| /* |
| * Kernel-based Virtual Machine driver for Linux |
| * |
| * derived from drivers/kvm/kvm_main.c |
| * |
| * Copyright (C) 2006 Qumranet, Inc. |
| * Copyright (C) 2008 Qumranet, Inc. |
| * Copyright IBM Corporation, 2008 |
| * Copyright 2010 Red Hat, Inc. and/or its affiliates. |
| * |
| * Authors: |
| * Avi Kivity <avi@qumranet.com> |
| * Yaniv Kamay <yaniv@qumranet.com> |
| * Amit Shah <amit.shah@qumranet.com> |
| * Ben-Ami Yassour <benami@il.ibm.com> |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2. See |
| * the COPYING file in the top-level directory. |
| * |
| */ |
| |
| #include <linux/kvm_host.h> |
| #include "irq.h" |
| #include "mmu.h" |
| #include "i8254.h" |
| #include "tss.h" |
| #include "kvm_cache_regs.h" |
| #include "x86.h" |
| |
| #include <linux/clocksource.h> |
| #include <linux/interrupt.h> |
| #include <linux/kvm.h> |
| #include <linux/fs.h> |
| #include <linux/vmalloc.h> |
| #include <linux/module.h> |
| #include <linux/mman.h> |
| #include <linux/highmem.h> |
| #include <linux/iommu.h> |
| #include <linux/intel-iommu.h> |
| #include <linux/cpufreq.h> |
| #include <linux/user-return-notifier.h> |
| #include <linux/srcu.h> |
| #include <linux/slab.h> |
| #include <linux/perf_event.h> |
| #include <linux/uaccess.h> |
| #include <linux/hash.h> |
| #include <trace/events/kvm.h> |
| |
| #define CREATE_TRACE_POINTS |
| #include "trace.h" |
| |
| #include <asm/debugreg.h> |
| #include <asm/msr.h> |
| #include <asm/desc.h> |
| #include <asm/mtrr.h> |
| #include <asm/mce.h> |
| #include <asm/i387.h> |
| #include <asm/xcr.h> |
| #include <asm/pvclock.h> |
| #include <asm/div64.h> |
| |
| #define MAX_IO_MSRS 256 |
| #define CR0_RESERVED_BITS \ |
| (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \ |
| | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \ |
| | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG)) |
| #define CR4_RESERVED_BITS \ |
| (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\ |
| | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \ |
| | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \ |
| | X86_CR4_OSXSAVE \ |
| | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE)) |
| |
| #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR) |
| |
| #define KVM_MAX_MCE_BANKS 32 |
| #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P) |
| |
| /* EFER defaults: |
| * - enable syscall per default because its emulated by KVM |
| * - enable LME and LMA per default on 64 bit KVM |
| */ |
| #ifdef CONFIG_X86_64 |
| static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL; |
| #else |
| static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL; |
| #endif |
| |
| #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM |
| #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU |
| |
| static void update_cr8_intercept(struct kvm_vcpu *vcpu); |
| static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid, |
| struct kvm_cpuid_entry2 __user *entries); |
| |
| struct kvm_x86_ops *kvm_x86_ops; |
| EXPORT_SYMBOL_GPL(kvm_x86_ops); |
| |
| int ignore_msrs = 0; |
| module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR); |
| |
| #define KVM_NR_SHARED_MSRS 16 |
| |
| struct kvm_shared_msrs_global { |
| int nr; |
| u32 msrs[KVM_NR_SHARED_MSRS]; |
| }; |
| |
| struct kvm_shared_msrs { |
| struct user_return_notifier urn; |
| bool registered; |
| struct kvm_shared_msr_values { |
| u64 host; |
| u64 curr; |
| } values[KVM_NR_SHARED_MSRS]; |
| }; |
| |
| static struct kvm_shared_msrs_global __read_mostly shared_msrs_global; |
| static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs); |
| |
| struct kvm_stats_debugfs_item debugfs_entries[] = { |
| { "pf_fixed", VCPU_STAT(pf_fixed) }, |
| { "pf_guest", VCPU_STAT(pf_guest) }, |
| { "tlb_flush", VCPU_STAT(tlb_flush) }, |
| { "invlpg", VCPU_STAT(invlpg) }, |
| { "exits", VCPU_STAT(exits) }, |
| { "io_exits", VCPU_STAT(io_exits) }, |
| { "mmio_exits", VCPU_STAT(mmio_exits) }, |
| { "signal_exits", VCPU_STAT(signal_exits) }, |
| { "irq_window", VCPU_STAT(irq_window_exits) }, |
| { "nmi_window", VCPU_STAT(nmi_window_exits) }, |
| { "halt_exits", VCPU_STAT(halt_exits) }, |
| { "halt_wakeup", VCPU_STAT(halt_wakeup) }, |
| { "hypercalls", VCPU_STAT(hypercalls) }, |
| { "request_irq", VCPU_STAT(request_irq_exits) }, |
| { "irq_exits", VCPU_STAT(irq_exits) }, |
| { "host_state_reload", VCPU_STAT(host_state_reload) }, |
| { "efer_reload", VCPU_STAT(efer_reload) }, |
| { "fpu_reload", VCPU_STAT(fpu_reload) }, |
| { "insn_emulation", VCPU_STAT(insn_emulation) }, |
| { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) }, |
| { "irq_injections", VCPU_STAT(irq_injections) }, |
| { "nmi_injections", VCPU_STAT(nmi_injections) }, |
| { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) }, |
| { "mmu_pte_write", VM_STAT(mmu_pte_write) }, |
| { "mmu_pte_updated", VM_STAT(mmu_pte_updated) }, |
| { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) }, |
| { "mmu_flooded", VM_STAT(mmu_flooded) }, |
| { "mmu_recycled", VM_STAT(mmu_recycled) }, |
| { "mmu_cache_miss", VM_STAT(mmu_cache_miss) }, |
| { "mmu_unsync", VM_STAT(mmu_unsync) }, |
| { "remote_tlb_flush", VM_STAT(remote_tlb_flush) }, |
| { "largepages", VM_STAT(lpages) }, |
| { NULL } |
| }; |
| |
| u64 __read_mostly host_xcr0; |
| |
| static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) |
| { |
| int i; |
| for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++) |
| vcpu->arch.apf.gfns[i] = ~0; |
| } |
| |
| static void kvm_on_user_return(struct user_return_notifier *urn) |
| { |
| unsigned slot; |
| struct kvm_shared_msrs *locals |
| = container_of(urn, struct kvm_shared_msrs, urn); |
| struct kvm_shared_msr_values *values; |
| |
| for (slot = 0; slot < shared_msrs_global.nr; ++slot) { |
| values = &locals->values[slot]; |
| if (values->host != values->curr) { |
| wrmsrl(shared_msrs_global.msrs[slot], values->host); |
| values->curr = values->host; |
| } |
| } |
| locals->registered = false; |
| user_return_notifier_unregister(urn); |
| } |
| |
| static void shared_msr_update(unsigned slot, u32 msr) |
| { |
| struct kvm_shared_msrs *smsr; |
| u64 value; |
| |
| smsr = &__get_cpu_var(shared_msrs); |
| /* only read, and nobody should modify it at this time, |
| * so don't need lock */ |
| if (slot >= shared_msrs_global.nr) { |
| printk(KERN_ERR "kvm: invalid MSR slot!"); |
| return; |
| } |
| rdmsrl_safe(msr, &value); |
| smsr->values[slot].host = value; |
| smsr->values[slot].curr = value; |
| } |
| |
| void kvm_define_shared_msr(unsigned slot, u32 msr) |
| { |
| if (slot >= shared_msrs_global.nr) |
| shared_msrs_global.nr = slot + 1; |
| shared_msrs_global.msrs[slot] = msr; |
| /* we need ensured the shared_msr_global have been updated */ |
| smp_wmb(); |
| } |
| EXPORT_SYMBOL_GPL(kvm_define_shared_msr); |
| |
| static void kvm_shared_msr_cpu_online(void) |
| { |
| unsigned i; |
| |
| for (i = 0; i < shared_msrs_global.nr; ++i) |
| shared_msr_update(i, shared_msrs_global.msrs[i]); |
| } |
| |
| void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask) |
| { |
| struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs); |
| |
| if (((value ^ smsr->values[slot].curr) & mask) == 0) |
| return; |
| smsr->values[slot].curr = value; |
| wrmsrl(shared_msrs_global.msrs[slot], value); |
| if (!smsr->registered) { |
| smsr->urn.on_user_return = kvm_on_user_return; |
| user_return_notifier_register(&smsr->urn); |
| smsr->registered = true; |
| } |
| } |
| EXPORT_SYMBOL_GPL(kvm_set_shared_msr); |
| |
| static void drop_user_return_notifiers(void *ignore) |
| { |
| struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs); |
| |
| if (smsr->registered) |
| kvm_on_user_return(&smsr->urn); |
| } |
| |
| u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) |
| { |
| if (irqchip_in_kernel(vcpu->kvm)) |
| return vcpu->arch.apic_base; |
| else |
| return vcpu->arch.apic_base; |
| } |
| EXPORT_SYMBOL_GPL(kvm_get_apic_base); |
| |
| void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data) |
| { |
| /* TODO: reserve bits check */ |
| if (irqchip_in_kernel(vcpu->kvm)) |
| kvm_lapic_set_base(vcpu, data); |
| else |
| vcpu->arch.apic_base = data; |
| } |
| EXPORT_SYMBOL_GPL(kvm_set_apic_base); |
| |
| #define EXCPT_BENIGN 0 |
| #define EXCPT_CONTRIBUTORY 1 |
| #define EXCPT_PF 2 |
| |
| static int exception_class(int vector) |
| { |
| switch (vector) { |
| case PF_VECTOR: |
| return EXCPT_PF; |
| case DE_VECTOR: |
| case TS_VECTOR: |
| case NP_VECTOR: |
| case SS_VECTOR: |
| case GP_VECTOR: |
| return EXCPT_CONTRIBUTORY; |
| default: |
| break; |
| } |
| return EXCPT_BENIGN; |
| } |
| |
| static void kvm_multiple_exception(struct kvm_vcpu *vcpu, |
| unsigned nr, bool has_error, u32 error_code, |
| bool reinject) |
| { |
| u32 prev_nr; |
| int class1, class2; |
| |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| |
| if (!vcpu->arch.exception.pending) { |
| queue: |
| vcpu->arch.exception.pending = true; |
| vcpu->arch.exception.has_error_code = has_error; |
| vcpu->arch.exception.nr = nr; |
| vcpu->arch.exception.error_code = error_code; |
| vcpu->arch.exception.reinject = reinject; |
| return; |
| } |
| |
| /* to check exception */ |
| prev_nr = vcpu->arch.exception.nr; |
| if (prev_nr == DF_VECTOR) { |
| /* triple fault -> shutdown */ |
| kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); |
| return; |
| } |
| class1 = exception_class(prev_nr); |
| class2 = exception_class(nr); |
| if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) |
| || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { |
| /* generate double fault per SDM Table 5-5 */ |
| vcpu->arch.exception.pending = true; |
| vcpu->arch.exception.has_error_code = true; |
| vcpu->arch.exception.nr = DF_VECTOR; |
| vcpu->arch.exception.error_code = 0; |
| } else |
| /* replace previous exception with a new one in a hope |
| that instruction re-execution will regenerate lost |
| exception */ |
| goto queue; |
| } |
| |
| void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) |
| { |
| kvm_multiple_exception(vcpu, nr, false, 0, false); |
| } |
| EXPORT_SYMBOL_GPL(kvm_queue_exception); |
| |
| void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) |
| { |
| kvm_multiple_exception(vcpu, nr, false, 0, true); |
| } |
| EXPORT_SYMBOL_GPL(kvm_requeue_exception); |
| |
| void kvm_inject_page_fault(struct kvm_vcpu *vcpu) |
| { |
| unsigned error_code = vcpu->arch.fault.error_code; |
| |
| ++vcpu->stat.pf_guest; |
| vcpu->arch.cr2 = vcpu->arch.fault.address; |
| kvm_queue_exception_e(vcpu, PF_VECTOR, error_code); |
| } |
| |
| void kvm_propagate_fault(struct kvm_vcpu *vcpu) |
| { |
| if (mmu_is_nested(vcpu) && !vcpu->arch.fault.nested) |
| vcpu->arch.nested_mmu.inject_page_fault(vcpu); |
| else |
| vcpu->arch.mmu.inject_page_fault(vcpu); |
| |
| vcpu->arch.fault.nested = false; |
| } |
| |
| void kvm_inject_nmi(struct kvm_vcpu *vcpu) |
| { |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| vcpu->arch.nmi_pending = 1; |
| } |
| EXPORT_SYMBOL_GPL(kvm_inject_nmi); |
| |
| void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) |
| { |
| kvm_multiple_exception(vcpu, nr, true, error_code, false); |
| } |
| EXPORT_SYMBOL_GPL(kvm_queue_exception_e); |
| |
| void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) |
| { |
| kvm_multiple_exception(vcpu, nr, true, error_code, true); |
| } |
| EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); |
| |
| /* |
| * Checks if cpl <= required_cpl; if true, return true. Otherwise queue |
| * a #GP and return false. |
| */ |
| bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) |
| { |
| if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl) |
| return true; |
| kvm_queue_exception_e(vcpu, GP_VECTOR, 0); |
| return false; |
| } |
| EXPORT_SYMBOL_GPL(kvm_require_cpl); |
| |
| /* |
| * This function will be used to read from the physical memory of the currently |
| * running guest. The difference to kvm_read_guest_page is that this function |
| * can read from guest physical or from the guest's guest physical memory. |
| */ |
| int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, |
| gfn_t ngfn, void *data, int offset, int len, |
| u32 access) |
| { |
| gfn_t real_gfn; |
| gpa_t ngpa; |
| |
| ngpa = gfn_to_gpa(ngfn); |
| real_gfn = mmu->translate_gpa(vcpu, ngpa, access); |
| if (real_gfn == UNMAPPED_GVA) |
| return -EFAULT; |
| |
| real_gfn = gpa_to_gfn(real_gfn); |
| |
| return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len); |
| } |
| EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); |
| |
| int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, |
| void *data, int offset, int len, u32 access) |
| { |
| return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn, |
| data, offset, len, access); |
| } |
| |
| /* |
| * Load the pae pdptrs. Return true is they are all valid. |
| */ |
| int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) |
| { |
| gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; |
| unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; |
| int i; |
| int ret; |
| u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; |
| |
| ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, |
| offset * sizeof(u64), sizeof(pdpte), |
| PFERR_USER_MASK|PFERR_WRITE_MASK); |
| if (ret < 0) { |
| ret = 0; |
| goto out; |
| } |
| for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { |
| if (is_present_gpte(pdpte[i]) && |
| (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) { |
| ret = 0; |
| goto out; |
| } |
| } |
| ret = 1; |
| |
| memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); |
| __set_bit(VCPU_EXREG_PDPTR, |
| (unsigned long *)&vcpu->arch.regs_avail); |
| __set_bit(VCPU_EXREG_PDPTR, |
| (unsigned long *)&vcpu->arch.regs_dirty); |
| out: |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(load_pdptrs); |
| |
| static bool pdptrs_changed(struct kvm_vcpu *vcpu) |
| { |
| u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)]; |
| bool changed = true; |
| int offset; |
| gfn_t gfn; |
| int r; |
| |
| if (is_long_mode(vcpu) || !is_pae(vcpu)) |
| return false; |
| |
| if (!test_bit(VCPU_EXREG_PDPTR, |
| (unsigned long *)&vcpu->arch.regs_avail)) |
| return true; |
| |
| gfn = (vcpu->arch.cr3 & ~31u) >> PAGE_SHIFT; |
| offset = (vcpu->arch.cr3 & ~31u) & (PAGE_SIZE - 1); |
| r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte), |
| PFERR_USER_MASK | PFERR_WRITE_MASK); |
| if (r < 0) |
| goto out; |
| changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0; |
| out: |
| |
| return changed; |
| } |
| |
| int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) |
| { |
| unsigned long old_cr0 = kvm_read_cr0(vcpu); |
| unsigned long update_bits = X86_CR0_PG | X86_CR0_WP | |
| X86_CR0_CD | X86_CR0_NW; |
| |
| cr0 |= X86_CR0_ET; |
| |
| #ifdef CONFIG_X86_64 |
| if (cr0 & 0xffffffff00000000UL) |
| return 1; |
| #endif |
| |
| cr0 &= ~CR0_RESERVED_BITS; |
| |
| if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) |
| return 1; |
| |
| if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) |
| return 1; |
| |
| if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { |
| #ifdef CONFIG_X86_64 |
| if ((vcpu->arch.efer & EFER_LME)) { |
| int cs_db, cs_l; |
| |
| if (!is_pae(vcpu)) |
| return 1; |
| kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); |
| if (cs_l) |
| return 1; |
| } else |
| #endif |
| if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, |
| vcpu->arch.cr3)) |
| return 1; |
| } |
| |
| kvm_x86_ops->set_cr0(vcpu, cr0); |
| |
| if ((cr0 ^ old_cr0) & X86_CR0_PG) |
| kvm_clear_async_pf_completion_queue(vcpu); |
| |
| if ((cr0 ^ old_cr0) & update_bits) |
| kvm_mmu_reset_context(vcpu); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvm_set_cr0); |
| |
| void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) |
| { |
| (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); |
| } |
| EXPORT_SYMBOL_GPL(kvm_lmsw); |
| |
| int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) |
| { |
| u64 xcr0; |
| |
| /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ |
| if (index != XCR_XFEATURE_ENABLED_MASK) |
| return 1; |
| xcr0 = xcr; |
| if (kvm_x86_ops->get_cpl(vcpu) != 0) |
| return 1; |
| if (!(xcr0 & XSTATE_FP)) |
| return 1; |
| if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE)) |
| return 1; |
| if (xcr0 & ~host_xcr0) |
| return 1; |
| vcpu->arch.xcr0 = xcr0; |
| vcpu->guest_xcr0_loaded = 0; |
| return 0; |
| } |
| |
| int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) |
| { |
| if (__kvm_set_xcr(vcpu, index, xcr)) { |
| kvm_inject_gp(vcpu, 0); |
| return 1; |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvm_set_xcr); |
| |
| static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_cpuid_entry2 *best; |
| |
| best = kvm_find_cpuid_entry(vcpu, 1, 0); |
| return best && (best->ecx & bit(X86_FEATURE_XSAVE)); |
| } |
| |
| static void update_cpuid(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_cpuid_entry2 *best; |
| |
| best = kvm_find_cpuid_entry(vcpu, 1, 0); |
| if (!best) |
| return; |
| |
| /* Update OSXSAVE bit */ |
| if (cpu_has_xsave && best->function == 0x1) { |
| best->ecx &= ~(bit(X86_FEATURE_OSXSAVE)); |
| if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) |
| best->ecx |= bit(X86_FEATURE_OSXSAVE); |
| } |
| } |
| |
| int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) |
| { |
| unsigned long old_cr4 = kvm_read_cr4(vcpu); |
| unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE; |
| |
| if (cr4 & CR4_RESERVED_BITS) |
| return 1; |
| |
| if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE)) |
| return 1; |
| |
| if (is_long_mode(vcpu)) { |
| if (!(cr4 & X86_CR4_PAE)) |
| return 1; |
| } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) |
| && ((cr4 ^ old_cr4) & pdptr_bits) |
| && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3)) |
| return 1; |
| |
| if (cr4 & X86_CR4_VMXE) |
| return 1; |
| |
| kvm_x86_ops->set_cr4(vcpu, cr4); |
| |
| if ((cr4 ^ old_cr4) & pdptr_bits) |
| kvm_mmu_reset_context(vcpu); |
| |
| if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE) |
| update_cpuid(vcpu); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvm_set_cr4); |
| |
| int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) |
| { |
| if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) { |
| kvm_mmu_sync_roots(vcpu); |
| kvm_mmu_flush_tlb(vcpu); |
| return 0; |
| } |
| |
| if (is_long_mode(vcpu)) { |
| if (cr3 & CR3_L_MODE_RESERVED_BITS) |
| return 1; |
| } else { |
| if (is_pae(vcpu)) { |
| if (cr3 & CR3_PAE_RESERVED_BITS) |
| return 1; |
| if (is_paging(vcpu) && |
| !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) |
| return 1; |
| } |
| /* |
| * We don't check reserved bits in nonpae mode, because |
| * this isn't enforced, and VMware depends on this. |
| */ |
| } |
| |
| /* |
| * Does the new cr3 value map to physical memory? (Note, we |
| * catch an invalid cr3 even in real-mode, because it would |
| * cause trouble later on when we turn on paging anyway.) |
| * |
| * A real CPU would silently accept an invalid cr3 and would |
| * attempt to use it - with largely undefined (and often hard |
| * to debug) behavior on the guest side. |
| */ |
| if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT))) |
| return 1; |
| vcpu->arch.cr3 = cr3; |
| vcpu->arch.mmu.new_cr3(vcpu); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvm_set_cr3); |
| |
| int __kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) |
| { |
| if (cr8 & CR8_RESERVED_BITS) |
| return 1; |
| if (irqchip_in_kernel(vcpu->kvm)) |
| kvm_lapic_set_tpr(vcpu, cr8); |
| else |
| vcpu->arch.cr8 = cr8; |
| return 0; |
| } |
| |
| void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) |
| { |
| if (__kvm_set_cr8(vcpu, cr8)) |
| kvm_inject_gp(vcpu, 0); |
| } |
| EXPORT_SYMBOL_GPL(kvm_set_cr8); |
| |
| unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) |
| { |
| if (irqchip_in_kernel(vcpu->kvm)) |
| return kvm_lapic_get_cr8(vcpu); |
| else |
| return vcpu->arch.cr8; |
| } |
| EXPORT_SYMBOL_GPL(kvm_get_cr8); |
| |
| static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) |
| { |
| switch (dr) { |
| case 0 ... 3: |
| vcpu->arch.db[dr] = val; |
| if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) |
| vcpu->arch.eff_db[dr] = val; |
| break; |
| case 4: |
| if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) |
| return 1; /* #UD */ |
| /* fall through */ |
| case 6: |
| if (val & 0xffffffff00000000ULL) |
| return -1; /* #GP */ |
| vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1; |
| break; |
| case 5: |
| if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) |
| return 1; /* #UD */ |
| /* fall through */ |
| default: /* 7 */ |
| if (val & 0xffffffff00000000ULL) |
| return -1; /* #GP */ |
| vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; |
| if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { |
| kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7); |
| vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK); |
| } |
| break; |
| } |
| |
| return 0; |
| } |
| |
| int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) |
| { |
| int res; |
| |
| res = __kvm_set_dr(vcpu, dr, val); |
| if (res > 0) |
| kvm_queue_exception(vcpu, UD_VECTOR); |
| else if (res < 0) |
| kvm_inject_gp(vcpu, 0); |
| |
| return res; |
| } |
| EXPORT_SYMBOL_GPL(kvm_set_dr); |
| |
| static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) |
| { |
| switch (dr) { |
| case 0 ... 3: |
| *val = vcpu->arch.db[dr]; |
| break; |
| case 4: |
| if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) |
| return 1; |
| /* fall through */ |
| case 6: |
| *val = vcpu->arch.dr6; |
| break; |
| case 5: |
| if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) |
| return 1; |
| /* fall through */ |
| default: /* 7 */ |
| *val = vcpu->arch.dr7; |
| break; |
| } |
| |
| return 0; |
| } |
| |
| int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) |
| { |
| if (_kvm_get_dr(vcpu, dr, val)) { |
