| /* |
| * Defines, structures, APIs for edac_core module |
| * |
| * (C) 2007 Linux Networx (http://lnxi.com) |
| * This file may be distributed under the terms of the |
| * GNU General Public License. |
| * |
| * Written by Thayne Harbaugh |
| * Based on work by Dan Hollis <goemon at anime dot net> and others. |
| * http://www.anime.net/~goemon/linux-ecc/ |
| * |
| * NMI handling support added by |
| * Dave Peterson <dsp@llnl.gov> <dave_peterson@pobox.com> |
| * |
| * Refactored for multi-source files: |
| * Doug Thompson <norsk5@xmission.com> |
| * |
| */ |
| |
| #ifndef _EDAC_CORE_H_ |
| #define _EDAC_CORE_H_ |
| |
| #include <linux/kernel.h> |
| #include <linux/types.h> |
| #include <linux/module.h> |
| #include <linux/spinlock.h> |
| #include <linux/smp.h> |
| #include <linux/pci.h> |
| #include <linux/time.h> |
| #include <linux/nmi.h> |
| #include <linux/rcupdate.h> |
| #include <linux/completion.h> |
| #include <linux/kobject.h> |
| #include <linux/platform_device.h> |
| #include <linux/sysdev.h> |
| #include <linux/workqueue.h> |
| |
| #define EDAC_MC_LABEL_LEN 31 |
| #define EDAC_DEVICE_NAME_LEN 31 |
| #define EDAC_ATTRIB_VALUE_LEN 15 |
| #define MC_PROC_NAME_MAX_LEN 7 |
| |
| #if PAGE_SHIFT < 20 |
| #define PAGES_TO_MiB(pages) ((pages) >> (20 - PAGE_SHIFT)) |
| #define MiB_TO_PAGES(mb) ((mb) << (20 - PAGE_SHIFT)) |
| #else /* PAGE_SHIFT > 20 */ |
| #define PAGES_TO_MiB(pages) ((pages) << (PAGE_SHIFT - 20)) |
| #define MiB_TO_PAGES(mb) ((mb) >> (PAGE_SHIFT - 20)) |
| #endif |
| |
| #define edac_printk(level, prefix, fmt, arg...) \ |
| printk(level "EDAC " prefix ": " fmt, ##arg) |
| |
| #define edac_mc_printk(mci, level, fmt, arg...) \ |
| printk(level "EDAC MC%d: " fmt, mci->mc_idx, ##arg) |
| |
| #define edac_mc_chipset_printk(mci, level, prefix, fmt, arg...) \ |
| printk(level "EDAC " prefix " MC%d: " fmt, mci->mc_idx, ##arg) |
| |
| #define edac_device_printk(ctl, level, fmt, arg...) \ |
| printk(level "EDAC DEVICE%d: " fmt, ctl->dev_idx, ##arg) |
| |
| #define edac_pci_printk(ctl, level, fmt, arg...) \ |
| printk(level "EDAC PCI%d: " fmt, ctl->pci_idx, ##arg) |
| |
| /* prefixes for edac_printk() and edac_mc_printk() */ |
| #define EDAC_MC "MC" |
| #define EDAC_PCI "PCI" |
| #define EDAC_DEBUG "DEBUG" |
| |
| extern const char *edac_mem_types[]; |
| |
| #ifdef CONFIG_EDAC_DEBUG |
| extern int edac_debug_level; |
| |
| #define edac_debug_printk(level, fmt, arg...) \ |
| do { \ |
| if (level <= edac_debug_level) \ |
| edac_printk(KERN_DEBUG, EDAC_DEBUG, \ |
| "%s: " fmt, __func__, ##arg); \ |
| } while (0) |
| |
| #define debugf0( ... ) edac_debug_printk(0, __VA_ARGS__ ) |
| #define debugf1( ... ) edac_debug_printk(1, __VA_ARGS__ ) |
| #define debugf2( ... ) edac_debug_printk(2, __VA_ARGS__ ) |
| #define debugf3( ... ) edac_debug_printk(3, __VA_ARGS__ ) |
| #define debugf4( ... ) edac_debug_printk(4, __VA_ARGS__ ) |
| |
| #else /* !CONFIG_EDAC_DEBUG */ |
| |
| #define debugf0( ... ) |
| #define debugf1( ... ) |
| #define debugf2( ... ) |
| #define debugf3( ... ) |
| #define debugf4( ... ) |
| |
| #endif /* !CONFIG_EDAC_DEBUG */ |
| |
| #define PCI_VEND_DEV(vend, dev) PCI_VENDOR_ID_ ## vend, \ |
| PCI_DEVICE_ID_ ## vend ## _ ## dev |
| |
| #define edac_dev_name(dev) (dev)->dev_name |
| |
| /* memory devices */ |
| enum dev_type { |
| DEV_UNKNOWN = 0, |
| DEV_X1, |
| DEV_X2, |
| DEV_X4, |
| DEV_X8, |
| DEV_X16, |
| DEV_X32, /* Do these parts exist? */ |
| DEV_X64 /* Do these parts exist? */ |
| }; |
| |
| #define DEV_FLAG_UNKNOWN BIT(DEV_UNKNOWN) |
| #define DEV_FLAG_X1 BIT(DEV_X1) |
| #define DEV_FLAG_X2 BIT(DEV_X2) |
| #define DEV_FLAG_X4 BIT(DEV_X4) |
| #define DEV_FLAG_X8 BIT(DEV_X8) |
| #define DEV_FLAG_X16 BIT(DEV_X16) |
| #define DEV_FLAG_X32 BIT(DEV_X32) |
| #define DEV_FLAG_X64 BIT(DEV_X64) |
| |
| /* memory types */ |
