| /* |
| * linux/drivers/video/pxafb.c |
| * |
| * Copyright (C) 1999 Eric A. Thomas. |
| * Copyright (C) 2004 Jean-Frederic Clere. |
| * Copyright (C) 2004 Ian Campbell. |
| * Copyright (C) 2004 Jeff Lackey. |
| * Based on sa1100fb.c Copyright (C) 1999 Eric A. Thomas |
| * which in turn is |
| * Based on acornfb.c Copyright (C) Russell King. |
| * |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file COPYING in the main directory of this archive for |
| * more details. |
| * |
| * Intel PXA250/210 LCD Controller Frame Buffer Driver |
| * |
| * Please direct your questions and comments on this driver to the following |
| * email address: |
| * |
| * linux-arm-kernel@lists.arm.linux.org.uk |
| * |
| * Add support for overlay1 and overlay2 based on pxafb_overlay.c: |
| * |
| * Copyright (C) 2004, Intel Corporation |
| * |
| * 2003/08/27: <yu.tang@intel.com> |
| * 2004/03/10: <stanley.cai@intel.com> |
| * 2004/10/28: <yan.yin@intel.com> |
| * |
| * Copyright (C) 2006-2008 Marvell International Ltd. |
| * All Rights Reserved |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/moduleparam.h> |
| #include <linux/kernel.h> |
| #include <linux/sched.h> |
| #include <linux/errno.h> |
| #include <linux/string.h> |
| #include <linux/interrupt.h> |
| #include <linux/slab.h> |
| #include <linux/mm.h> |
| #include <linux/fb.h> |
| #include <linux/delay.h> |
| #include <linux/init.h> |
| #include <linux/ioport.h> |
| #include <linux/cpufreq.h> |
| #include <linux/platform_device.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/clk.h> |
| #include <linux/err.h> |
| #include <linux/completion.h> |
| #include <linux/mutex.h> |
| #include <linux/kthread.h> |
| #include <linux/freezer.h> |
| #include <linux/console.h> |
| #include <linux/of_graph.h> |
| #include <video/of_display_timing.h> |
| #include <video/videomode.h> |
| |
| #include <mach/hardware.h> |
| #include <asm/io.h> |
| #include <asm/irq.h> |
| #include <asm/div64.h> |
| #include <mach/bitfield.h> |
| #include <linux/platform_data/video-pxafb.h> |
| |
| /* |
| * Complain if VAR is out of range. |
| */ |
| #define DEBUG_VAR 1 |
| |
| #include "pxafb.h" |
| |
| /* Bits which should not be set in machine configuration structures */ |
| #define LCCR0_INVALID_CONFIG_MASK (LCCR0_OUM | LCCR0_BM | LCCR0_QDM |\ |
| LCCR0_DIS | LCCR0_EFM | LCCR0_IUM |\ |
| LCCR0_SFM | LCCR0_LDM | LCCR0_ENB) |
| |
| #define LCCR3_INVALID_CONFIG_MASK (LCCR3_HSP | LCCR3_VSP |\ |
| LCCR3_PCD | LCCR3_BPP(0xf)) |
| |
| static int pxafb_activate_var(struct fb_var_screeninfo *var, |
| struct pxafb_info *); |
| static void set_ctrlr_state(struct pxafb_info *fbi, u_int state); |
| static void setup_base_frame(struct pxafb_info *fbi, |
| struct fb_var_screeninfo *var, int branch); |
| static int setup_frame_dma(struct pxafb_info *fbi, int dma, int pal, |
| unsigned long offset, size_t size); |
| |
| static unsigned long video_mem_size = 0; |
| |
| static inline unsigned long |
| lcd_readl(struct pxafb_info *fbi, unsigned int off) |
| { |
| return __raw_readl(fbi->mmio_base + off); |
| } |
| |
| static inline void |
| lcd_writel(struct pxafb_info *fbi, unsigned int off, unsigned long val) |
| { |
| __raw_writel(val, fbi->mmio_base + off); |
| } |
| |
| static inline void pxafb_schedule_work(struct pxafb_info *fbi, u_int state) |
| { |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| /* |
| * We need to handle two requests being made at the same time. |
| * There are two important cases: |
| * 1. When we are changing VT (C_REENABLE) while unblanking |
| * (C_ENABLE) We must perform the unblanking, which will |
| * do our REENABLE for us. |
| * 2. When we are blanking, but immediately unblank before |
| * we have blanked. We do the "REENABLE" thing here as |
| * well, just to be sure. |
| */ |
| if (fbi->task_state == C_ENABLE && state == C_REENABLE) |
| state = (u_int) -1; |
| if (fbi->task_state == C_DISABLE && state == C_ENABLE) |
| state = C_REENABLE; |
| |
| if (state != (u_int)-1) { |
| fbi->task_state = state; |
| schedule_work(&fbi->task); |
| } |
| local_irq_restore(flags); |
| } |
| |
| static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf) |
| { |
| chan &= 0xffff; |
| chan >>= 16 - bf->length; |
| return chan << bf->offset; |
| } |
| |
| static int |
| pxafb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue, |
| u_int trans, struct fb_info *info) |
| { |
| struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb); |
| u_int val; |
| |
| if (regno >= fbi->palette_size) |
| return 1; |
| |
| if (fbi->fb.var.grayscale) { |
| fbi->palette_cpu[regno] = ((blue >> 8) & 0x00ff); |
| return 0; |
| } |
| |
| switch (fbi->lccr4 & LCCR4_PAL_FOR_MASK) { |
| case LCCR4_PAL_FOR_0: |
| val = ((red >> 0) & 0xf800); |
| val |= ((green >> 5) & 0x07e0); |
| val |= ((blue >> 11) & 0x001f); |
| fbi->palette_cpu[regno] = val; |
| break; |
| case LCCR4_PAL_FOR_1: |
| val = ((red << 8) & 0x00f80000); |
| val |= ((green >> 0) & 0x0000fc00); |
| val |= ((blue >> 8) & 0x000000f8); |
| ((u32 *)(fbi->palette_cpu))[regno] = val; |
| break; |
| case LCCR4_PAL_FOR_2: |
| val = ((red << 8) & 0x00fc0000); |
| val |= ((green >> 0) & 0x0000fc00); |
| val |= ((blue >> 8) & 0x000000fc); |
| ((u32 *)(fbi->palette_cpu))[regno] = val; |
| break; |
| case LCCR4_PAL_FOR_3: |
| val = ((red << 8) & 0x00ff0000); |
| val |= ((green >> 0) & 0x0000ff00); |
| val |= ((blue >> 8) & 0x000000ff); |
| ((u32 *)(fbi->palette_cpu))[regno] = val; |
| break; |
| } |
| |
| return 0; |
| } |
| |
| static int |
| pxafb_setcolreg(u_int regno, u_int red, u_int green, u_int blue, |
| u_int trans, struct fb_info *info) |
| { |
| struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb); |
| unsigned int val; |
| int ret = 1; |
| |
| /* |
| * If inverse mode was selected, invert all the colours |
| * rather than the register number. The register number |
| * is what you poke into the framebuffer to produce the |
| * colour you requested. |
| */ |
| if (fbi->cmap_inverse) { |
| red = 0xffff - red; |
| green = 0xffff - green; |
| blue = 0xffff - blue; |
| } |
| |
| /* |
| * If greyscale is true, then we convert the RGB value |
| * to greyscale no matter what visual we are using. |
| */ |
| if (fbi->fb.var.grayscale) |
| red = green = blue = (19595 * red + 38470 * green + |
| 7471 * blue) >> 16; |
| |
| switch (fbi->fb.fix.visual) { |
| case FB_VISUAL_TRUECOLOR: |
| /* |
| * 16-bit True Colour. We encode the RGB value |
| * according to the RGB bitfield information. |
| */ |
| if (regno < 16) { |
| u32 *pal = fbi->fb.pseudo_palette; |
| |
| val = chan_to_field(red, &fbi->fb.var.red); |
| val |= chan_to_field(green, &fbi->fb.var.green); |
| val |= chan_to_field(blue, &fbi->fb.var.blue); |
| |
| pal[regno] = val; |
| ret = 0; |
| } |
| break; |
| |
| case FB_VISUAL_STATIC_PSEUDOCOLOR: |
| case FB_VISUAL_PSEUDOCOLOR: |
| ret = pxafb_setpalettereg(regno, red, green, blue, trans, info); |
| break; |
| } |
| |
| return ret; |
| } |
| |
| /* calculate pixel depth, transparency bit included, >=16bpp formats _only_ */ |
| static inline int var_to_depth(struct fb_var_screeninfo *var) |
| { |
| return var->red.length + var->green.length + |
| var->blue.length + var->transp.length; |
| } |
| |
| /* calculate 4-bit BPP value for LCCR3 and OVLxC1 */ |
| static int pxafb_var_to_bpp(struct fb_var_screeninfo *var) |
| { |
| int bpp = -EINVAL; |
| |
| switch (var->bits_per_pixel) { |
| case 1: bpp = 0; break; |
| case 2: bpp = 1; break; |
| case 4: bpp = 2; break; |
| case 8: bpp = 3; break; |
| case 16: bpp = 4; break; |
| case 24: |
| switch (var_to_depth(var)) { |
| case 18: bpp = 6; break; /* 18-bits/pixel packed */ |
| case 19: bpp = 8; break; /* 19-bits/pixel packed */ |
| case 24: bpp = 9; break; |
| } |
| break; |
| case 32: |
| switch (var_to_depth(var)) { |
| case 18: bpp = 5; break; /* 18-bits/pixel unpacked */ |
| case 19: bpp = 7; break; /* 19-bits/pixel unpacked */ |
| case 25: bpp = 10; break; |
| } |
| break; |
| } |
| return bpp; |
| } |
| |
| /* |
| * pxafb_var_to_lccr3(): |
| * Convert a bits per pixel value to the correct bit pattern for LCCR3 |
| * |
| * NOTE: for PXA27x with overlays support, the LCCR3_PDFOR_x bits have an |
| * implication of the acutal use of transparency bit, which we handle it |
| * here separatedly. See PXA27x Developer's Manual, Section <<7.4.6 Pixel |
| * Formats>> for the valid combination of PDFOR, PAL_FOR for various BPP. |
| * |
| * Transparency for palette pixel formats is not supported at the moment. |
| */ |
| static uint32_t pxafb_var_to_lccr3(struct fb_var_screeninfo *var) |
| { |
| int bpp = pxafb_var_to_bpp(var); |
| uint32_t lccr3; |
| |
| if (bpp < 0) |
| return 0; |
| |
| lccr3 = LCCR3_BPP(bpp); |
| |
| switch (var_to_depth(var)) { |
| case 16: lccr3 |= var->transp.length ? LCCR3_PDFOR_3 : 0; break; |
| case 18: lccr3 |= LCCR3_PDFOR_3; break; |
| case 24: lccr3 |= var->transp.length ? LCCR3_PDFOR_2 : LCCR3_PDFOR_3; |
| break; |
| case 19: |
| case 25: lccr3 |= LCCR3_PDFOR_0; break; |
| } |
| return lccr3; |
| } |
| |
| #define SET_PIXFMT(v, r, g, b, t) \ |
| ({ \ |
| (v)->transp.offset = (t) ? (r) + (g) + (b) : 0; \ |
| (v)->transp.length = (t) ? (t) : 0; \ |
| (v)->blue.length = (b); (v)->blue.offset = 0; \ |