| kvm_queue_exception(vcpu, UD_VECTOR); |
| return 1; |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvm_get_dr); |
| |
| /* |
| * List of msr numbers which we expose to userspace through KVM_GET_MSRS |
| * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. |
| * |
| * This list is modified at module load time to reflect the |
| * capabilities of the host cpu. This capabilities test skips MSRs that are |
| * kvm-specific. Those are put in the beginning of the list. |
| */ |
| |
| #define KVM_SAVE_MSRS_BEGIN 8 |
| static u32 msrs_to_save[] = { |
| MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, |
| MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, |
| HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, |
| HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, |
| MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, |
| MSR_STAR, |
| #ifdef CONFIG_X86_64 |
| MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, |
| #endif |
| MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA |
| }; |
| |
| static unsigned num_msrs_to_save; |
| |
| static u32 emulated_msrs[] = { |
| MSR_IA32_MISC_ENABLE, |
| MSR_IA32_MCG_STATUS, |
| MSR_IA32_MCG_CTL, |
| }; |
| |
| static int set_efer(struct kvm_vcpu *vcpu, u64 efer) |
| { |
| u64 old_efer = vcpu->arch.efer; |
| |
| if (efer & efer_reserved_bits) |
| return 1; |
| |
| if (is_paging(vcpu) |
| && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) |
| return 1; |
| |
| if (efer & EFER_FFXSR) { |
| struct kvm_cpuid_entry2 *feat; |
| |
| feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); |
| if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) |
| return 1; |
| } |
| |
| if (efer & EFER_SVME) { |
| struct kvm_cpuid_entry2 *feat; |
| |
| feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); |
| if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) |
| return 1; |
| } |
| |
| efer &= ~EFER_LMA; |
| efer |= vcpu->arch.efer & EFER_LMA; |
| |
| kvm_x86_ops->set_efer(vcpu, efer); |
| |
| vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled; |
| |
| /* Update reserved bits */ |
| if ((efer ^ old_efer) & EFER_NX) |
| kvm_mmu_reset_context(vcpu); |
| |
| return 0; |
| } |
| |
| void kvm_enable_efer_bits(u64 mask) |
| { |
| efer_reserved_bits &= ~mask; |
| } |
| EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); |
| |
| |
| /* |
| * Writes msr value into into the appropriate "register". |
| * Returns 0 on success, non-0 otherwise. |
| * Assumes vcpu_load() was already called. |
| */ |
| int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data) |
| { |
| return kvm_x86_ops->set_msr(vcpu, msr_index, data); |
| } |
| |
| /* |
| * Adapt set_msr() to msr_io()'s calling convention |
| */ |
| static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) |
| { |
| return kvm_set_msr(vcpu, index, *data); |
| } |
| |
| static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) |
| { |
| int version; |
| int r; |
| struct pvclock_wall_clock wc; |
| struct timespec boot; |
| |
| if (!wall_clock) |
| return; |
| |
| r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); |
| if (r) |
| return; |
| |
| if (version & 1) |
| ++version; /* first time write, random junk */ |
| |
| ++version; |
| |
| kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); |
| |
| /* |
| * The guest calculates current wall clock time by adding |
| * system time (updated by kvm_guest_time_update below) to the |
| * wall clock specified here. guest system time equals host |
| * system time for us, thus we must fill in host boot time here. |
| */ |
| getboottime(&boot); |
| |
| wc.sec = boot.tv_sec; |
| wc.nsec = boot.tv_nsec; |
| wc.version = version; |
| |
| kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); |
| |
| version++; |
| kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); |
| } |
| |
| static uint32_t div_frac(uint32_t dividend, uint32_t divisor) |
| { |
| uint32_t quotient, remainder; |
| |
| /* Don't try to replace with do_div(), this one calculates |
| * "(dividend << 32) / divisor" */ |
| __asm__ ( "divl %4" |
| : "=a" (quotient), "=d" (remainder) |
| : "0" (0), "1" (dividend), "r" (divisor) ); |
| return quotient; |
| } |
| |
| static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz, |
| s8 *pshift, u32 *pmultiplier) |
| { |
| uint64_t scaled64; |
| int32_t shift = 0; |
| uint64_t tps64; |
| uint32_t tps32; |
| |
| tps64 = base_khz * 1000LL; |
| scaled64 = scaled_khz * 1000LL; |
| while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { |
| tps64 >>= 1; |
| shift--; |
| } |
| |
| tps32 = (uint32_t)tps64; |
| while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { |
| if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) |
| scaled64 >>= 1; |
| else |
| tps32 <<= 1; |
| shift++; |
| } |
| |
| *pshift = shift; |
| *pmultiplier = div_frac(scaled64, tps32); |
| |
| pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n", |
| __func__, base_khz, scaled_khz, shift, *pmultiplier); |
| } |
| |
| static inline u64 get_kernel_ns(void) |
| { |
| struct timespec ts; |
| |
| WARN_ON(preemptible()); |
| ktime_get_ts(&ts); |
| monotonic_to_bootbased(&ts); |
| return timespec_to_ns(&ts); |
| } |
| |
| static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); |
| unsigned long max_tsc_khz; |
| |
| static inline int kvm_tsc_changes_freq(void) |
| { |
| int cpu = get_cpu(); |
| int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) && |
| cpufreq_quick_get(cpu) != 0; |
| put_cpu(); |
| return ret; |
| } |
| |
| static inline u64 nsec_to_cycles(u64 nsec) |
| { |
| u64 ret; |
| |
| WARN_ON(preemptible()); |
| if (kvm_tsc_changes_freq()) |
| printk_once(KERN_WARNING |
| "kvm: unreliable cycle conversion on adjustable rate TSC\n"); |
| ret = nsec * __get_cpu_var(cpu_tsc_khz); |
| do_div(ret, USEC_PER_SEC); |
| return ret; |
| } |
| |
| static void kvm_arch_set_tsc_khz(struct kvm *kvm, u32 this_tsc_khz) |
| { |
| /* Compute a scale to convert nanoseconds in TSC cycles */ |
| kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000, |
| &kvm->arch.virtual_tsc_shift, |
| &kvm->arch.virtual_tsc_mult); |
| kvm->arch.virtual_tsc_khz = this_tsc_khz; |
| } |
| |
| static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) |
| { |
| u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.last_tsc_nsec, |
| vcpu->kvm->arch.virtual_tsc_mult, |
| vcpu->kvm->arch.virtual_tsc_shift); |
| tsc += vcpu->arch.last_tsc_write; |
| return tsc; |
| } |
| |
| void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| u64 offset, ns, elapsed; |
| unsigned long flags; |
| s64 sdiff; |
| |
| spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); |
| offset = data - native_read_tsc(); |
| ns = get_kernel_ns(); |
| elapsed = ns - kvm->arch.last_tsc_nsec; |
| sdiff = data - kvm->arch.last_tsc_write; |
| if (sdiff < 0) |
| sdiff = -sdiff; |
| |
| /* |
| * Special case: close write to TSC within 5 seconds of |
| * another CPU is interpreted as an attempt to synchronize |
| * The 5 seconds is to accomodate host load / swapping as |
| * well as any reset of TSC during the boot process. |
| * |
| * In that case, for a reliable TSC, we can match TSC offsets, |
| * or make a best guest using elapsed value. |
| */ |
| if (sdiff < nsec_to_cycles(5ULL * NSEC_PER_SEC) && |
| elapsed < 5ULL * NSEC_PER_SEC) { |
| if (!check_tsc_unstable()) { |
| offset = kvm->arch.last_tsc_offset; |
| pr_debug("kvm: matched tsc offset for %llu\n", data); |
| } else { |
| u64 delta = nsec_to_cycles(elapsed); |
| offset += delta; |
| pr_debug("kvm: adjusted tsc offset by %llu\n", delta); |
| } |
| ns = kvm->arch.last_tsc_nsec; |
| } |
| kvm->arch.last_tsc_nsec = ns; |
| kvm->arch.last_tsc_write = data; |
| kvm->arch.last_tsc_offset = offset; |
| kvm_x86_ops->write_tsc_offset(vcpu, offset); |
| spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); |
| |
| /* Reset of TSC must disable overshoot protection below */ |
| vcpu->arch.hv_clock.tsc_timestamp = 0; |
| vcpu->arch.last_tsc_write = data; |
| vcpu->arch.last_tsc_nsec = ns; |
| } |
| EXPORT_SYMBOL_GPL(kvm_write_tsc); |
| |
| static int kvm_guest_time_update(struct kvm_vcpu *v) |
| { |
| unsigned long flags; |
| struct kvm_vcpu_arch *vcpu = &v->arch; |
| void *shared_kaddr; |
| unsigned long this_tsc_khz; |
| s64 kernel_ns, max_kernel_ns; |
| u64 tsc_timestamp; |
| |
| /* Keep irq disabled to prevent changes to the clock */ |
| local_irq_save(flags); |
| kvm_get_msr(v, MSR_IA32_TSC, &tsc_timestamp); |
| kernel_ns = get_kernel_ns(); |
| this_tsc_khz = __get_cpu_var(cpu_tsc_khz); |
| |
| if (unlikely(this_tsc_khz == 0)) { |
| local_irq_restore(flags); |
| kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); |
| return 1; |
| } |
| |
| /* |
| * We may have to catch up the TSC to match elapsed wall clock |
| * time for two reasons, even if kvmclock is used. |
| * 1) CPU could have been running below the maximum TSC rate |
| * 2) Broken TSC compensation resets the base at each VCPU |
| * entry to avoid unknown leaps of TSC even when running |
| * again on the same CPU. This may cause apparent elapsed |
| * time to disappear, and the guest to stand still or run |
| * very slowly. |
| */ |
| if (vcpu->tsc_catchup) { |
| u64 tsc = compute_guest_tsc(v, kernel_ns); |
| if (tsc > tsc_timestamp) { |
| kvm_x86_ops->adjust_tsc_offset(v, tsc - tsc_timestamp); |
| tsc_timestamp = tsc; |
| } |
| } |
| |
| local_irq_restore(flags); |
| |
| if (!vcpu->time_page) |
| return 0; |
| |
| /* |
| * Time as measured by the TSC may go backwards when resetting the base |
| * tsc_timestamp. The reason for this is that the TSC resolution is |
| * higher than the resolution of the other clock scales. Thus, many |
| * possible measurments of the TSC correspond to one measurement of any |
| * other clock, and so a spread of values is possible. This is not a |
| * problem for the computation of the nanosecond clock; with TSC rates |
| * around 1GHZ, there can only be a few cycles which correspond to one |
| * nanosecond value, and any path through this code will inevitably |
| * take longer than that. However, with the kernel_ns value itself, |
| * the precision may be much lower, down to HZ granularity. If the |
| * first sampling of TSC against kernel_ns ends in the low part of the |
| * range, and the second in the high end of the range, we can get: |
| * |
| * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new |
| * |
| * As the sampling errors potentially range in the thousands of cycles, |
| * it is possible such a time value has already been observed by the |
| * guest. To protect against this, we must compute the system time as |
| * observed by the guest and ensure the new system time is greater. |
| */ |
| max_kernel_ns = 0; |
| if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) { |
| max_kernel_ns = vcpu->last_guest_tsc - |
| vcpu->hv_clock.tsc_timestamp; |
| max_kernel_ns = pvclock_scale_delta(max_kernel_ns, |
| vcpu->hv_clock.tsc_to_system_mul, |
| vcpu->hv_clock.tsc_shift); |
| max_kernel_ns += vcpu->last_kernel_ns; |
| } |
| |
| if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) { |
| kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz, |
| &vcpu->hv_clock.tsc_shift, |
| &vcpu->hv_clock.tsc_to_system_mul); |
| vcpu->hw_tsc_khz = this_tsc_khz; |
| } |
| |
| if (max_kernel_ns > kernel_ns) |
| kernel_ns = max_kernel_ns; |
| |
| /* With all the info we got, fill in the values */ |
| vcpu->hv_clock.tsc_timestamp = tsc_timestamp; |
| vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; |
| vcpu->last_kernel_ns = kernel_ns; |
| vcpu->last_guest_tsc = tsc_timestamp; |
| vcpu->hv_clock.flags = 0; |
| |
| /* |
| * The interface expects us to write an even number signaling that the |
| * update is finished. Since the guest won't see the intermediate |
| * state, we just increase by 2 at the end. |
| */ |
| vcpu->hv_clock.version += 2; |
| |
| shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0); |
| |
| memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock, |
| sizeof(vcpu->hv_clock)); |
| |
| kunmap_atomic(shared_kaddr, KM_USER0); |
| |
| mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT); |
| return 0; |
| } |
| |
| static bool msr_mtrr_valid(unsigned msr) |
| { |
| switch (msr) { |
| case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1: |
| case MSR_MTRRfix64K_00000: |
| case MSR_MTRRfix16K_80000: |
| case MSR_MTRRfix16K_A0000: |
| case MSR_MTRRfix4K_C0000: |
| case MSR_MTRRfix4K_C8000: |
| case MSR_MTRRfix4K_D0000: |
| case MSR_MTRRfix4K_D8000: |
| case MSR_MTRRfix4K_E0000: |
| case MSR_MTRRfix4K_E8000: |
| case MSR_MTRRfix4K_F0000: |
| case MSR_MTRRfix4K_F8000: |
| case MSR_MTRRdefType: |
| case MSR_IA32_CR_PAT: |
| return true; |
| case 0x2f8: |
| return true; |
| } |
| return false; |
| } |
| |
| static bool valid_pat_type(unsigned t) |
| { |
| return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */ |
| } |
| |
| static bool valid_mtrr_type(unsigned t) |
| { |
| return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */ |
| } |
| |
| static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data) |
| { |
| int i; |
| |
| if (!msr_mtrr_valid(msr)) |
| return false; |
| |
| if (msr == MSR_IA32_CR_PAT) { |
| for (i = 0; i < 8; i++) |
| if (!valid_pat_type((data >> (i * 8)) & 0xff)) |
| return false; |
| return true; |
| } else if (msr == MSR_MTRRdefType) { |
| if (data & ~0xcff) |
| return false; |
| return valid_mtrr_type(data & 0xff); |
| } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) { |
| for (i = 0; i < 8 ; i++) |
| if (!valid_mtrr_type((data >> (i * 8)) & 0xff)) |
| return false; |
| return true; |
| } |
| |
| /* variable MTRRs */ |
| return valid_mtrr_type(data & 0xff); |
| } |
| |
| static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data) |
| { |
| u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; |
| |
| if (!mtrr_valid(vcpu, msr, data)) |
| return 1; |
| |
| if (msr == MSR_MTRRdefType) { |
| vcpu->arch.mtrr_state.def_type = data; |
| vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10; |
| } else if (msr == MSR_MTRRfix64K_00000) |
| p[0] = data; |
| else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) |
| p[1 + msr - MSR_MTRRfix16K_80000] = data; |
| else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) |
| p[3 + msr - MSR_MTRRfix4K_C0000] = data; |
| else if (msr == MSR_IA32_CR_PAT) |
| vcpu->arch.pat = data; |
| else { /* Variable MTRRs */ |
| int idx, is_mtrr_mask; |
| u64 *pt; |
| |
| idx = (msr - 0x200) / 2; |
| is_mtrr_mask = msr - 0x200 - 2 * idx; |
| if (!is_mtrr_mask) |
| pt = |
| (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo; |
| else |
| pt = |
| (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo; |
| *pt = data; |
| } |
| |
| kvm_mmu_reset_context(vcpu); |
| return 0; |
| } |
| |
| static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data) |
| { |
| u64 mcg_cap = vcpu->arch.mcg_cap; |
| unsigned bank_num = mcg_cap & 0xff; |
| |
| switch (msr) { |
| case MSR_IA32_MCG_STATUS: |
| vcpu->arch.mcg_status = data; |
| break; |
| case MSR_IA32_MCG_CTL: |
| if (!(mcg_cap & MCG_CTL_P)) |
| return 1; |
| if (data != 0 && data != ~(u64)0) |
| return -1; |
| vcpu->arch.mcg_ctl = data; |
| break; |
| default: |
| if (msr >= MSR_IA32_MC0_CTL && |
| msr < MSR_IA32_MC0_CTL + 4 * bank_num) { |
| u32 offset = msr - MSR_IA32_MC0_CTL; |
| /* only 0 or all 1s can be written to IA32_MCi_CTL |
| * some Linux kernels though clear bit 10 in bank 4 to |
| * workaround a BIOS/GART TBL issue on AMD K8s, ignore |
| * this to avoid an uncatched #GP in the guest |
| */ |
| if ((offset & 0x3) == 0 && |
| data != 0 && (data | (1 << 10)) != ~(u64)0) |
| return -1; |
| vcpu->arch.mce_banks[offset] = data; |
| break; |
| } |
| return 1; |
| } |
| return 0; |
| } |
| |
| static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| int lm = is_long_mode(vcpu); |
| u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64 |
| : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32; |
| u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 |
| : kvm->arch.xen_hvm_config.blob_size_32; |
| u32 page_num = data & ~PAGE_MASK; |
| u64 page_addr = data & PAGE_MASK; |
| u8 *page; |
| int r; |
| |
| r = -E2BIG; |
| if (page_num >= blob_size) |
| goto out; |
| r = -ENOMEM; |
| page = kzalloc(PAGE_SIZE, GFP_KERNEL); |
| if (!page) |
| goto out; |
| r = -EFAULT; |
| if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE)) |
| goto out_free; |
| if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE)) |
| goto out_free; |
| r = 0; |
| out_free: |
| kfree(page); |
| out: |
| return r; |
| } |
| |
| static bool kvm_hv_hypercall_enabled(struct kvm *kvm) |
| { |
| return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE; |
| } |
| |
| static bool kvm_hv_msr_partition_wide(u32 msr) |
| { |
| bool r = false; |
| switch (msr) { |
| case HV_X64_MSR_GUEST_OS_ID: |
| case HV_X64_MSR_HYPERCALL: |
| r = true; |
| break; |
| } |
| |
| return r; |
| } |
| |
| static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| |
| switch (msr) { |
| case HV_X64_MSR_GUEST_OS_ID: |
| kvm->arch.hv_guest_os_id = data; |
| /* setting guest os id to zero disables hypercall page */ |
| if (!kvm->arch.hv_guest_os_id) |
| kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE; |
| break; |
| case HV_X64_MSR_HYPERCALL: { |
| u64 gfn; |
| unsigned long addr; |
| u8 instructions[4]; |
| |
| /* if guest os id is not set hypercall should remain disabled */ |
| if (!kvm->arch.hv_guest_os_id) |
| break; |
| if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) { |
| kvm->arch.hv_hypercall = data; |
| break; |
| } |
| gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT; |
| addr = gfn_to_hva(kvm, gfn); |
| if (kvm_is_error_hva(addr)) |
| return 1; |
| kvm_x86_ops->patch_hypercall(vcpu, instructions); |
| ((unsigned char *)instructions)[3] = 0xc3; /* ret */ |
| if (copy_to_user((void __user *)addr, instructions, 4)) |
| return 1; |
| kvm->arch.hv_hypercall = data; |
| break; |
| } |
| default: |
| pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x " |
| "data 0x%llx\n", msr, data); |
| return 1; |
| } |
| return 0; |
| } |
| |
| static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data) |
| { |
| switch (msr) { |
| case HV_X64_MSR_APIC_ASSIST_PAGE: { |
| unsigned long addr; |
| |
| if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) { |
| vcpu->arch.hv_vapic = data; |
| break; |
| } |
| addr = gfn_to_hva(vcpu->kvm, data >> |
| HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT); |
| if (kvm_is_error_hva(addr)) |
| return 1; |
| if (clear_user((void __user *)addr, PAGE_SIZE)) |
| return 1; |
| vcpu->arch.hv_vapic = data; |
| break; |
| } |
| case HV_X64_MSR_EOI: |
| return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data); |
| case HV_X64_MSR_ICR: |
| return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data); |
| case HV_X64_MSR_TPR: |
| return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data); |
| default: |
| pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x " |
| "data 0x%llx\n", msr, data); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) |
| { |
| gpa_t gpa = data & ~0x3f; |
| |
| /* Bits 2:5 are resrved, Should be zero */ |
| if (data & 0x3c) |
| return 1; |
| |
| vcpu->arch.apf.msr_val = data; |
| |
| if (!(data & KVM_ASYNC_PF_ENABLED)) { |
| kvm_clear_async_pf_completion_queue(vcpu); |
| kvm_async_pf_hash_reset(vcpu); |
| return 0; |
| } |
| |
| if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa)) |
| return 1; |
| |
| vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); |
| kvm_async_pf_wakeup_all(vcpu); |
| return 0; |
| } |
| |
| int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data) |
| { |
| switch (msr) { |
| case MSR_EFER: |
| return set_efer(vcpu, data); |
| case MSR_K7_HWCR: |
| data &= ~(u64)0x40; /* ignore flush filter disable */ |
| data &= ~(u64)0x100; /* ignore ignne emulation enable */ |
| if (data != 0) { |
| pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", |
| data); |
| return 1; |
| } |
| break; |
| case MSR_FAM10H_MMIO_CONF_BASE: |
| if (data != 0) { |
| pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " |
| "0x%llx\n", data); |
| return 1; |
| } |
| break; |
| case MSR_AMD64_NB_CFG: |
| break; |
| case MSR_IA32_DEBUGCTLMSR: |
| if (!data) { |
| /* We support the non-activated case already */ |
| break; |
| } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { |
| /* Values other than LBR and BTF are vendor-specific, |
| thus reserved and should throw a #GP */ |
| return 1; |
| } |
| pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", |
| __func__, data); |
| break; |
| case MSR_IA32_UCODE_REV: |
| case MSR_IA32_UCODE_WRITE: |
| case MSR_VM_HSAVE_PA: |
| case MSR_AMD64_PATCH_LOADER: |
| break; |
| case 0x200 ... 0x2ff: |
| return set_msr_mtrr(vcpu, msr, data); |
| case MSR_IA32_APICBASE: |
| kvm_set_apic_base(vcpu, data); |
| break; |
| case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: |
| return kvm_x2apic_msr_write(vcpu, msr, data); |
| case MSR_IA32_MISC_ENABLE: |
| vcpu->arch.ia32_misc_enable_msr = data; |
| break; |
| case MSR_KVM_WALL_CLOCK_NEW: |
| case MSR_KVM_WALL_CLOCK: |
| vcpu->kvm->arch.wall_clock = data; |
| kvm_write_wall_clock(vcpu->kvm, data); |
| break; |
| case MSR_KVM_SYSTEM_TIME_NEW: |
| case MSR_KVM_SYSTEM_TIME: { |
| if (vcpu->arch.time_page) { |
| kvm_release_page_dirty(vcpu->arch.time_page); |
| vcpu->arch.time_page = NULL; |
| } |
| |
| vcpu->arch.time = data; |
| kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); |
| |
| /* we verify if the enable bit is set... */ |
| if (!(data & 1)) |
| break; |
| |
| /* ...but clean it before doing the actual write */ |
| vcpu->arch.time_offset = data & ~(PAGE_MASK | 1); |
| |
| vcpu->arch.time_page = |
| gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT); |
| |
| if (is_error_page(vcpu->arch.time_page)) { |
| kvm_release_page_clean(vcpu->arch.time_page); |
| vcpu->arch.time_page = NULL; |
| } |
| break; |
| } |
| case MSR_KVM_ASYNC_PF_EN: |