| enum mem_type { |
| MEM_EMPTY = 0, /* Empty csrow */ |
| MEM_RESERVED, /* Reserved csrow type */ |
| MEM_UNKNOWN, /* Unknown csrow type */ |
| MEM_FPM, /* Fast page mode */ |
| MEM_EDO, /* Extended data out */ |
| MEM_BEDO, /* Burst Extended data out */ |
| MEM_SDR, /* Single data rate SDRAM */ |
| MEM_RDR, /* Registered single data rate SDRAM */ |
| MEM_DDR, /* Double data rate SDRAM */ |
| MEM_RDDR, /* Registered Double data rate SDRAM */ |
| MEM_RMBS, /* Rambus DRAM */ |
| MEM_DDR2, /* DDR2 RAM */ |
| MEM_FB_DDR2, /* fully buffered DDR2 */ |
| MEM_RDDR2, /* Registered DDR2 RAM */ |
| MEM_XDR, /* Rambus XDR */ |
| MEM_DDR3, /* DDR3 RAM */ |
| MEM_RDDR3, /* Registered DDR3 RAM */ |
| }; |
| |
| #define MEM_FLAG_EMPTY BIT(MEM_EMPTY) |
| #define MEM_FLAG_RESERVED BIT(MEM_RESERVED) |
| #define MEM_FLAG_UNKNOWN BIT(MEM_UNKNOWN) |
| #define MEM_FLAG_FPM BIT(MEM_FPM) |
| #define MEM_FLAG_EDO BIT(MEM_EDO) |
| #define MEM_FLAG_BEDO BIT(MEM_BEDO) |
| #define MEM_FLAG_SDR BIT(MEM_SDR) |
| #define MEM_FLAG_RDR BIT(MEM_RDR) |
| #define MEM_FLAG_DDR BIT(MEM_DDR) |
| #define MEM_FLAG_RDDR BIT(MEM_RDDR) |
| #define MEM_FLAG_RMBS BIT(MEM_RMBS) |
| #define MEM_FLAG_DDR2 BIT(MEM_DDR2) |
| #define MEM_FLAG_FB_DDR2 BIT(MEM_FB_DDR2) |
| #define MEM_FLAG_RDDR2 BIT(MEM_RDDR2) |
| #define MEM_FLAG_XDR BIT(MEM_XDR) |
| #define MEM_FLAG_DDR3 BIT(MEM_DDR3) |
| #define MEM_FLAG_RDDR3 BIT(MEM_RDDR3) |
| |
| /* chipset Error Detection and Correction capabilities and mode */ |
| enum edac_type { |
| EDAC_UNKNOWN = 0, /* Unknown if ECC is available */ |
| EDAC_NONE, /* Doesnt support ECC */ |
| EDAC_RESERVED, /* Reserved ECC type */ |
| EDAC_PARITY, /* Detects parity errors */ |
| EDAC_EC, /* Error Checking - no correction */ |
| EDAC_SECDED, /* Single bit error correction, Double detection */ |
| EDAC_S2ECD2ED, /* Chipkill x2 devices - do these exist? */ |
| EDAC_S4ECD4ED, /* Chipkill x4 devices */ |
| EDAC_S8ECD8ED, /* Chipkill x8 devices */ |
| EDAC_S16ECD16ED, /* Chipkill x16 devices */ |
| }; |
| |
| #define EDAC_FLAG_UNKNOWN BIT(EDAC_UNKNOWN) |
| #define EDAC_FLAG_NONE BIT(EDAC_NONE) |
| #define EDAC_FLAG_PARITY BIT(EDAC_PARITY) |
| #define EDAC_FLAG_EC BIT(EDAC_EC) |
| #define EDAC_FLAG_SECDED BIT(EDAC_SECDED) |
| #define EDAC_FLAG_S2ECD2ED BIT(EDAC_S2ECD2ED) |
| #define EDAC_FLAG_S4ECD4ED BIT(EDAC_S4ECD4ED) |
| #define EDAC_FLAG_S8ECD8ED BIT(EDAC_S8ECD8ED) |
| #define EDAC_FLAG_S16ECD16ED BIT(EDAC_S16ECD16ED) |
| |
| /* scrubbing capabilities */ |
| enum scrub_type { |
| SCRUB_UNKNOWN = 0, /* Unknown if scrubber is available */ |
| SCRUB_NONE, /* No scrubber */ |
| SCRUB_SW_PROG, /* SW progressive (sequential) scrubbing */ |
| SCRUB_SW_SRC, /* Software scrub only errors */ |
| SCRUB_SW_PROG_SRC, /* Progressive software scrub from an error */ |
| SCRUB_SW_TUNABLE, /* Software scrub frequency is tunable */ |
| SCRUB_HW_PROG, /* HW progressive (sequential) scrubbing */ |
| SCRUB_HW_SRC, /* Hardware scrub only errors */ |
| SCRUB_HW_PROG_SRC, /* Progressive hardware scrub from an error */ |
| SCRUB_HW_TUNABLE /* Hardware scrub frequency is tunable */ |
| }; |
| |
| #define SCRUB_FLAG_SW_PROG BIT(SCRUB_SW_PROG) |
| #define SCRUB_FLAG_SW_SRC BIT(SCRUB_SW_SRC) |
| #define SCRUB_FLAG_SW_PROG_SRC BIT(SCRUB_SW_PROG_SRC) |
| #define SCRUB_FLAG_SW_TUN BIT(SCRUB_SW_SCRUB_TUNABLE) |
| #define SCRUB_FLAG_HW_PROG BIT(SCRUB_HW_PROG) |
| #define SCRUB_FLAG_HW_SRC BIT(SCRUB_HW_SRC) |
| #define SCRUB_FLAG_HW_PROG_SRC BIT(SCRUB_HW_PROG_SRC) |
| #define SCRUB_FLAG_HW_TUN BIT(SCRUB_HW_TUNABLE) |
| |
| /* FIXME - should have notify capabilities: NMI, LOG, PROC, etc */ |
| |
| /* EDAC internal operation states */ |
| #define OP_ALLOC 0x100 |
| #define OP_RUNNING_POLL 0x201 |
| #define OP_RUNNING_INTERRUPT 0x202 |
| #define OP_RUNNING_POLL_INTR 0x203 |
| #define OP_OFFLINE 0x300 |
| |