| (v)->green.length = (g); (v)->green.offset = (b); \ |
| (v)->red.length = (r); (v)->red.offset = (b) + (g); \ |
| }) |
| |
| /* set the RGBT bitfields of fb_var_screeninf according to |
| * var->bits_per_pixel and given depth |
| */ |
| static void pxafb_set_pixfmt(struct fb_var_screeninfo *var, int depth) |
| { |
| if (depth == 0) |
| depth = var->bits_per_pixel; |
| |
| if (var->bits_per_pixel < 16) { |
| /* indexed pixel formats */ |
| var->red.offset = 0; var->red.length = 8; |
| var->green.offset = 0; var->green.length = 8; |
| var->blue.offset = 0; var->blue.length = 8; |
| var->transp.offset = 0; var->transp.length = 8; |
| } |
| |
| switch (depth) { |
| case 16: var->transp.length ? |
| SET_PIXFMT(var, 5, 5, 5, 1) : /* RGBT555 */ |
| SET_PIXFMT(var, 5, 6, 5, 0); break; /* RGB565 */ |
| case 18: SET_PIXFMT(var, 6, 6, 6, 0); break; /* RGB666 */ |
| case 19: SET_PIXFMT(var, 6, 6, 6, 1); break; /* RGBT666 */ |
| case 24: var->transp.length ? |
| SET_PIXFMT(var, 8, 8, 7, 1) : /* RGBT887 */ |
| SET_PIXFMT(var, 8, 8, 8, 0); break; /* RGB888 */ |
| case 25: SET_PIXFMT(var, 8, 8, 8, 1); break; /* RGBT888 */ |
| } |
| } |
| |
| #ifdef CONFIG_CPU_FREQ |
| /* |
| * pxafb_display_dma_period() |
| * Calculate the minimum period (in picoseconds) between two DMA |
| * requests for the LCD controller. If we hit this, it means we're |
| * doing nothing but LCD DMA. |
| */ |
| static unsigned int pxafb_display_dma_period(struct fb_var_screeninfo *var) |
| { |
| /* |
| * Period = pixclock * bits_per_byte * bytes_per_transfer |
| * / memory_bits_per_pixel; |
| */ |
| return var->pixclock * 8 * 16 / var->bits_per_pixel; |
| } |
| #endif |
| |
| /* |
| * Select the smallest mode that allows the desired resolution to be |
| * displayed. If desired parameters can be rounded up. |
| */ |
| static struct pxafb_mode_info *pxafb_getmode(struct pxafb_mach_info *mach, |
| struct fb_var_screeninfo *var) |
| { |
| struct pxafb_mode_info *mode = NULL; |
| struct pxafb_mode_info *modelist = mach->modes; |
| unsigned int best_x = 0xffffffff, best_y = 0xffffffff; |
| unsigned int i; |
| |
| for (i = 0; i < mach->num_modes; i++) { |
| if (modelist[i].xres >= var->xres && |
| modelist[i].yres >= var->yres && |
| modelist[i].xres < best_x && |
| modelist[i].yres < best_y && |
| modelist[i].bpp >= var->bits_per_pixel) { |
| best_x = modelist[i].xres; |
| best_y = modelist[i].yres; |
| mode = &modelist[i]; |
| } |
| } |
| |
| return mode; |
| } |
| |
| static void pxafb_setmode(struct fb_var_screeninfo *var, |
| struct pxafb_mode_info *mode) |
| { |
| var->xres = mode->xres; |
| var->yres = mode->yres; |
| var->bits_per_pixel = mode->bpp; |
| var->pixclock = mode->pixclock; |
| var->hsync_len = mode->hsync_len; |
| var->left_margin = mode->left_margin; |
| var->right_margin = mode->right_margin; |
| var->vsync_len = mode->vsync_len; |
| var->upper_margin = mode->upper_margin; |
| var->lower_margin = mode->lower_margin; |
| var->sync = mode->sync; |
| var->grayscale = mode->cmap_greyscale; |
| var->transp.length = mode->transparency; |
| |
| /* set the initial RGBA bitfields */ |
| pxafb_set_pixfmt(var, mode->depth); |
| } |
| |
| static int pxafb_adjust_timing(struct pxafb_info *fbi, |
| struct fb_var_screeninfo *var) |
| { |
| int line_length; |
| |
| var->xres = max_t(int, var->xres, MIN_XRES); |
| var->yres = max_t(int, var->yres, MIN_YRES); |
| |
| if (!(fbi->lccr0 & LCCR0_LCDT)) { |
| clamp_val(var->hsync_len, 1, 64); |
| clamp_val(var->vsync_len, 1, 64); |
| clamp_val(var->left_margin, 1, 255); |
| clamp_val(var->right_margin, 1, 255); |
| clamp_val(var->upper_margin, 1, 255); |
| clamp_val(var->lower_margin, 1, 255); |
| } |
| |
| /* make sure each line is aligned on word boundary */ |
| line_length = var->xres * var->bits_per_pixel / 8; |
| line_length = ALIGN(line_length, 4); |
| var->xres = line_length * 8 / var->bits_per_pixel; |
| |
| /* we don't support xpan, force xres_virtual to be equal to xres */ |
| var->xres_virtual = var->xres; |
| |
| if (var->accel_flags & FB_ACCELF_TEXT) |
| var->yres_virtual = fbi->fb.fix.smem_len / line_length; |
| else |
| var->yres_virtual = max(var->yres_virtual, var->yres); |
| |
| /* check for limits */ |
| if (var->xres > MAX_XRES || var->yres > MAX_YRES) |
| return -EINVAL; |
| |
| if (var->yres > var->yres_virtual) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| /* |
| * pxafb_check_var(): |
| * Get the video params out of 'var'. If a value doesn't fit, round it up, |
| * if it's too big, return -EINVAL. |
| * |
| * Round up in the following order: bits_per_pixel, xres, |
| * yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale, |
| * bitfields, horizontal timing, vertical timing. |
| */ |
| static int pxafb_check_var(struct fb_var_screeninfo *var, struct fb_info *info) |
| { |
| struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb); |
| struct pxafb_mach_info *inf = fbi->inf; |
| int err; |
| |
| if (inf->fixed_modes) { |
| struct pxafb_mode_info *mode; |
| |
| mode = pxafb_getmode(inf, var); |
| if (!mode) |
| return -EINVAL; |
| pxafb_setmode(var, mode); |
| } |
| |
| /* do a test conversion to BPP fields to check the color formats */ |
| err = pxafb_var_to_bpp(var); |
| if (err < 0) |
| return err; |
| |
| pxafb_set_pixfmt(var, var_to_depth(var)); |
| |
| err = pxafb_adjust_timing(fbi, var); |
| if (err) |
| return err; |
| |
| #ifdef CONFIG_CPU_FREQ |
| pr_debug("pxafb: dma period = %d ps\n", |
| pxafb_display_dma_period(var)); |
| #endif |
| |
| return 0; |
| } |
| |
| /* |
| * pxafb_set_par(): |
| * Set the user defined part of the display for the specified console |
| */ |
| static int pxafb_set_par(struct fb_info *info) |
| { |
| struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb); |
| struct fb_var_screeninfo *var = &info->var; |
| |
| if (var->bits_per_pixel >= 16) |
| fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR; |
| else if (!fbi->cmap_static) |
| fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR; |
| else { |
| /* |
| * Some people have weird ideas about wanting static |
| * pseudocolor maps. I suspect their user space |
| * applications are broken. |
| */ |
| fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR; |
| } |
| |
| fbi->fb.fix.line_length = var->xres_virtual * |
| var->bits_per_pixel / 8; |
| if (var->bits_per_pixel >= 16) |
| fbi->palette_size = 0; |
| else |
| fbi->palette_size = var->bits_per_pixel == 1 ? |
| 4 : 1 << var->bits_per_pixel; |
| |
| fbi->palette_cpu = (u16 *)&fbi->dma_buff->palette[0]; |
| |
| if (fbi->fb.var.bits_per_pixel >= 16) |
| fb_dealloc_cmap(&fbi->fb.cmap); |
| else |
| fb_alloc_cmap(&fbi->fb.cmap, 1<<fbi->fb.var.bits_per_pixel, 0); |
| |
| pxafb_activate_var(var, fbi); |
| |
| return 0; |
| } |
| |
| static int pxafb_pan_display(struct fb_var_screeninfo *var, |
| struct fb_info *info) |
| { |
| struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb); |
| struct fb_var_screeninfo newvar; |
| int dma = DMA_MAX + DMA_BASE; |
| |
| if (fbi->state != C_ENABLE) |
| return 0; |
| |
| /* Only take .xoffset, .yoffset and .vmode & FB_VMODE_YWRAP from what |
| * was passed in and copy the rest from the old screeninfo. |
| */ |
| memcpy(&newvar, &fbi->fb.var, sizeof(newvar)); |
| newvar.xoffset = var->xoffset; |
| newvar.yoffset = var->yoffset; |
| newvar.vmode &= ~FB_VMODE_YWRAP; |
| newvar.vmode |= var->vmode & FB_VMODE_YWRAP; |
| |
| setup_base_frame(fbi, &newvar, 1); |
| |
| if (fbi->lccr0 & LCCR0_SDS) |
| lcd_writel(fbi, FBR1, fbi->fdadr[dma + 1] | 0x1); |
| |
| lcd_writel(fbi, FBR0, fbi->fdadr[dma] | 0x1); |
| return 0; |
| } |
| |
| /* |
| * pxafb_blank(): |
| * Blank the display by setting all palette values to zero. Note, the |
| * 16 bpp mode does not really use the palette, so this will not |
| * blank the display in all modes. |
| */ |
| static int pxafb_blank(int blank, struct fb_info *info) |
| { |
| struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb); |
| int i; |
| |
| switch (blank) { |
| case FB_BLANK_POWERDOWN: |
| case FB_BLANK_VSYNC_SUSPEND: |
| case FB_BLANK_HSYNC_SUSPEND: |
| case FB_BLANK_NORMAL: |
| if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR || |
| fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR) |
| for (i = 0; i < fbi->palette_size; i++) |
| pxafb_setpalettereg(i, 0, 0, 0, 0, info); |
| |
| pxafb_schedule_work(fbi, C_DISABLE); |
| /* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */ |
| break; |
| |
| case FB_BLANK_UNBLANK: |
| /* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */ |
| if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR || |
| fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR) |
| fb_set_cmap(&fbi->fb.cmap, info); |
| pxafb_schedule_work(fbi, C_ENABLE); |
| } |
| return 0; |
| } |
| |
| static struct fb_ops pxafb_ops = { |
| .owner = THIS_MODULE, |
| .fb_check_var = pxafb_check_var, |
| .fb_set_par = pxafb_set_par, |
| .fb_pan_display = pxafb_pan_display, |
| .fb_setcolreg = pxafb_setcolreg, |
| .fb_fillrect = cfb_fillrect, |
| .fb_copyarea = cfb_copyarea, |
| .fb_imageblit = cfb_imageblit, |
| .fb_blank = pxafb_blank, |
| }; |
| |
| #ifdef CONFIG_FB_PXA_OVERLAY |