| if (kvm_pv_enable_async_pf(vcpu, data)) |
| return 1; |
| break; |
| case MSR_IA32_MCG_CTL: |
| case MSR_IA32_MCG_STATUS: |
| case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1: |
| return set_msr_mce(vcpu, msr, data); |
| |
| /* Performance counters are not protected by a CPUID bit, |
| * so we should check all of them in the generic path for the sake of |
| * cross vendor migration. |
| * Writing a zero into the event select MSRs disables them, |
| * which we perfectly emulate ;-). Any other value should be at least |
| * reported, some guests depend on them. |
| */ |
| case MSR_P6_EVNTSEL0: |
| case MSR_P6_EVNTSEL1: |
| case MSR_K7_EVNTSEL0: |
| case MSR_K7_EVNTSEL1: |
| case MSR_K7_EVNTSEL2: |
| case MSR_K7_EVNTSEL3: |
| if (data != 0) |
| pr_unimpl(vcpu, "unimplemented perfctr wrmsr: " |
| "0x%x data 0x%llx\n", msr, data); |
| break; |
| /* at least RHEL 4 unconditionally writes to the perfctr registers, |
| * so we ignore writes to make it happy. |
| */ |
| case MSR_P6_PERFCTR0: |
| case MSR_P6_PERFCTR1: |
| case MSR_K7_PERFCTR0: |
| case MSR_K7_PERFCTR1: |
| case MSR_K7_PERFCTR2: |
| case MSR_K7_PERFCTR3: |
| pr_unimpl(vcpu, "unimplemented perfctr wrmsr: " |
| "0x%x data 0x%llx\n", msr, data); |
| break; |
| case MSR_K7_CLK_CTL: |
| /* |
| * Ignore all writes to this no longer documented MSR. |
| * Writes are only relevant for old K7 processors, |
| * all pre-dating SVM, but a recommended workaround from |
| * AMD for these chips. It is possible to speicify the |
| * affected processor models on the command line, hence |
| * the need to ignore the workaround. |
| */ |
| break; |
| case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: |
| if (kvm_hv_msr_partition_wide(msr)) { |
| int r; |
| mutex_lock(&vcpu->kvm->lock); |
| r = set_msr_hyperv_pw(vcpu, msr, data); |
| mutex_unlock(&vcpu->kvm->lock); |
| return r; |
| } else |
| return set_msr_hyperv(vcpu, msr, data); |
| break; |
| default: |
| if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr)) |
| return xen_hvm_config(vcpu, data); |
| if (!ignore_msrs) { |
| pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", |
| msr, data); |
| return 1; |
| } else { |
| pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", |
| msr, data); |
| break; |
| } |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvm_set_msr_common); |
| |
| |
| /* |
| * Reads an msr value (of 'msr_index') into 'pdata'. |
| * Returns 0 on success, non-0 otherwise. |
| * Assumes vcpu_load() was already called. |
| */ |
| int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata) |
| { |
| return kvm_x86_ops->get_msr(vcpu, msr_index, pdata); |
| } |
| |
| static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) |
| { |
| u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; |
| |
| if (!msr_mtrr_valid(msr)) |
| return 1; |
| |
| if (msr == MSR_MTRRdefType) |
| *pdata = vcpu->arch.mtrr_state.def_type + |
| (vcpu->arch.mtrr_state.enabled << 10); |
| else if (msr == MSR_MTRRfix64K_00000) |
| *pdata = p[0]; |
| else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) |
| *pdata = p[1 + msr - MSR_MTRRfix16K_80000]; |
| else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) |
| *pdata = p[3 + msr - MSR_MTRRfix4K_C0000]; |
| else if (msr == MSR_IA32_CR_PAT) |
| *pdata = vcpu->arch.pat; |
| else { /* Variable MTRRs */ |
| int idx, is_mtrr_mask; |
| u64 *pt; |
| |
| idx = (msr - 0x200) / 2; |
| is_mtrr_mask = msr - 0x200 - 2 * idx; |
| if (!is_mtrr_mask) |
| pt = |
| (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo; |
| else |
| pt = |
| (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo; |
| *pdata = *pt; |
| } |
| |
| return 0; |
| } |
| |
| static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) |
| { |
| u64 data; |
| u64 mcg_cap = vcpu->arch.mcg_cap; |
| unsigned bank_num = mcg_cap & 0xff; |
| |
| switch (msr) { |
| case MSR_IA32_P5_MC_ADDR: |
| case MSR_IA32_P5_MC_TYPE: |
| data = 0; |
| break; |
| case MSR_IA32_MCG_CAP: |
| data = vcpu->arch.mcg_cap; |
| break; |
| case MSR_IA32_MCG_CTL: |
| if (!(mcg_cap & MCG_CTL_P)) |
| return 1; |
| data = vcpu->arch.mcg_ctl; |
| break; |
| case MSR_IA32_MCG_STATUS: |
| data = vcpu->arch.mcg_status; |
| break; |
| default: |
| if (msr >= MSR_IA32_MC0_CTL && |
| msr < MSR_IA32_MC0_CTL + 4 * bank_num) { |
| u32 offset = msr - MSR_IA32_MC0_CTL; |
| data = vcpu->arch.mce_banks[offset]; |
| break; |
| } |
| return 1; |
| } |
| *pdata = data; |
| return 0; |
| } |
| |
| static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) |
| { |
| u64 data = 0; |
| struct kvm *kvm = vcpu->kvm; |
| |
| switch (msr) { |
| case HV_X64_MSR_GUEST_OS_ID: |
| data = kvm->arch.hv_guest_os_id; |
| break; |
| case HV_X64_MSR_HYPERCALL: |
| data = kvm->arch.hv_hypercall; |
| break; |
| default: |
| pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); |
| return 1; |
| } |
| |
| *pdata = data; |
| return 0; |
| } |
| |
| static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) |
| { |
| u64 data = 0; |
| |
| switch (msr) { |
| case HV_X64_MSR_VP_INDEX: { |
| int r; |
| struct kvm_vcpu *v; |
| kvm_for_each_vcpu(r, v, vcpu->kvm) |
| if (v == vcpu) |
| data = r; |
| break; |
| } |
| case HV_X64_MSR_EOI: |
| return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata); |
| case HV_X64_MSR_ICR: |
| return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata); |
| case HV_X64_MSR_TPR: |
| return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata); |
| default: |
| pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); |
| return 1; |
| } |
| *pdata = data; |
| return 0; |
| } |
| |
| int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) |
| { |
| u64 data; |
| |
| switch (msr) { |
| case MSR_IA32_PLATFORM_ID: |
| case MSR_IA32_UCODE_REV: |
| case MSR_IA32_EBL_CR_POWERON: |
| case MSR_IA32_DEBUGCTLMSR: |
| case MSR_IA32_LASTBRANCHFROMIP: |
| case MSR_IA32_LASTBRANCHTOIP: |
| case MSR_IA32_LASTINTFROMIP: |
| case MSR_IA32_LASTINTTOIP: |
| case MSR_K8_SYSCFG: |
| case MSR_K7_HWCR: |
| case MSR_VM_HSAVE_PA: |
| case MSR_P6_PERFCTR0: |
| case MSR_P6_PERFCTR1: |
| case MSR_P6_EVNTSEL0: |
| case MSR_P6_EVNTSEL1: |
| case MSR_K7_EVNTSEL0: |
| case MSR_K7_PERFCTR0: |
| case MSR_K8_INT_PENDING_MSG: |
| case MSR_AMD64_NB_CFG: |
| case MSR_FAM10H_MMIO_CONF_BASE: |
| data = 0; |
| break; |
| case MSR_MTRRcap: |
| data = 0x500 | KVM_NR_VAR_MTRR; |
| break; |
| case 0x200 ... 0x2ff: |
| return get_msr_mtrr(vcpu, msr, pdata); |
| case 0xcd: /* fsb frequency */ |
| data = 3; |
| break; |
| /* |
| * MSR_EBC_FREQUENCY_ID |
| * Conservative value valid for even the basic CPU models. |
| * Models 0,1: 000 in bits 23:21 indicating a bus speed of |
| * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, |
| * and 266MHz for model 3, or 4. Set Core Clock |
| * Frequency to System Bus Frequency Ratio to 1 (bits |
| * 31:24) even though these are only valid for CPU |
| * models > 2, however guests may end up dividing or |
| * multiplying by zero otherwise. |
| */ |
| case MSR_EBC_FREQUENCY_ID: |
| data = 1 << 24; |
| break; |
| case MSR_IA32_APICBASE: |
| data = kvm_get_apic_base(vcpu); |
| break; |
| case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: |
| return kvm_x2apic_msr_read(vcpu, msr, pdata); |
| break; |
| case MSR_IA32_MISC_ENABLE: |
| data = vcpu->arch.ia32_misc_enable_msr; |
| break; |
| case MSR_IA32_PERF_STATUS: |
| /* TSC increment by tick */ |
| data = 1000ULL; |
| /* CPU multiplier */ |
| data |= (((uint64_t)4ULL) << 40); |
| break; |
| case MSR_EFER: |
| data = vcpu->arch.efer; |
| break; |
| case MSR_KVM_WALL_CLOCK: |
| case MSR_KVM_WALL_CLOCK_NEW: |
| data = vcpu->kvm->arch.wall_clock; |
| break; |
| case MSR_KVM_SYSTEM_TIME: |
| case MSR_KVM_SYSTEM_TIME_NEW: |
| data = vcpu->arch.time; |
| break; |
| case MSR_KVM_ASYNC_PF_EN: |
| data = vcpu->arch.apf.msr_val; |
| break; |
| case MSR_IA32_P5_MC_ADDR: |
| case MSR_IA32_P5_MC_TYPE: |
| case MSR_IA32_MCG_CAP: |
| case MSR_IA32_MCG_CTL: |
| case MSR_IA32_MCG_STATUS: |
| case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1: |
| return get_msr_mce(vcpu, msr, pdata); |
| case MSR_K7_CLK_CTL: |
| /* |
| * Provide expected ramp-up count for K7. All other |
| * are set to zero, indicating minimum divisors for |
| * every field. |
| * |
| * This prevents guest kernels on AMD host with CPU |
| * type 6, model 8 and higher from exploding due to |
| * the rdmsr failing. |
| */ |
| data = 0x20000000; |
| break; |
| case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: |
| if (kvm_hv_msr_partition_wide(msr)) { |
| int r; |
| mutex_lock(&vcpu->kvm->lock); |
| r = get_msr_hyperv_pw(vcpu, msr, pdata); |
| mutex_unlock(&vcpu->kvm->lock); |
| return r; |
| } else |
| return get_msr_hyperv(vcpu, msr, pdata); |
| break; |
| default: |
| if (!ignore_msrs) { |
| pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr); |
| return 1; |
| } else { |
| pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr); |
| data = 0; |
| } |
| break; |
| } |
| *pdata = data; |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvm_get_msr_common); |
| |
| /* |
| * Read or write a bunch of msrs. All parameters are kernel addresses. |
| * |
| * @return number of msrs set successfully. |
| */ |
| static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, |
| struct kvm_msr_entry *entries, |
| int (*do_msr)(struct kvm_vcpu *vcpu, |
| unsigned index, u64 *data)) |
| { |
| int i, idx; |
| |
| idx = srcu_read_lock(&vcpu->kvm->srcu); |
| for (i = 0; i < msrs->nmsrs; ++i) |
| if (do_msr(vcpu, entries[i].index, &entries[i].data)) |
| break; |
| srcu_read_unlock(&vcpu->kvm->srcu, idx); |
| |
| return i; |
| } |
| |
| /* |
| * Read or write a bunch of msrs. Parameters are user addresses. |
| * |
| * @return number of msrs set successfully. |
| */ |
| static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, |
| int (*do_msr)(struct kvm_vcpu *vcpu, |
| unsigned index, u64 *data), |
| int writeback) |
| { |
| struct kvm_msrs msrs; |
| struct kvm_msr_entry *entries; |
| int r, n; |
| unsigned size; |
| |
| r = -EFAULT; |
| if (copy_from_user(&msrs, user_msrs, sizeof msrs)) |
| goto out; |
| |
| r = -E2BIG; |
| if (msrs.nmsrs >= MAX_IO_MSRS) |
| goto out; |
| |
| r = -ENOMEM; |
| size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; |
| entries = kmalloc(size, GFP_KERNEL); |
| if (!entries) |
| goto out; |
| |
| r = -EFAULT; |
| if (copy_from_user(entries, user_msrs->entries, size)) |
| goto out_free; |
| |
| r = n = __msr_io(vcpu, &msrs, entries, do_msr); |
| if (r < 0) |
| goto out_free; |
| |
| r = -EFAULT; |
| if (writeback && copy_to_user(user_msrs->entries, entries, size)) |
| goto out_free; |
| |
| r = n; |
| |
| out_free: |
| kfree(entries); |
| out: |
| return r; |
| } |
| |
| int kvm_dev_ioctl_check_extension(long ext) |
| { |
| int r; |
| |
| switch (ext) { |
| case KVM_CAP_IRQCHIP: |
| case KVM_CAP_HLT: |
| case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: |
| case KVM_CAP_SET_TSS_ADDR: |
| case KVM_CAP_EXT_CPUID: |
| case KVM_CAP_CLOCKSOURCE: |
| case KVM_CAP_PIT: |
| case KVM_CAP_NOP_IO_DELAY: |
| case KVM_CAP_MP_STATE: |
| case KVM_CAP_SYNC_MMU: |
| case KVM_CAP_REINJECT_CONTROL: |
| case KVM_CAP_IRQ_INJECT_STATUS: |
| case KVM_CAP_ASSIGN_DEV_IRQ: |
| case KVM_CAP_IRQFD: |
| case KVM_CAP_IOEVENTFD: |
| case KVM_CAP_PIT2: |
| case KVM_CAP_PIT_STATE2: |
| case KVM_CAP_SET_IDENTITY_MAP_ADDR: |
| case KVM_CAP_XEN_HVM: |
| case KVM_CAP_ADJUST_CLOCK: |
| case KVM_CAP_VCPU_EVENTS: |
| case KVM_CAP_HYPERV: |
| case KVM_CAP_HYPERV_VAPIC: |
| case KVM_CAP_HYPERV_SPIN: |
| case KVM_CAP_PCI_SEGMENT: |
| case KVM_CAP_DEBUGREGS: |
| case KVM_CAP_X86_ROBUST_SINGLESTEP: |
| case KVM_CAP_XSAVE: |
| case KVM_CAP_ASYNC_PF: |
| r = 1; |
| break; |
| case KVM_CAP_COALESCED_MMIO: |
| r = KVM_COALESCED_MMIO_PAGE_OFFSET; |
| break; |
| case KVM_CAP_VAPIC: |
| r = !kvm_x86_ops->cpu_has_accelerated_tpr(); |
| break; |
| case KVM_CAP_NR_VCPUS: |
| r = KVM_MAX_VCPUS; |
| break; |
| case KVM_CAP_NR_MEMSLOTS: |
| r = KVM_MEMORY_SLOTS; |
| break; |
| case KVM_CAP_PV_MMU: /* obsolete */ |
| r = 0; |
| break; |
| case KVM_CAP_IOMMU: |
| r = iommu_found(); |
| break; |
| case KVM_CAP_MCE: |
| r = KVM_MAX_MCE_BANKS; |
| break; |
| case KVM_CAP_XCRS: |
| r = cpu_has_xsave; |
| break; |
| default: |
| r = 0; |
| break; |
| } |
| return r; |
| |
| } |
| |
| long kvm_arch_dev_ioctl(struct file *filp, |
| unsigned int ioctl, unsigned long arg) |
| { |
| void __user *argp = (void __user *)arg; |
| long r; |
| |
| switch (ioctl) { |
| case KVM_GET_MSR_INDEX_LIST: { |
| struct kvm_msr_list __user *user_msr_list = argp; |
| struct kvm_msr_list msr_list; |
| unsigned n; |
| |
| r = -EFAULT; |
| if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list)) |
| goto out; |
| n = msr_list.nmsrs; |
| msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs); |
| if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list)) |
| goto out; |
| r = -E2BIG; |
| if (n < msr_list.nmsrs) |
| goto out; |
| r = -EFAULT; |
| if (copy_to_user(user_msr_list->indices, &msrs_to_save, |
| num_msrs_to_save * sizeof(u32))) |
| goto out; |
| if (copy_to_user(user_msr_list->indices + num_msrs_to_save, |
| &emulated_msrs, |
| ARRAY_SIZE(emulated_msrs) * sizeof(u32))) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_GET_SUPPORTED_CPUID: { |
| struct kvm_cpuid2 __user *cpuid_arg = argp; |
| struct kvm_cpuid2 cpuid; |
| |
| r = -EFAULT; |
| if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) |
| goto out; |
| r = kvm_dev_ioctl_get_supported_cpuid(&cpuid, |
| cpuid_arg->entries); |
| if (r) |
| goto out; |
| |
| r = -EFAULT; |
| if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_X86_GET_MCE_CAP_SUPPORTED: { |
| u64 mce_cap; |
| |
| mce_cap = KVM_MCE_CAP_SUPPORTED; |
| r = -EFAULT; |
| if (copy_to_user(argp, &mce_cap, sizeof mce_cap)) |
| goto out; |
| r = 0; |
| break; |
| } |
| default: |
| r = -EINVAL; |
| } |
| out: |
| return r; |
| } |
| |
| static void wbinvd_ipi(void *garbage) |
| { |
| wbinvd(); |
| } |
| |
| static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) |
| { |
| return vcpu->kvm->arch.iommu_domain && |
| !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY); |
| } |
| |
| void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) |
| { |
| /* Address WBINVD may be executed by guest */ |
| if (need_emulate_wbinvd(vcpu)) { |
| if (kvm_x86_ops->has_wbinvd_exit()) |
| cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); |
| else if (vcpu->cpu != -1 && vcpu->cpu != cpu) |
| smp_call_function_single(vcpu->cpu, |
| wbinvd_ipi, NULL, 1); |
| } |
| |
| kvm_x86_ops->vcpu_load(vcpu, cpu); |
| if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) { |
| /* Make sure TSC doesn't go backwards */ |
| s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : |
| native_read_tsc() - vcpu->arch.last_host_tsc; |
| if (tsc_delta < 0) |
| mark_tsc_unstable("KVM discovered backwards TSC"); |
| if (check_tsc_unstable()) { |
| kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta); |
| vcpu->arch.tsc_catchup = 1; |
| kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); |
| } |
| if (vcpu->cpu != cpu) |
| kvm_migrate_timers(vcpu); |
| vcpu->cpu = cpu; |
| } |
| } |
| |
| void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) |
| { |
| kvm_x86_ops->vcpu_put(vcpu); |
| kvm_put_guest_fpu(vcpu); |
| vcpu->arch.last_host_tsc = native_read_tsc(); |
| } |
| |
| static int is_efer_nx(void) |
| { |
| unsigned long long efer = 0; |
| |
| rdmsrl_safe(MSR_EFER, &efer); |
| return efer & EFER_NX; |
| } |
| |
| static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu) |
| { |
| int i; |
| struct kvm_cpuid_entry2 *e, *entry; |
| |
| entry = NULL; |
| for (i = 0; i < vcpu->arch.cpuid_nent; ++i) { |
| e = &vcpu->arch.cpuid_entries[i]; |
| if (e->function == 0x80000001) { |
| entry = e; |
| break; |
| } |
| } |
| if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) { |
| entry->edx &= ~(1 << 20); |
| printk(KERN_INFO "kvm: guest NX capability removed\n"); |
| } |
| } |
| |
| /* when an old userspace process fills a new kernel module */ |
| static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu, |
| struct kvm_cpuid *cpuid, |
| struct kvm_cpuid_entry __user *entries) |
| { |
| int r, i; |
| struct kvm_cpuid_entry *cpuid_entries; |
| |
| r = -E2BIG; |
| if (cpuid->nent > KVM_MAX_CPUID_ENTRIES) |
| goto out; |
| r = -ENOMEM; |
| cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent); |
| if (!cpuid_entries) |
| goto out; |
| r = -EFAULT; |
| if (copy_from_user(cpuid_entries, entries, |
| cpuid->nent * sizeof(struct kvm_cpuid_entry))) |
| goto out_free; |
| for (i = 0; i < cpuid->nent; i++) { |
| vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function; |
| vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax; |
| vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx; |
| vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx; |
| vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx; |
| vcpu->arch.cpuid_entries[i].index = 0; |
| vcpu->arch.cpuid_entries[i].flags = 0; |
| vcpu->arch.cpuid_entries[i].padding[0] = 0; |
| vcpu->arch.cpuid_entries[i].padding[1] = 0; |
| vcpu->arch.cpuid_entries[i].padding[2] = 0; |
| } |
| vcpu->arch.cpuid_nent = cpuid->nent; |
| cpuid_fix_nx_cap(vcpu); |
| r = 0; |
| kvm_apic_set_version(vcpu); |
| kvm_x86_ops->cpuid_update(vcpu); |
| update_cpuid(vcpu); |
| |
| out_free: |
| vfree(cpuid_entries); |
| out: |
| return r; |
| } |
| |
| static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu, |
| struct kvm_cpuid2 *cpuid, |
| struct kvm_cpuid_entry2 __user *entries) |
| { |
| int r; |
| |
| r = -E2BIG; |
| if (cpuid->nent > KVM_MAX_CPUID_ENTRIES) |
| goto out; |
| r = -EFAULT; |
| if (copy_from_user(&vcpu->arch.cpuid_entries, entries, |
| cpuid->nent * sizeof(struct kvm_cpuid_entry2))) |
| goto out; |
| vcpu->arch.cpuid_nent = cpuid->nent; |
| kvm_apic_set_version(vcpu); |
| kvm_x86_ops->cpuid_update(vcpu); |
| update_cpuid(vcpu); |
| return 0; |
| |
| out: |
| return r; |
| } |
| |
| static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu, |
| struct kvm_cpuid2 *cpuid, |
| struct kvm_cpuid_entry2 __user *entries) |
| { |
| int r; |
| |
| r = -E2BIG; |
| if (cpuid->nent < vcpu->arch.cpuid_nent) |
| goto out; |
| r = -EFAULT; |
| if (copy_to_user(entries, &vcpu->arch.cpuid_entries, |
| vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2))) |
| goto out; |
| return 0; |
| |
| out: |
| cpuid->nent = vcpu->arch.cpuid_nent; |
| return r; |
| } |
| |
| static void cpuid_mask(u32 *word, int wordnum) |
| { |
| *word &= boot_cpu_data.x86_capability[wordnum]; |
| } |
| |
| static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function, |
| u32 index) |
| { |
| entry->function = function; |
| entry->index = index; |
| cpuid_count(entry->function, entry->index, |
| &entry->eax, &entry->ebx, &entry->ecx, &entry->edx); |
| entry->flags = 0; |
| } |
| |
| #define F(x) bit(X86_FEATURE_##x) |
| |
| static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function, |
| u32 index, int *nent, int maxnent) |
| { |
| unsigned f_nx = is_efer_nx() ? F(NX) : 0; |
| #ifdef CONFIG_X86_64 |
| unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL) |
| ? F(GBPAGES) : 0; |
| unsigned f_lm = F(LM); |
| #else |
| unsigned f_gbpages = 0; |
| unsigned f_lm = 0; |
| #endif |
| unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0; |
| |
| /* cpuid 1.edx */ |
| const u32 kvm_supported_word0_x86_features = |
| F(FPU) | F(VME) | F(DE) | F(PSE) | |
| F(TSC) | F(MSR) | F(PAE) | F(MCE) | |
| F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) | |
| F(MTRR) | F(PGE) | F(MCA) | F(CMOV) | |
| F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) | |
| 0 /* Reserved, DS, ACPI */ | F(MMX) | |
| F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) | |
| 0 /* HTT, TM, Reserved, PBE */; |
| /* cpuid 0x80000001.edx */ |
| const u32 kvm_supported_word1_x86_features = |
| F(FPU) | F(VME) | F(DE) | F(PSE) | |
| F(TSC) | F(MSR) | F(PAE) | F(MCE) | |
| F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) | |
| F(MTRR) | F(PGE) | F(MCA) | F(CMOV) | |
| F(PAT) | F(PSE36) | 0 /* Reserved */ | |
| f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) | |
| F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp | |
| 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW); |
| /* cpuid 1.ecx */ |
| const u32 kvm_supported_word4_x86_features = |
| F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ | |
| 0 /* DS-CPL, VMX, SMX, EST */ | |
| 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ | |
| 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ | |
| 0 /* Reserved, DCA */ | F(XMM4_1) | |
| F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) | |
| 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) | |
| F(F16C); |
| /* cpuid 0x80000001.ecx */ |
| const u32 kvm_supported_word6_x86_features = |
| F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ | |
| F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) | |
| F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(XOP) | |
| 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM); |
| |
| /* all calls to cpuid_count() should be made on the same cpu */ |
| get_cpu(); |
| do_cpuid_1_ent(entry, function, index); |
| ++*nent; |
| |
| switch (function) { |
| case 0: |
| entry->eax = min(entry->eax, (u32)0xd); |
| break; |
| case 1: |
| entry->edx &= kvm_supported_word0_x86_features; |
| cpuid_mask(&entry->edx, 0); |
| entry->ecx &= kvm_supported_word4_x86_features; |
| cpuid_mask(&entry->ecx, 4); |
| /* we support x2apic emulation even if host does not support |
| * it since we emulate x2apic in software */ |
| entry->ecx |= F(X2APIC); |
| break; |
| /* function 2 entries are STATEFUL. That is, repeated cpuid commands |
| * may return different values. This forces us to get_cpu() before |
| * issuing the first command, and also to emulate this annoying behavior |
| * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */ |
| case 2: { |
| int t, times = entry->eax & 0xff; |
| |
| entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC; |
| entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT; |
| for (t = 1; t < times && *nent < maxnent; ++t) { |
| do_cpuid_1_ent(&entry[t], function, 0); |
| entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC; |
| ++*nent; |
| } |
| break; |
| } |
| /* function 4 and 0xb have additional index. */ |
| case 4: { |
| int i, cache_type; |
| |
| entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; |
| /* read more entries until cache_type is zero */ |
| for (i = 1; *nent < maxnent; ++i) { |
| cache_type = entry[i - 1].eax & 0x1f; |
| if (!cache_type) |
| break; |
| do_cpuid_1_ent(&entry[i], function, i); |
| entry[i].flags |= |
| KVM_CPUID_FLAG_SIGNIFCANT_INDEX; |
| ++*nent; |
| } |
| break; |
| } |
| case 0xb: { |
| int i, level_type; |
| |
| entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; |
| /* read more entries until level_type is zero */ |
| for (i = 1; *nent < maxnent; ++i) { |
| level_type = entry[i - 1].ecx & 0xff00; |
| if (!level_type) |
| break; |
| do_cpuid_1_ent(&entry[i], function, i); |
| entry[i].flags |= |
| KVM_CPUID_FLAG_SIGNIFCANT_INDEX; |
| ++*nent; |
| } |
| break; |
| } |
| case 0xd: { |
| int i; |
| |
| entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; |
| for (i = 1; *nent < maxnent; ++i) { |
| if (entry[i - 1].eax == 0 && i != 2) |
| break; |
| do_cpuid_1_ent(&entry[i], function, i); |
| entry[i].flags |= |
| KVM_CPUID_FLAG_SIGNIFCANT_INDEX; |
| ++*nent; |
| } |
| break; |
| } |
| case KVM_CPUID_SIGNATURE: { |
| char signature[12] = "KVMKVMKVM\0\0"; |
| u32 *sigptr = (u32 *)signature; |
| entry->eax = 0; |
| entry->ebx = sigptr[0]; |
| entry->ecx = sigptr[1]; |
| entry->edx = sigptr[2]; |
| break; |
| } |
| case KVM_CPUID_FEATURES: |
| entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) | |
| (1 << KVM_FEATURE_NOP_IO_DELAY) | |
| (1 << KVM_FEATURE_CLOCKSOURCE2) | |
| (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT); |
| entry->ebx = 0; |
| entry->ecx = 0; |
| entry->edx = 0; |
| break; |
| case 0x80000000: |
| entry->eax = min(entry->eax, 0x8000001a); |
| break; |
| case 0x80000001: |
| entry->edx &= kvm_supported_word1_x86_features; |
| cpuid_mask(&entry->edx, 1); |
| entry->ecx &= kvm_supported_word6_x86_features; |
| cpuid_mask(&entry->ecx, 6); |
| break; |
| } |
| |
| kvm_x86_ops->set_supported_cpuid(function, entry); |
| |
| put_cpu(); |
| } |
| |
| #undef F |
| |
| static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid, |
| struct kvm_cpuid_entry2 __user *entries) |
| { |
| struct kvm_cpuid_entry2 *cpuid_entries; |
| int limit, nent = 0, r = -E2BIG; |
| u32 func; |
| |
| if (cpuid->nent < 1) |
| goto out; |
| if (cpuid->nent > KVM_MAX_CPUID_ENTRIES) |
| cpuid->nent = KVM_MAX_CPUID_ENTRIES; |
| r = -ENOMEM; |
| cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent); |
| if (!cpuid_entries) |
| goto out; |
| |
| do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent); |
| limit = cpuid_entries[0].eax; |
| for (func = 1; func <= limit && nent < cpuid->nent; ++func) |
| do_cpuid_ent(&cpuid_entries[nent], func, 0, |
| &nent, cpuid->nent); |
| r = -E2BIG; |
| if (nent >= cpuid->nent) |
| goto out_free; |
| |
| do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent); |
| limit = cpuid_entries[nent - 1].eax; |
| for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func) |
| do_cpuid_ent(&cpuid_entries[nent], func, 0, |
| &nent, cpuid->nent); |
| |
| |
| |
| r = -E2BIG; |
| if (nent >= cpuid->nent) |
| goto out_free; |
| |
| do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent, |
| cpuid->nent); |
| |
| r = -E2BIG; |
| if (nent >= cpuid->nent) |
| goto out_free; |
| |
| do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent, |
| cpuid->nent); |
| |
| r = -E2BIG; |
| if (nent >= cpuid->nent) |
| goto out_free; |
| |
| r = -EFAULT; |
| if (copy_to_user(entries, cpuid_entries, |
| nent * sizeof(struct kvm_cpuid_entry2))) |
| goto out_free; |
| cpuid->nent = nent; |
| r = 0; |
| |
| out_free: |
| vfree(cpuid_entries); |
| out: |
| return r; |
| } |
| |
| static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, |
| struct kvm_lapic_state *s) |
| { |
| memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s); |
| |
| return 0; |
| } |
| |
| static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, |
| struct kvm_lapic_state *s) |
| { |
| memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s); |
| kvm_apic_post_state_restore(vcpu); |
| update_cr8_intercept(vcpu); |
| |
| return 0; |
| } |
| |
| static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, |
| struct kvm_interrupt *irq) |
| { |
| if (irq->irq < 0 || irq->irq >= 256) |
| return -EINVAL; |
| if (irqchip_in_kernel(vcpu->kvm)) |
| return -ENXIO; |
| |
| kvm_queue_interrupt(vcpu, irq->irq, false); |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| |
| return 0; |
| } |
| |
| static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) |
| { |
| kvm_inject_nmi(vcpu); |
| |
| return 0; |
| } |
| |
| static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, |
| struct kvm_tpr_access_ctl *tac) |
| { |
| if (tac->flags) |
| return -EINVAL; |
| vcpu->arch.tpr_access_reporting = !!tac->enabled; |
| return 0; |
| } |
| |
| static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, |
| u64 mcg_cap) |
| { |
| int r; |
| unsigned bank_num = mcg_cap & 0xff, bank; |
| |
| r = -EINVAL; |
| if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS) |
| goto out; |
| if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000)) |
| goto out; |
| r = 0; |
| vcpu->arch.mcg_cap = mcg_cap; |
| /* Init IA32_MCG_CTL to all 1s */ |
| if (mcg_cap & MCG_CTL_P) |
| vcpu->arch.mcg_ctl = ~(u64)0; |
| /* Init IA32_MCi_CTL to all 1s */ |
| for (bank = 0; bank < bank_num; bank++) |
| vcpu->arch.mce_banks[bank*4] = ~(u64)0; |
| out: |
| return r; |
| } |
| |
| static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, |
| struct kvm_x86_mce *mce) |
| { |
| u64 mcg_cap = vcpu->arch.mcg_cap; |
| unsigned bank_num = mcg_cap & 0xff; |
| u64 *banks = vcpu->arch.mce_banks; |
| |
| if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) |
| return -EINVAL; |
| /* |
| * if IA32_MCG_CTL is not all 1s, the uncorrected error |
| * reporting is disabled |
| */ |
| if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && |
| vcpu->arch.mcg_ctl != ~(u64)0) |
| return 0; |
| banks += 4 * mce->bank; |
| /* |
| * if IA32_MCi_CTL is not all 1s, the uncorrected error |
| * reporting is disabled for the bank |
| */ |
| if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) |
| return 0; |
| if (mce->status & MCI_STATUS_UC) { |
| if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || |
| !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { |
| printk(KERN_DEBUG "kvm: set_mce: " |
| "injects mce exception while " |
| "previous one is in progress!\n"); |
| kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); |
| return 0; |
| } |
| if (banks[1] & MCI_STATUS_VAL) |
| mce->status |= MCI_STATUS_OVER; |
| banks[2] = mce->addr; |
| banks[3] = mce->misc; |
| vcpu->arch.mcg_status = mce->mcg_status; |
| banks[1] = mce->status; |
| kvm_queue_exception(vcpu, MC_VECTOR); |
| } else if (!(banks[1] & MCI_STATUS_VAL) |
| || !(banks[1] & MCI_STATUS_UC)) { |
| if (banks[1] & MCI_STATUS_VAL) |
| mce->status |= MCI_STATUS_OVER; |
| banks[2] = mce->addr; |
| banks[3] = mce->misc; |
| banks[1] = mce->status; |
| } else |
| banks[1] |= MCI_STATUS_OVER; |
| return 0; |
| } |
| |
| static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, |
| struct kvm_vcpu_events *events) |
| { |
| events->exception.injected = |
| vcpu->arch.exception.pending && |
| !kvm_exception_is_soft(vcpu->arch.exception.nr); |
| events->exception.nr = vcpu->arch.exception.nr; |
| events->exception.has_error_code = vcpu->arch.exception.has_error_code; |
| events->exception.pad = 0; |
| events->exception.error_code = vcpu->arch.exception.error_code; |
| |
| events->interrupt.injected = |
| vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft; |
| events->interrupt.nr = vcpu->arch.interrupt.nr; |
| events->interrupt.soft = 0; |
| events->interrupt.shadow = |
| kvm_x86_ops->get_interrupt_shadow(vcpu, |
| KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI); |
| |
| events->nmi.injected = vcpu->arch.nmi_injected; |
| events->nmi.pending = vcpu->arch.nmi_pending; |
| events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu); |
| events->nmi.pad = 0; |
| |
| events->sipi_vector = vcpu->arch.sipi_vector; |
| |
| events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING |
| | KVM_VCPUEVENT_VALID_SIPI_VECTOR |
| | KVM_VCPUEVENT_VALID_SHADOW); |
| memset(&events->reserved, 0, sizeof(events->reserved)); |
| } |
| |
| static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, |
| struct kvm_vcpu_events *events) |
| { |
| if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING |
| | KVM_VCPUEVENT_VALID_SIPI_VECTOR |
| | KVM_VCPUEVENT_VALID_SHADOW)) |
| return -EINVAL; |
| |
| vcpu->arch.exception.pending = events->exception.injected; |
| vcpu->arch.exception.nr = events->exception.nr; |
| vcpu->arch.exception.has_error_code = events->exception.has_error_code; |
| vcpu->arch.exception.error_code = events->exception.error_code; |
| |
| vcpu->arch.interrupt.pending = events->interrupt.injected; |
| vcpu->arch.interrupt.nr = events->interrupt.nr; |
| vcpu->arch.interrupt.soft = events->interrupt.soft; |
| if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm)) |
| kvm_pic_clear_isr_ack(vcpu->kvm); |
| if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) |
| kvm_x86_ops->set_interrupt_shadow(vcpu, |
| events->interrupt.shadow); |
| |
| vcpu->arch.nmi_injected = events->nmi.injected; |
| if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) |
| vcpu->arch.nmi_pending = events->nmi.pending; |
| kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked); |
| |
| if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR) |
| vcpu->arch.sipi_vector = events->sipi_vector; |
| |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| |
| return 0; |
| } |
| |
| static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, |
| struct kvm_debugregs *dbgregs) |
| { |
| memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); |
| dbgregs->dr6 = vcpu->arch.dr6; |
| dbgregs->dr7 = vcpu->arch.dr7; |
| dbgregs->flags = 0; |
| memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); |
| } |
| |
| static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, |
| struct kvm_debugregs *dbgregs) |
| { |
| if (dbgregs->flags) |
| return -EINVAL; |
| |
| memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); |
| vcpu->arch.dr6 = dbgregs->dr6; |
| vcpu->arch.dr7 = dbgregs->dr7; |
| |
| return 0; |
| } |
| |
| static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, |
| struct kvm_xsave *guest_xsave) |
| { |
| if (cpu_has_xsave) |
| memcpy(guest_xsave->region, |
| &vcpu->arch.guest_fpu.state->xsave, |
| xstate_size); |
| else { |
| memcpy(guest_xsave->region, |
| &vcpu->arch.guest_fpu.state->fxsave, |
| sizeof(struct i387_fxsave_struct)); |
| *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = |
| XSTATE_FPSSE; |
| } |
| } |
| |
| static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, |
| struct kvm_xsave *guest_xsave) |
| { |
| u64 xstate_bv = |
| *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)]; |
| |
| if (cpu_has_xsave) |
| memcpy(&vcpu->arch.guest_fpu.state->xsave, |
| guest_xsave->region, xstate_size); |
| else { |
| if (xstate_bv & ~XSTATE_FPSSE) |
| return -EINVAL; |
| memcpy(&vcpu->arch.guest_fpu.state->fxsave, |
| guest_xsave->region, sizeof(struct i387_fxsave_struct)); |
| } |
| return 0; |
| } |
| |
| static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, |
| struct kvm_xcrs *guest_xcrs) |
| { |
| if (!cpu_has_xsave) { |
| guest_xcrs->nr_xcrs = 0; |
| return; |
| } |
| |
| guest_xcrs->nr_xcrs = 1; |
| guest_xcrs->flags = 0; |
| guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; |
| guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; |
| } |
| |
| static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, |
| struct kvm_xcrs *guest_xcrs) |
| { |
| int i, r = 0; |
| |
| if (!cpu_has_xsave) |
| return -EINVAL; |
| |
| if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) |
| return -EINVAL; |
| |
| for (i = 0; i < guest_xcrs->nr_xcrs; i++) |
| /* Only support XCR0 currently */ |
| if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) { |
| r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, |
| guest_xcrs->xcrs[0].value); |
| break; |
| } |
| if (r) |
| r = -EINVAL; |
| return r; |
| } |
| |
| long kvm_arch_vcpu_ioctl(struct file *filp, |
| unsigned int ioctl, unsigned long arg) |
| { |
| struct kvm_vcpu *vcpu = filp->private_data; |
| void __user *argp = (void __user *)arg; |
| int r; |
| union { |
| struct kvm_lapic_state *lapic; |
| struct kvm_xsave *xsave; |
| struct kvm_xcrs *xcrs; |
| void *buffer; |
| } u; |
| |
| u.buffer = NULL; |
| switch (ioctl) { |
| case KVM_GET_LAPIC: { |
| r = -EINVAL; |
| if (!vcpu->arch.apic) |
| goto out; |
| u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); |
| |
| r = -ENOMEM; |
| if (!u.lapic) |
| goto out; |
| r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); |
| if (r) |
| goto out; |
| r = -EFAULT; |
| if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_SET_LAPIC: { |
| r = -EINVAL; |
| if (!vcpu->arch.apic) |
| goto out; |
| u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); |
| r = -ENOMEM; |
| if (!u.lapic) |
| goto out; |
| r = -EFAULT; |
| if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state))) |
| goto out; |
| r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); |
| if (r) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_INTERRUPT: { |
| struct kvm_interrupt irq; |
| |
| r = -EFAULT; |
| if (copy_from_user(&irq, argp, sizeof irq)) |
| goto out; |
| r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); |
| if (r) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_NMI: { |
| r = kvm_vcpu_ioctl_nmi(vcpu); |
| if (r) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_SET_CPUID: { |
| struct kvm_cpuid __user *cpuid_arg = argp; |
| struct kvm_cpuid cpuid; |
| |
| r = -EFAULT; |
| if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) |
| goto out; |
| r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); |
| if (r) |
| goto out; |
| break; |
| } |
| case KVM_SET_CPUID2: { |
| struct kvm_cpuid2 __user *cpuid_arg = argp; |
| struct kvm_cpuid2 cpuid; |
| |
| r = -EFAULT; |
| if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) |
| goto out; |
| r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, |
| cpuid_arg->entries); |
| if (r) |
| goto out; |
| break; |
| } |
| case KVM_GET_CPUID2: { |
| struct kvm_cpuid2 __user *cpuid_arg = argp; |
| struct kvm_cpuid2 cpuid; |
| |
| r = -EFAULT; |
| if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) |
| goto out; |
| r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, |
| cpuid_arg->entries); |
| if (r) |
| goto out; |
| r = -EFAULT; |
| if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_GET_MSRS: |
| r = msr_io(vcpu, argp, kvm_get_msr, 1); |
| break; |
| case KVM_SET_MSRS: |
| r = msr_io(vcpu, argp, do_set_msr, 0); |
| break; |
| case KVM_TPR_ACCESS_REPORTING: { |
| struct kvm_tpr_access_ctl tac; |
| |
| r = -EFAULT; |
| if (copy_from_user(&tac, argp, sizeof tac)) |
| goto out; |
| r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); |
| if (r) |
| goto out; |
| r = -EFAULT; |
| if (copy_to_user(argp, &tac, sizeof tac)) |
| goto out; |
| r = 0; |
| break; |
| }; |
| case KVM_SET_VAPIC_ADDR: { |
| struct kvm_vapic_addr va; |
| |
| r = -EINVAL; |
| if (!irqchip_in_kernel(vcpu->kvm)) |
| goto out; |
| r = -EFAULT; |
| if (copy_from_user(&va, argp, sizeof va)) |
| goto out; |
| r = 0; |
| kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); |
| break; |
| } |
| case KVM_X86_SETUP_MCE: { |
| u64 mcg_cap; |
| |
| r = -EFAULT; |
| if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap)) |
| goto out; |
| r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); |
| break; |
| } |
| case KVM_X86_SET_MCE: { |
| struct kvm_x86_mce mce; |
| |
| r = -EFAULT; |
| if (copy_from_user(&mce, argp, sizeof mce)) |
| goto out; |
| r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); |
| break; |
| } |
| case KVM_GET_VCPU_EVENTS: { |
| struct kvm_vcpu_events events; |
| |
| kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); |
| |
| r = -EFAULT; |
| if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) |
| break; |
| r = 0; |
| break; |
| } |
| case KVM_SET_VCPU_EVENTS: { |
| struct kvm_vcpu_events events; |
| |
| r = -EFAULT; |
| if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) |
| break; |
| |
| r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); |
| break; |
| } |
| case KVM_GET_DEBUGREGS: { |
| struct kvm_debugregs dbgregs; |
| |
| kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); |
| |
| r = -EFAULT; |
| if (copy_to_user(argp, &dbgregs, |
| sizeof(struct kvm_debugregs))) |
| break; |
| r = 0; |
| break; |
| } |
| case KVM_SET_DEBUGREGS: { |
| struct kvm_debugregs dbgregs; |
| |
| r = -EFAULT; |
| if (copy_from_user(&dbgregs, argp, |
| sizeof(struct kvm_debugregs))) |
| break; |
| |
| r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); |
| break; |
| } |
| case KVM_GET_XSAVE: { |
| u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL); |
| r = -ENOMEM; |
| if (!u.xsave) |
| break; |
| |
| kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); |
| |
| r = -EFAULT; |
| if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) |
| break; |
| r = 0; |
| break; |
| } |
| case KVM_SET_XSAVE: { |
| u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL); |
| r = -ENOMEM; |
| if (!u.xsave) |
| break; |
| |
| r = -EFAULT; |
| if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave))) |
| break; |
| |
| r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); |
| break; |
| } |
| case KVM_GET_XCRS: { |
| u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL); |
| r = -ENOMEM; |
| if (!u.xcrs) |
| break; |
| |
| kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); |
| |
| r = -EFAULT; |
| if (copy_to_user(argp, u.xcrs, |
| sizeof(struct kvm_xcrs))) |
| break; |
| r = 0; |
| break; |
| } |
| case KVM_SET_XCRS: { |
| u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL); |
| r = -ENOMEM; |
| if (!u.xcrs) |
| break; |
| |
| r = -EFAULT; |
| if (copy_from_user(u.xcrs, argp, |
| sizeof(struct kvm_xcrs))) |
| break; |
| |
| r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); |
| break; |
| } |
| default: |
| r = -EINVAL; |
| } |
| out: |
| kfree(u.buffer); |
| return r; |
| } |
| |
| static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) |
| { |
| int ret; |
| |
| if (addr > (unsigned int)(-3 * PAGE_SIZE)) |
| return -1; |
| ret = kvm_x86_ops->set_tss_addr(kvm, addr); |
| return ret; |
| } |
| |
| static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, |
| u64 ident_addr) |
| { |
| kvm->arch.ept_identity_map_addr = ident_addr; |
| return 0; |
| } |
| |
| static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, |
| u32 kvm_nr_mmu_pages) |
| { |
| if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) |
| return -EINVAL; |
| |
| mutex_lock(&kvm->slots_lock); |
| spin_lock(&kvm->mmu_lock); |
| |
| kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); |
| kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; |
| |
| spin_unlock(&kvm->mmu_lock); |
| mutex_unlock(&kvm->slots_lock); |
| return 0; |
| } |
| |
| static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) |
| { |
| return kvm->arch.n_max_mmu_pages; |
| } |
| |
| static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) |
| { |
| int r; |
| |
| r = 0; |
| switch (chip->chip_id) { |
| case KVM_IRQCHIP_PIC_MASTER: |
| memcpy(&chip->chip.pic, |
| &pic_irqchip(kvm)->pics[0], |
| sizeof(struct kvm_pic_state)); |
| break; |
| case KVM_IRQCHIP_PIC_SLAVE: |
| memcpy(&chip->chip.pic, |
| &pic_irqchip(kvm)->pics[1], |
| sizeof(struct kvm_pic_state)); |
| break; |
| case KVM_IRQCHIP_IOAPIC: |
| r = kvm_get_ioapic(kvm, &chip->chip.ioapic); |
| break; |
| default: |
| r = -EINVAL; |
| break; |
| } |
| return r; |
| } |
| |
| static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) |
| { |
| int r; |
| |
| r = 0; |
| switch (chip->chip_id) { |
| case KVM_IRQCHIP_PIC_MASTER: |
| spin_lock(&pic_irqchip(kvm)->lock); |
| memcpy(&pic_irqchip(kvm)->pics[0], |
| &chip->chip.pic, |
| sizeof(struct kvm_pic_state)); |
| spin_unlock(&pic_irqchip(kvm)->lock); |
| break; |
| case KVM_IRQCHIP_PIC_SLAVE: |
| spin_lock(&pic_irqchip(kvm)->lock); |
| memcpy(&pic_irqchip(kvm)->pics[1], |
| &chip->chip.pic, |
| sizeof(struct kvm_pic_state)); |
| spin_unlock(&pic_irqchip(kvm)->lock); |
| break; |
| case KVM_IRQCHIP_IOAPIC: |
| r = kvm_set_ioapic(kvm, &chip->chip.ioapic); |
| break; |
| default: |
| r = -EINVAL; |
| break; |
| } |
| kvm_pic_update_irq(pic_irqchip(kvm)); |
| return r; |
| } |
| |
| static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) |
| { |
| int r = 0; |
| |
| mutex_lock(&kvm->arch.vpit->pit_state.lock); |
| memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state)); |
| mutex_unlock(&kvm->arch.vpit->pit_state.lock); |
| return r; |
| } |
| |
| static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) |
| { |
| int r = 0; |
| |
| mutex_lock(&kvm->arch.vpit->pit_state.lock); |
| memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state)); |
| kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0); |
| mutex_unlock(&kvm->arch.vpit->pit_state.lock); |
| return r; |
| } |
| |
| static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) |
| { |
| int r = 0; |
| |
| mutex_lock(&kvm->arch.vpit->pit_state.lock); |
| memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, |
| sizeof(ps->channels)); |
