| /* |
| * pm.h - Power management interface |
| * |
| * Copyright (C) 2000 Andrew Henroid |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| */ |
| |
| #ifndef _LINUX_PM_H |
| #define _LINUX_PM_H |
| |
| #include <linux/list.h> |
| #include <asm/atomic.h> |
| #include <asm/errno.h> |
| |
| /* |
| * Power management requests... these are passed to pm_send_all() and friends. |
| * |
| * these functions are old and deprecated, see below. |
| */ |
| typedef int __bitwise pm_request_t; |
| |
| #define PM_SUSPEND ((__force pm_request_t) 1) /* enter D1-D3 */ |
| #define PM_RESUME ((__force pm_request_t) 2) /* enter D0 */ |
| |
| |
| /* |
| * Device types... these are passed to pm_register |
| */ |
| typedef int __bitwise pm_dev_t; |
| |
| #define PM_UNKNOWN_DEV ((__force pm_dev_t) 0) /* generic */ |
| #define PM_SYS_DEV ((__force pm_dev_t) 1) /* system device (fan, KB controller, ...) */ |
| #define PM_PCI_DEV ((__force pm_dev_t) 2) /* PCI device */ |
| #define PM_USB_DEV ((__force pm_dev_t) 3) /* USB device */ |
| #define PM_SCSI_DEV ((__force pm_dev_t) 4) /* SCSI device */ |
| #define PM_ISA_DEV ((__force pm_dev_t) 5) /* ISA device */ |
| #define PM_MTD_DEV ((__force pm_dev_t) 6) /* Memory Technology Device */ |
| |
| /* |
| * System device hardware ID (PnP) values |
| */ |
| enum |
| { |
| PM_SYS_UNKNOWN = 0x00000000, /* generic */ |
| PM_SYS_KBC = 0x41d00303, /* keyboard controller */ |
| PM_SYS_COM = 0x41d00500, /* serial port */ |
| PM_SYS_IRDA = 0x41d00510, /* IRDA controller */ |
| PM_SYS_FDC = 0x41d00700, /* floppy controller */ |
| PM_SYS_VGA = 0x41d00900, /* VGA controller */ |
| PM_SYS_PCMCIA = 0x41d00e00, /* PCMCIA controller */ |
| }; |
| |
| /* |
| * Device identifier |
| */ |
| #define PM_PCI_ID(dev) ((dev)->bus->number << 16 | (dev)->devfn) |
| |
| /* |
| * Request handler callback |
| */ |
| struct pm_dev; |
| |
| typedef int (*pm_callback)(struct pm_dev *dev, pm_request_t rqst, void *data); |
| |
| /* |
| * Dynamic device information |
| */ |
| struct pm_dev |
| { |
| pm_dev_t type; |
| unsigned long id; |
| pm_callback callback; |
| void *data; |
| |
| unsigned long flags; |
| unsigned long state; |
| unsigned long prev_state; |
| |
| struct list_head entry; |
| }; |
| |
| /* Functions above this comment are list-based old-style power |
| * management. Please avoid using them. */ |
| |
| /* |
| * Callbacks for platform drivers to implement. |
| */ |
| extern void (*pm_idle)(void); |
| extern void (*pm_power_off)(void); |
| extern void (*pm_power_off_prepare)(void); |
| |
| /* |
| * Device power management |
| */ |
| |
| struct device; |
| |
| typedef struct pm_message { |
| int event; |
| } pm_message_t; |
| |
| /* |
| * Several driver power state transitions are externally visible, affecting |
| * the state of pending I/O queues and (for drivers that touch hardware) |
| * interrupts, wakeups, DMA, and other hardware state. There may also be |
| * internal transitions to various low power modes, which are transparent |
| * to the rest of the driver stack (such as a driver that's ON gating off |
| * clocks which are not in active use). |
| * |
| * One transition is triggered by resume(), after a suspend() call; the |
| * message is implicit: |
| * |
| * ON Driver starts working again, responding to hardware events |
| * and software requests. The hardware may have gone through |
| * a power-off reset, or it may have maintained state from the |
| * previous suspend() which the driver will rely on while |
| * resuming. On most platforms, there are no restrictions on |
| * availability of resources like clocks during resume(). |