| static void overlay1fb_setup(struct pxafb_layer *ofb) |
| { |
| int size = ofb->fb.fix.line_length * ofb->fb.var.yres_virtual; |
| unsigned long start = ofb->video_mem_phys; |
| setup_frame_dma(ofb->fbi, DMA_OV1, PAL_NONE, start, size); |
| } |
| |
| /* Depending on the enable status of overlay1/2, the DMA should be |
| * updated from FDADRx (when disabled) or FBRx (when enabled). |
| */ |
| static void overlay1fb_enable(struct pxafb_layer *ofb) |
| { |
| int enabled = lcd_readl(ofb->fbi, OVL1C1) & OVLxC1_OEN; |
| uint32_t fdadr1 = ofb->fbi->fdadr[DMA_OV1] | (enabled ? 0x1 : 0); |
| |
| lcd_writel(ofb->fbi, enabled ? FBR1 : FDADR1, fdadr1); |
| lcd_writel(ofb->fbi, OVL1C2, ofb->control[1]); |
| lcd_writel(ofb->fbi, OVL1C1, ofb->control[0] | OVLxC1_OEN); |
| } |
| |
| static void overlay1fb_disable(struct pxafb_layer *ofb) |
| { |
| uint32_t lccr5; |
| |
| if (!(lcd_readl(ofb->fbi, OVL1C1) & OVLxC1_OEN)) |
| return; |
| |
| lccr5 = lcd_readl(ofb->fbi, LCCR5); |
| |
| lcd_writel(ofb->fbi, OVL1C1, ofb->control[0] & ~OVLxC1_OEN); |
| |
| lcd_writel(ofb->fbi, LCSR1, LCSR1_BS(1)); |
| lcd_writel(ofb->fbi, LCCR5, lccr5 & ~LCSR1_BS(1)); |
| lcd_writel(ofb->fbi, FBR1, ofb->fbi->fdadr[DMA_OV1] | 0x3); |
| |
| if (wait_for_completion_timeout(&ofb->branch_done, 1 * HZ) == 0) |
| pr_warn("%s: timeout disabling overlay1\n", __func__); |
| |
| lcd_writel(ofb->fbi, LCCR5, lccr5); |
| } |
| |
| static void overlay2fb_setup(struct pxafb_layer *ofb) |
| { |
| int size, div = 1, pfor = NONSTD_TO_PFOR(ofb->fb.var.nonstd); |
| unsigned long start[3] = { ofb->video_mem_phys, 0, 0 }; |
| |
| if (pfor == OVERLAY_FORMAT_RGB || pfor == OVERLAY_FORMAT_YUV444_PACKED) { |
| size = ofb->fb.fix.line_length * ofb->fb.var.yres_virtual; |
| setup_frame_dma(ofb->fbi, DMA_OV2_Y, -1, start[0], size); |
| } else { |
| size = ofb->fb.var.xres_virtual * ofb->fb.var.yres_virtual; |
| switch (pfor) { |
| case OVERLAY_FORMAT_YUV444_PLANAR: div = 1; break; |
| case OVERLAY_FORMAT_YUV422_PLANAR: div = 2; break; |
| case OVERLAY_FORMAT_YUV420_PLANAR: div = 4; break; |
| } |
| start[1] = start[0] + size; |
| start[2] = start[1] + size / div; |
| setup_frame_dma(ofb->fbi, DMA_OV2_Y, -1, start[0], size); |
| setup_frame_dma(ofb->fbi, DMA_OV2_Cb, -1, start[1], size / div); |
| setup_frame_dma(ofb->fbi, DMA_OV2_Cr, -1, start[2], size / div); |
| } |
| } |
| |
| static void overlay2fb_enable(struct pxafb_layer *ofb) |
| { |
| int pfor = NONSTD_TO_PFOR(ofb->fb.var.nonstd); |
| int enabled = lcd_readl(ofb->fbi, OVL2C1) & OVLxC1_OEN; |
| uint32_t fdadr2 = ofb->fbi->fdadr[DMA_OV2_Y] | (enabled ? 0x1 : 0); |
| uint32_t fdadr3 = ofb->fbi->fdadr[DMA_OV2_Cb] | (enabled ? 0x1 : 0); |
| uint32_t fdadr4 = ofb->fbi->fdadr[DMA_OV2_Cr] | (enabled ? 0x1 : 0); |
| |
| if (pfor == OVERLAY_FORMAT_RGB || pfor == OVERLAY_FORMAT_YUV444_PACKED) |
| lcd_writel(ofb->fbi, enabled ? FBR2 : FDADR2, fdadr2); |
| else { |
| lcd_writel(ofb->fbi, enabled ? FBR2 : FDADR2, fdadr2); |
| lcd_writel(ofb->fbi, enabled ? FBR3 : FDADR3, fdadr3); |
| lcd_writel(ofb->fbi, enabled ? FBR4 : FDADR4, fdadr4); |
| } |
| lcd_writel(ofb->fbi, OVL2C2, ofb->control[1]); |
| lcd_writel(ofb->fbi, OVL2C1, ofb->control[0] | OVLxC1_OEN); |
| } |
| |
| static void overlay2fb_disable(struct pxafb_layer *ofb) |
| { |
| uint32_t lccr5; |
| |
| if (!(lcd_readl(ofb->fbi, OVL2C1) & OVLxC1_OEN)) |
| return; |
| |
| lccr5 = lcd_readl(ofb->fbi, LCCR5); |
| |
| lcd_writel(ofb->fbi, OVL2C1, ofb->control[0] & ~OVLxC1_OEN); |
| |
| lcd_writel(ofb->fbi, LCSR1, LCSR1_BS(2)); |
| lcd_writel(ofb->fbi, LCCR5, lccr5 & ~LCSR1_BS(2)); |
| lcd_writel(ofb->fbi, FBR2, ofb->fbi->fdadr[DMA_OV2_Y] | 0x3); |
| lcd_writel(ofb->fbi, FBR3, ofb->fbi->fdadr[DMA_OV2_Cb] | 0x3); |
| lcd_writel(ofb->fbi, FBR4, ofb->fbi->fdadr[DMA_OV2_Cr] | 0x3); |
| |
| if (wait_for_completion_timeout(&ofb->branch_done, 1 * HZ) == 0) |
| pr_warn("%s: timeout disabling overlay2\n", __func__); |
| } |
| |
| static struct pxafb_layer_ops ofb_ops[] = { |
| [0] = { |
| .enable = overlay1fb_enable, |
| .disable = overlay1fb_disable, |
| .setup = overlay1fb_setup, |
| }, |
| [1] = { |
| .enable = overlay2fb_enable, |
| .disable = overlay2fb_disable, |
| .setup = overlay2fb_setup, |
| }, |
| }; |
| |
| static int overlayfb_open(struct fb_info *info, int user) |
| { |
| struct pxafb_layer *ofb = container_of(info, struct pxafb_layer, fb); |
| |
| /* no support for framebuffer console on overlay */ |
| if (user == 0) |
| return -ENODEV; |
| |
| if (ofb->usage++ == 0) { |
| /* unblank the base framebuffer */ |
| console_lock(); |
| fb_blank(&ofb->fbi->fb, FB_BLANK_UNBLANK); |
| console_unlock(); |
| } |
| |
| return 0; |
| } |
| |
| static int overlayfb_release(struct fb_info *info, int user) |
| { |
| struct pxafb_layer *ofb = container_of(info, struct pxafb_layer, fb); |
| |
| if (ofb->usage == 1) { |
| ofb->ops->disable(ofb); |
| ofb->fb.var.height = -1; |
| ofb->fb.var.width = -1; |
| ofb->fb.var.xres = ofb->fb.var.xres_virtual = 0; |
| ofb->fb.var.yres = ofb->fb.var.yres_virtual = 0; |
| |
| ofb->usage--; |
| } |
| return 0; |
| } |
| |
| static int overlayfb_check_var(struct fb_var_screeninfo *var, |
| struct fb_info *info) |
| { |
| struct pxafb_layer *ofb = container_of(info, struct pxafb_layer, fb); |
| struct fb_var_screeninfo *base_var = &ofb->fbi->fb.var; |
| int xpos, ypos, pfor, bpp; |
| |
| xpos = NONSTD_TO_XPOS(var->nonstd); |
| ypos = NONSTD_TO_YPOS(var->nonstd); |
| pfor = NONSTD_TO_PFOR(var->nonstd); |
| |
| bpp = pxafb_var_to_bpp(var); |
| if (bpp < 0) |
| return -EINVAL; |
| |
| /* no support for YUV format on overlay1 */ |
| if (ofb->id == OVERLAY1 && pfor != 0) |
| return -EINVAL; |
| |
| /* for YUV packed formats, bpp = 'minimum bpp of YUV components' */ |
| switch (pfor) { |
| case OVERLAY_FORMAT_RGB: |
| bpp = pxafb_var_to_bpp(var); |
| if (bpp < 0) |
| return -EINVAL; |
| |
| pxafb_set_pixfmt(var, var_to_depth(var)); |
| break; |
| case OVERLAY_FORMAT_YUV444_PACKED: bpp = 24; break; |
| case OVERLAY_FORMAT_YUV444_PLANAR: bpp = 8; break; |
| case OVERLAY_FORMAT_YUV422_PLANAR: bpp = 4; break; |
| case OVERLAY_FORMAT_YUV420_PLANAR: bpp = 2; break; |
| default: |
| return -EINVAL; |
| } |
| |
| /* each line must start at a 32-bit word boundary */ |
| if ((xpos * bpp) % 32) |
| return -EINVAL; |
| |
| /* xres must align on 32-bit word boundary */ |
| var->xres = roundup(var->xres * bpp, 32) / bpp; |
| |
| if ((xpos + var->xres > base_var->xres) || |
| (ypos + var->yres > base_var->yres)) |
| return -EINVAL; |
| |
| var->xres_virtual = var->xres; |
| var->yres_virtual = max(var->yres, var->yres_virtual); |
| return 0; |
| } |
| |
| static int overlayfb_check_video_memory(struct pxafb_layer *ofb) |
| { |
| struct fb_var_screeninfo *var = &ofb->fb.var; |
| int pfor = NONSTD_TO_PFOR(var->nonstd); |
| int size, bpp = 0; |
| |
| switch (pfor) { |
| case OVERLAY_FORMAT_RGB: bpp = var->bits_per_pixel; break; |
| case OVERLAY_FORMAT_YUV444_PACKED: bpp = 24; break; |
| case OVERLAY_FORMAT_YUV444_PLANAR: bpp = 24; break; |
| case OVERLAY_FORMAT_YUV422_PLANAR: bpp = 16; break; |
| case OVERLAY_FORMAT_YUV420_PLANAR: bpp = 12; break; |
| } |
| |
| ofb->fb.fix.line_length = var->xres_virtual * bpp / 8; |
| |
| size = PAGE_ALIGN(ofb->fb.fix.line_length * var->yres_virtual); |
| |
| if (ofb->video_mem) { |
| if (ofb->video_mem_size >= size) |
| return 0; |
| } |
| return -EINVAL; |
| } |
| |
| static int overlayfb_set_par(struct fb_info *info) |
| { |
| struct pxafb_layer *ofb = container_of(info, struct pxafb_layer, fb); |
| struct fb_var_screeninfo *var = &info->var; |
| int xpos, ypos, pfor, bpp, ret; |
| |
| ret = overlayfb_check_video_memory(ofb); |
| if (ret) |
| return ret; |
| |
| bpp = pxafb_var_to_bpp(var); |
| xpos = NONSTD_TO_XPOS(var->nonstd); |
| ypos = NONSTD_TO_YPOS(var->nonstd); |
| pfor = NONSTD_TO_PFOR(var->nonstd); |
| |
| ofb->control[0] = OVLxC1_PPL(var->xres) | OVLxC1_LPO(var->yres) | |
| OVLxC1_BPP(bpp); |
| ofb->control[1] = OVLxC2_XPOS(xpos) | OVLxC2_YPOS(ypos); |
| |
| if (ofb->id == OVERLAY2) |
| ofb->control[1] |= OVL2C2_PFOR(pfor); |
| |
| ofb->ops->setup(ofb); |
| ofb->ops->enable(ofb); |
| return 0; |
| } |
| |
| static struct fb_ops overlay_fb_ops = { |
| .owner = THIS_MODULE, |
| .fb_open = overlayfb_open, |
| .fb_release = overlayfb_release, |
| .fb_check_var = overlayfb_check_var, |
| .fb_set_par = overlayfb_set_par, |
| }; |
| |
| static void init_pxafb_overlay(struct pxafb_info *fbi, struct pxafb_layer *ofb, |
| int id) |
| { |
| sprintf(ofb->fb.fix.id, "overlay%d", id + 1); |
| |
| ofb->fb.fix.type = FB_TYPE_PACKED_PIXELS; |
| ofb->fb.fix.xpanstep = 0; |
| ofb->fb.fix.ypanstep = 1; |
| |
| ofb->fb.var.activate = FB_ACTIVATE_NOW; |
| ofb->fb.var.height = -1; |
| ofb->fb.var.width = -1; |
| ofb->fb.var.vmode = FB_VMODE_NONINTERLACED; |
| |
| ofb->fb.fbops = &overlay_fb_ops; |
| ofb->fb.flags = FBINFO_FLAG_DEFAULT; |
| ofb->fb.node = -1; |
| ofb->fb.pseudo_palette = NULL; |
| |
| ofb->id = id; |
| ofb->ops = &ofb_ops[id]; |
| ofb->usage = 0; |
| ofb->fbi = fbi; |
| init_completion(&ofb->branch_done); |
| } |
| |
| static inline int pxafb_overlay_supported(void) |
| { |
| if (cpu_is_pxa27x() || cpu_is_pxa3xx()) |
| return 1; |
| |
| return 0; |
| } |
| |