| /* |
| * There are several things to be aware of that aren't at all obvious: |
| * |
| * |
| * SOCKETS, SOCKET SETS, BANKS, ROWS, CHIP-SELECT ROWS, CHANNELS, etc.. |
| * |
| * These are some of the many terms that are thrown about that don't always |
| * mean what people think they mean (Inconceivable!). In the interest of |
| * creating a common ground for discussion, terms and their definitions |
| * will be established. |
| * |
| * Memory devices: The individual chip on a memory stick. These devices |
| * commonly output 4 and 8 bits each. Grouping several |
| * of these in parallel provides 64 bits which is common |
| * for a memory stick. |
| * |
| * Memory Stick: A printed circuit board that agregates multiple |
| * memory devices in parallel. This is the atomic |
| * memory component that is purchaseable by Joe consumer |
| * and loaded into a memory socket. |
| * |
| * Socket: A physical connector on the motherboard that accepts |
| * a single memory stick. |
| * |
| * Channel: Set of memory devices on a memory stick that must be |
| * grouped in parallel with one or more additional |
| * channels from other memory sticks. This parallel |
| * grouping of the output from multiple channels are |
| * necessary for the smallest granularity of memory access. |
| * Some memory controllers are capable of single channel - |
| * which means that memory sticks can be loaded |
| * individually. Other memory controllers are only |
| * capable of dual channel - which means that memory |
| * sticks must be loaded as pairs (see "socket set"). |
| * |
| * Chip-select row: All of the memory devices that are selected together. |
| * for a single, minimum grain of memory access. |
| * This selects all of the parallel memory devices across |
| * all of the parallel channels. Common chip-select rows |
| * for single channel are 64 bits, for dual channel 128 |
| * bits. |
| * |
| * Single-Ranked stick: A Single-ranked stick has 1 chip-select row of memory. |
| * Motherboards commonly drive two chip-select pins to |
| * a memory stick. A single-ranked stick, will occupy |
| * only one of those rows. The other will be unused. |
| * |
| * Double-Ranked stick: A double-ranked stick has two chip-select rows which |
| * access different sets of memory devices. The two |
| * rows cannot be accessed concurrently. |
| * |
| * Double-sided stick: DEPRECATED TERM, see Double-Ranked stick. |
| * A double-sided stick has two chip-select rows which |
| * access different sets of memory devices. The two |
| * rows cannot be accessed concurrently. "Double-sided" |
| * is irrespective of the memory devices being mounted |
| * on both sides of the memory stick. |
| * |
| * Socket set: All of the memory sticks that are required for |
| * a single memory access or all of the memory sticks |
| * spanned by a chip-select row. A single socket set |
| * has two chip-select rows and if double-sided sticks |
| * are used these will occupy those chip-select rows. |
| * |
| * Bank: This term is avoided because it is unclear when |
| * needing to distinguish between chip-select rows and |
| * socket sets. |
| * |
| * Controller pages: |
| * |
| * Physical pages: |
| * |
| * Virtual pages: |
| * |
| * |
| * STRUCTURE ORGANIZATION AND CHOICES |
| * |
| * |
| * |
| * PS - I enjoyed writing all that about as much as you enjoyed reading it. |
| */ |
| |
| struct channel_info { |
| int chan_idx; /* channel index */ |
| u32 ce_count; /* Correctable Errors for this CHANNEL */ |
| char label[EDAC_MC_LABEL_LEN + 1]; /* DIMM label on motherboard */ |
| struct csrow_info *csrow; /* the parent */ |
| }; |
| |
| struct csrow_info { |
| unsigned long first_page; /* first page number in dimm */ |
| unsigned long last_page; /* last page number in dimm */ |
| unsigned long page_mask; /* used for interleaving - |