| ps->flags = kvm->arch.vpit->pit_state.flags; |
| mutex_unlock(&kvm->arch.vpit->pit_state.lock); |
| memset(&ps->reserved, 0, sizeof(ps->reserved)); |
| return r; |
| } |
| |
| static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) |
| { |
| int r = 0, start = 0; |
| u32 prev_legacy, cur_legacy; |
| mutex_lock(&kvm->arch.vpit->pit_state.lock); |
| prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; |
| cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; |
| if (!prev_legacy && cur_legacy) |
| start = 1; |
| memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels, |
| sizeof(kvm->arch.vpit->pit_state.channels)); |
| kvm->arch.vpit->pit_state.flags = ps->flags; |
| kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start); |
| mutex_unlock(&kvm->arch.vpit->pit_state.lock); |
| return r; |
| } |
| |
| static int kvm_vm_ioctl_reinject(struct kvm *kvm, |
| struct kvm_reinject_control *control) |
| { |
| if (!kvm->arch.vpit) |
| return -ENXIO; |
| mutex_lock(&kvm->arch.vpit->pit_state.lock); |
| kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject; |
| mutex_unlock(&kvm->arch.vpit->pit_state.lock); |
| return 0; |
| } |
| |
| /* |
| * Get (and clear) the dirty memory log for a memory slot. |
| */ |
| int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, |
| struct kvm_dirty_log *log) |
| { |
| int r, i; |
| struct kvm_memory_slot *memslot; |
| unsigned long n; |
| unsigned long is_dirty = 0; |
| |
| mutex_lock(&kvm->slots_lock); |
| |
| r = -EINVAL; |
| if (log->slot >= KVM_MEMORY_SLOTS) |
| goto out; |
| |
| memslot = &kvm->memslots->memslots[log->slot]; |
| r = -ENOENT; |
| if (!memslot->dirty_bitmap) |
| goto out; |
| |
| n = kvm_dirty_bitmap_bytes(memslot); |
| |
| for (i = 0; !is_dirty && i < n/sizeof(long); i++) |
| is_dirty = memslot->dirty_bitmap[i]; |
| |
| /* If nothing is dirty, don't bother messing with page tables. */ |
| if (is_dirty) { |
| struct kvm_memslots *slots, *old_slots; |
| unsigned long *dirty_bitmap; |
| |
| dirty_bitmap = memslot->dirty_bitmap_head; |
| if (memslot->dirty_bitmap == dirty_bitmap) |
| dirty_bitmap += n / sizeof(long); |
| memset(dirty_bitmap, 0, n); |
| |
| r = -ENOMEM; |
| slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL); |
| if (!slots) |
| goto out; |
| memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots)); |
| slots->memslots[log->slot].dirty_bitmap = dirty_bitmap; |
| slots->generation++; |
| |
| old_slots = kvm->memslots; |
| rcu_assign_pointer(kvm->memslots, slots); |
| synchronize_srcu_expedited(&kvm->srcu); |
| dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap; |
| kfree(old_slots); |
| |
| spin_lock(&kvm->mmu_lock); |
| kvm_mmu_slot_remove_write_access(kvm, log->slot); |
| spin_unlock(&kvm->mmu_lock); |
| |
| r = -EFAULT; |
| if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n)) |
| goto out; |
| } else { |
| r = -EFAULT; |
| if (clear_user(log->dirty_bitmap, n)) |
| goto out; |
| } |
| |
| r = 0; |
| out: |
| mutex_unlock(&kvm->slots_lock); |
| return r; |
| } |
| |
| long kvm_arch_vm_ioctl(struct file *filp, |
| unsigned int ioctl, unsigned long arg) |
| { |
| struct kvm *kvm = filp->private_data; |
| void __user *argp = (void __user *)arg; |
| int r = -ENOTTY; |
| /* |
| * This union makes it completely explicit to gcc-3.x |
| * that these two variables' stack usage should be |
| * combined, not added together. |
| */ |
| union { |
| struct kvm_pit_state ps; |
| struct kvm_pit_state2 ps2; |
| struct kvm_pit_config pit_config; |
| } u; |
| |
| switch (ioctl) { |
| case KVM_SET_TSS_ADDR: |
| r = kvm_vm_ioctl_set_tss_addr(kvm, arg); |
| if (r < 0) |
| goto out; |
| break; |
| case KVM_SET_IDENTITY_MAP_ADDR: { |
| u64 ident_addr; |
| |
| r = -EFAULT; |
| if (copy_from_user(&ident_addr, argp, sizeof ident_addr)) |
| goto out; |
| r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); |
| if (r < 0) |
| goto out; |
| break; |
| } |
| case KVM_SET_NR_MMU_PAGES: |
| r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); |
| if (r) |
| goto out; |
| break; |
| case KVM_GET_NR_MMU_PAGES: |
| r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); |
| break; |
| case KVM_CREATE_IRQCHIP: { |
| struct kvm_pic *vpic; |
| |
| mutex_lock(&kvm->lock); |
| r = -EEXIST; |
| if (kvm->arch.vpic) |
| goto create_irqchip_unlock; |
| r = -ENOMEM; |
| vpic = kvm_create_pic(kvm); |
| if (vpic) { |
| r = kvm_ioapic_init(kvm); |
| if (r) { |
| kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, |
| &vpic->dev); |
| kfree(vpic); |
| goto create_irqchip_unlock; |
| } |
| } else |
| goto create_irqchip_unlock; |
| smp_wmb(); |
| kvm->arch.vpic = vpic; |
| smp_wmb(); |
| r = kvm_setup_default_irq_routing(kvm); |
| if (r) { |
| mutex_lock(&kvm->irq_lock); |
| kvm_ioapic_destroy(kvm); |
| kvm_destroy_pic(kvm); |
| mutex_unlock(&kvm->irq_lock); |
| } |
| create_irqchip_unlock: |
| mutex_unlock(&kvm->lock); |
| break; |
| } |
| case KVM_CREATE_PIT: |
| u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; |
| goto create_pit; |
| case KVM_CREATE_PIT2: |
| r = -EFAULT; |
| if (copy_from_user(&u.pit_config, argp, |
| sizeof(struct kvm_pit_config))) |
| goto out; |
| create_pit: |
| mutex_lock(&kvm->slots_lock); |
| r = -EEXIST; |
| if (kvm->arch.vpit) |
| goto create_pit_unlock; |
| r = -ENOMEM; |
| kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); |
| if (kvm->arch.vpit) |
| r = 0; |
| create_pit_unlock: |
| mutex_unlock(&kvm->slots_lock); |
| break; |
| case KVM_IRQ_LINE_STATUS: |
| case KVM_IRQ_LINE: { |
| struct kvm_irq_level irq_event; |
| |
| r = -EFAULT; |
| if (copy_from_user(&irq_event, argp, sizeof irq_event)) |
| goto out; |
| r = -ENXIO; |
| if (irqchip_in_kernel(kvm)) { |
| __s32 status; |
| status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, |
| irq_event.irq, irq_event.level); |
| if (ioctl == KVM_IRQ_LINE_STATUS) { |
| r = -EFAULT; |
| irq_event.status = status; |
| if (copy_to_user(argp, &irq_event, |
| sizeof irq_event)) |
| goto out; |
| } |
| r = 0; |
| } |
| break; |
| } |
| case KVM_GET_IRQCHIP: { |
| /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ |
| struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL); |
| |
| r = -ENOMEM; |
| if (!chip) |
| goto out; |
| r = -EFAULT; |
| if (copy_from_user(chip, argp, sizeof *chip)) |
| goto get_irqchip_out; |
| r = -ENXIO; |
| if (!irqchip_in_kernel(kvm)) |
| goto get_irqchip_out; |
| r = kvm_vm_ioctl_get_irqchip(kvm, chip); |
| if (r) |
| goto get_irqchip_out; |
| r = -EFAULT; |
| if (copy_to_user(argp, chip, sizeof *chip)) |
| goto get_irqchip_out; |
| r = 0; |
| get_irqchip_out: |
| kfree(chip); |
| if (r) |
| goto out; |
| break; |
| } |
| case KVM_SET_IRQCHIP: { |
| /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ |
| struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL); |
| |
| r = -ENOMEM; |
| if (!chip) |
| goto out; |
| r = -EFAULT; |
| if (copy_from_user(chip, argp, sizeof *chip)) |
| goto set_irqchip_out; |
| r = -ENXIO; |
| if (!irqchip_in_kernel(kvm)) |
| goto set_irqchip_out; |
| r = kvm_vm_ioctl_set_irqchip(kvm, chip); |
| if (r) |
| goto set_irqchip_out; |
| r = 0; |
| set_irqchip_out: |
| kfree(chip); |
| if (r) |
| goto out; |
| break; |
| } |
| case KVM_GET_PIT: { |
| r = -EFAULT; |
| if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) |
| goto out; |
| r = -ENXIO; |
| if (!kvm->arch.vpit) |
| goto out; |
| r = kvm_vm_ioctl_get_pit(kvm, &u.ps); |
| if (r) |
| goto out; |
| r = -EFAULT; |
| if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_SET_PIT: { |
| r = -EFAULT; |
| if (copy_from_user(&u.ps, argp, sizeof u.ps)) |
| goto out; |
| r = -ENXIO; |
| if (!kvm->arch.vpit) |
| goto out; |
| r = kvm_vm_ioctl_set_pit(kvm, &u.ps); |
| if (r) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_GET_PIT2: { |
| r = -ENXIO; |
| if (!kvm->arch.vpit) |
| goto out; |
| r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); |
| if (r) |
| goto out; |
| r = -EFAULT; |
| if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_SET_PIT2: { |
| r = -EFAULT; |
| if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) |
| goto out; |
| r = -ENXIO; |
| if (!kvm->arch.vpit) |
| goto out; |
| r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); |
| if (r) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_REINJECT_CONTROL: { |
| struct kvm_reinject_control control; |
| r = -EFAULT; |
| if (copy_from_user(&control, argp, sizeof(control))) |
| goto out; |
| r = kvm_vm_ioctl_reinject(kvm, &control); |
| if (r) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_XEN_HVM_CONFIG: { |
| r = -EFAULT; |
| if (copy_from_user(&kvm->arch.xen_hvm_config, argp, |
| sizeof(struct kvm_xen_hvm_config))) |
| goto out; |
| r = -EINVAL; |
| if (kvm->arch.xen_hvm_config.flags) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_SET_CLOCK: { |
| struct kvm_clock_data user_ns; |
| u64 now_ns; |
| s64 delta; |
| |
| r = -EFAULT; |
| if (copy_from_user(&user_ns, argp, sizeof(user_ns))) |
| goto out; |
| |
| r = -EINVAL; |
| if (user_ns.flags) |
| goto out; |
| |
| r = 0; |
| local_irq_disable(); |
| now_ns = get_kernel_ns(); |
| delta = user_ns.clock - now_ns; |
| local_irq_enable(); |
| kvm->arch.kvmclock_offset = delta; |
| break; |
| } |
| case KVM_GET_CLOCK: { |
| struct kvm_clock_data user_ns; |
| u64 now_ns; |
| |
| local_irq_disable(); |
| now_ns = get_kernel_ns(); |
| user_ns.clock = kvm->arch.kvmclock_offset + now_ns; |
| local_irq_enable(); |
| user_ns.flags = 0; |
| memset(&user_ns.pad, 0, sizeof(user_ns.pad)); |
| |
| r = -EFAULT; |
| if (copy_to_user(argp, &user_ns, sizeof(user_ns))) |
| goto out; |
| r = 0; |
| break; |
| } |
| |
| default: |
| ; |
| } |
| out: |
| return r; |
| } |
| |
| static void kvm_init_msr_list(void) |
| { |
| u32 dummy[2]; |
| unsigned i, j; |
| |
| /* skip the first msrs in the list. KVM-specific */ |
| for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) { |
| if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0) |
| continue; |
| if (j < i) |
| msrs_to_save[j] = msrs_to_save[i]; |
| j++; |
| } |
| num_msrs_to_save = j; |
| } |
| |
| static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, |
| const void *v) |
| { |
| if (vcpu->arch.apic && |
| !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v)) |
| return 0; |
| |
| return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v); |
| } |
| |
| static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) |
| { |
| if (vcpu->arch.apic && |
| !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v)) |
| return 0; |
| |
| return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v); |
| } |
| |
| static void kvm_set_segment(struct kvm_vcpu *vcpu, |
| struct kvm_segment *var, int seg) |
| { |
| kvm_x86_ops->set_segment(vcpu, var, seg); |
| } |
| |
| void kvm_get_segment(struct kvm_vcpu *vcpu, |
| struct kvm_segment *var, int seg) |
| { |
| kvm_x86_ops->get_segment(vcpu, var, seg); |
| } |
| |
| static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access) |
| { |
| return gpa; |
| } |
| |
| static gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access) |
| { |
| gpa_t t_gpa; |
| u32 error; |
| |
| BUG_ON(!mmu_is_nested(vcpu)); |
| |
| /* NPT walks are always user-walks */ |
| access |= PFERR_USER_MASK; |
| t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &error); |
| if (t_gpa == UNMAPPED_GVA) |
| vcpu->arch.fault.nested = true; |
| |
| return t_gpa; |
| } |
| |
| gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, u32 *error) |
| { |
| u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; |
| return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error); |
| } |
| |
| gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, u32 *error) |
| { |
| u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; |
| access |= PFERR_FETCH_MASK; |
| return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error); |
| } |
| |
| gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, u32 *error) |
| { |
| u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; |
| access |= PFERR_WRITE_MASK; |
| return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error); |
| } |
| |
| /* uses this to access any guest's mapped memory without checking CPL */ |
| gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, u32 *error) |
| { |
| return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, error); |
| } |
| |
| static int make_page_fault(struct x86_exception *exception, u32 error) |
| { |
| exception->vector = PF_VECTOR; |
| exception->error_code_valid = true; |
| exception->error_code = error; |
| return X86EMUL_PROPAGATE_FAULT; |
| } |
| |
| static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, |
| struct kvm_vcpu *vcpu, u32 access, |
| struct x86_exception *exception) |
| { |
| void *data = val; |
| int r = X86EMUL_CONTINUE; |
| u32 error; |
| |
| while (bytes) { |
| gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, |
| &error); |
| unsigned offset = addr & (PAGE_SIZE-1); |
| unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); |
| int ret; |
| |
| if (gpa == UNMAPPED_GVA) |
| return make_page_fault(exception, error); |
| ret = kvm_read_guest(vcpu->kvm, gpa, data, toread); |
| if (ret < 0) { |
| r = X86EMUL_IO_NEEDED; |
| goto out; |
| } |
| |
| bytes -= toread; |
| data += toread; |
| addr += toread; |
| } |
| out: |
| return r; |
| } |
| |
| /* used for instruction fetching */ |
| static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes, |
| struct kvm_vcpu *vcpu, |
| struct x86_exception *exception) |
| { |
| u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; |
| return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, |
| access | PFERR_FETCH_MASK, |
| exception); |
| } |
| |
| static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes, |
| struct kvm_vcpu *vcpu, |
| struct x86_exception *exception) |
| { |
| u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; |
| return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, |
| exception); |
| } |
| |
| static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes, |
| struct kvm_vcpu *vcpu, |
| struct x86_exception *exception) |
| { |
| return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception); |
| } |
| |
| static int kvm_write_guest_virt_system(gva_t addr, void *val, |
| unsigned int bytes, |
| struct kvm_vcpu *vcpu, |
| struct x86_exception *exception) |
| { |
| void *data = val; |
| int r = X86EMUL_CONTINUE; |
| u32 error; |
| |
| while (bytes) { |
| gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, |
| PFERR_WRITE_MASK, |
| &error); |
| unsigned offset = addr & (PAGE_SIZE-1); |
| unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); |
| int ret; |
| |
| if (gpa == UNMAPPED_GVA) |
| return make_page_fault(exception, error); |
| ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite); |
| if (ret < 0) { |
| r = X86EMUL_IO_NEEDED; |
| goto out; |
| } |
| |
| bytes -= towrite; |
| data += towrite; |
| addr += towrite; |
| } |
| out: |
| return r; |
| } |
| |
| static int emulator_read_emulated(unsigned long addr, |
| void *val, |
| unsigned int bytes, |
| struct x86_exception *exception, |
| struct kvm_vcpu *vcpu) |
| { |
| gpa_t gpa; |
| u32 error_code; |
| |
| if (vcpu->mmio_read_completed) { |
| memcpy(val, vcpu->mmio_data, bytes); |
| trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, |
| vcpu->mmio_phys_addr, *(u64 *)val); |
| vcpu->mmio_read_completed = 0; |
| return X86EMUL_CONTINUE; |
| } |
| |
| gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, &error_code); |
| |
| if (gpa == UNMAPPED_GVA) |
| return make_page_fault(exception, error_code); |
| |
| /* For APIC access vmexit */ |
| if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) |
| goto mmio; |
| |
| if (kvm_read_guest_virt(addr, val, bytes, vcpu, exception) |
| == X86EMUL_CONTINUE) |
| return X86EMUL_CONTINUE; |
| |
| mmio: |
| /* |
| * Is this MMIO handled locally? |
| */ |
| if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) { |
| trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val); |
| return X86EMUL_CONTINUE; |
| } |
| |
| trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0); |
| |
| vcpu->mmio_needed = 1; |
| vcpu->run->exit_reason = KVM_EXIT_MMIO; |
| vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa; |
| vcpu->run->mmio.len = vcpu->mmio_size = bytes; |
| vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0; |
| |
| return X86EMUL_IO_NEEDED; |
| } |
| |
| int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, |
| const void *val, int bytes) |
| { |
| int ret; |
| |
| ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes); |
| if (ret < 0) |
| return 0; |
| kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1); |
| return 1; |
| } |
| |
| static int emulator_write_emulated_onepage(unsigned long addr, |
| const void *val, |
| unsigned int bytes, |
| struct x86_exception *exception, |
| struct kvm_vcpu *vcpu) |
| { |
| gpa_t gpa; |
| u32 error_code; |
| |
| gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, &error_code); |
| |
| if (gpa == UNMAPPED_GVA) |
| return make_page_fault(exception, error_code); |
| |
| /* For APIC access vmexit */ |
| if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) |
| goto mmio; |
| |
| if (emulator_write_phys(vcpu, gpa, val, bytes)) |
| return X86EMUL_CONTINUE; |
| |
| mmio: |
| trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val); |
| /* |
| * Is this MMIO handled locally? |
| */ |
| if (!vcpu_mmio_write(vcpu, gpa, bytes, val)) |
| return X86EMUL_CONTINUE; |
| |
| vcpu->mmio_needed = 1; |
| vcpu->run->exit_reason = KVM_EXIT_MMIO; |
| vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa; |
| vcpu->run->mmio.len = vcpu->mmio_size = bytes; |
| vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1; |
| memcpy(vcpu->run->mmio.data, val, bytes); |
| |
| return X86EMUL_CONTINUE; |
| } |
| |
| int emulator_write_emulated(unsigned long addr, |
| const void *val, |
| unsigned int bytes, |
| struct x86_exception *exception, |
| struct kvm_vcpu *vcpu) |
| { |
| /* Crossing a page boundary? */ |
| if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { |
| int rc, now; |
| |
| now = -addr & ~PAGE_MASK; |
| rc = emulator_write_emulated_onepage(addr, val, now, exception, |
| vcpu); |
| if (rc != X86EMUL_CONTINUE) |
| return rc; |
| addr += now; |
| val += now; |
| bytes -= now; |
| } |
| return emulator_write_emulated_onepage(addr, val, bytes, exception, |
| vcpu); |
| } |
| |
| #define CMPXCHG_TYPE(t, ptr, old, new) \ |
| (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) |
| |
| #ifdef CONFIG_X86_64 |
| # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) |
| #else |
| # define CMPXCHG64(ptr, old, new) \ |
| (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) |
| #endif |
| |
| static int emulator_cmpxchg_emulated(unsigned long addr, |
| const void *old, |
| const void *new, |
| unsigned int bytes, |
| struct x86_exception *exception, |
| struct kvm_vcpu *vcpu) |
| { |
| gpa_t gpa; |
| struct page *page; |
| char *kaddr; |
| bool exchanged; |
| |
| /* guests cmpxchg8b have to be emulated atomically */ |
| if (bytes > 8 || (bytes & (bytes - 1))) |
| goto emul_write; |
| |
| gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); |
| |
| if (gpa == UNMAPPED_GVA || |
| (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) |
| goto emul_write; |
| |
| if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK)) |
| goto emul_write; |
| |
| page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT); |
| if (is_error_page(page)) { |
| kvm_release_page_clean(page); |
| goto emul_write; |
| } |
| |
| kaddr = kmap_atomic(page, KM_USER0); |
| kaddr += offset_in_page(gpa); |
| switch (bytes) { |
| case 1: |
| exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); |
| break; |
| case 2: |
| exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); |
| break; |
| case 4: |
| exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); |
| break; |
| case 8: |
| exchanged = CMPXCHG64(kaddr, old, new); |
| break; |
| default: |
| BUG(); |
| } |
| kunmap_atomic(kaddr, KM_USER0); |
| kvm_release_page_dirty(page); |
| |
| if (!exchanged) |
| return X86EMUL_CMPXCHG_FAILED; |
| |
| kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1); |
| |
| return X86EMUL_CONTINUE; |
| |
| emul_write: |
| printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); |
| |
| return emulator_write_emulated(addr, new, bytes, exception, vcpu); |
| } |
| |
| static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) |
| { |
| /* TODO: String I/O for in kernel device */ |
| int r; |
| |
| if (vcpu->arch.pio.in) |
| r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port, |
| vcpu->arch.pio.size, pd); |
| else |
| r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS, |
| vcpu->arch.pio.port, vcpu->arch.pio.size, |
| pd); |
| return r; |
| } |
| |
| |
| static int emulator_pio_in_emulated(int size, unsigned short port, void *val, |
| unsigned int count, struct kvm_vcpu *vcpu) |
| { |
| if (vcpu->arch.pio.count) |
| goto data_avail; |
| |
| trace_kvm_pio(0, port, size, 1); |
| |
| vcpu->arch.pio.port = port; |
| vcpu->arch.pio.in = 1; |
| vcpu->arch.pio.count = count; |
| vcpu->arch.pio.size = size; |
| |
| if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { |
| data_avail: |
| memcpy(val, vcpu->arch.pio_data, size * count); |
| vcpu->arch.pio.count = 0; |
| return 1; |
| } |
| |
| vcpu->run->exit_reason = KVM_EXIT_IO; |
| vcpu->run->io.direction = KVM_EXIT_IO_IN; |
| vcpu->run->io.size = size; |
| vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; |
| vcpu->run->io.count = count; |
| vcpu->run->io.port = port; |
| |
| return 0; |
| } |
| |
| static int emulator_pio_out_emulated(int size, unsigned short port, |
| const void *val, unsigned int count, |
| struct kvm_vcpu *vcpu) |
| { |
| trace_kvm_pio(1, port, size, 1); |
| |
| vcpu->arch.pio.port = port; |
| vcpu->arch.pio.in = 0; |
| vcpu->arch.pio.count = count; |
| vcpu->arch.pio.size = size; |
| |
| memcpy(vcpu->arch.pio_data, val, size * count); |