| static int pxafb_overlay_map_video_memory(struct pxafb_info *pxafb, |
| struct pxafb_layer *ofb) |
| { |
| /* We assume that user will use at most video_mem_size for overlay fb, |
| * anyway, it's useless to use 16bpp main plane and 24bpp overlay |
| */ |
| ofb->video_mem = alloc_pages_exact(PAGE_ALIGN(pxafb->video_mem_size), |
| GFP_KERNEL | __GFP_ZERO); |
| if (ofb->video_mem == NULL) |
| return -ENOMEM; |
| |
| ofb->video_mem_phys = virt_to_phys(ofb->video_mem); |
| ofb->video_mem_size = PAGE_ALIGN(pxafb->video_mem_size); |
| |
| mutex_lock(&ofb->fb.mm_lock); |
| ofb->fb.fix.smem_start = ofb->video_mem_phys; |
| ofb->fb.fix.smem_len = pxafb->video_mem_size; |
| mutex_unlock(&ofb->fb.mm_lock); |
| |
| ofb->fb.screen_base = ofb->video_mem; |
| |
| return 0; |
| } |
| |
| static void pxafb_overlay_init(struct pxafb_info *fbi) |
| { |
| int i, ret; |
| |
| if (!pxafb_overlay_supported()) |
| return; |
| |
| for (i = 0; i < 2; i++) { |
| struct pxafb_layer *ofb = &fbi->overlay[i]; |
| init_pxafb_overlay(fbi, ofb, i); |
| ret = register_framebuffer(&ofb->fb); |
| if (ret) { |
| dev_err(fbi->dev, "failed to register overlay %d\n", i); |
| continue; |
| } |
| ret = pxafb_overlay_map_video_memory(fbi, ofb); |
| if (ret) { |
| dev_err(fbi->dev, |
| "failed to map video memory for overlay %d\n", |
| i); |
| unregister_framebuffer(&ofb->fb); |
| continue; |
| } |
| ofb->registered = 1; |
| } |
| |
| /* mask all IU/BS/EOF/SOF interrupts */ |
| lcd_writel(fbi, LCCR5, ~0); |
| |
| pr_info("PXA Overlay driver loaded successfully!\n"); |
| } |
| |
| static void pxafb_overlay_exit(struct pxafb_info *fbi) |
| { |
| int i; |
| |
| if (!pxafb_overlay_supported()) |
| return; |
| |
| for (i = 0; i < 2; i++) { |
| struct pxafb_layer *ofb = &fbi->overlay[i]; |
| if (ofb->registered) { |
| if (ofb->video_mem) |
| free_pages_exact(ofb->video_mem, |
| ofb->video_mem_size); |
| unregister_framebuffer(&ofb->fb); |
| } |
| } |
| } |
| #else |
| static inline void pxafb_overlay_init(struct pxafb_info *fbi) {} |
| static inline void pxafb_overlay_exit(struct pxafb_info *fbi) {} |
| #endif /* CONFIG_FB_PXA_OVERLAY */ |
| |
| /* |
| * Calculate the PCD value from the clock rate (in picoseconds). |
| * We take account of the PPCR clock setting. |
| * From PXA Developer's Manual: |
| * |
| * PixelClock = LCLK |
| * ------------- |
| * 2 ( PCD + 1 ) |
| * |
| * PCD = LCLK |
| * ------------- - 1 |
| * 2(PixelClock) |
| * |
| * Where: |
| * LCLK = LCD/Memory Clock |
| * PCD = LCCR3[7:0] |
| * |
| * PixelClock here is in Hz while the pixclock argument given is the |
| * period in picoseconds. Hence PixelClock = 1 / ( pixclock * 10^-12 ) |
| * |
| * The function get_lclk_frequency_10khz returns LCLK in units of |
| * 10khz. Calling the result of this function lclk gives us the |
| * following |
| * |
| * PCD = (lclk * 10^4 ) * ( pixclock * 10^-12 ) |
| * -------------------------------------- - 1 |
| * 2 |
| * |
| * Factoring the 10^4 and 10^-12 out gives 10^-8 == 1 / 100000000 as used below. |
| */ |
| static inline unsigned int get_pcd(struct pxafb_info *fbi, |
| unsigned int pixclock) |
| { |
| unsigned long long pcd; |
| |
| /* FIXME: Need to take into account Double Pixel Clock mode |
| * (DPC) bit? or perhaps set it based on the various clock |
| * speeds */ |
| pcd = (unsigned long long)(clk_get_rate(fbi->clk) / 10000); |
| pcd *= pixclock; |
| do_div(pcd, 100000000 * 2); |
| /* no need for this, since we should subtract 1 anyway. they cancel */ |
| /* pcd += 1; */ /* make up for integer math truncations */ |
| return (unsigned int)pcd; |
| } |
| |
| /* |
| * Some touchscreens need hsync information from the video driver to |
| * function correctly. We export it here. Note that 'hsync_time' and |
| * the value returned from pxafb_get_hsync_time() is the *reciprocal* |
| * of the hsync period in seconds. |
| */ |
| static inline void set_hsync_time(struct pxafb_info *fbi, unsigned int pcd) |
| { |
| unsigned long htime; |
| |
| if ((pcd == 0) || (fbi->fb.var.hsync_len == 0)) { |
| fbi->hsync_time = 0; |
| return; |
| } |
| |
| htime = clk_get_rate(fbi->clk) / (pcd * fbi->fb.var.hsync_len); |
| |
| fbi->hsync_time = htime; |
| } |
| |
| unsigned long pxafb_get_hsync_time(struct device *dev) |
| { |
| struct pxafb_info *fbi = dev_get_drvdata(dev); |
| |
| /* If display is blanked/suspended, hsync isn't active */ |
| if (!fbi || (fbi->state != C_ENABLE)) |
| return 0; |
| |
| return fbi->hsync_time; |
| } |
| EXPORT_SYMBOL(pxafb_get_hsync_time); |
| |
| static int setup_frame_dma(struct pxafb_info *fbi, int dma, int pal, |
| unsigned long start, size_t size) |
| { |
| struct pxafb_dma_descriptor *dma_desc, *pal_desc; |
| unsigned int dma_desc_off, pal_desc_off; |
| |
| if (dma < 0 || dma >= DMA_MAX * 2) |
| return -EINVAL; |
| |
| dma_desc = &fbi->dma_buff->dma_desc[dma]; |
| dma_desc_off = offsetof(struct pxafb_dma_buff, dma_desc[dma]); |
| |
| dma_desc->fsadr = start; |
| dma_desc->fidr = 0; |
| dma_desc->ldcmd = size; |
| |
| if (pal < 0 || pal >= PAL_MAX * 2) { |
| dma_desc->fdadr = fbi->dma_buff_phys + dma_desc_off; |
| fbi->fdadr[dma] = fbi->dma_buff_phys + dma_desc_off; |
| } else { |
| pal_desc = &fbi->dma_buff->pal_desc[pal]; |
| pal_desc_off = offsetof(struct pxafb_dma_buff, pal_desc[pal]); |
| |
| pal_desc->fsadr = fbi->dma_buff_phys + pal * PALETTE_SIZE; |
| pal_desc->fidr = 0; |
| |
| if ((fbi->lccr4 & LCCR4_PAL_FOR_MASK) == LCCR4_PAL_FOR_0) |
| pal_desc->ldcmd = fbi->palette_size * sizeof(u16); |
| else |
| pal_desc->ldcmd = fbi->palette_size * sizeof(u32); |
| |
| pal_desc->ldcmd |= LDCMD_PAL; |
| |
| /* flip back and forth between palette and frame buffer */ |
| pal_desc->fdadr = fbi->dma_buff_phys + dma_desc_off; |
| dma_desc->fdadr = fbi->dma_buff_phys + pal_desc_off; |
| fbi->fdadr[dma] = fbi->dma_buff_phys + dma_desc_off; |
| } |
| |
| return 0; |
| } |
| |
| static void setup_base_frame(struct pxafb_info *fbi, |
| struct fb_var_screeninfo *var, |
| int branch) |
| { |
| struct fb_fix_screeninfo *fix = &fbi->fb.fix; |
| int nbytes, dma, pal, bpp = var->bits_per_pixel; |
| unsigned long offset; |
| |
| dma = DMA_BASE + (branch ? DMA_MAX : 0); |
| pal = (bpp >= 16) ? PAL_NONE : PAL_BASE + (branch ? PAL_MAX : 0); |
| |
| nbytes = fix->line_length * var->yres; |
| offset = fix->line_length * var->yoffset + fbi->video_mem_phys; |
| |
| if (fbi->lccr0 & LCCR0_SDS) { |
| nbytes = nbytes / 2; |
| setup_frame_dma(fbi, dma + 1, PAL_NONE, offset + nbytes, nbytes); |
| } |
| |
| setup_frame_dma(fbi, dma, pal, offset, nbytes); |
| } |
| |
| #ifdef CONFIG_FB_PXA_SMARTPANEL |
| static int setup_smart_dma(struct pxafb_info *fbi) |
| { |
| struct pxafb_dma_descriptor *dma_desc; |
| unsigned long dma_desc_off, cmd_buff_off; |
| |
| dma_desc = &fbi->dma_buff->dma_desc[DMA_CMD]; |
| dma_desc_off = offsetof(struct pxafb_dma_buff, dma_desc[DMA_CMD]); |
| cmd_buff_off = offsetof(struct pxafb_dma_buff, cmd_buff); |
| |
| dma_desc->fdadr = fbi->dma_buff_phys + dma_desc_off; |
| dma_desc->fsadr = fbi->dma_buff_phys + cmd_buff_off; |
| dma_desc->fidr = 0; |
| dma_desc->ldcmd = fbi->n_smart_cmds * sizeof(uint16_t); |
| |
| fbi->fdadr[DMA_CMD] = dma_desc->fdadr; |
| return 0; |
| } |
| |
| int pxafb_smart_flush(struct fb_info *info) |
| { |
| struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb); |
| uint32_t prsr; |
| int ret = 0; |
| |
| /* disable controller until all registers are set up */ |
| lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB); |
| |
| /* 1. make it an even number of commands to align on 32-bit boundary |
| * 2. add the interrupt command to the end of the chain so we can |
| * keep track of the end of the transfer |
| */ |
| |
| while (fbi->n_smart_cmds & 1) |
| fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_NOOP; |
| |
| fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_INTERRUPT; |
| fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_WAIT_FOR_VSYNC; |
| setup_smart_dma(fbi); |
| |
| /* continue to execute next command */ |
| prsr = lcd_readl(fbi, PRSR) | PRSR_ST_OK | PRSR_CON_NT; |
| lcd_writel(fbi, PRSR, prsr); |
| |
| /* stop the processor in case it executed "wait for sync" cmd */ |
| lcd_writel(fbi, CMDCR, 0x0001); |
| |
| /* don't send interrupts for fifo underruns on channel 6 */ |
| lcd_writel(fbi, LCCR5, LCCR5_IUM(6)); |
| |
| lcd_writel(fbi, LCCR1, fbi->reg_lccr1); |
| lcd_writel(fbi, LCCR2, fbi->reg_lccr2); |
| lcd_writel(fbi, LCCR3, fbi->reg_lccr3); |
| lcd_writel(fbi, LCCR4, fbi->reg_lccr4); |
| lcd_writel(fbi, FDADR0, fbi->fdadr[0]); |
| lcd_writel(fbi, FDADR6, fbi->fdadr[6]); |
| |
| /* begin sending */ |
| lcd_writel(fbi, LCCR0, fbi->reg_lccr0 | LCCR0_ENB); |
| |
| if (wait_for_completion_timeout(&fbi->command_done, HZ/2) == 0) { |
| pr_warn("%s: timeout waiting for command done\n", __func__); |
| ret = -ETIMEDOUT; |
| } |
| |
| /* quick disable */ |
| prsr = lcd_readl(fbi, PRSR) & ~(PRSR_ST_OK | PRSR_CON_NT); |
| lcd_writel(fbi, PRSR, prsr); |
| lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB); |
| lcd_writel(fbi, FDADR6, 0); |
| fbi->n_smart_cmds = 0; |
| return ret; |
| } |
| |
| int pxafb_smart_queue(struct fb_info *info, uint16_t *cmds, int n_cmds) |
| { |
| int i; |
| struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb); |
| |
| for (i = 0; i < n_cmds; i++, cmds++) { |
| /* if it is a software delay, flush and delay */ |
| if ((*cmds & 0xff00) == SMART_CMD_DELAY) { |
| pxafb_smart_flush(info); |
| mdelay(*cmds & 0xff); |
| continue; |
| } |
| |
| /* leave 2 commands for INTERRUPT and WAIT_FOR_SYNC */ |
| if (fbi->n_smart_cmds == CMD_BUFF_SIZE - 8) |
| pxafb_smart_flush(info); |
| |
| fbi->smart_cmds[fbi->n_smart_cmds++] = *cmds; |
| } |
| |
| return 0; |
| } |
| |
| static unsigned int __smart_timing(unsigned time_ns, unsigned long lcd_clk) |
| { |
| unsigned int t = (time_ns * (lcd_clk / 1000000) / 1000); |
| return (t == 0) ? 1 : t; |
| } |
| |
| static void setup_smart_timing(struct pxafb_info *fbi, |
| struct fb_var_screeninfo *var) |
| { |
| struct pxafb_mach_info *inf = fbi->inf; |
| struct pxafb_mode_info *mode = &inf->modes[0]; |
| unsigned long lclk = clk_get_rate(fbi->clk); |
| unsigned t1, t2, t3, t4; |
| |
| t1 = max(mode->a0csrd_set_hld, mode->a0cswr_set_hld); |
| t2 = max(mode->rd_pulse_width, mode->wr_pulse_width); |
| t3 = mode->op_hold_time; |
| t4 = mode->cmd_inh_time; |
| |
| fbi->reg_lccr1 = |
| LCCR1_DisWdth(var->xres) | |
| LCCR1_BegLnDel(__smart_timing(t1, lclk)) | |
| LCCR1_EndLnDel(__smart_timing(t2, lclk)) | |
| LCCR1_HorSnchWdth(__smart_timing(t3, lclk)); |
| |
| fbi->reg_lccr2 = LCCR2_DisHght(var->yres); |
| fbi->reg_lccr3 = fbi->lccr3 | LCCR3_PixClkDiv(__smart_timing(t4, lclk)); |
| fbi->reg_lccr3 |= (var->sync & FB_SYNC_HOR_HIGH_ACT) ? LCCR3_HSP : 0; |
| fbi->reg_lccr3 |= (var->sync & FB_SYNC_VERT_HIGH_ACT) ? LCCR3_VSP : 0; |
| |
| /* FIXME: make this configurable */ |
| fbi->reg_cmdcr = 1; |
| } |
| |
| static int pxafb_smart_thread(void *arg) |
| { |
| struct pxafb_info *fbi = arg; |
| struct pxafb_mach_info *inf = fbi->inf; |
| |
| if (!inf->smart_update) { |
| pr_err("%s: not properly initialized, thread terminated\n", |
| __func__); |
| return -EINVAL; |
| } |
| |
| pr_debug("%s(): task starting\n", __func__); |
| |
| set_freezable(); |
| while (!kthread_should_stop()) { |
| |
| if (try_to_freeze()) |
| continue; |
| |
| mutex_lock(&fbi->ctrlr_lock); |
| |
| if (fbi->state == C_ENABLE) { |
| inf->smart_update(&fbi->fb); |
| complete(&fbi->refresh_done); |
| } |
| |
| mutex_unlock(&fbi->ctrlr_lock); |
| |
| set_current_state(TASK_INTERRUPTIBLE); |
| schedule_timeout(msecs_to_jiffies(30)); |
| } |
| |
| pr_debug("%s(): task ending\n", __func__); |
| return 0; |
| } |
| |
| static int pxafb_smart_init(struct pxafb_info *fbi) |
| { |
| if (!(fbi->lccr0 & LCCR0_LCDT)) |
| return 0; |
| |
| fbi->smart_cmds = (uint16_t *) fbi->dma_buff->cmd_buff; |
| fbi->n_smart_cmds = 0; |
| |
| init_completion(&fbi->command_done); |
| init_completion(&fbi->refresh_done); |
| |
| fbi->smart_thread = kthread_run(pxafb_smart_thread, fbi, |
| "lcd_refresh"); |
| if (IS_ERR(fbi->smart_thread)) { |
| pr_err("%s: unable to create kernel thread\n", __func__); |
| return PTR_ERR(fbi->smart_thread); |
| } |
| |
| return 0; |
| } |
| #else |
| static inline int pxafb_smart_init(struct pxafb_info *fbi) { return 0; } |
| #endif /* CONFIG_FB_PXA_SMARTPANEL */ |
| |
| static void setup_parallel_timing(struct pxafb_info *fbi, |
| struct fb_var_screeninfo *var) |
| { |
| unsigned int lines_per_panel, pcd = get_pcd(fbi, var->pixclock); |
| |
| fbi->reg_lccr1 = |
| LCCR1_DisWdth(var->xres) + |
| LCCR1_HorSnchWdth(var->hsync_len) + |
| LCCR1_BegLnDel(var->left_margin) + |
| LCCR1_EndLnDel(var->right_margin); |
| |
| /* |
| * If we have a dual scan LCD, we need to halve |
| * the YRES parameter. |
| */ |
| lines_per_panel = var->yres; |
| if ((fbi->lccr0 & LCCR0_SDS) == LCCR0_Dual) |
| lines_per_panel /= 2; |
| |
| fbi->reg_lccr2 = |
| LCCR2_DisHght(lines_per_panel) + |
| LCCR2_VrtSnchWdth(var->vsync_len) + |
| LCCR2_BegFrmDel(var->upper_margin) + |
| LCCR2_EndFrmDel(var->lower_margin); |
| |
| fbi->reg_lccr3 = fbi->lccr3 | |
| (var->sync & FB_SYNC_HOR_HIGH_ACT ? |
| LCCR3_HorSnchH : LCCR3_HorSnchL) | |
| (var->sync & FB_SYNC_VERT_HIGH_ACT ? |
| LCCR3_VrtSnchH : LCCR3_VrtSnchL); |
| |
| if (pcd) { |
| fbi->reg_lccr3 |= LCCR3_PixClkDiv(pcd); |
| set_hsync_time(fbi, pcd); |
| } |
| } |
| |
| /* |
| * pxafb_activate_var(): |
| * Configures LCD Controller based on entries in var parameter. |
| * Settings are only written to the controller if changes were made. |
| */ |
| static int pxafb_activate_var(struct fb_var_screeninfo *var, |
| struct pxafb_info *fbi) |
| { |
| u_long flags; |
| |
| /* Update shadow copy atomically */ |
| local_irq_save(flags); |
| |
| #ifdef CONFIG_FB_PXA_SMARTPANEL |
| if (fbi->lccr0 & LCCR0_LCDT) |
| setup_smart_timing(fbi, var); |
| else |
| #endif |
| setup_parallel_timing(fbi, var); |
| |
| setup_base_frame(fbi, var, 0); |
| |
| fbi->reg_lccr0 = fbi->lccr0 | |
| (LCCR0_LDM | LCCR0_SFM | LCCR0_IUM | LCCR0_EFM | |
| LCCR0_QDM | LCCR0_BM | LCCR0_OUM); |
| |
| fbi->reg_lccr3 |= pxafb_var_to_lccr3(var); |
| |
| fbi->reg_lccr4 = lcd_readl(fbi, LCCR4) & ~LCCR4_PAL_FOR_MASK; |
| fbi->reg_lccr4 |= (fbi->lccr4 & LCCR4_PAL_FOR_MASK); |
| local_irq_restore(flags); |
| |
| /* |
| * Only update the registers if the controller is enabled |
| * and something has changed. |
| */ |
| if ((lcd_readl(fbi, LCCR0) != fbi->reg_lccr0) || |
| (lcd_readl(fbi, LCCR1) != fbi->reg_lccr1) || |
| (lcd_readl(fbi, LCCR2) != fbi->reg_lccr2) || |
| (lcd_readl(fbi, LCCR3) != fbi->reg_lccr3) || |
| (lcd_readl(fbi, LCCR4) != fbi->reg_lccr4) || |
| (lcd_readl(fbi, FDADR0) != fbi->fdadr[0]) || |
| ((fbi->lccr0 & LCCR0_SDS) && |
| (lcd_readl(fbi, FDADR1) != fbi->fdadr[1]))) |
| pxafb_schedule_work(fbi, C_REENABLE); |
| |
| return 0; |
| } |
| |
| /* |
| * NOTE! The following functions are purely helpers for set_ctrlr_state. |
| * Do not call them directly; set_ctrlr_state does the correct serialisation |
| * to ensure that things happen in the right way 100% of time time. |
| * -- rmk |
| */ |
| static inline void __pxafb_backlight_power(struct pxafb_info *fbi, int on) |
| { |
| pr_debug("pxafb: backlight o%s\n", on ? "n" : "ff"); |
| |
| if (fbi->backlight_power) |
| fbi->backlight_power(on); |
| } |
| |
| static inline void __pxafb_lcd_power(struct pxafb_info *fbi, int on) |
| { |
| pr_debug("pxafb: LCD power o%s\n", on ? "n" : "ff"); |
| |
| if (fbi->lcd_power) |
| fbi->lcd_power(on, &fbi->fb.var); |
| } |
| |
| static void pxafb_enable_controller(struct pxafb_info *fbi) |
| { |
| pr_debug("pxafb: Enabling LCD controller\n"); |
| pr_debug("fdadr0 0x%08x\n", (unsigned int) fbi->fdadr[0]); |
| pr_debug("fdadr1 0x%08x\n", (unsigned int) fbi->fdadr[1]); |
| pr_debug("reg_lccr0 0x%08x\n", (unsigned int) fbi->reg_lccr0); |
| pr_debug("reg_lccr1 0x%08x\n", (unsigned int) fbi->reg_lccr1); |
| pr_debug("reg_lccr2 0x%08x\n", (unsigned int) fbi->reg_lccr2); |
| pr_debug("reg_lccr3 0x%08x\n", (unsigned int) fbi->reg_lccr3); |
| |
| /* enable LCD controller clock */ |
| if (clk_prepare_enable(fbi->clk)) { |
| pr_err("%s: Failed to prepare clock\n", __func__); |
| return; |
| } |
| |
| if (fbi->lccr0 & LCCR0_LCDT) |
| return; |
| |
| /* Sequence from 11.7.10 */ |
| lcd_writel(fbi, LCCR4, fbi->reg_lccr4); |
| lcd_writel(fbi, LCCR3, fbi->reg_lccr3); |
| lcd_writel(fbi, LCCR2, fbi->reg_lccr2); |
| lcd_writel(fbi, LCCR1, fbi->reg_lccr1); |
| lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB); |
| |
| lcd_writel(fbi, FDADR0, fbi->fdadr[0]); |
| if (fbi->lccr0 & LCCR0_SDS) |
| lcd_writel(fbi, FDADR1, fbi->fdadr[1]); |
| lcd_writel(fbi, LCCR0, fbi->reg_lccr0 | LCCR0_ENB); |
| } |
| |
| static void pxafb_disable_controller(struct pxafb_info *fbi) |
| { |
| uint32_t lccr0; |
| |
| #ifdef CONFIG_FB_PXA_SMARTPANEL |
| if (fbi->lccr0 & LCCR0_LCDT) { |
| wait_for_completion_timeout(&fbi->refresh_done, |
| msecs_to_jiffies(200)); |
| return; |
| } |
| #endif |
| |
| /* Clear LCD Status Register */ |
| lcd_writel(fbi, LCSR, 0xffffffff); |
| |
| lccr0 = lcd_readl(fbi, LCCR0) & ~LCCR0_LDM; |
| lcd_writel(fbi, LCCR0, lccr0); |
| lcd_writel(fbi, LCCR0, lccr0 | LCCR0_DIS); |
| |
| wait_for_completion_timeout(&fbi->disable_done, msecs_to_jiffies(200)); |
| |
| /* disable LCD controller clock */ |
| clk_disable_unprepare(fbi->clk); |
| } |
| |
| /* |
| * pxafb_handle_irq: Handle 'LCD DONE' interrupts. |
| */ |
| static irqreturn_t pxafb_handle_irq(int irq, void *dev_id) |
| { |
| struct pxafb_info *fbi = dev_id; |
| unsigned int lccr0, lcsr; |
| |
| lcsr = lcd_readl(fbi, LCSR); |
| if (lcsr & LCSR_LDD) { |
| lccr0 = lcd_readl(fbi, LCCR0); |
| lcd_writel(fbi, LCCR0, lccr0 | LCCR0_LDM); |
| complete(&fbi->disable_done); |
| } |
| |
| #ifdef CONFIG_FB_PXA_SMARTPANEL |
| if (lcsr & LCSR_CMD_INT) |
| complete(&fbi->command_done); |
| #endif |
| lcd_writel(fbi, LCSR, lcsr); |
| |
| #ifdef CONFIG_FB_PXA_OVERLAY |
| { |
| unsigned int lcsr1 = lcd_readl(fbi, LCSR1); |
| if (lcsr1 & LCSR1_BS(1)) |
| complete(&fbi->overlay[0].branch_done); |
| |
| if (lcsr1 & LCSR1_BS(2)) |
| complete(&fbi->overlay[1].branch_done); |
| |
| lcd_writel(fbi, LCSR1, lcsr1); |
| } |
| #endif |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * This function must be called from task context only, since it will |
| * sleep when disabling the LCD controller, or if we get two contending |