| * 0UL for non intlv |
| */ |
| u32 nr_pages; /* number of pages in csrow */ |
| u32 grain; /* granularity of reported error in bytes */ |
| int csrow_idx; /* the chip-select row */ |
| enum dev_type dtype; /* memory device type */ |
| u32 ue_count; /* Uncorrectable Errors for this csrow */ |
| u32 ce_count; /* Correctable Errors for this csrow */ |
| enum mem_type mtype; /* memory csrow type */ |
| enum edac_type edac_mode; /* EDAC mode for this csrow */ |
| struct mem_ctl_info *mci; /* the parent */ |
| |
| struct kobject kobj; /* sysfs kobject for this csrow */ |
| |
| /* channel information for this csrow */ |
| u32 nr_channels; |
| struct channel_info *channels; |
| }; |
| |
| struct mcidev_sysfs_group { |
| const char *name; /* group name */ |
| const struct mcidev_sysfs_attribute *mcidev_attr; /* group attributes */ |
| }; |
| |
| struct mcidev_sysfs_group_kobj { |
| struct list_head list; /* list for all instances within a mc */ |
| |
| struct kobject kobj; /* kobj for the group */ |
| |
| const struct mcidev_sysfs_group *grp; /* group description table */ |
| struct mem_ctl_info *mci; /* the parent */ |
| }; |
| |
| /* mcidev_sysfs_attribute structure |
| * used for driver sysfs attributes and in mem_ctl_info |
| * sysfs top level entries |
| */ |
| struct mcidev_sysfs_attribute { |
| /* It should use either attr or grp */ |
| struct attribute attr; |
| const struct mcidev_sysfs_group *grp; /* Points to a group of attributes */ |
| |
| /* Ops for show/store values at the attribute - not used on group */ |
| ssize_t (*show)(struct mem_ctl_info *,char *); |
| ssize_t (*store)(struct mem_ctl_info *, const char *,size_t); |
| }; |
| |
| /* MEMORY controller information structure |
| */ |
| struct mem_ctl_info { |
| struct list_head link; /* for global list of mem_ctl_info structs */ |
| |
| struct module *owner; /* Module owner of this control struct */ |
| |
| unsigned long mtype_cap; /* memory types supported by mc */ |
| unsigned long edac_ctl_cap; /* Mem controller EDAC capabilities */ |
| unsigned long edac_cap; /* configuration capabilities - this is |
| * closely related to edac_ctl_cap. The |
| * difference is that the controller may be |
| * capable of s4ecd4ed which would be listed |
| * in edac_ctl_cap, but if channels aren't |
| * capable of s4ecd4ed then the edac_cap would |
| * not have that capability. |
| */ |
| unsigned long scrub_cap; /* chipset scrub capabilities */ |
| enum scrub_type scrub_mode; /* current scrub mode */ |
| |
| /* Translates sdram memory scrub rate given in bytes/sec to the |
| internal representation and configures whatever else needs |
| to be configured. |
| */ |
| int (*set_sdram_scrub_rate) (struct mem_ctl_info * mci, u32 bw); |
| |
| /* Get the current sdram memory scrub rate from the internal |
| representation and converts it to the closest matching |
| bandwith in bytes/sec. |
| */ |
| int (*get_sdram_scrub_rate) (struct mem_ctl_info * mci); |
| |
| |
| /* pointer to edac checking routine */ |
| void (*edac_check) (struct mem_ctl_info * mci); |
| |
| /* |
| * Remaps memory pages: controller pages to physical pages. |
| * For most MC's, this will be NULL. |
| */ |
| /* FIXME - why not send the phys page to begin with? */ |
| unsigned long (*ctl_page_to_phys) (struct mem_ctl_info * mci, |
| unsigned long page); |
| int mc_idx; |
| int nr_csrows; |
| struct csrow_info *csrows; |
| /* |
| * FIXME - what about controllers on other busses? - IDs must be |
| * unique. dev pointer should be sufficiently unique, but |
| * BUS:SLOT.FUNC numbers may not be unique. |
| */ |
| struct device *dev; |
| const char *mod_name; |
| const char *mod_ver; |
| const char *ctl_name; |
| const char *dev_name; |
| char proc_name[MC_PROC_NAME_MAX_LEN + 1]; |
| void *pvt_info; |