| * |
| * Other transitions are triggered by messages sent using suspend(). All |
| * these transitions quiesce the driver, so that I/O queues are inactive. |
| * That commonly entails turning off IRQs and DMA; there may be rules |
| * about how to quiesce that are specific to the bus or the device's type. |
| * (For example, network drivers mark the link state.) Other details may |
| * differ according to the message: |
| * |
| * SUSPEND Quiesce, enter a low power device state appropriate for |
| * the upcoming system state (such as PCI_D3hot), and enable |
| * wakeup events as appropriate. |
| * |
| * HIBERNATE Enter a low power device state appropriate for the hibernation |
| * state (eg. ACPI S4) and enable wakeup events as appropriate. |
| * |
| * FREEZE Quiesce operations so that a consistent image can be saved; |
| * but do NOT otherwise enter a low power device state, and do |
| * NOT emit system wakeup events. |
| * |
| * PRETHAW Quiesce as if for FREEZE; additionally, prepare for restoring |
| * the system from a snapshot taken after an earlier FREEZE. |
| * Some drivers will need to reset their hardware state instead |
| * of preserving it, to ensure that it's never mistaken for the |
| * state which that earlier snapshot had set up. |
| * |
| * A minimally power-aware driver treats all messages as SUSPEND, fully |
| * reinitializes its device during resume() -- whether or not it was reset |
| * during the suspend/resume cycle -- and can't issue wakeup events. |
| * |
| * More power-aware drivers may also use low power states at runtime as |
| * well as during system sleep states like PM_SUSPEND_STANDBY. They may |
| * be able to use wakeup events to exit from runtime low-power states, |
| * or from system low-power states such as standby or suspend-to-RAM. |
| */ |
| |
| #define PM_EVENT_ON 0 |
| #define PM_EVENT_FREEZE 1 |
| #define PM_EVENT_SUSPEND 2 |
| #define PM_EVENT_HIBERNATE 4 |
| #define PM_EVENT_PRETHAW 8 |
| |
| #define PM_EVENT_SLEEP (PM_EVENT_SUSPEND | PM_EVENT_HIBERNATE) |
| |
| #define PMSG_FREEZE ((struct pm_message){ .event = PM_EVENT_FREEZE, }) |
| #define PMSG_PRETHAW ((struct pm_message){ .event = PM_EVENT_PRETHAW, }) |
| #define PMSG_SUSPEND ((struct pm_message){ .event = PM_EVENT_SUSPEND, }) |
| #define PMSG_HIBERNATE ((struct pm_message){ .event = PM_EVENT_HIBERNATE, }) |
| #define PMSG_ON ((struct pm_message){ .event = PM_EVENT_ON, }) |
| |
| struct dev_pm_info { |
| pm_message_t power_state; |
| unsigned can_wakeup:1; |
| unsigned should_wakeup:1; |
| bool sleeping:1; /* Owned by the PM core */ |
| #ifdef CONFIG_PM_SLEEP |
| struct list_head entry; |
| #endif |
| }; |
| |
| extern int device_power_down(pm_message_t state); |
| extern void device_power_up(void); |
| extern void device_resume(void); |
| |
| #ifdef CONFIG_PM_SLEEP |
| extern int device_suspend(pm_message_t state); |
| extern int device_prepare_suspend(pm_message_t state); |
| |
| extern void __suspend_report_result(const char *function, void *fn, int ret); |
| |
| #define suspend_report_result(fn, ret) \ |
| do { \ |
| __suspend_report_result(__FUNCTION__, fn, ret); \ |
| } while (0) |
| |
| #else /* !CONFIG_PM_SLEEP */ |
| |
| static inline int device_suspend(pm_message_t state) |
| { |
| return 0; |
| } |
| |
| #define suspend_report_result(fn, ret) do {} while (0) |
| |
| #endif /* !CONFIG_PM_SLEEP */ |
| |
| /* |
| * Global Power Management flags |
| * Used to keep APM and ACPI from both being active |
| */ |
| extern unsigned int pm_flags; |
| |
| #define PM_APM 1 |
| #define PM_ACPI 2 |
| |
| #endif /* _LINUX_PM_H */ |