dev_info(&adapter->pdev->dev, "added PHC on %s\n", |
| adapter->netdev->name); |
| adapter->flags |= IGB_FLAG_PTP; |
| } |
| } |
| |
| /** |
| * igb_ptp_stop - Disable PTP device and stop the overflow check. |
| * @adapter: Board private structure. |
| * |
| * This function stops the PTP support and cancels the delayed work. |
| **/ |
| void igb_ptp_stop(struct igb_adapter *adapter) |
| { |
| switch (adapter->hw.mac.type) { |
| case e1000_82576: |
| case e1000_82580: |
| case e1000_i354: |
| case e1000_i350: |
| cancel_delayed_work_sync(&adapter->ptp_overflow_work); |
| break; |
| case e1000_i210: |
| case e1000_i211: |
| /* No delayed work to cancel. */ |
| break; |
| default: |
| return; |
| } |
| |
| cancel_work_sync(&adapter->ptp_tx_work); |
| if (adapter->ptp_tx_skb) { |
| dev_kfree_skb_any(adapter->ptp_tx_skb); |
| adapter->ptp_tx_skb = NULL; |
| clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state); |
| } |
| |
| if (adapter->ptp_clock) { |
| ptp_clock_unregister(adapter->ptp_clock); |
| dev_info(&adapter->pdev->dev, "removed PHC on %s\n", |
| adapter->netdev->name); |
| adapter->flags &= ~IGB_FLAG_PTP; |
| } |
| } |
| |
| /** |
| * igb_ptp_reset - Re-enable the adapter for PTP following a reset. |
| * @adapter: Board private structure. |
| * |
| * This function handles the reset work required to re-enable the PTP device. |
| **/ |
| void igb_ptp_reset(struct igb_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| |
| if (!(adapter->flags & IGB_FLAG_PTP)) |
| return; |
| |
| /* reset the tstamp_config */ |
| memset(&adapter->tstamp_config, 0, sizeof(adapter->tstamp_config)); |
| |
| switch (adapter->hw.mac.type) { |
| case e1000_82576: |
| /* Dial the nominal frequency. */ |
| wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576); |
| break; |
| case e1000_82580: |
| case e1000_i354: |
| case e1000_i350: |
| case e1000_i210: |
| case e1000_i211: |
| /* Enable the timer functions and interrupts. */ |
| wr32(E1000_TSAUXC, 0x0); |
| wr32(E1000_TSIM, TSYNC_INTERRUPTS); |
| wr32(E1000_IMS, E1000_IMS_TS); |
| break; |
| default: |
| /* No work to do. */ |
| return; |
| } |
| |
| /* Re-initialize the timer. */ |
| if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) { |
| struct timespec ts = ktime_to_timespec(ktime_get_real()); |
| |
| igb_ptp_settime_i210(&adapter->ptp_caps, &ts); |
| } else { |
| timecounter_init(&adapter->tc, &adapter->cc, |
| ktime_to_ns(ktime_get_real())); |
| } |
| } |