| * processes trying to alter state. |
| */ |
| static void set_ctrlr_state(struct pxafb_info *fbi, u_int state) |
| { |
| u_int old_state; |
| |
| mutex_lock(&fbi->ctrlr_lock); |
| |
| old_state = fbi->state; |
| |
| /* |
| * Hack around fbcon initialisation. |
| */ |
| if (old_state == C_STARTUP && state == C_REENABLE) |
| state = C_ENABLE; |
| |
| switch (state) { |
| case C_DISABLE_CLKCHANGE: |
| /* |
| * Disable controller for clock change. If the |
| * controller is already disabled, then do nothing. |
| */ |
| if (old_state != C_DISABLE && old_state != C_DISABLE_PM) { |
| fbi->state = state; |
| /* TODO __pxafb_lcd_power(fbi, 0); */ |
| pxafb_disable_controller(fbi); |
| } |
| break; |
| |
| case C_DISABLE_PM: |
| case C_DISABLE: |
| /* |
| * Disable controller |
| */ |
| if (old_state != C_DISABLE) { |
| fbi->state = state; |
| __pxafb_backlight_power(fbi, 0); |
| __pxafb_lcd_power(fbi, 0); |
| if (old_state != C_DISABLE_CLKCHANGE) |
| pxafb_disable_controller(fbi); |
| } |
| break; |
| |
| case C_ENABLE_CLKCHANGE: |
| /* |
| * Enable the controller after clock change. Only |
| * do this if we were disabled for the clock change. |
| */ |
| if (old_state == C_DISABLE_CLKCHANGE) { |
| fbi->state = C_ENABLE; |
| pxafb_enable_controller(fbi); |
| /* TODO __pxafb_lcd_power(fbi, 1); */ |
| } |
| break; |
| |
| case C_REENABLE: |
| /* |
| * Re-enable the controller only if it was already |
| * enabled. This is so we reprogram the control |
| * registers. |
| */ |
| if (old_state == C_ENABLE) { |
| __pxafb_lcd_power(fbi, 0); |
| pxafb_disable_controller(fbi); |
| pxafb_enable_controller(fbi); |
| __pxafb_lcd_power(fbi, 1); |
| } |
| break; |
| |
| case C_ENABLE_PM: |
| /* |
| * Re-enable the controller after PM. This is not |
| * perfect - think about the case where we were doing |
| * a clock change, and we suspended half-way through. |
| */ |
| if (old_state != C_DISABLE_PM) |
| break; |
| /* fall through */ |
| |
| case C_ENABLE: |
| /* |
| * Power up the LCD screen, enable controller, and |
| * turn on the backlight. |
| */ |
| if (old_state != C_ENABLE) { |
| fbi->state = C_ENABLE; |
| pxafb_enable_controller(fbi); |
| __pxafb_lcd_power(fbi, 1); |
| __pxafb_backlight_power(fbi, 1); |
| } |
| break; |
| } |
| mutex_unlock(&fbi->ctrlr_lock); |
| } |
| |
| /* |
| * Our LCD controller task (which is called when we blank or unblank) |
| * via keventd. |
| */ |
| static void pxafb_task(struct work_struct *work) |
| { |
| struct pxafb_info *fbi = |
| container_of(work, struct pxafb_info, task); |
| u_int state = xchg(&fbi->task_state, -1); |
| |
| set_ctrlr_state(fbi, state); |
| } |
| |
| #ifdef CONFIG_CPU_FREQ |
| /* |
| * CPU clock speed change handler. We need to adjust the LCD timing |
| * parameters when the CPU clock is adjusted by the power management |
| * subsystem. |
| * |
| * TODO: Determine why f->new != 10*get_lclk_frequency_10khz() |
| */ |
| static int |
| pxafb_freq_transition(struct notifier_block *nb, unsigned long val, void *data) |
| { |
| struct pxafb_info *fbi = TO_INF(nb, freq_transition); |
| /* TODO struct cpufreq_freqs *f = data; */ |
| u_int pcd; |
| |
| switch (val) { |
| case CPUFREQ_PRECHANGE: |
| #ifdef CONFIG_FB_PXA_OVERLAY |
| if (!(fbi->overlay[0].usage || fbi->overlay[1].usage)) |
| #endif |
| set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE); |
| break; |
| |
| case CPUFREQ_POSTCHANGE: |
| pcd = get_pcd(fbi, fbi->fb.var.pixclock); |
| set_hsync_time(fbi, pcd); |
| fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) | |
| LCCR3_PixClkDiv(pcd); |
| set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE); |
| break; |
| } |
| return 0; |
| } |
| |
| static int |
| pxafb_freq_policy(struct notifier_block *nb, unsigned long val, void *data) |
| { |
| struct pxafb_info *fbi = TO_INF(nb, freq_policy); |
| struct fb_var_screeninfo *var = &fbi->fb.var; |
| struct cpufreq_policy *policy = data; |
| |
| switch (val) { |
| case CPUFREQ_ADJUST: |
| pr_debug("min dma period: %d ps, " |
| "new clock %d kHz\n", pxafb_display_dma_period(var), |
| policy->max); |
| /* TODO: fill in min/max values */ |
| break; |
| } |
| return 0; |
| } |
| #endif |
| |
| #ifdef CONFIG_PM |
| /* |
| * Power management hooks. Note that we won't be called from IRQ context, |
| * unlike the blank functions above, so we may sleep. |
| */ |
| static int pxafb_suspend(struct device *dev) |
| { |
| struct pxafb_info *fbi = dev_get_drvdata(dev); |
| |
| set_ctrlr_state(fbi, C_DISABLE_PM); |
| return 0; |
| } |
| |
| static int pxafb_resume(struct device *dev) |
| { |
| struct pxafb_info *fbi = dev_get_drvdata(dev); |
| |
| set_ctrlr_state(fbi, C_ENABLE_PM); |
| return 0; |
| } |
| |
| static const struct dev_pm_ops pxafb_pm_ops = { |
| .suspend = pxafb_suspend, |
| .resume = pxafb_resume, |
| }; |
| #endif |
| |
| static int pxafb_init_video_memory(struct pxafb_info *fbi) |
| { |
| int size = PAGE_ALIGN(fbi->video_mem_size); |
| |
| fbi->video_mem = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO); |
| if (fbi->video_mem == NULL) |
| return -ENOMEM; |
| |
| fbi->video_mem_phys = virt_to_phys(fbi->video_mem); |
| fbi->video_mem_size = size; |
| |
| fbi->fb.fix.smem_start = fbi->video_mem_phys; |
| fbi->fb.fix.smem_len = fbi->video_mem_size; |
| fbi->fb.screen_base = fbi->video_mem; |
| |
| return fbi->video_mem ? 0 : -ENOMEM; |
| } |
| |
| static void pxafb_decode_mach_info(struct pxafb_info *fbi, |
| struct pxafb_mach_info *inf) |
| { |
| unsigned int lcd_conn = inf->lcd_conn; |
| struct pxafb_mode_info *m; |
| int i; |
| |
| fbi->cmap_inverse = inf->cmap_inverse; |
| fbi->cmap_static = inf->cmap_static; |
| fbi->lccr4 = inf->lccr4; |
| |
| switch (lcd_conn & LCD_TYPE_MASK) { |
| case LCD_TYPE_MONO_STN: |
| fbi->lccr0 = LCCR0_CMS; |
| break; |
| case LCD_TYPE_MONO_DSTN: |
| fbi->lccr0 = LCCR0_CMS | LCCR0_SDS; |
| break; |
| case LCD_TYPE_COLOR_STN: |
| fbi->lccr0 = 0; |
| break; |
| case LCD_TYPE_COLOR_DSTN: |
| fbi->lccr0 = LCCR0_SDS; |
| break; |
| case LCD_TYPE_COLOR_TFT: |
| fbi->lccr0 = LCCR0_PAS; |
| break; |
| case LCD_TYPE_SMART_PANEL: |
| fbi->lccr0 = LCCR0_LCDT | LCCR0_PAS; |
| break; |
| default: |
| /* fall back to backward compatibility way */ |
| fbi->lccr0 = inf->lccr0; |
| fbi->lccr3 = inf->lccr3; |
| goto decode_mode; |
| } |
| |
| if (lcd_conn == LCD_MONO_STN_8BPP) |
| fbi->lccr0 |= LCCR0_DPD; |
| |
| fbi->lccr0 |= (lcd_conn & LCD_ALTERNATE_MAPPING) ? LCCR0_LDDALT : 0; |
| |
| fbi->lccr3 = LCCR3_Acb((inf->lcd_conn >> 10) & 0xff); |
| fbi->lccr3 |= (lcd_conn & LCD_BIAS_ACTIVE_LOW) ? LCCR3_OEP : 0; |
| fbi->lccr3 |= (lcd_conn & LCD_PCLK_EDGE_FALL) ? LCCR3_PCP : 0; |
| |
| decode_mode: |
| pxafb_setmode(&fbi->fb.var, &inf->modes[0]); |
| |
| /* decide video memory size as follows: |
| * 1. default to mode of maximum resolution |
| * 2. allow platform to override |
| * 3. allow module parameter to override |
| */ |
| for (i = 0, m = &inf->modes[0]; i < inf->num_modes; i++, m++) |
| fbi->video_mem_size = max_t(size_t, fbi->video_mem_size, |
| m->xres * m->yres * m->bpp / 8); |
| |
| if (inf->video_mem_size > fbi->video_mem_size) |
| fbi->video_mem_size = inf->video_mem_size; |
| |
| if (video_mem_size > fbi->video_mem_size) |
| fbi->video_mem_size = video_mem_size; |
| } |
| |
| static struct pxafb_info *pxafb_init_fbinfo(struct device *dev, |
| struct pxafb_mach_info *inf) |
| { |
| struct pxafb_info *fbi; |
| void *addr; |
| |
| /* Alloc the pxafb_info and pseudo_palette in one step */ |
| fbi = kmalloc(sizeof(struct pxafb_info) + sizeof(u32) * 16, GFP_KERNEL); |
| if (!fbi) |
| return NULL; |
| |
| memset(fbi, 0, sizeof(struct pxafb_info)); |
| fbi->dev = dev; |
| fbi->inf = inf; |
| |
| fbi->clk = clk_get(dev, NULL); |
| if (IS_ERR(fbi->clk)) { |
| kfree(fbi); |
| return NULL; |
| } |
| |
| strcpy(fbi->fb.fix.id, PXA_NAME); |
| |
| fbi->fb.fix.type = FB_TYPE_PACKED_PIXELS; |
| fbi->fb.fix.type_aux = 0; |
| fbi->fb.fix.xpanstep = 0; |
| fbi->fb.fix.ypanstep = 1; |
| fbi->fb.fix.ywrapstep = 0; |
| fbi->fb.fix.accel = FB_ACCEL_NONE; |
| |
| fbi->fb.var.nonstd = 0; |
| fbi->fb.var.activate = FB_ACTIVATE_NOW; |
| fbi->fb.var.height = -1; |
| fbi->fb.var.width = -1; |
| fbi->fb.var.accel_flags = FB_ACCELF_TEXT; |
| fbi->fb.var.vmode = FB_VMODE_NONINTERLACED; |
| |
| fbi->fb.fbops = &pxafb_ops; |
| fbi->fb.flags = FBINFO_DEFAULT; |
| fbi->fb.node = -1; |
| |
| addr = fbi; |
| addr = addr + sizeof(struct pxafb_info); |
| fbi->fb.pseudo_palette = addr; |
| |
| fbi->state = C_STARTUP; |
| fbi->task_state = (u_char)-1; |
| |
| pxafb_decode_mach_info(fbi, inf); |
| |
| #ifdef CONFIG_FB_PXA_OVERLAY |
| /* place overlay(s) on top of base */ |
| if (pxafb_overlay_supported()) |
| fbi->lccr0 |= LCCR0_OUC; |
| #endif |
| |
| init_waitqueue_head(&fbi->ctrlr_wait); |
| INIT_WORK(&fbi->task, pxafb_task); |
| mutex_init(&fbi->ctrlr_lock); |
| init_completion(&fbi->disable_done); |
| |
| return fbi; |
| } |
| |
| #ifdef CONFIG_FB_PXA_PARAMETERS |
| static int parse_opt_mode(struct device *dev, const char *this_opt, |
| struct pxafb_mach_info *inf) |
| { |
| const char *name = this_opt+5; |
| unsigned int namelen = strlen(name); |
| int res_specified = 0, bpp_specified = 0; |