| u32 ue_noinfo_count; /* Uncorrectable Errors w/o info */ |
| u32 ce_noinfo_count; /* Correctable Errors w/o info */ |
| u32 ue_count; /* Total Uncorrectable Errors for this MC */ |
| u32 ce_count; /* Total Correctable Errors for this MC */ |
| unsigned long start_time; /* mci load start time (in jiffies) */ |
| |
| /* this stuff is for safe removal of mc devices from global list while |
| * NMI handlers may be traversing list |
| */ |
| struct rcu_head rcu; |
| struct completion complete; |
| |
| /* edac sysfs device control */ |
| struct kobject edac_mci_kobj; |
| |
| /* list for all grp instances within a mc */ |
| struct list_head grp_kobj_list; |
| |
| /* Additional top controller level attributes, but specified |
| * by the low level driver. |
| * |
| * Set by the low level driver to provide attributes at the |
| * controller level, same level as 'ue_count' and 'ce_count' above. |
| * An array of structures, NULL terminated |
| * |
| * If attributes are desired, then set to array of attributes |
| * If no attributes are desired, leave NULL |
| */ |
| const struct mcidev_sysfs_attribute *mc_driver_sysfs_attributes; |
| |
| /* work struct for this MC */ |
| struct delayed_work work; |
| |
| /* the internal state of this controller instance */ |
| int op_state; |
| }; |
| |
| /* |
| * The following are the structures to provide for a generic |
| * or abstract 'edac_device'. This set of structures and the |
| * code that implements the APIs for the same, provide for |
| * registering EDAC type devices which are NOT standard memory. |
| * |
| * CPU caches (L1 and L2) |
| * DMA engines |
| * Core CPU swithces |
| * Fabric switch units |
| * PCIe interface controllers |
| * other EDAC/ECC type devices that can be monitored for |
| * errors, etc. |
| * |
| * It allows for a 2 level set of hiearchry. For example: |
| * |
| * cache could be composed of L1, L2 and L3 levels of cache. |
| * Each CPU core would have its own L1 cache, while sharing |
| * L2 and maybe L3 caches. |
| * |
| * View them arranged, via the sysfs presentation: |
| * /sys/devices/system/edac/.. |
| * |
| * mc/ <existing memory device directory> |
| * cpu/cpu0/.. <L1 and L2 block directory> |
| * /L1-cache/ce_count |
| * /ue_count |
| * /L2-cache/ce_count |
| * /ue_count |
| * cpu/cpu1/.. <L1 and L2 block directory> |
| * /L1-cache/ce_count |
| * /ue_count |
| * /L2-cache/ce_count |
| * /ue_count |
| * ... |
| * |
| * the L1 and L2 directories would be "edac_device_block's" |
| */ |
| |
| struct edac_device_counter { |
| u32 ue_count; |
| u32 ce_count; |
| }; |
| |
| /* forward reference */ |
| struct edac_device_ctl_info; |
| struct edac_device_block; |
| |
| /* edac_dev_sysfs_attribute structure |
| * used for driver sysfs attributes in mem_ctl_info |
| * for extra controls and attributes: |
| * like high level error Injection controls |
| */ |
| struct edac_dev_sysfs_attribute { |
| struct attribute attr; |
| ssize_t (*show)(struct edac_device_ctl_info *, char *); |
| ssize_t (*store)(struct edac_device_ctl_info *, const char *, size_t); |
| }; |
| |
| /* edac_dev_sysfs_block_attribute structure |
| * |
| * used in leaf 'block' nodes for adding controls/attributes |
| * |
| * each block in each instance of the containing control structure |
| * can have an array of the following. The show and store functions |
| * will be filled in with the show/store function in the |
| * low level driver. |
| * |
| * The 'value' field will be the actual value field used for |
| * counting |
| */ |
| struct edac_dev_sysfs_block_attribute { |
| struct attribute attr; |
| ssize_t (*show)(struct kobject *, struct attribute *, char *); |
| ssize_t (*store)(struct kobject *, struct attribute *, |
| const char *, size_t); |
| struct edac_device_block *block; |
| |
| unsigned int value; |
| }; |
| |