| |
| if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { |
| vcpu->arch.pio.count = 0; |
| return 1; |
| } |
| |
| vcpu->run->exit_reason = KVM_EXIT_IO; |
| vcpu->run->io.direction = KVM_EXIT_IO_OUT; |
| vcpu->run->io.size = size; |
| vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; |
| vcpu->run->io.count = count; |
| vcpu->run->io.port = port; |
| |
| return 0; |
| } |
| |
| static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) |
| { |
| return kvm_x86_ops->get_segment_base(vcpu, seg); |
| } |
| |
| int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address) |
| { |
| kvm_mmu_invlpg(vcpu, address); |
| return X86EMUL_CONTINUE; |
| } |
| |
| int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) |
| { |
| if (!need_emulate_wbinvd(vcpu)) |
| return X86EMUL_CONTINUE; |
| |
| if (kvm_x86_ops->has_wbinvd_exit()) { |
| int cpu = get_cpu(); |
| |
| cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); |
| smp_call_function_many(vcpu->arch.wbinvd_dirty_mask, |
| wbinvd_ipi, NULL, 1); |
| put_cpu(); |
| cpumask_clear(vcpu->arch.wbinvd_dirty_mask); |
| } else |
| wbinvd(); |
| return X86EMUL_CONTINUE; |
| } |
| EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); |
| |
| int emulate_clts(struct kvm_vcpu *vcpu) |
| { |
| kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS)); |
| kvm_x86_ops->fpu_activate(vcpu); |
| return X86EMUL_CONTINUE; |
| } |
| |
| int emulator_get_dr(int dr, unsigned long *dest, struct kvm_vcpu *vcpu) |
| { |
| return _kvm_get_dr(vcpu, dr, dest); |
| } |
| |
| int emulator_set_dr(int dr, unsigned long value, struct kvm_vcpu *vcpu) |
| { |
| |
| return __kvm_set_dr(vcpu, dr, value); |
| } |
| |
| static u64 mk_cr_64(u64 curr_cr, u32 new_val) |
| { |
| return (curr_cr & ~((1ULL << 32) - 1)) | new_val; |
| } |
| |
| static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu) |
| { |
| unsigned long value; |
| |
| switch (cr) { |
| case 0: |
| value = kvm_read_cr0(vcpu); |
| break; |
| case 2: |
| value = vcpu->arch.cr2; |
| break; |
| case 3: |
| value = vcpu->arch.cr3; |
| break; |
| case 4: |
| value = kvm_read_cr4(vcpu); |
| break; |
| case 8: |
| value = kvm_get_cr8(vcpu); |
| break; |
| default: |
| vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr); |
| return 0; |
| } |
| |
| return value; |
| } |
| |
| static int emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu) |
| { |
| int res = 0; |
| |
| switch (cr) { |
| case 0: |
| res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); |
| break; |
| case 2: |
| vcpu->arch.cr2 = val; |
| break; |
| case 3: |
| res = kvm_set_cr3(vcpu, val); |
| break; |
| case 4: |
| res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); |
| break; |
| case 8: |
| res = __kvm_set_cr8(vcpu, val & 0xfUL); |
| break; |
| default: |
| vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr); |
| res = -1; |
| } |
| |
| return res; |
| } |
| |
| static int emulator_get_cpl(struct kvm_vcpu *vcpu) |
| { |
| return kvm_x86_ops->get_cpl(vcpu); |
| } |
| |
| static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu) |
| { |
| kvm_x86_ops->get_gdt(vcpu, dt); |
| } |
| |
| static void emulator_get_idt(struct desc_ptr *dt, struct kvm_vcpu *vcpu) |
| { |
| kvm_x86_ops->get_idt(vcpu, dt); |
| } |
| |
| static unsigned long emulator_get_cached_segment_base(int seg, |
| struct kvm_vcpu *vcpu) |
| { |
| return get_segment_base(vcpu, seg); |
| } |
| |
| static bool emulator_get_cached_descriptor(struct desc_struct *desc, int seg, |
| struct kvm_vcpu *vcpu) |
| { |
| struct kvm_segment var; |
| |
| kvm_get_segment(vcpu, &var, seg); |
| |
| if (var.unusable) |
| return false; |
| |
| if (var.g) |
| var.limit >>= 12; |
| set_desc_limit(desc, var.limit); |
| set_desc_base(desc, (unsigned long)var.base); |
| desc->type = var.type; |
| desc->s = var.s; |
| desc->dpl = var.dpl; |
| desc->p = var.present; |
| desc->avl = var.avl; |
| desc->l = var.l; |
| desc->d = var.db; |
| desc->g = var.g; |
| |
| return true; |
| } |
| |
| static void emulator_set_cached_descriptor(struct desc_struct *desc, int seg, |
| struct kvm_vcpu *vcpu) |
| { |
| struct kvm_segment var; |
| |
| /* needed to preserve selector */ |
| kvm_get_segment(vcpu, &var, seg); |
| |
| var.base = get_desc_base(desc); |
| var.limit = get_desc_limit(desc); |
| if (desc->g) |
| var.limit = (var.limit << 12) | 0xfff; |
| var.type = desc->type; |
| var.present = desc->p; |
| var.dpl = desc->dpl; |
| var.db = desc->d; |
| var.s = desc->s; |
| var.l = desc->l; |
| var.g = desc->g; |
| var.avl = desc->avl; |
| var.present = desc->p; |
| var.unusable = !var.present; |
| var.padding = 0; |
| |
| kvm_set_segment(vcpu, &var, seg); |
| return; |
| } |
| |
| static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu) |
| { |
| struct kvm_segment kvm_seg; |
| |
| kvm_get_segment(vcpu, &kvm_seg, seg); |
| return kvm_seg.selector; |
| } |
| |
| static void emulator_set_segment_selector(u16 sel, int seg, |
| struct kvm_vcpu *vcpu) |
| { |
| struct kvm_segment kvm_seg; |
| |
| kvm_get_segment(vcpu, &kvm_seg, seg); |
| kvm_seg.selector = sel; |
| kvm_set_segment(vcpu, &kvm_seg, seg); |
| } |
| |
| static struct x86_emulate_ops emulate_ops = { |
| .read_std = kvm_read_guest_virt_system, |
| .write_std = kvm_write_guest_virt_system, |
| .fetch = kvm_fetch_guest_virt, |
| .read_emulated = emulator_read_emulated, |
| .write_emulated = emulator_write_emulated, |
| .cmpxchg_emulated = emulator_cmpxchg_emulated, |
| .pio_in_emulated = emulator_pio_in_emulated, |
| .pio_out_emulated = emulator_pio_out_emulated, |
| .get_cached_descriptor = emulator_get_cached_descriptor, |
| .set_cached_descriptor = emulator_set_cached_descriptor, |
| .get_segment_selector = emulator_get_segment_selector, |
| .set_segment_selector = emulator_set_segment_selector, |
| .get_cached_segment_base = emulator_get_cached_segment_base, |
| .get_gdt = emulator_get_gdt, |
| .get_idt = emulator_get_idt, |
| .get_cr = emulator_get_cr, |
| .set_cr = emulator_set_cr, |
| .cpl = emulator_get_cpl, |
| .get_dr = emulator_get_dr, |
| .set_dr = emulator_set_dr, |
| .set_msr = kvm_set_msr, |
| .get_msr = kvm_get_msr, |
| }; |
| |
| static void cache_all_regs(struct kvm_vcpu *vcpu) |
| { |
| kvm_register_read(vcpu, VCPU_REGS_RAX); |
| kvm_register_read(vcpu, VCPU_REGS_RSP); |
| kvm_register_read(vcpu, VCPU_REGS_RIP); |
| vcpu->arch.regs_dirty = ~0; |
| } |
| |
| static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) |
| { |
| u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask); |
| /* |
| * an sti; sti; sequence only disable interrupts for the first |
| * instruction. So, if the last instruction, be it emulated or |
| * not, left the system with the INT_STI flag enabled, it |
| * means that the last instruction is an sti. We should not |
| * leave the flag on in this case. The same goes for mov ss |
| */ |
| if (!(int_shadow & mask)) |
| kvm_x86_ops->set_interrupt_shadow(vcpu, mask); |
| } |
| |
| static void inject_emulated_exception(struct kvm_vcpu *vcpu) |
| { |
| struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; |
| if (ctxt->exception.vector == PF_VECTOR) |
| kvm_propagate_fault(vcpu); |
| else if (ctxt->exception.error_code_valid) |
| kvm_queue_exception_e(vcpu, ctxt->exception.vector, |
| ctxt->exception.error_code); |
| else |
| kvm_queue_exception(vcpu, ctxt->exception.vector); |
| } |
| |
| static void init_emulate_ctxt(struct kvm_vcpu *vcpu) |
| { |
| struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode; |
| int cs_db, cs_l; |
| |
| cache_all_regs(vcpu); |
| |
| kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); |
| |
| vcpu->arch.emulate_ctxt.vcpu = vcpu; |
| vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu); |
| vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu); |
| vcpu->arch.emulate_ctxt.mode = |
| (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : |
| (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM) |
| ? X86EMUL_MODE_VM86 : cs_l |
| ? X86EMUL_MODE_PROT64 : cs_db |
| ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16; |
| memset(c, 0, sizeof(struct decode_cache)); |
| memcpy(c->regs, vcpu->arch.regs, sizeof c->regs); |
| } |
| |
| int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq) |
| { |
| struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode; |
| int ret; |
| |
| init_emulate_ctxt(vcpu); |
| |
| vcpu->arch.emulate_ctxt.decode.op_bytes = 2; |
| vcpu->arch.emulate_ctxt.decode.ad_bytes = 2; |
| vcpu->arch.emulate_ctxt.decode.eip = vcpu->arch.emulate_ctxt.eip; |
| ret = emulate_int_real(&vcpu->arch.emulate_ctxt, &emulate_ops, irq); |
| |
| if (ret != X86EMUL_CONTINUE) |
| return EMULATE_FAIL; |
| |
| vcpu->arch.emulate_ctxt.eip = c->eip; |
| memcpy(vcpu->arch.regs, c->regs, sizeof c->regs); |
| kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip); |
| kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags); |
| |
| if (irq == NMI_VECTOR) |
| vcpu->arch.nmi_pending = false; |
| else |
| vcpu->arch.interrupt.pending = false; |
| |
| return EMULATE_DONE; |
| } |
| EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); |
| |
| static int handle_emulation_failure(struct kvm_vcpu *vcpu) |
| { |
| ++vcpu->stat.insn_emulation_fail; |
| trace_kvm_emulate_insn_failed(vcpu); |
| vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; |
| vcpu->run->internal.ndata = 0; |
| kvm_queue_exception(vcpu, UD_VECTOR); |
| return EMULATE_FAIL; |
| } |
| |
| static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva) |
| { |
| gpa_t gpa; |
| |
| if (tdp_enabled) |
| return false; |
| |
| /* |
| * if emulation was due to access to shadowed page table |
| * and it failed try to unshadow page and re-entetr the |
| * guest to let CPU execute the instruction. |
| */ |
| if (kvm_mmu_unprotect_page_virt(vcpu, gva)) |
| return true; |
| |
| gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL); |
| |
| if (gpa == UNMAPPED_GVA) |
| return true; /* let cpu generate fault */ |
| |
| if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT))) |
| return true; |
| |
| return false; |
| } |
| |
| int emulate_instruction(struct kvm_vcpu *vcpu, |
| unsigned long cr2, |
| u16 error_code, |
| int emulation_type) |
| { |
| int r; |
| struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode; |
| |
| kvm_clear_exception_queue(vcpu); |
| vcpu->arch.mmio_fault_cr2 = cr2; |
| /* |
| * TODO: fix emulate.c to use guest_read/write_register |
| * instead of direct ->regs accesses, can save hundred cycles |
| * on Intel for instructions that don't read/change RSP, for |
| * for example. |
| */ |
| cache_all_regs(vcpu); |
| |
| if (!(emulation_type & EMULTYPE_NO_DECODE)) { |
| init_emulate_ctxt(vcpu); |
| vcpu->arch.emulate_ctxt.interruptibility = 0; |
| vcpu->arch.emulate_ctxt.have_exception = false; |
| vcpu->arch.emulate_ctxt.perm_ok = false; |
| |
| r = x86_decode_insn(&vcpu->arch.emulate_ctxt); |
| if (r == X86EMUL_PROPAGATE_FAULT) |
| goto done; |
| |
| trace_kvm_emulate_insn_start(vcpu); |
| |
| /* Only allow emulation of specific instructions on #UD |
| * (namely VMMCALL, sysenter, sysexit, syscall)*/ |
| if (emulation_type & EMULTYPE_TRAP_UD) { |
| if (!c->twobyte) |
| return EMULATE_FAIL; |
| switch (c->b) { |
| case 0x01: /* VMMCALL */ |
| if (c->modrm_mod != 3 || c->modrm_rm != 1) |
| return EMULATE_FAIL; |
| break; |
| case 0x34: /* sysenter */ |
| case 0x35: /* sysexit */ |
| if (c->modrm_mod != 0 || c->modrm_rm != 0) |
| return EMULATE_FAIL; |
| break; |
| case 0x05: /* syscall */ |
| if (c->modrm_mod != 0 || c->modrm_rm != 0) |
| return EMULATE_FAIL; |
| break; |
| default: |
| return EMULATE_FAIL; |
| } |
| |
| if (!(c->modrm_reg == 0 || c->modrm_reg == 3)) |
| return EMULATE_FAIL; |
| } |
| |
| ++vcpu->stat.insn_emulation; |
| if (r) { |
| if (reexecute_instruction(vcpu, cr2)) |
| return EMULATE_DONE; |
| if (emulation_type & EMULTYPE_SKIP) |
| return EMULATE_FAIL; |
| return handle_emulation_failure(vcpu); |
| } |
| } |
| |
| if (emulation_type & EMULTYPE_SKIP) { |
| kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip); |
| return EMULATE_DONE; |
| } |
| |
| /* this is needed for vmware backdor interface to work since it |
| changes registers values during IO operation */ |
| memcpy(c->regs, vcpu->arch.regs, sizeof c->regs); |
| |
| restart: |
| r = x86_emulate_insn(&vcpu->arch.emulate_ctxt); |
| |
| if (r == EMULATION_FAILED) { |
| if (reexecute_instruction(vcpu, cr2)) |
| return EMULATE_DONE; |
| |
| return handle_emulation_failure(vcpu); |
| } |
| |
| done: |
| if (vcpu->arch.emulate_ctxt.have_exception) { |
| inject_emulated_exception(vcpu); |
| r = EMULATE_DONE; |
| } else if (vcpu->arch.pio.count) { |
| if (!vcpu->arch.pio.in) |
| vcpu->arch.pio.count = 0; |
| r = EMULATE_DO_MMIO; |
| } else if (vcpu->mmio_needed) { |
| if (vcpu->mmio_is_write) |
| vcpu->mmio_needed = 0; |
| r = EMULATE_DO_MMIO; |
| } else if (r == EMULATION_RESTART) |
| goto restart; |
| else |
| r = EMULATE_DONE; |
| |
| toggle_interruptibility(vcpu, vcpu->arch.emulate_ctxt.interruptibility); |
| kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags); |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| memcpy(vcpu->arch.regs, c->regs, sizeof c->regs); |
| kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip); |
| |
| return r; |
| } |
| EXPORT_SYMBOL_GPL(emulate_instruction); |
| |
| int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port) |
| { |
| unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX); |
| int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu); |
| /* do not return to emulator after return from userspace */ |
| vcpu->arch.pio.count = 0; |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(kvm_fast_pio_out); |
| |
| static void tsc_bad(void *info) |
| { |
| __get_cpu_var(cpu_tsc_khz) = 0; |
| } |
| |
| static void tsc_khz_changed(void *data) |
| { |
| struct cpufreq_freqs *freq = data; |
| unsigned long khz = 0; |
| |
| if (data) |
| khz = freq->new; |
| else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) |
| khz = cpufreq_quick_get(raw_smp_processor_id()); |
| if (!khz) |
| khz = tsc_khz; |
| __get_cpu_var(cpu_tsc_khz) = khz; |
| } |
| |
| static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, |
| void *data) |
| { |
| struct cpufreq_freqs *freq = data; |
| struct kvm *kvm; |
| struct kvm_vcpu *vcpu; |
| int i, send_ipi = 0; |
| |
| /* |
| * We allow guests to temporarily run on slowing clocks, |
| * provided we notify them after, or to run on accelerating |
| * clocks, provided we notify them before. Thus time never |
| * goes backwards. |
| * |
| * However, we have a problem. We can't atomically update |
| * the frequency of a given CPU from this function; it is |
| * merely a notifier, which can be called from any CPU. |
| * Changing the TSC frequency at arbitrary points in time |
| * requires a recomputation of local variables related to |
| * the TSC for each VCPU. We must flag these local variables |
| * to be updated and be sure the update takes place with the |
| * new frequency before any guests proceed. |
| * |
| * Unfortunately, the combination of hotplug CPU and frequency |
| * change creates an intractable locking scenario; the order |
| * of when these callouts happen is undefined with respect to |
| * CPU hotplug, and they can race with each other. As such, |
| * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is |
| * undefined; you can actually have a CPU frequency change take |
| * place in between the computation of X and the setting of the |
| * variable. To protect against this problem, all updates of |
| * the per_cpu tsc_khz variable are done in an interrupt |
| * protected IPI, and all callers wishing to update the value |
| * must wait for a synchronous IPI to complete (which is trivial |
| * if the caller is on the CPU already). This establishes the |
| * necessary total order on variable updates. |
| * |
| * Note that because a guest time update may take place |
| * anytime after the setting of the VCPU's request bit, the |
| * correct TSC value must be set before the request. However, |
| * to ensure the update actually makes it to any guest which |
| * starts running in hardware virtualization between the set |
| * and the acquisition of the spinlock, we must also ping the |
| * CPU after setting the request bit. |
| * |
| */ |
| |
| if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) |
| return 0; |
| if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) |
| return 0; |
| |
| smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); |
| |
| spin_lock(&kvm_lock); |
| list_for_each_entry(kvm, &vm_list, vm_list) { |
| kvm_for_each_vcpu(i, vcpu, kvm) { |
| if (vcpu->cpu != freq->cpu) |
| continue; |
| kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); |
| if (vcpu->cpu != smp_processor_id()) |
| send_ipi = 1; |
| } |
| } |
| spin_unlock(&kvm_lock); |
| |
| if (freq->old < freq->new && send_ipi) { |
| /* |
| * We upscale the frequency. Must make the guest |
| * doesn't see old kvmclock values while running with |
| * the new frequency, otherwise we risk the guest sees |
| * time go backwards. |
| * |
| * In case we update the frequency for another cpu |
| * (which might be in guest context) send an interrupt |
| * to kick the cpu out of guest context. Next time |
| * guest context is entered kvmclock will be updated, |
| * so the guest will not see stale values. |
| */ |
| smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); |
| } |
| return 0; |
| } |
| |
| static struct notifier_block kvmclock_cpufreq_notifier_block = { |
| .notifier_call = kvmclock_cpufreq_notifier |
| }; |
| |
| static int kvmclock_cpu_notifier(struct notifier_block *nfb, |
| unsigned long action, void *hcpu) |
| { |
| unsigned int cpu = (unsigned long)hcpu; |
| |
| switch (action) { |
| case CPU_ONLINE: |
| case CPU_DOWN_FAILED: |
| smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); |
| break; |
| case CPU_DOWN_PREPARE: |
| smp_call_function_single(cpu, tsc_bad, NULL, 1); |
| break; |
| } |
| return NOTIFY_OK; |
| } |
| |
| static struct notifier_block kvmclock_cpu_notifier_block = { |
| .notifier_call = kvmclock_cpu_notifier, |
| .priority = -INT_MAX |
| }; |
| |
| static void kvm_timer_init(void) |
| { |
| int cpu; |
| |
| max_tsc_khz = tsc_khz; |
| register_hotcpu_notifier(&kvmclock_cpu_notifier_block); |
| if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { |
| #ifdef CONFIG_CPU_FREQ |
| struct cpufreq_policy policy; |
| memset(&policy, 0, sizeof(policy)); |
| cpu = get_cpu(); |
| cpufreq_get_policy(&policy, cpu); |
| if (policy.cpuinfo.max_freq) |
| max_tsc_khz = policy.cpuinfo.max_freq; |
| put_cpu(); |
| #endif |
| cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, |
| CPUFREQ_TRANSITION_NOTIFIER); |
| } |
| pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz); |
| for_each_online_cpu(cpu) |
| smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); |
| } |
| |
| static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); |
| |
| static int kvm_is_in_guest(void) |
| { |
| return percpu_read(current_vcpu) != NULL; |
| } |
| |
| static int kvm_is_user_mode(void) |
| { |
| int user_mode = 3; |
| |
| if (percpu_read(current_vcpu)) |
| user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu)); |
| |
| return user_mode != 0; |
| } |
| |
| static unsigned long kvm_get_guest_ip(void) |
| { |
| unsigned long ip = 0; |
| |
| if (percpu_read(current_vcpu)) |
| ip = kvm_rip_read(percpu_read(current_vcpu)); |
| |
| return ip; |
| } |
| |
| static struct perf_guest_info_callbacks kvm_guest_cbs = { |
| .is_in_guest = kvm_is_in_guest, |
| .is_user_mode = kvm_is_user_mode, |
| .get_guest_ip = kvm_get_guest_ip, |
| }; |
| |
| void kvm_before_handle_nmi(struct kvm_vcpu *vcpu) |
| { |
| percpu_write(current_vcpu, vcpu); |
| } |
| EXPORT_SYMBOL_GPL(kvm_before_handle_nmi); |
| |
| void kvm_after_handle_nmi(struct kvm_vcpu *vcpu) |
| { |
| percpu_write(current_vcpu, NULL); |
| } |
| EXPORT_SYMBOL_GPL(kvm_after_handle_nmi); |
| |
| int kvm_arch_init(void *opaque) |
| { |
| int r; |
| struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque; |
| |
| if (kvm_x86_ops) { |
| printk(KERN_ERR "kvm: already loaded the other module\n"); |
| r = -EEXIST; |
| goto out; |
| } |
| |
| if (!ops->cpu_has_kvm_support()) { |
| printk(KERN_ERR "kvm: no hardware support\n"); |
| r = -EOPNOTSUPP; |
| goto out; |
| } |
| if (ops->disabled_by_bios()) { |
| printk(KERN_ERR "kvm: disabled by bios\n"); |
| r = -EOPNOTSUPP; |
| goto out; |
| } |
| |
| r = kvm_mmu_module_init(); |
| if (r) |
| goto out; |
| |
| kvm_init_msr_list(); |
| |
| kvm_x86_ops = ops; |
| kvm_mmu_set_nonpresent_ptes(0ull, 0ull); |
| kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, |
| PT_DIRTY_MASK, PT64_NX_MASK, 0); |
| |
| kvm_timer_init(); |
| |
| perf_register_guest_info_callbacks(&kvm_guest_cbs); |
| |
| if (cpu_has_xsave) |
| host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); |
| |
| return 0; |
| |
| out: |
| return r; |
| } |
| |
| void kvm_arch_exit(void) |
| { |
| perf_unregister_guest_info_callbacks(&kvm_guest_cbs); |
| |
| if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) |
| cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, |
| CPUFREQ_TRANSITION_NOTIFIER); |
| unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block); |
| kvm_x86_ops = NULL; |
| kvm_mmu_module_exit(); |
| } |
| |
| int kvm_emulate_halt(struct kvm_vcpu *vcpu) |
| { |
| ++vcpu->stat.halt_exits; |
| if (irqchip_in_kernel(vcpu->kvm)) { |
| vcpu->arch.mp_state = KVM_MP_STATE_HALTED; |
| return 1; |
| } else { |
| vcpu->run->exit_reason = KVM_EXIT_HLT; |
| return 0; |
| } |
| } |
| EXPORT_SYMBOL_GPL(kvm_emulate_halt); |
| |
| static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0, |
| unsigned long a1) |
| { |
| if (is_long_mode(vcpu)) |
| return a0; |
| else |
| return a0 | ((gpa_t)a1 << 32); |
| } |
| |
| int kvm_hv_hypercall(struct kvm_vcpu *vcpu) |
| { |
| u64 param, ingpa, outgpa, ret; |
| uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0; |