| unsigned int xres = 0, yres = 0, bpp = 0; |
| int yres_specified = 0; |
| int i; |
| for (i = namelen-1; i >= 0; i--) { |
| switch (name[i]) { |
| case '-': |
| namelen = i; |
| if (!bpp_specified && !yres_specified) { |
| bpp = simple_strtoul(&name[i+1], NULL, 0); |
| bpp_specified = 1; |
| } else |
| goto done; |
| break; |
| case 'x': |
| if (!yres_specified) { |
| yres = simple_strtoul(&name[i+1], NULL, 0); |
| yres_specified = 1; |
| } else |
| goto done; |
| break; |
| case '0' ... '9': |
| break; |
| default: |
| goto done; |
| } |
| } |
| if (i < 0 && yres_specified) { |
| xres = simple_strtoul(name, NULL, 0); |
| res_specified = 1; |
| } |
| done: |
| if (res_specified) { |
| dev_info(dev, "overriding resolution: %dx%d\n", xres, yres); |
| inf->modes[0].xres = xres; inf->modes[0].yres = yres; |
| } |
| if (bpp_specified) |
| switch (bpp) { |
| case 1: |
| case 2: |
| case 4: |
| case 8: |
| case 16: |
| inf->modes[0].bpp = bpp; |
| dev_info(dev, "overriding bit depth: %d\n", bpp); |
| break; |
| default: |
| dev_err(dev, "Depth %d is not valid\n", bpp); |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| static int parse_opt(struct device *dev, char *this_opt, |
| struct pxafb_mach_info *inf) |
| { |
| struct pxafb_mode_info *mode = &inf->modes[0]; |
| char s[64]; |
| |
| s[0] = '\0'; |
| |
| if (!strncmp(this_opt, "vmem:", 5)) { |
| video_mem_size = memparse(this_opt + 5, NULL); |
| } else if (!strncmp(this_opt, "mode:", 5)) { |
| return parse_opt_mode(dev, this_opt, inf); |
| } else if (!strncmp(this_opt, "pixclock:", 9)) { |
| mode->pixclock = simple_strtoul(this_opt+9, NULL, 0); |
| sprintf(s, "pixclock: %ld\n", mode->pixclock); |
| } else if (!strncmp(this_opt, "left:", 5)) { |
| mode->left_margin = simple_strtoul(this_opt+5, NULL, 0); |
| sprintf(s, "left: %u\n", mode->left_margin); |
| } else if (!strncmp(this_opt, "right:", 6)) { |
| mode->right_margin = simple_strtoul(this_opt+6, NULL, 0); |
| sprintf(s, "right: %u\n", mode->right_margin); |
| } else if (!strncmp(this_opt, "upper:", 6)) { |
| mode->upper_margin = simple_strtoul(this_opt+6, NULL, 0); |
| sprintf(s, "upper: %u\n", mode->upper_margin); |
| } else if (!strncmp(this_opt, "lower:", 6)) { |
| mode->lower_margin = simple_strtoul(this_opt+6, NULL, 0); |
| sprintf(s, "lower: %u\n", mode->lower_margin); |
| } else if (!strncmp(this_opt, "hsynclen:", 9)) { |
| mode->hsync_len = simple_strtoul(this_opt+9, NULL, 0); |
| sprintf(s, "hsynclen: %u\n", mode->hsync_len); |
| } else if (!strncmp(this_opt, "vsynclen:", 9)) { |
| mode->vsync_len = simple_strtoul(this_opt+9, NULL, 0); |
| sprintf(s, "vsynclen: %u\n", mode->vsync_len); |
| } else if (!strncmp(this_opt, "hsync:", 6)) { |
| if (simple_strtoul(this_opt+6, NULL, 0) == 0) { |
| sprintf(s, "hsync: Active Low\n"); |
| mode->sync &= ~FB_SYNC_HOR_HIGH_ACT; |
| } else { |
| sprintf(s, "hsync: Active High\n"); |
| mode->sync |= FB_SYNC_HOR_HIGH_ACT; |
| } |
| } else if (!strncmp(this_opt, "vsync:", 6)) { |
| if (simple_strtoul(this_opt+6, NULL, 0) == 0) { |
| sprintf(s, "vsync: Active Low\n"); |
| mode->sync &= ~FB_SYNC_VERT_HIGH_ACT; |
| } else { |
| sprintf(s, "vsync: Active High\n"); |
| mode->sync |= FB_SYNC_VERT_HIGH_ACT; |
| } |
| } else if (!strncmp(this_opt, "dpc:", 4)) { |
| if (simple_strtoul(this_opt+4, NULL, 0) == 0) { |
| sprintf(s, "double pixel clock: false\n"); |
| inf->lccr3 &= ~LCCR3_DPC; |
| } else { |
| sprintf(s, "double pixel clock: true\n"); |
| inf->lccr3 |= LCCR3_DPC; |
| } |
| } else if (!strncmp(this_opt, "outputen:", 9)) { |
| if (simple_strtoul(this_opt+9, NULL, 0) == 0) { |
| sprintf(s, "output enable: active low\n"); |
| inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnL; |
| } else { |
| sprintf(s, "output enable: active high\n"); |
| inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnH; |
| } |
| } else if (!strncmp(this_opt, "pixclockpol:", 12)) { |
| if (simple_strtoul(this_opt+12, NULL, 0) == 0) { |
| sprintf(s, "pixel clock polarity: falling edge\n"); |
| inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixFlEdg; |
| } else { |
| sprintf(s, "pixel clock polarity: rising edge\n"); |
| inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixRsEdg; |
| } |
| } else if (!strncmp(this_opt, "color", 5)) { |
| inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Color; |
| } else if (!strncmp(this_opt, "mono", 4)) { |
| inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Mono; |
| } else if (!strncmp(this_opt, "active", 6)) { |
| inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Act; |
| } else if (!strncmp(this_opt, "passive", 7)) { |
| inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Pas; |
| } else if (!strncmp(this_opt, "single", 6)) { |
| inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Sngl; |
| } else if (!strncmp(this_opt, "dual", 4)) { |
| inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Dual; |
| } else if (!strncmp(this_opt, "4pix", 4)) { |
| inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_4PixMono; |
| } else if (!strncmp(this_opt, "8pix", 4)) { |
| inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_8PixMono; |
| } else { |
| dev_err(dev, "unknown option: %s\n", this_opt); |
| return -EINVAL; |
| } |
| |
| if (s[0] != '\0') |
| dev_info(dev, "override %s", s); |
| |
| return 0; |
| } |
| |
| static int pxafb_parse_options(struct device *dev, char *options, |
| struct pxafb_mach_info *inf) |
| { |
| char *this_opt; |
| int ret; |
| |
| if (!options || !*options) |
| return 0; |
| |
| dev_dbg(dev, "options are \"%s\"\n", options ? options : "null"); |
| |
| /* could be made table driven or similar?... */ |
| while ((this_opt = strsep(&options, ",")) != NULL) { |
| ret = parse_opt(dev, this_opt, inf); |
| if (ret) |
| return ret; |
| } |
| return 0; |
| } |
| |
| static char g_options[256] = ""; |
| |
| #ifndef MODULE |
| static int __init pxafb_setup_options(void) |
| { |
| char *options = NULL; |
| |
| if (fb_get_options("pxafb", &options)) |
| return -ENODEV; |
| |
| if (options) |
| strlcpy(g_options, options, sizeof(g_options)); |
| |
| return 0; |
| } |
| #else |
| #define pxafb_setup_options() (0) |
| |
| module_param_string(options, g_options, sizeof(g_options), 0); |
| MODULE_PARM_DESC(options, "LCD parameters (see Documentation/fb/pxafb.txt)"); |
| #endif |
| |
| #else |
| #define pxafb_parse_options(...) (0) |
| #define pxafb_setup_options() (0) |
| #endif |
| |
| #ifdef DEBUG_VAR |
| /* Check for various illegal bit-combinations. Currently only |
| * a warning is given. */ |
| static void pxafb_check_options(struct device *dev, struct pxafb_mach_info *inf) |
| { |
| if (inf->lcd_conn) |
| return; |
| |
| if (inf->lccr0 & LCCR0_INVALID_CONFIG_MASK) |
| dev_warn(dev, "machine LCCR0 setting contains " |
| "illegal bits: %08x\n", |
| inf->lccr0 & LCCR0_INVALID_CONFIG_MASK); |
| if (inf->lccr3 & LCCR3_INVALID_CONFIG_MASK) |
| dev_warn(dev, "machine LCCR3 setting contains " |
| "illegal bits: %08x\n", |
| inf->lccr3 & LCCR3_INVALID_CONFIG_MASK); |
| if (inf->lccr0 & LCCR0_DPD && |
| ((inf->lccr0 & LCCR0_PAS) != LCCR0_Pas || |
| (inf->lccr0 & LCCR0_SDS) != LCCR0_Sngl || |
| (inf->lccr0 & LCCR0_CMS) != LCCR0_Mono)) |
| dev_warn(dev, "Double Pixel Data (DPD) mode is " |
| "only valid in passive mono" |
| " single panel mode\n"); |
| if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Act && |
| (inf->lccr0 & LCCR0_SDS) == LCCR0_Dual) |
| dev_warn(dev, "Dual panel only valid in passive mode\n"); |
| if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Pas && |
| (inf->modes->upper_margin || inf->modes->lower_margin)) |
| dev_warn(dev, "Upper and lower margins must be 0 in " |
| "passive mode\n"); |
| } |
| #else |
| #define pxafb_check_options(...) do {} while (0) |
| #endif |
| |
| #if defined(CONFIG_OF) |
| static const char * const lcd_types[] = { |
| "unknown", "mono-stn", "mono-dstn", "color-stn", "color-dstn", |
| "color-tft", "smart-panel", NULL |
| }; |
| |
| static int of_get_pxafb_display(struct device *dev, struct device_node *disp, |
| struct pxafb_mach_info *info, u32 bus_width) |
| { |
| struct display_timings *timings; |
| struct videomode vm; |
| int i, ret = -EINVAL; |
| const char *s; |
| |
| ret = of_property_read_string(disp, "lcd-type", &s); |
| if (ret) |
| s = "color-tft"; |
| |
| i = match_string(lcd_types, -1, s); |
| if (i < 0) { |
| dev_err(dev, "lcd-type %s is unknown\n", s); |
| return i; |
| } |
| info->lcd_conn |= LCD_CONN_TYPE(i); |
| info->lcd_conn |= LCD_CONN_WIDTH(bus_width); |
| |
| timings = of_get_display_timings(disp); |
| if (!timings) |
| return -EINVAL; |
| |
| ret = -ENOMEM; |
| info->modes = kcalloc(timings->num_timings, sizeof(info->modes[0]), |
| GFP_KERNEL); |
| if (!info->modes) |
| goto out; |
| info->num_modes = timings->num_timings; |
| |
| for (i = 0; i < timings->num_timings; i++) { |
| ret = videomode_from_timings(timings, &vm, i); |
| if (ret) { |
| dev_err(dev, "videomode_from_timings %d failed: %d\n", |
| i, ret); |
| goto out; |
| } |
| if (vm.flags & DISPLAY_FLAGS_PIXDATA_POSEDGE) |
| info->lcd_conn |= LCD_PCLK_EDGE_RISE; |
| if (vm.flags & DISPLAY_FLAGS_PIXDATA_NEGEDGE) |
| info->lcd_conn |= LCD_PCLK_EDGE_FALL; |