| /* device block control structure */ |
| struct edac_device_block { |
| struct edac_device_instance *instance; /* Up Pointer */ |
| char name[EDAC_DEVICE_NAME_LEN + 1]; |
| |
| struct edac_device_counter counters; /* basic UE and CE counters */ |
| |
| int nr_attribs; /* how many attributes */ |
| |
| /* this block's attributes, could be NULL */ |
| struct edac_dev_sysfs_block_attribute *block_attributes; |
| |
| /* edac sysfs device control */ |
| struct kobject kobj; |
| }; |
| |
| /* device instance control structure */ |
| struct edac_device_instance { |
| struct edac_device_ctl_info *ctl; /* Up pointer */ |
| char name[EDAC_DEVICE_NAME_LEN + 4]; |
| |
| struct edac_device_counter counters; /* instance counters */ |
| |
| u32 nr_blocks; /* how many blocks */ |
| struct edac_device_block *blocks; /* block array */ |
| |
| /* edac sysfs device control */ |
| struct kobject kobj; |
| }; |
| |
| |
| /* |
| * Abstract edac_device control info structure |
| * |
| */ |
| struct edac_device_ctl_info { |
| /* for global list of edac_device_ctl_info structs */ |
| struct list_head link; |
| |
| struct module *owner; /* Module owner of this control struct */ |
| |
| int dev_idx; |
| |
| /* Per instance controls for this edac_device */ |
| int log_ue; /* boolean for logging UEs */ |
| int log_ce; /* boolean for logging CEs */ |
| int panic_on_ue; /* boolean for panic'ing on an UE */ |
| unsigned poll_msec; /* number of milliseconds to poll interval */ |
| unsigned long delay; /* number of jiffies for poll_msec */ |
| |
| /* Additional top controller level attributes, but specified |
| * by the low level driver. |
| * |
| * Set by the low level driver to provide attributes at the |
| * controller level, same level as 'ue_count' and 'ce_count' above. |
| * An array of structures, NULL terminated |
| * |
| * If attributes are desired, then set to array of attributes |
| * If no attributes are desired, leave NULL |
| */ |
| struct edac_dev_sysfs_attribute *sysfs_attributes; |
| |
| /* pointer to main 'edac' class in sysfs */ |
| struct sysdev_class *edac_class; |
| |
| /* the internal state of this controller instance */ |
| int op_state; |
| /* work struct for this instance */ |
| struct delayed_work work; |
| |
| /* pointer to edac polling checking routine: |
| * If NOT NULL: points to polling check routine |
| * If NULL: Then assumes INTERRUPT operation, where |
| * MC driver will receive events |
| */ |
| void (*edac_check) (struct edac_device_ctl_info * edac_dev); |
| |
| struct device *dev; /* pointer to device structure */ |
| |
| const char *mod_name; /* module name */ |
| const char *ctl_name; /* edac controller name */ |
| const char *dev_name; /* pci/platform/etc... name */ |
| |
| void *pvt_info; /* pointer to 'private driver' info */ |
| |
| unsigned long start_time; /* edac_device load start time (jiffies) */ |
| |
| /* these are for safe removal of mc devices from global list while |
| * NMI handlers may be traversing list |
| */ |
| struct rcu_head rcu; |
| struct completion removal_complete; |
| |
| /* sysfs top name under 'edac' directory |
| * and instance name: |
| * cpu/cpu0/... |
| * cpu/cpu1/... |
| * cpu/cpu2/... |
| * ... |
| */ |
| char name[EDAC_DEVICE_NAME_LEN + 1]; |
| |
| /* Number of instances supported on this control structure |
| * and the array of those instances |
| */ |
| u32 nr_instances; |
| struct edac_device_instance *instances; |
| |
| /* Event counters for the this whole EDAC Device */ |
| struct edac_device_counter counters; |
| |
| /* edac sysfs device control for the 'name' |
| * device this structure controls |
| */ |
| struct kobject kobj; |
| }; |
| |
| /* To get from the instance's wq to the beginning of the ctl structure */ |
| #define to_edac_mem_ctl_work(w) \ |
| container_of(w, struct mem_ctl_info, work) |