| bool fast, longmode; |
| int cs_db, cs_l; |
| |
| /* |
| * hypercall generates UD from non zero cpl and real mode |
| * per HYPER-V spec |
| */ |
| if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) { |
| kvm_queue_exception(vcpu, UD_VECTOR); |
| return 0; |
| } |
| |
| kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); |
| longmode = is_long_mode(vcpu) && cs_l == 1; |
| |
| if (!longmode) { |
| param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) | |
| (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff); |
| ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) | |
| (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff); |
| outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) | |
| (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff); |
| } |
| #ifdef CONFIG_X86_64 |
| else { |
| param = kvm_register_read(vcpu, VCPU_REGS_RCX); |
| ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX); |
| outgpa = kvm_register_read(vcpu, VCPU_REGS_R8); |
| } |
| #endif |
| |
| code = param & 0xffff; |
| fast = (param >> 16) & 0x1; |
| rep_cnt = (param >> 32) & 0xfff; |
| rep_idx = (param >> 48) & 0xfff; |
| |
| trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa); |
| |
| switch (code) { |
| case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT: |
| kvm_vcpu_on_spin(vcpu); |
| break; |
| default: |
| res = HV_STATUS_INVALID_HYPERCALL_CODE; |
| break; |
| } |
| |
| ret = res | (((u64)rep_done & 0xfff) << 32); |
| if (longmode) { |
| kvm_register_write(vcpu, VCPU_REGS_RAX, ret); |
| } else { |
| kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32); |
| kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff); |
| } |
| |
| return 1; |
| } |
| |
| int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) |
| { |
| unsigned long nr, a0, a1, a2, a3, ret; |
| int r = 1; |
| |
| if (kvm_hv_hypercall_enabled(vcpu->kvm)) |
| return kvm_hv_hypercall(vcpu); |
| |
| nr = kvm_register_read(vcpu, VCPU_REGS_RAX); |
| a0 = kvm_register_read(vcpu, VCPU_REGS_RBX); |
| a1 = kvm_register_read(vcpu, VCPU_REGS_RCX); |
| a2 = kvm_register_read(vcpu, VCPU_REGS_RDX); |
| a3 = kvm_register_read(vcpu, VCPU_REGS_RSI); |
| |
| trace_kvm_hypercall(nr, a0, a1, a2, a3); |
| |
| if (!is_long_mode(vcpu)) { |
| nr &= 0xFFFFFFFF; |
| a0 &= 0xFFFFFFFF; |
| a1 &= 0xFFFFFFFF; |
| a2 &= 0xFFFFFFFF; |
| a3 &= 0xFFFFFFFF; |
| } |
| |
| if (kvm_x86_ops->get_cpl(vcpu) != 0) { |
| ret = -KVM_EPERM; |
| goto out; |
| } |
| |
| switch (nr) { |
| case KVM_HC_VAPIC_POLL_IRQ: |
| ret = 0; |
| break; |
| case KVM_HC_MMU_OP: |
| r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret); |
| break; |
| default: |
| ret = -KVM_ENOSYS; |
| break; |
| } |
| out: |
| kvm_register_write(vcpu, VCPU_REGS_RAX, ret); |
| ++vcpu->stat.hypercalls; |
| return r; |
| } |
| EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); |
| |
| int kvm_fix_hypercall(struct kvm_vcpu *vcpu) |
| { |
| char instruction[3]; |
| unsigned long rip = kvm_rip_read(vcpu); |
| |
| /* |
| * Blow out the MMU to ensure that no other VCPU has an active mapping |
| * to ensure that the updated hypercall appears atomically across all |
| * VCPUs. |
| */ |
| kvm_mmu_zap_all(vcpu->kvm); |
| |
| kvm_x86_ops->patch_hypercall(vcpu, instruction); |
| |
| return emulator_write_emulated(rip, instruction, 3, NULL, vcpu); |
| } |
| |
| void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base) |
| { |
| struct desc_ptr dt = { limit, base }; |
| |
| kvm_x86_ops->set_gdt(vcpu, &dt); |
| } |
| |
| void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base) |
| { |
| struct desc_ptr dt = { limit, base }; |
| |
| kvm_x86_ops->set_idt(vcpu, &dt); |
| } |
| |
| static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i) |
| { |
| struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i]; |
| int j, nent = vcpu->arch.cpuid_nent; |
| |
| e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT; |
| /* when no next entry is found, the current entry[i] is reselected */ |
| for (j = i + 1; ; j = (j + 1) % nent) { |
| struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j]; |
| if (ej->function == e->function) { |
| ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT; |
| return j; |
| } |
| } |
| return 0; /* silence gcc, even though control never reaches here */ |
| } |
| |
| /* find an entry with matching function, matching index (if needed), and that |
| * should be read next (if it's stateful) */ |
| static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e, |
| u32 function, u32 index) |
| { |
| if (e->function != function) |
| return 0; |
| if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index) |
| return 0; |
| if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) && |
| !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT)) |
| return 0; |
| return 1; |
| } |
| |
| struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu, |
| u32 function, u32 index) |
| { |
| int i; |
| struct kvm_cpuid_entry2 *best = NULL; |
| |
| for (i = 0; i < vcpu->arch.cpuid_nent; ++i) { |
| struct kvm_cpuid_entry2 *e; |
| |
| e = &vcpu->arch.cpuid_entries[i]; |
| if (is_matching_cpuid_entry(e, function, index)) { |
| if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) |
| move_to_next_stateful_cpuid_entry(vcpu, i); |
| best = e; |
| break; |
| } |
| /* |
| * Both basic or both extended? |
| */ |
| if (((e->function ^ function) & 0x80000000) == 0) |
| if (!best || e->function > best->function) |
| best = e; |
| } |
| return best; |
| } |
| EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry); |
| |
| int cpuid_maxphyaddr(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_cpuid_entry2 *best; |
| |
| best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0); |
| if (!best || best->eax < 0x80000008) |
| goto not_found; |
| best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0); |
| if (best) |
| return best->eax & 0xff; |
| not_found: |
| return 36; |
| } |
| |
| void kvm_emulate_cpuid(struct kvm_vcpu *vcpu) |
| { |
| u32 function, index; |
| struct kvm_cpuid_entry2 *best; |
| |
| function = kvm_register_read(vcpu, VCPU_REGS_RAX); |
| index = kvm_register_read(vcpu, VCPU_REGS_RCX); |
| kvm_register_write(vcpu, VCPU_REGS_RAX, 0); |
| kvm_register_write(vcpu, VCPU_REGS_RBX, 0); |
| kvm_register_write(vcpu, VCPU_REGS_RCX, 0); |
| kvm_register_write(vcpu, VCPU_REGS_RDX, 0); |
| best = kvm_find_cpuid_entry(vcpu, function, index); |
| if (best) { |
| kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax); |
| kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx); |
| kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx); |
| kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx); |
| } |
| kvm_x86_ops->skip_emulated_instruction(vcpu); |
| trace_kvm_cpuid(function, |
| kvm_register_read(vcpu, VCPU_REGS_RAX), |
| kvm_register_read(vcpu, VCPU_REGS_RBX), |
| kvm_register_read(vcpu, VCPU_REGS_RCX), |
| kvm_register_read(vcpu, VCPU_REGS_RDX)); |
| } |
| EXPORT_SYMBOL_GPL(kvm_emulate_cpuid); |
| |
| /* |
| * Check if userspace requested an interrupt window, and that the |
| * interrupt window is open. |
| * |
| * No need to exit to userspace if we already have an interrupt queued. |
| */ |
| static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) |
| { |
| return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) && |
| vcpu->run->request_interrupt_window && |
| kvm_arch_interrupt_allowed(vcpu)); |
| } |
| |
| static void post_kvm_run_save(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_run *kvm_run = vcpu->run; |
| |
| kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0; |
| kvm_run->cr8 = kvm_get_cr8(vcpu); |
| kvm_run->apic_base = kvm_get_apic_base(vcpu); |
| if (irqchip_in_kernel(vcpu->kvm)) |
| kvm_run->ready_for_interrupt_injection = 1; |
| else |
| kvm_run->ready_for_interrupt_injection = |
| kvm_arch_interrupt_allowed(vcpu) && |
| !kvm_cpu_has_interrupt(vcpu) && |
| !kvm_event_needs_reinjection(vcpu); |
| } |
| |
| static void vapic_enter(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_lapic *apic = vcpu->arch.apic; |
| struct page *page; |
| |
| if (!apic || !apic->vapic_addr) |
| return; |
| |
| page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT); |
| |
| vcpu->arch.apic->vapic_page = page; |
| } |
| |
| static void vapic_exit(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_lapic *apic = vcpu->arch.apic; |
| int idx; |
| |
| if (!apic || !apic->vapic_addr) |
| return; |
| |
| idx = srcu_read_lock(&vcpu->kvm->srcu); |
| kvm_release_page_dirty(apic->vapic_page); |
| mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT); |
| srcu_read_unlock(&vcpu->kvm->srcu, idx); |
| } |
| |
| static void update_cr8_intercept(struct kvm_vcpu *vcpu) |
| { |
| int max_irr, tpr; |
| |
| if (!kvm_x86_ops->update_cr8_intercept) |
| return; |
| |
| if (!vcpu->arch.apic) |
| return; |
| |
| if (!vcpu->arch.apic->vapic_addr) |
| max_irr = kvm_lapic_find_highest_irr(vcpu); |
| else |
| max_irr = -1; |
| |
| if (max_irr != -1) |
| max_irr >>= 4; |
| |
| tpr = kvm_lapic_get_cr8(vcpu); |
| |
| kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr); |
| } |
| |
| static void inject_pending_event(struct kvm_vcpu *vcpu) |
| { |
| /* try to reinject previous events if any */ |
| if (vcpu->arch.exception.pending) { |
| trace_kvm_inj_exception(vcpu->arch.exception.nr, |
| vcpu->arch.exception.has_error_code, |
| vcpu->arch.exception.error_code); |
| kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr, |
| vcpu->arch.exception.has_error_code, |
| vcpu->arch.exception.error_code, |
| vcpu->arch.exception.reinject); |
| return; |
| } |
| |
| if (vcpu->arch.nmi_injected) { |
| kvm_x86_ops->set_nmi(vcpu); |
| return; |
| } |
| |
| if (vcpu->arch.interrupt.pending) { |
| kvm_x86_ops->set_irq(vcpu); |
| return; |
| } |
| |
| /* try to inject new event if pending */ |
| if (vcpu->arch.nmi_pending) { |
| if (kvm_x86_ops->nmi_allowed(vcpu)) { |
| vcpu->arch.nmi_pending = false; |
| vcpu->arch.nmi_injected = true; |
| kvm_x86_ops->set_nmi(vcpu); |
| } |
| } else if (kvm_cpu_has_interrupt(vcpu)) { |
| if (kvm_x86_ops->interrupt_allowed(vcpu)) { |
| kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), |
| false); |
| kvm_x86_ops->set_irq(vcpu); |
| } |
| } |
| } |
| |
| static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu) |
| { |
| if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) && |
| !vcpu->guest_xcr0_loaded) { |
| /* kvm_set_xcr() also depends on this */ |
| xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); |
| vcpu->guest_xcr0_loaded = 1; |
| } |
| } |
| |
| static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu) |
| { |
| if (vcpu->guest_xcr0_loaded) { |
| if (vcpu->arch.xcr0 != host_xcr0) |
| xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); |
| vcpu->guest_xcr0_loaded = 0; |
| } |
| } |
| |
| static int vcpu_enter_guest(struct kvm_vcpu *vcpu) |
| { |
| int r; |
| bool req_int_win = !irqchip_in_kernel(vcpu->kvm) && |
| vcpu->run->request_interrupt_window; |
| |
| if (vcpu->requests) { |
| if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) |
| kvm_mmu_unload(vcpu); |
| if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) |
| __kvm_migrate_timers(vcpu); |
| if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { |
| r = kvm_guest_time_update(vcpu); |
| if (unlikely(r)) |
| goto out; |
| } |
| if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) |
| kvm_mmu_sync_roots(vcpu); |
| if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) |
| kvm_x86_ops->tlb_flush(vcpu); |
| if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { |
| vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; |
| r = 0; |
| goto out; |
| } |
| if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { |
| vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; |
| r = 0; |
| goto out; |
| } |
| if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) { |
| vcpu->fpu_active = 0; |
| kvm_x86_ops->fpu_deactivate(vcpu); |
| } |
| if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { |
| /* Page is swapped out. Do synthetic halt */ |
| vcpu->arch.apf.halted = true; |
| r = 1; |
| goto out; |
| } |
| } |
| |
| r = kvm_mmu_reload(vcpu); |
| if (unlikely(r)) |
| goto out; |
| |
| if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) { |
| inject_pending_event(vcpu); |
| |
| /* enable NMI/IRQ window open exits if needed */ |
| if (vcpu->arch.nmi_pending) |
| kvm_x86_ops->enable_nmi_window(vcpu); |
| else if (kvm_cpu_has_interrupt(vcpu) || req_int_win) |
| kvm_x86_ops->enable_irq_window(vcpu); |
| |
| if (kvm_lapic_enabled(vcpu)) { |
| update_cr8_intercept(vcpu); |
| kvm_lapic_sync_to_vapic(vcpu); |
| } |
| } |
| |
| preempt_disable(); |
| |
| kvm_x86_ops->prepare_guest_switch(vcpu); |
| if (vcpu->fpu_active) |
| kvm_load_guest_fpu(vcpu); |
| kvm_load_guest_xcr0(vcpu); |
| |
| atomic_set(&vcpu->guest_mode, 1); |
| smp_wmb(); |
| |
| local_irq_disable(); |
| |
| if (!atomic_read(&vcpu->guest_mode) || vcpu->requests |
| || need_resched() || signal_pending(current)) { |
| atomic_set(&vcpu->guest_mode, 0); |
| smp_wmb(); |
| local_irq_enable(); |
| preempt_enable(); |
| kvm_x86_ops->cancel_injection(vcpu); |
| r = 1; |
| goto out; |
| } |
| |
| srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); |
| |
| kvm_guest_enter(); |
| |
| if (unlikely(vcpu->arch.switch_db_regs)) { |
| set_debugreg(0, 7); |
| set_debugreg(vcpu->arch.eff_db[0], 0); |
| set_debugreg(vcpu->arch.eff_db[1], 1); |
| set_debugreg(vcpu->arch.eff_db[2], 2); |
| set_debugreg(vcpu->arch.eff_db[3], 3); |
| } |
| |
| trace_kvm_entry(vcpu->vcpu_id); |
| kvm_x86_ops->run(vcpu); |
| |
| /* |
| * If the guest has used debug registers, at least dr7 |
| * will be disabled while returning to the host. |
| * If we don't have active breakpoints in the host, we don't |
| * care about the messed up debug address registers. But if |
| * we have some of them active, restore the old state. |
| */ |
| if (hw_breakpoint_active()) |
| hw_breakpoint_restore(); |
| |
| kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc); |
| |
| atomic_set(&vcpu->guest_mode, 0); |
| smp_wmb(); |
| local_irq_enable(); |
| |
| ++vcpu->stat.exits; |
| |
| /* |
| * We must have an instruction between local_irq_enable() and |
| * kvm_guest_exit(), so the timer interrupt isn't delayed by |
| * the interrupt shadow. The stat.exits increment will do nicely. |
| * But we need to prevent reordering, hence this barrier(): |
| */ |
| barrier(); |
| |
| kvm_guest_exit(); |
| |
| preempt_enable(); |
| |
| vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); |
| |
| /* |
| * Profile KVM exit RIPs: |
| */ |
| if (unlikely(prof_on == KVM_PROFILING)) { |
| unsigned long rip = kvm_rip_read(vcpu); |
| profile_hit(KVM_PROFILING, (void *)rip); |
| } |
| |
| |
| kvm_lapic_sync_from_vapic(vcpu); |
| |
| r = kvm_x86_ops->handle_exit(vcpu); |
| out: |
| return r; |
| } |
| |
| |
| static int __vcpu_run(struct kvm_vcpu *vcpu) |
| { |
| int r; |
| struct kvm *kvm = vcpu->kvm; |
| |
| if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) { |
| pr_debug("vcpu %d received sipi with vector # %x\n", |
| vcpu->vcpu_id, vcpu->arch.sipi_vector); |
| kvm_lapic_reset(vcpu); |
| r = kvm_arch_vcpu_reset(vcpu); |
| if (r) |
| return r; |
| vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; |
| } |
| |
| vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); |
| vapic_enter(vcpu); |
| |
| r = 1; |
| while (r > 0) { |
| if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && |
| !vcpu->arch.apf.halted) |
| r = vcpu_enter_guest(vcpu); |
| else { |
| srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); |
| kvm_vcpu_block(vcpu); |
| vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); |
| if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) |
| { |
| switch(vcpu->arch.mp_state) { |
| case KVM_MP_STATE_HALTED: |
| vcpu->arch.mp_state = |
| KVM_MP_STATE_RUNNABLE; |
| case KVM_MP_STATE_RUNNABLE: |
| vcpu->arch.apf.halted = false; |
| break; |
| case KVM_MP_STATE_SIPI_RECEIVED: |
| default: |
| r = -EINTR; |
| break; |
| } |
| } |
| } |
| |
| if (r <= 0) |
| break; |
| |
| clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests); |
| if (kvm_cpu_has_pending_timer(vcpu)) |
| kvm_inject_pending_timer_irqs(vcpu); |
| |
| if (dm_request_for_irq_injection(vcpu)) { |
| r = -EINTR; |
| vcpu->run->exit_reason = KVM_EXIT_INTR; |
| ++vcpu->stat.request_irq_exits; |
| } |
| |
| kvm_check_async_pf_completion(vcpu); |
| |
| if (signal_pending(current)) { |
| r = -EINTR; |
| vcpu->run->exit_reason = KVM_EXIT_INTR; |
| ++vcpu->stat.signal_exits; |
| } |
| if (need_resched()) { |
| srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); |
| kvm_resched(vcpu); |
| vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); |
| } |
| } |
| |
| srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); |
| |
| vapic_exit(vcpu); |
| |
| return r; |
| } |
| |
| int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) |
| { |
| int r; |
| sigset_t sigsaved; |
| |
| if (vcpu->sigset_active) |
| sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); |
| |
| if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { |
| kvm_vcpu_block(vcpu); |
| clear_bit(KVM_REQ_UNHALT, &vcpu->requests); |
| r = -EAGAIN; |
| goto out; |
| } |
| |
| /* re-sync apic's tpr */ |
| if (!irqchip_in_kernel(vcpu->kvm)) |
| kvm_set_cr8(vcpu, kvm_run->cr8); |
| |
| if (vcpu->arch.pio.count || vcpu->mmio_needed) { |
| if (vcpu->mmio_needed) { |
| memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8); |
| vcpu->mmio_read_completed = 1; |
| vcpu->mmio_needed = 0; |
| } |
| vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); |
| r = emulate_instruction(vcpu, 0, 0, EMULTYPE_NO_DECODE); |
| srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); |
| if (r != EMULATE_DONE) { |
| r = 0; |
| goto out; |
| } |
| } |
| if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) |
| kvm_register_write(vcpu, VCPU_REGS_RAX, |
| kvm_run->hypercall.ret); |
| |
| r = __vcpu_run(vcpu); |
| |
| out: |
| post_kvm_run_save(vcpu); |
| if (vcpu->sigset_active) |
| sigprocmask(SIG_SETMASK, &sigsaved, NULL); |
| |
| return r; |
| } |
| |
| int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) |
| { |
| regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX); |
| regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX); |
| regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX); |
| regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX); |
| regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI); |
| regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI); |
| regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP); |
| regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP); |
| #ifdef CONFIG_X86_64 |
| regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8); |
| regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9); |
| regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10); |
| regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11); |
| regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12); |
| regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13); |
| regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14); |
| regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15); |
| #endif |
| |
| regs->rip = kvm_rip_read(vcpu); |
| regs->rflags = kvm_get_rflags(vcpu); |
| |
| return 0; |
| } |
| |
| int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) |
| { |
| kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax); |
| kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx); |
| kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx); |
| kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx); |
| kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi); |
| kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi); |
| kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp); |
| kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp); |
| #ifdef CONFIG_X86_64 |
| kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8); |
| kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9); |
| kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10); |
| kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11); |
| kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12); |
| kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13); |
| kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14); |
| kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15); |
| #endif |
| |
| kvm_rip_write(vcpu, regs->rip); |
| kvm_set_rflags(vcpu, regs->rflags); |
| |
| vcpu->arch.exception.pending = false; |
| |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| |
| return 0; |
| } |
| |
| void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) |
| { |
| struct kvm_segment cs; |
| |
| kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); |
| *db = cs.db; |
| *l = cs.l; |
| } |
| EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); |
| |
| int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, |
| struct kvm_sregs *sregs) |
| { |
| struct desc_ptr dt; |
| |
| kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); |
| kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); |
| kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); |
| kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); |
| kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); |
| kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); |
| |
| kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); |
| kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); |
| |
| kvm_x86_ops->get_idt(vcpu, &dt); |
| sregs->idt.limit = dt.size; |
| sregs->idt.base = dt.address; |
| kvm_x86_ops->get_gdt(vcpu, &dt); |
| sregs->gdt.limit = dt.size; |
| sregs->gdt.base = dt.address; |
| |
| sregs->cr0 = kvm_read_cr0(vcpu); |
| sregs->cr2 = vcpu->arch.cr2; |
| sregs->cr3 = vcpu->arch.cr3; |
| sregs->cr4 = kvm_read_cr4(vcpu); |