| if (vm.flags & DISPLAY_FLAGS_DE_HIGH) |
| info->lcd_conn |= LCD_BIAS_ACTIVE_HIGH; |
| if (vm.flags & DISPLAY_FLAGS_DE_LOW) |
| info->lcd_conn |= LCD_BIAS_ACTIVE_LOW; |
| if (vm.flags & DISPLAY_FLAGS_HSYNC_HIGH) |
| info->modes[i].sync |= FB_SYNC_HOR_HIGH_ACT; |
| if (vm.flags & DISPLAY_FLAGS_VSYNC_HIGH) |
| info->modes[i].sync |= FB_SYNC_VERT_HIGH_ACT; |
| |
| info->modes[i].pixclock = 1000000000UL / (vm.pixelclock / 1000); |
| info->modes[i].xres = vm.hactive; |
| info->modes[i].yres = vm.vactive; |
| info->modes[i].hsync_len = vm.hsync_len; |
| info->modes[i].left_margin = vm.hback_porch; |
| info->modes[i].right_margin = vm.hfront_porch; |
| info->modes[i].vsync_len = vm.vsync_len; |
| info->modes[i].upper_margin = vm.vback_porch; |
| info->modes[i].lower_margin = vm.vfront_porch; |
| } |
| ret = 0; |
| |
| out: |
| display_timings_release(timings); |
| return ret; |
| } |
| |
| static int of_get_pxafb_mode_info(struct device *dev, |
| struct pxafb_mach_info *info) |
| { |
| struct device_node *display, *np; |
| u32 bus_width; |
| int ret, i; |
| |
| np = of_graph_get_next_endpoint(dev->of_node, NULL); |
| if (!np) { |
| dev_err(dev, "could not find endpoint\n"); |
| return -EINVAL; |
| } |
| ret = of_property_read_u32(np, "bus-width", &bus_width); |
| if (ret) { |
| dev_err(dev, "no bus-width specified: %d\n", ret); |
| of_node_put(np); |
| return ret; |
| } |
| |
| display = of_graph_get_remote_port_parent(np); |
| of_node_put(np); |
| if (!display) { |
| dev_err(dev, "no display defined\n"); |
| return -EINVAL; |
| } |
| |
| ret = of_get_pxafb_display(dev, display, info, bus_width); |
| of_node_put(display); |
| if (ret) |
| return ret; |
| |
| for (i = 0; i < info->num_modes; i++) |
| info->modes[i].bpp = bus_width; |
| |
| return 0; |
| } |
| |
| static struct pxafb_mach_info *of_pxafb_of_mach_info(struct device *dev) |
| { |
| int ret; |
| struct pxafb_mach_info *info; |
| |
| if (!dev->of_node) |
| return NULL; |
| info = devm_kzalloc(dev, sizeof(*info), GFP_KERNEL); |
| if (!info) |
| return ERR_PTR(-ENOMEM); |
| ret = of_get_pxafb_mode_info(dev, info); |
| if (ret) { |
| kfree(info->modes); |
| return ERR_PTR(ret); |
| } |
| |
| /* |
| * On purpose, neither lccrX registers nor video memory size can be |
| * specified through device-tree, they are considered more a debug hack |
| * available through command line. |
| */ |
| return info; |
| } |
| #else |
| static struct pxafb_mach_info *of_pxafb_of_mach_info(struct device *dev) |
| { |
| return NULL; |
| } |
| #endif |
| |
| static int pxafb_probe(struct platform_device *dev) |
| { |
| struct pxafb_info *fbi; |
| struct pxafb_mach_info *inf, *pdata; |
| struct resource *r; |
| int i, irq, ret; |
| |
| dev_dbg(&dev->dev, "pxafb_probe\n"); |
| |
| ret = -ENOMEM; |
| pdata = dev_get_platdata(&dev->dev); |
| inf = devm_kmalloc(&dev->dev, sizeof(*inf), GFP_KERNEL); |
| if (!inf) |
| goto failed; |
| |
| if (pdata) { |
| *inf = *pdata; |
| inf->modes = |
| devm_kmalloc_array(&dev->dev, pdata->num_modes, |
| sizeof(inf->modes[0]), GFP_KERNEL); |
| if (!inf->modes) |
| goto failed; |
| for (i = 0; i < inf->num_modes; i++) |
| inf->modes[i] = pdata->modes[i]; |
| } |
| |
| if (!pdata) |
| inf = of_pxafb_of_mach_info(&dev->dev); |
| if (IS_ERR_OR_NULL(inf)) |
| goto failed; |
| |
| ret = pxafb_parse_options(&dev->dev, g_options, inf); |
| if (ret < 0) |
| goto failed; |
| |
| pxafb_check_options(&dev->dev, inf); |
| |
| dev_dbg(&dev->dev, "got a %dx%dx%d LCD\n", |
| inf->modes->xres, |
| inf->modes->yres, |
| inf->modes->bpp); |
| if (inf->modes->xres == 0 || |
| inf->modes->yres == 0 || |
| inf->modes->bpp == 0) { |
| dev_err(&dev->dev, "Invalid resolution or bit depth\n"); |
| ret = -EINVAL; |
| goto failed; |
| } |
| |
| fbi = pxafb_init_fbinfo(&dev->dev, inf); |
| if (!fbi) { |
| /* only reason for pxafb_init_fbinfo to fail is kmalloc */ |
| dev_err(&dev->dev, "Failed to initialize framebuffer device\n"); |
| ret = -ENOMEM; |
| goto failed; |
| } |
| |
| if (cpu_is_pxa3xx() && inf->acceleration_enabled) |
| fbi->fb.fix.accel = FB_ACCEL_PXA3XX; |
| |
| fbi->backlight_power = inf->pxafb_backlight_power; |
| fbi->lcd_power = inf->pxafb_lcd_power; |
| |
| r = platform_get_resource(dev, IORESOURCE_MEM, 0); |
| if (r == NULL) { |
| dev_err(&dev->dev, "no I/O memory resource defined\n"); |
| ret = -ENODEV; |
| goto failed_fbi; |
| } |
| |
| r = request_mem_region(r->start, resource_size(r), dev->name); |
| if (r == NULL) { |
| dev_err(&dev->dev, "failed to request I/O memory\n"); |
| ret = -EBUSY; |
| goto failed_fbi; |
| } |
| |
| fbi->mmio_base = ioremap(r->start, resource_size(r)); |
| if (fbi->mmio_base == NULL) { |
| dev_err(&dev->dev, "failed to map I/O memory\n"); |
| ret = -EBUSY; |
| goto failed_free_res; |
| } |
| |
| fbi->dma_buff_size = PAGE_ALIGN(sizeof(struct pxafb_dma_buff)); |
| fbi->dma_buff = dma_alloc_coherent(fbi->dev, fbi->dma_buff_size, |
| &fbi->dma_buff_phys, GFP_KERNEL); |
| if (fbi->dma_buff == NULL) { |
| dev_err(&dev->dev, "failed to allocate memory for DMA\n"); |
| ret = -ENOMEM; |
| goto failed_free_io; |
| } |
| |
| ret = pxafb_init_video_memory(fbi); |
| if (ret) { |
| dev_err(&dev->dev, "Failed to allocate video RAM: %d\n", ret); |
| ret = -ENOMEM; |
| goto failed_free_dma; |
| } |
| |
| irq = platform_get_irq(dev, 0); |
| if (irq < 0) { |
| dev_err(&dev->dev, "no IRQ defined\n"); |
| ret = -ENODEV; |
| goto failed_free_mem; |
| } |
| |
| ret = request_irq(irq, pxafb_handle_irq, 0, "LCD", fbi); |
| if (ret) { |
| dev_err(&dev->dev, "request_irq failed: %d\n", ret); |
| ret = -EBUSY; |
| goto failed_free_mem; |
| } |
| |
| ret = pxafb_smart_init(fbi); |
| if (ret) { |
| dev_err(&dev->dev, "failed to initialize smartpanel\n"); |
| goto failed_free_irq; |
| } |
| |
| /* |
| * This makes sure that our colour bitfield |
| * descriptors are correctly initialised. |
| */ |
| ret = pxafb_check_var(&fbi->fb.var, &fbi->fb); |
| if (ret) { |
| dev_err(&dev->dev, "failed to get suitable mode\n"); |
| goto failed_free_irq; |
| } |
| |
| ret = pxafb_set_par(&fbi->fb); |
| if (ret) { |
| dev_err(&dev->dev, "Failed to set parameters\n"); |
| goto failed_free_irq; |
| } |
| |
| platform_set_drvdata(dev, fbi); |
| |
| ret = register_framebuffer(&fbi->fb); |
| if (ret < 0) { |
| dev_err(&dev->dev, |
| "Failed to register framebuffer device: %d\n", ret); |
| goto failed_free_cmap; |
| } |
| |
| pxafb_overlay_init(fbi); |
| |
| #ifdef CONFIG_CPU_FREQ |
| fbi->freq_transition.notifier_call = pxafb_freq_transition; |
| fbi->freq_policy.notifier_call = pxafb_freq_policy; |
| cpufreq_register_notifier(&fbi->freq_transition, |
| CPUFREQ_TRANSITION_NOTIFIER); |
| cpufreq_register_notifier(&fbi->freq_policy, |
| CPUFREQ_POLICY_NOTIFIER); |
| #endif |
| |
| /* |
| * Ok, now enable the LCD controller |
| */ |
| set_ctrlr_state(fbi, C_ENABLE); |
| |
| return 0; |
| |
| failed_free_cmap: |
| if (fbi->fb.cmap.len) |
| fb_dealloc_cmap(&fbi->fb.cmap); |
| failed_free_irq: |
| free_irq(irq, fbi); |
| failed_free_mem: |
| free_pages_exact(fbi->video_mem, fbi->video_mem_size); |
| failed_free_dma: |
| dma_free_coherent(&dev->dev, fbi->dma_buff_size, |
| fbi->dma_buff, fbi->dma_buff_phys); |
| failed_free_io: |
| iounmap(fbi->mmio_base); |
| failed_free_res: |
| release_mem_region(r->start, resource_size(r)); |
| failed_fbi: |
| clk_put(fbi->clk); |
| kfree(fbi); |
| failed: |
| return ret; |
| } |
| |
| static int pxafb_remove(struct platform_device *dev) |
| { |
| struct pxafb_info *fbi = platform_get_drvdata(dev); |
| struct resource *r; |
| int irq; |
| struct fb_info *info; |
| |
| if (!fbi) |
| return 0; |
| |
| info = &fbi->fb; |
| |
| pxafb_overlay_exit(fbi); |
| unregister_framebuffer(info); |
| |
| pxafb_disable_controller(fbi); |
| |
| if (fbi->fb.cmap.len) |
| fb_dealloc_cmap(&fbi->fb.cmap); |
| |
| irq = platform_get_irq(dev, 0); |
| free_irq(irq, fbi); |
| |
| free_pages_exact(fbi->video_mem, fbi->video_mem_size); |
| |
| dma_free_wc(&dev->dev, fbi->dma_buff_size, fbi->dma_buff, |
| fbi->dma_buff_phys); |
| |
| iounmap(fbi->mmio_base); |
| |
| r = platform_get_resource(dev, IORESOURCE_MEM, 0); |
| release_mem_region(r->start, resource_size(r)); |
| |
| clk_put(fbi->clk); |
| kfree(fbi); |
| |
| return 0; |
| } |
| |
| static const struct of_device_id pxafb_of_dev_id[] = { |
| { .compatible = "marvell,pxa270-lcdc", }, |
| { .compatible = "marvell,pxa300-lcdc", }, |
| { .compatible = "marvell,pxa2xx-lcdc", }, |
| { /* sentinel */ } |
| }; |
| MODULE_DEVICE_TABLE(of, pxafb_of_dev_id); |
| |
| static struct platform_driver pxafb_driver = { |
| .probe = pxafb_probe, |
| .remove = pxafb_remove, |
| .driver = { |
| .name = "pxa2xx-fb", |
| .of_match_table = pxafb_of_dev_id, |
| #ifdef CONFIG_PM |
| .pm = &pxafb_pm_ops, |
| #endif |
| }, |
| }; |
| |
| static int __init pxafb_init(void) |
| { |
| if (pxafb_setup_options()) |
| return -EINVAL; |
| |
| return platform_driver_register(&pxafb_driver); |
| } |
| |
| static void __exit pxafb_exit(void) |
| { |
| platform_driver_unregister(&pxafb_driver); |
| } |
| |
| module_init(pxafb_init); |
| module_exit(pxafb_exit); |
| |
| MODULE_DESCRIPTION("loadable framebuffer driver for PXA"); |
| MODULE_LICENSE("GPL"); |