| |
| #define to_edac_device_ctl_work(w) \ |
| container_of(w,struct edac_device_ctl_info,work) |
| |
| /* |
| * The alloc() and free() functions for the 'edac_device' control info |
| * structure. A MC driver will allocate one of these for each edac_device |
| * it is going to control/register with the EDAC CORE. |
| */ |
| extern struct edac_device_ctl_info *edac_device_alloc_ctl_info( |
| unsigned sizeof_private, |
| char *edac_device_name, unsigned nr_instances, |
| char *edac_block_name, unsigned nr_blocks, |
| unsigned offset_value, |
| struct edac_dev_sysfs_block_attribute *block_attributes, |
| unsigned nr_attribs, |
| int device_index); |
| |
| /* The offset value can be: |
| * -1 indicating no offset value |
| * 0 for zero-based block numbers |
| * 1 for 1-based block number |
| * other for other-based block number |
| */ |
| #define BLOCK_OFFSET_VALUE_OFF ((unsigned) -1) |
| |
| extern void edac_device_free_ctl_info(struct edac_device_ctl_info *ctl_info); |
| |
| #ifdef CONFIG_PCI |
| |
| struct edac_pci_counter { |
| atomic_t pe_count; |
| atomic_t npe_count; |
| }; |
| |
| /* |
| * Abstract edac_pci control info structure |
| * |
| */ |
| struct edac_pci_ctl_info { |
| /* for global list of edac_pci_ctl_info structs */ |
| struct list_head link; |
| |
| int pci_idx; |
| |
| struct sysdev_class *edac_class; /* pointer to class */ |
| |
| /* the internal state of this controller instance */ |
| int op_state; |
| /* work struct for this instance */ |
| struct delayed_work work; |
| |
| /* pointer to edac polling checking routine: |
| * If NOT NULL: points to polling check routine |
| * If NULL: Then assumes INTERRUPT operation, where |
| * MC driver will receive events |
| */ |
| void (*edac_check) (struct edac_pci_ctl_info * edac_dev); |
| |
| struct device *dev; /* pointer to device structure */ |
| |
| const char *mod_name; /* module name */ |
| const char *ctl_name; /* edac controller name */ |
| const char *dev_name; /* pci/platform/etc... name */ |
| |
| void *pvt_info; /* pointer to 'private driver' info */ |
| |
| unsigned long start_time; /* edac_pci load start time (jiffies) */ |
| |
| /* these are for safe removal of devices from global list while |
| * NMI handlers may be traversing list |
| */ |
| struct rcu_head rcu; |
| struct completion complete; |
| |
| /* sysfs top name under 'edac' directory |
| * and instance name: |
| * cpu/cpu0/... |
| * cpu/cpu1/... |
| * cpu/cpu2/... |
| * ... |
| */ |
| char name[EDAC_DEVICE_NAME_LEN + 1]; |
| |
| /* Event counters for the this whole EDAC Device */ |
| struct edac_pci_counter counters; |
| |
| /* edac sysfs device control for the 'name' |
| * device this structure controls |
| */ |
| struct kobject kobj; |
| struct completion kobj_complete; |
| }; |
| |
| #define to_edac_pci_ctl_work(w) \ |
| container_of(w, struct edac_pci_ctl_info,work) |
| |
| /* write all or some bits in a byte-register*/ |
| static inline void pci_write_bits8(struct pci_dev *pdev, int offset, u8 value, |
| u8 mask) |
| { |
| if (mask != 0xff) { |
| u8 buf; |
| |
| pci_read_config_byte(pdev, offset, &buf); |
| value &= mask; |
| buf &= ~mask; |
| value |= buf; |
| } |
| |
| pci_write_config_byte(pdev, offset, value); |
| } |
| |
| /* write all or some bits in a word-register*/ |
| static inline void pci_write_bits16(struct pci_dev *pdev, int offset, |
| u16 value, u16 mask) |
| { |
| if (mask != 0xffff) { |
| u16 buf; |
| |
| pci_read_config_word(pdev, offset, &buf); |
| value &= mask; |
| buf &= ~mask; |
| value |= buf; |
| } |
| |
| pci_write_config_word(pdev, offset, value); |
| } |
| |
| /* |
| * pci_write_bits32 |
| * |
| * edac local routine to do pci_write_config_dword, but adds |
| * a mask parameter. If mask is all ones, ignore the mask. |
| * Otherwise utilize the mask to isolate specified bits |