| sregs->cr8 = kvm_get_cr8(vcpu); |
| sregs->efer = vcpu->arch.efer; |
| sregs->apic_base = kvm_get_apic_base(vcpu); |
| |
| memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap); |
| |
| if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft) |
| set_bit(vcpu->arch.interrupt.nr, |
| (unsigned long *)sregs->interrupt_bitmap); |
| |
| return 0; |
| } |
| |
| int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, |
| struct kvm_mp_state *mp_state) |
| { |
| mp_state->mp_state = vcpu->arch.mp_state; |
| return 0; |
| } |
| |
| int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, |
| struct kvm_mp_state *mp_state) |
| { |
| vcpu->arch.mp_state = mp_state->mp_state; |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| return 0; |
| } |
| |
| int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason, |
| bool has_error_code, u32 error_code) |
| { |
| struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode; |
| int ret; |
| |
| init_emulate_ctxt(vcpu); |
| |
| ret = emulator_task_switch(&vcpu->arch.emulate_ctxt, |
| tss_selector, reason, has_error_code, |
| error_code); |
| |
| if (ret) |
| return EMULATE_FAIL; |
| |
| memcpy(vcpu->arch.regs, c->regs, sizeof c->regs); |
| kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip); |
| kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags); |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| return EMULATE_DONE; |
| } |
| EXPORT_SYMBOL_GPL(kvm_task_switch); |
| |
| int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, |
| struct kvm_sregs *sregs) |
| { |
| int mmu_reset_needed = 0; |
| int pending_vec, max_bits; |
| struct desc_ptr dt; |
| |
| dt.size = sregs->idt.limit; |
| dt.address = sregs->idt.base; |
| kvm_x86_ops->set_idt(vcpu, &dt); |
| dt.size = sregs->gdt.limit; |
| dt.address = sregs->gdt.base; |
| kvm_x86_ops->set_gdt(vcpu, &dt); |
| |
| vcpu->arch.cr2 = sregs->cr2; |
| mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3; |
| vcpu->arch.cr3 = sregs->cr3; |
| |
| kvm_set_cr8(vcpu, sregs->cr8); |
| |
| mmu_reset_needed |= vcpu->arch.efer != sregs->efer; |
| kvm_x86_ops->set_efer(vcpu, sregs->efer); |
| kvm_set_apic_base(vcpu, sregs->apic_base); |
| |
| mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; |
| kvm_x86_ops->set_cr0(vcpu, sregs->cr0); |
| vcpu->arch.cr0 = sregs->cr0; |
| |
| mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; |
| kvm_x86_ops->set_cr4(vcpu, sregs->cr4); |
| if (sregs->cr4 & X86_CR4_OSXSAVE) |
| update_cpuid(vcpu); |
| if (!is_long_mode(vcpu) && is_pae(vcpu)) { |
| load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3); |
| mmu_reset_needed = 1; |
| } |
| |
| if (mmu_reset_needed) |
| kvm_mmu_reset_context(vcpu); |
| |
| max_bits = (sizeof sregs->interrupt_bitmap) << 3; |
| pending_vec = find_first_bit( |
| (const unsigned long *)sregs->interrupt_bitmap, max_bits); |
| if (pending_vec < max_bits) { |
| kvm_queue_interrupt(vcpu, pending_vec, false); |
| pr_debug("Set back pending irq %d\n", pending_vec); |
| if (irqchip_in_kernel(vcpu->kvm)) |
| kvm_pic_clear_isr_ack(vcpu->kvm); |
| } |
| |
| kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); |
| kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); |
| kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); |
| kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); |
| kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); |
| kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); |
| |
| kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); |
| kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); |
| |
| update_cr8_intercept(vcpu); |
| |
| /* Older userspace won't unhalt the vcpu on reset. */ |
| if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && |
| sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && |
| !is_protmode(vcpu)) |
| vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; |
| |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| |
| return 0; |
| } |
| |
| int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, |
| struct kvm_guest_debug *dbg) |
| { |
| unsigned long rflags; |
| int i, r; |
| |
| if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { |
| r = -EBUSY; |
| if (vcpu->arch.exception.pending) |
| goto out; |
| if (dbg->control & KVM_GUESTDBG_INJECT_DB) |
| kvm_queue_exception(vcpu, DB_VECTOR); |
| else |
| kvm_queue_exception(vcpu, BP_VECTOR); |
| } |
| |
| /* |
| * Read rflags as long as potentially injected trace flags are still |
| * filtered out. |
| */ |
| rflags = kvm_get_rflags(vcpu); |
| |
| vcpu->guest_debug = dbg->control; |
| if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) |
| vcpu->guest_debug = 0; |
| |
| if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { |
| for (i = 0; i < KVM_NR_DB_REGS; ++i) |
| vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; |
| vcpu->arch.switch_db_regs = |
| (dbg->arch.debugreg[7] & DR7_BP_EN_MASK); |
| } else { |
| for (i = 0; i < KVM_NR_DB_REGS; i++) |
| vcpu->arch.eff_db[i] = vcpu->arch.db[i]; |
| vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK); |
| } |
| |
| if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) |
| vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) + |
| get_segment_base(vcpu, VCPU_SREG_CS); |
| |
| /* |
| * Trigger an rflags update that will inject or remove the trace |
| * flags. |
| */ |
| kvm_set_rflags(vcpu, rflags); |
| |
| kvm_x86_ops->set_guest_debug(vcpu, dbg); |
| |
| r = 0; |
| |
| out: |
| |
| return r; |
| } |
| |
| /* |
| * Translate a guest virtual address to a guest physical address. |
| */ |
| int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, |
| struct kvm_translation *tr) |
| { |
| unsigned long vaddr = tr->linear_address; |
| gpa_t gpa; |
| int idx; |
| |
| idx = srcu_read_lock(&vcpu->kvm->srcu); |
| gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); |
| srcu_read_unlock(&vcpu->kvm->srcu, idx); |
| tr->physical_address = gpa; |
| tr->valid = gpa != UNMAPPED_GVA; |
| tr->writeable = 1; |
| tr->usermode = 0; |
| |
| return 0; |
| } |
| |
| int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) |
| { |
| struct i387_fxsave_struct *fxsave = |
| &vcpu->arch.guest_fpu.state->fxsave; |
| |
| memcpy(fpu->fpr, fxsave->st_space, 128); |
| fpu->fcw = fxsave->cwd; |
| fpu->fsw = fxsave->swd; |
| fpu->ftwx = fxsave->twd; |
| fpu->last_opcode = fxsave->fop; |
| fpu->last_ip = fxsave->rip; |
| fpu->last_dp = fxsave->rdp; |
| memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space); |
| |
| return 0; |
| } |
| |
| int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) |
| { |
| struct i387_fxsave_struct *fxsave = |
| &vcpu->arch.guest_fpu.state->fxsave; |
| |
| memcpy(fxsave->st_space, fpu->fpr, 128); |
| fxsave->cwd = fpu->fcw; |
| fxsave->swd = fpu->fsw; |
| fxsave->twd = fpu->ftwx; |
| fxsave->fop = fpu->last_opcode; |
| fxsave->rip = fpu->last_ip; |
| fxsave->rdp = fpu->last_dp; |
| memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space); |
| |
| return 0; |
| } |
| |
| int fx_init(struct kvm_vcpu *vcpu) |
| { |
| int err; |
| |
| err = fpu_alloc(&vcpu->arch.guest_fpu); |
| if (err) |
| return err; |
| |
| fpu_finit(&vcpu->arch.guest_fpu); |
| |
| /* |
| * Ensure guest xcr0 is valid for loading |
| */ |
| vcpu->arch.xcr0 = XSTATE_FP; |
| |
| vcpu->arch.cr0 |= X86_CR0_ET; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(fx_init); |
| |
| static void fx_free(struct kvm_vcpu *vcpu) |
| { |
| fpu_free(&vcpu->arch.guest_fpu); |
| } |
| |
| void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) |
| { |
| if (vcpu->guest_fpu_loaded) |
| return; |
| |
| /* |
| * Restore all possible states in the guest, |
| * and assume host would use all available bits. |
| * Guest xcr0 would be loaded later. |
| */ |
| kvm_put_guest_xcr0(vcpu); |
| vcpu->guest_fpu_loaded = 1; |
| unlazy_fpu(current); |
| fpu_restore_checking(&vcpu->arch.guest_fpu); |
| trace_kvm_fpu(1); |
| } |
| |
| void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) |
| { |
| kvm_put_guest_xcr0(vcpu); |
| |
| if (!vcpu->guest_fpu_loaded) |
| return; |
| |
| vcpu->guest_fpu_loaded = 0; |
| fpu_save_init(&vcpu->arch.guest_fpu); |
| ++vcpu->stat.fpu_reload; |
| kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu); |
| trace_kvm_fpu(0); |
| } |
| |
| void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) |
| { |
| if (vcpu->arch.time_page) { |
| kvm_release_page_dirty(vcpu->arch.time_page); |
| vcpu->arch.time_page = NULL; |
| } |
| |
| free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); |
| fx_free(vcpu); |
| kvm_x86_ops->vcpu_free(vcpu); |
| } |
| |
| struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, |
| unsigned int id) |
| { |
| if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) |
| printk_once(KERN_WARNING |
| "kvm: SMP vm created on host with unstable TSC; " |
| "guest TSC will not be reliable\n"); |
| return kvm_x86_ops->vcpu_create(kvm, id); |
| } |
| |
| int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) |
| { |
| int r; |
| |
| vcpu->arch.mtrr_state.have_fixed = 1; |
| vcpu_load(vcpu); |
| r = kvm_arch_vcpu_reset(vcpu); |
| if (r == 0) |
| r = kvm_mmu_setup(vcpu); |
| vcpu_put(vcpu); |
| if (r < 0) |
| goto free_vcpu; |
| |
| return 0; |
| free_vcpu: |
| kvm_x86_ops->vcpu_free(vcpu); |
| return r; |
| } |
| |
| void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) |
| { |
| vcpu->arch.apf.msr_val = 0; |
| |
| vcpu_load(vcpu); |
| kvm_mmu_unload(vcpu); |
| vcpu_put(vcpu); |
| |
| fx_free(vcpu); |
| kvm_x86_ops->vcpu_free(vcpu); |
| } |
| |
| int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu) |
| { |
| vcpu->arch.nmi_pending = false; |
| vcpu->arch.nmi_injected = false; |
| |
| vcpu->arch.switch_db_regs = 0; |
| memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); |
| vcpu->arch.dr6 = DR6_FIXED_1; |
| vcpu->arch.dr7 = DR7_FIXED_1; |
| |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| vcpu->arch.apf.msr_val = 0; |
| |
| kvm_clear_async_pf_completion_queue(vcpu); |
| kvm_async_pf_hash_reset(vcpu); |
| vcpu->arch.apf.halted = false; |
| |
| return kvm_x86_ops->vcpu_reset(vcpu); |
| } |
| |
| int kvm_arch_hardware_enable(void *garbage) |
| { |
| struct kvm *kvm; |
| struct kvm_vcpu *vcpu; |
| int i; |
| |
| kvm_shared_msr_cpu_online(); |
| list_for_each_entry(kvm, &vm_list, vm_list) |
| kvm_for_each_vcpu(i, vcpu, kvm) |
| if (vcpu->cpu == smp_processor_id()) |
| kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); |
| return kvm_x86_ops->hardware_enable(garbage); |
| } |
| |
| void kvm_arch_hardware_disable(void *garbage) |
| { |
| kvm_x86_ops->hardware_disable(garbage); |
| drop_user_return_notifiers(garbage); |
| } |
| |
| int kvm_arch_hardware_setup(void) |
| { |
| return kvm_x86_ops->hardware_setup(); |
| } |
| |
| void kvm_arch_hardware_unsetup(void) |
| { |
| kvm_x86_ops->hardware_unsetup(); |
| } |
| |
| void kvm_arch_check_processor_compat(void *rtn) |
| { |
| kvm_x86_ops->check_processor_compatibility(rtn); |
| } |
| |
| int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) |
| { |
| struct page *page; |
| struct kvm *kvm; |
| int r; |
| |
| BUG_ON(vcpu->kvm == NULL); |
| kvm = vcpu->kvm; |
| |
| vcpu->arch.emulate_ctxt.ops = &emulate_ops; |
| vcpu->arch.walk_mmu = &vcpu->arch.mmu; |
| vcpu->arch.mmu.root_hpa = INVALID_PAGE; |
| vcpu->arch.mmu.translate_gpa = translate_gpa; |
| vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa; |
| if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu)) |
| vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; |
| else |
| vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; |
| |
| page = alloc_page(GFP_KERNEL | __GFP_ZERO); |
| if (!page) { |
| r = -ENOMEM; |
| goto fail; |
| } |
| vcpu->arch.pio_data = page_address(page); |
| |
| if (!kvm->arch.virtual_tsc_khz) |
| kvm_arch_set_tsc_khz(kvm, max_tsc_khz); |
| |
| r = kvm_mmu_create(vcpu); |
| if (r < 0) |
| goto fail_free_pio_data; |
| |
| if (irqchip_in_kernel(kvm)) { |
| r = kvm_create_lapic(vcpu); |
| if (r < 0) |
| goto fail_mmu_destroy; |
| } |
| |
| vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, |
| GFP_KERNEL); |
| if (!vcpu->arch.mce_banks) { |
| r = -ENOMEM; |
| goto fail_free_lapic; |
| } |
| vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; |
| |
| if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) |
| goto fail_free_mce_banks; |
| |
| kvm_async_pf_hash_reset(vcpu); |
| |
| return 0; |
| fail_free_mce_banks: |
| kfree(vcpu->arch.mce_banks); |
| fail_free_lapic: |
| kvm_free_lapic(vcpu); |
| fail_mmu_destroy: |
| kvm_mmu_destroy(vcpu); |
| fail_free_pio_data: |
| free_page((unsigned long)vcpu->arch.pio_data); |
| fail: |
| return r; |
| } |
| |
| void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) |
| { |
| int idx; |
| |
| kfree(vcpu->arch.mce_banks); |
| kvm_free_lapic(vcpu); |
| idx = srcu_read_lock(&vcpu->kvm->srcu); |
| kvm_mmu_destroy(vcpu); |
| srcu_read_unlock(&vcpu->kvm->srcu, idx); |
| free_page((unsigned long)vcpu->arch.pio_data); |
| } |
| |
| int kvm_arch_init_vm(struct kvm *kvm) |
| { |
| INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); |
| INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); |
| |
| /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ |
| set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); |
| |
| spin_lock_init(&kvm->arch.tsc_write_lock); |
| |
| return 0; |
| } |
| |
| static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) |
| { |
| vcpu_load(vcpu); |
| kvm_mmu_unload(vcpu); |
| vcpu_put(vcpu); |
| } |
| |
| static void kvm_free_vcpus(struct kvm *kvm) |
| { |
| unsigned int i; |
| struct kvm_vcpu *vcpu; |
| |
| /* |
| * Unpin any mmu pages first. |
| */ |
| kvm_for_each_vcpu(i, vcpu, kvm) { |
| kvm_clear_async_pf_completion_queue(vcpu); |
| kvm_unload_vcpu_mmu(vcpu); |
| } |
| kvm_for_each_vcpu(i, vcpu, kvm) |
| kvm_arch_vcpu_free(vcpu); |
| |
| mutex_lock(&kvm->lock); |
| for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) |
| kvm->vcpus[i] = NULL; |
| |
| atomic_set(&kvm->online_vcpus, 0); |
| mutex_unlock(&kvm->lock); |
| } |
| |
| void kvm_arch_sync_events(struct kvm *kvm) |
| { |
| kvm_free_all_assigned_devices(kvm); |
| kvm_free_pit(kvm); |
| } |
| |
| void kvm_arch_destroy_vm(struct kvm *kvm) |
| { |
| kvm_iommu_unmap_guest(kvm); |
| kfree(kvm->arch.vpic); |
| kfree(kvm->arch.vioapic); |
| kvm_free_vcpus(kvm); |
| if (kvm->arch.apic_access_page) |
| put_page(kvm->arch.apic_access_page); |
| if (kvm->arch.ept_identity_pagetable) |
| put_page(kvm->arch.ept_identity_pagetable); |
| } |
| |
| int kvm_arch_prepare_memory_region(struct kvm *kvm, |
| struct kvm_memory_slot *memslot, |
| struct kvm_memory_slot old, |
| struct kvm_userspace_memory_region *mem, |
| int user_alloc) |
| { |
| int npages = memslot->npages; |
| int map_flags = MAP_PRIVATE | MAP_ANONYMOUS; |
| |
| /* Prevent internal slot pages from being moved by fork()/COW. */ |
| if (memslot->id >= KVM_MEMORY_SLOTS) |
| map_flags = MAP_SHARED | MAP_ANONYMOUS; |
| |
| /*To keep backward compatibility with older userspace, |
| *x86 needs to hanlde !user_alloc case. |
| */ |
| if (!user_alloc) { |
| if (npages && !old.rmap) { |
| unsigned long userspace_addr; |
| |
| down_write(¤t->mm->mmap_sem); |
| userspace_addr = do_mmap(NULL, 0, |
| npages * PAGE_SIZE, |
| PROT_READ | PROT_WRITE, |
| map_flags, |
| 0); |
| up_write(¤t->mm->mmap_sem); |
| |
| if (IS_ERR((void *)userspace_addr)) |
| return PTR_ERR((void *)userspace_addr); |
| |
| memslot->userspace_addr = userspace_addr; |
| } |
| } |
| |
| |
| return 0; |
| } |
| |
| void kvm_arch_commit_memory_region(struct kvm *kvm, |
| struct kvm_userspace_memory_region *mem, |
| struct kvm_memory_slot old, |
| int user_alloc) |
| { |
| |
| int npages = mem->memory_size >> PAGE_SHIFT; |
| |
| if (!user_alloc && !old.user_alloc && old.rmap && !npages) { |
| int ret; |
| |
| down_write(¤t->mm->mmap_sem); |
| ret = do_munmap(current->mm, old.userspace_addr, |
| old.npages * PAGE_SIZE); |
| up_write(¤t->mm->mmap_sem); |
| if (ret < 0) |
| printk(KERN_WARNING |
| "kvm_vm_ioctl_set_memory_region: " |
| "failed to munmap memory\n"); |
| } |
| |
| spin_lock(&kvm->mmu_lock); |
| if (!kvm->arch.n_requested_mmu_pages) { |
| unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm); |
| kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); |
| } |
| |
| kvm_mmu_slot_remove_write_access(kvm, mem->slot); |
| spin_unlock(&kvm->mmu_lock); |
| } |
| |
| void kvm_arch_flush_shadow(struct kvm *kvm) |
| { |
| kvm_mmu_zap_all(kvm); |
| kvm_reload_remote_mmus(kvm); |
| } |
| |
| int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) |
| { |
| return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && |
| !vcpu->arch.apf.halted) |
| || !list_empty_careful(&vcpu->async_pf.done) |
| || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED |
| || vcpu->arch.nmi_pending || |
| (kvm_arch_interrupt_allowed(vcpu) && |
| kvm_cpu_has_interrupt(vcpu)); |
| } |
| |
| void kvm_vcpu_kick(struct kvm_vcpu *vcpu) |
| { |
| int me; |
| int cpu = vcpu->cpu; |
| |
| if (waitqueue_active(&vcpu->wq)) { |
| wake_up_interruptible(&vcpu->wq); |
| ++vcpu->stat.halt_wakeup; |
| } |
| |
| me = get_cpu(); |
| if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) |
| if (atomic_xchg(&vcpu->guest_mode, 0)) |
| smp_send_reschedule(cpu); |
| put_cpu(); |
| } |
| |
| int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) |
| { |
| return kvm_x86_ops->interrupt_allowed(vcpu); |
| } |
| |
| bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) |
| { |
| unsigned long current_rip = kvm_rip_read(vcpu) + |
| get_segment_base(vcpu, VCPU_SREG_CS); |
| |
| return current_rip == linear_rip; |
| } |
| EXPORT_SYMBOL_GPL(kvm_is_linear_rip); |
| |
| unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) |
| { |
| unsigned long rflags; |
| |
| rflags = kvm_x86_ops->get_rflags(vcpu); |
| if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) |
| rflags &= ~X86_EFLAGS_TF; |
| return rflags; |
| } |
| EXPORT_SYMBOL_GPL(kvm_get_rflags); |
| |
| void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) |
| { |
| if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && |
| kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) |
| rflags |= X86_EFLAGS_TF; |
| kvm_x86_ops->set_rflags(vcpu, rflags); |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| } |
| EXPORT_SYMBOL_GPL(kvm_set_rflags); |
| |
| void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) |
| { |
| int r; |
| |
| if (!vcpu->arch.mmu.direct_map || !work->arch.direct_map || |
| is_error_page(work->page)) |
| return; |
| |
| r = kvm_mmu_reload(vcpu); |
| if (unlikely(r)) |
| return; |
| |
| vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true); |
| } |
| |
| static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) |
| { |
| return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); |
| } |
| |
| static inline u32 kvm_async_pf_next_probe(u32 key) |
| { |
| return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1); |
| } |
| |
| static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) |
| { |
| u32 key = kvm_async_pf_hash_fn(gfn); |
| |
| while (vcpu->arch.apf.gfns[key] != ~0) |
| key = kvm_async_pf_next_probe(key); |
| |
| vcpu->arch.apf.gfns[key] = gfn; |
| } |
| |
| static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) |
| { |
| int i; |
| u32 key = kvm_async_pf_hash_fn(gfn); |
| |
| for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) && |
| (vcpu->arch.apf.gfns[key] != gfn && |
| vcpu->arch.apf.gfns[key] != ~0); i++) |
| key = kvm_async_pf_next_probe(key); |
| |
| return key; |
| } |
| |
| bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) |
| { |
| return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; |
| } |
| |
| static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) |
| { |
| u32 i, j, k; |
| |
| i = j = kvm_async_pf_gfn_slot(vcpu, gfn); |
| while (true) { |
| vcpu->arch.apf.gfns[i] = ~0; |
| do { |
| j = kvm_async_pf_next_probe(j); |
| if (vcpu->arch.apf.gfns[j] == ~0) |
| return; |
| k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); |
| /* |
| * k lies cyclically in ]i,j] |
| * | i.k.j | |
| * |....j i.k.| or |.k..j i...| |
| */ |
| } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); |
| vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; |
| i = j; |
| } |
| } |
| |
| static int apf_put_user(struct kvm_vcpu *vcpu, u32 val) |
| { |
| |
| return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val, |
| sizeof(val)); |
| } |
| |
| void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, |
| struct kvm_async_pf *work) |
| { |
| trace_kvm_async_pf_not_present(work->arch.token, work->gva); |
| kvm_add_async_pf_gfn(vcpu, work->arch.gfn); |
| |
| if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) || |
| (vcpu->arch.apf.send_user_only && |
| kvm_x86_ops->get_cpl(vcpu) == 0)) |
| kvm_make_request(KVM_REQ_APF_HALT, vcpu); |
| else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) { |
| vcpu->arch.fault.error_code = 0; |
| vcpu->arch.fault.address = work->arch.token; |
| kvm_inject_page_fault(vcpu); |
| } |
| } |
| |
| void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, |
| struct kvm_async_pf *work) |
| { |
| trace_kvm_async_pf_ready(work->arch.token, work->gva); |
| if (is_error_page(work->page)) |
| work->arch.token = ~0; /* broadcast wakeup */ |
| else |
| kvm_del_async_pf_gfn(vcpu, work->arch.gfn); |
| |
| if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) && |
| !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) { |
| vcpu->arch.fault.error_code = 0; |
| vcpu->arch.fault.address = work->arch.token; |
| kvm_inject_page_fault(vcpu); |
| } |
| vcpu->arch.apf.halted = false; |
| } |
| |
| bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu) |
| { |
| if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED)) |
| return true; |
| else |
| return !kvm_event_needs_reinjection(vcpu) && |
| kvm_x86_ops->interrupt_allowed(vcpu); |
| } |
| |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); |