| * |
| * write all or some bits in a dword-register |
| */ |
| static inline void pci_write_bits32(struct pci_dev *pdev, int offset, |
| u32 value, u32 mask) |
| { |
| if (mask != 0xffffffff) { |
| u32 buf; |
| |
| pci_read_config_dword(pdev, offset, &buf); |
| value &= mask; |
| buf &= ~mask; |
| value |= buf; |
| } |
| |
| pci_write_config_dword(pdev, offset, value); |
| } |
| |
| #endif /* CONFIG_PCI */ |
| |
| extern struct mem_ctl_info *edac_mc_alloc(unsigned sz_pvt, unsigned nr_csrows, |
| unsigned nr_chans, int edac_index); |
| extern int edac_mc_add_mc(struct mem_ctl_info *mci); |
| extern void edac_mc_free(struct mem_ctl_info *mci); |
| extern struct mem_ctl_info *edac_mc_find(int idx); |
| extern struct mem_ctl_info *find_mci_by_dev(struct device *dev); |
| extern struct mem_ctl_info *edac_mc_del_mc(struct device *dev); |
| extern int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, |
| unsigned long page); |
| |
| /* |
| * The no info errors are used when error overflows are reported. |
| * There are a limited number of error logging registers that can |
| * be exausted. When all registers are exhausted and an additional |
| * error occurs then an error overflow register records that an |
| * error occured and the type of error, but doesn't have any |
| * further information. The ce/ue versions make for cleaner |
| * reporting logic and function interface - reduces conditional |
| * statement clutter and extra function arguments. |
| */ |
| extern void edac_mc_handle_ce(struct mem_ctl_info *mci, |
| unsigned long page_frame_number, |
| unsigned long offset_in_page, |
| unsigned long syndrome, int row, int channel, |
| const char *msg); |
| extern void edac_mc_handle_ce_no_info(struct mem_ctl_info *mci, |
| const char *msg); |
| extern void edac_mc_handle_ue(struct mem_ctl_info *mci, |
| unsigned long page_frame_number, |
| unsigned long offset_in_page, int row, |
| const char *msg); |
| extern void edac_mc_handle_ue_no_info(struct mem_ctl_info *mci, |
| const char *msg); |
| extern void edac_mc_handle_fbd_ue(struct mem_ctl_info *mci, unsigned int csrow, |
| unsigned int channel0, unsigned int channel1, |
| char *msg); |
| extern void edac_mc_handle_fbd_ce(struct mem_ctl_info *mci, unsigned int csrow, |
| unsigned int channel, char *msg); |
| |
| /* |
| * edac_device APIs |
| */ |
| extern int edac_device_add_device(struct edac_device_ctl_info *edac_dev); |
| extern struct edac_device_ctl_info *edac_device_del_device(struct device *dev); |
| extern void edac_device_handle_ue(struct edac_device_ctl_info *edac_dev, |
| int inst_nr, int block_nr, const char *msg); |
| extern void edac_device_handle_ce(struct edac_device_ctl_info *edac_dev, |
| int inst_nr, int block_nr, const char *msg); |
| extern int edac_device_alloc_index(void); |
| |
| /* |
| * edac_pci APIs |
| */ |
| extern struct edac_pci_ctl_info *edac_pci_alloc_ctl_info(unsigned int sz_pvt, |
| const char *edac_pci_name); |
| |
| extern void edac_pci_free_ctl_info(struct edac_pci_ctl_info *pci); |
| |
| extern void edac_pci_reset_delay_period(struct edac_pci_ctl_info *pci, |
| unsigned long value); |
| |
| extern int edac_pci_alloc_index(void); |
| extern int edac_pci_add_device(struct edac_pci_ctl_info *pci, int edac_idx); |
| extern struct edac_pci_ctl_info *edac_pci_del_device(struct device *dev); |
| |
| extern struct edac_pci_ctl_info *edac_pci_create_generic_ctl( |
| struct device *dev, |
| const char *mod_name); |
| |
| extern void edac_pci_release_generic_ctl(struct edac_pci_ctl_info *pci); |
| extern int edac_pci_create_sysfs(struct edac_pci_ctl_info *pci); |
| extern void edac_pci_remove_sysfs(struct edac_pci_ctl_info *pci); |
| |
| /* |
| * edac misc APIs |
| */ |
| extern char *edac_op_state_to_string(int op_state); |
| |
| #endif /* _EDAC_CORE_H_ */ |