| /* |
| * Copyright (c) 2004-2011 Atheros Communications Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| */ |
| |
| #include "core.h" |
| #include "hif-ops.h" |
| #include "cfg80211.h" |
| #include "target.h" |
| #include "debug.h" |
| |
| struct ath6kl_sta *ath6kl_find_sta(struct ath6kl *ar, u8 *node_addr) |
| { |
| struct ath6kl_sta *conn = NULL; |
| u8 i, max_conn; |
| |
| max_conn = (ar->nw_type == AP_NETWORK) ? AP_MAX_NUM_STA : 0; |
| |
| for (i = 0; i < max_conn; i++) { |
| if (memcmp(node_addr, ar->sta_list[i].mac, ETH_ALEN) == 0) { |
| conn = &ar->sta_list[i]; |
| break; |
| } |
| } |
| |
| return conn; |
| } |
| |
| struct ath6kl_sta *ath6kl_find_sta_by_aid(struct ath6kl *ar, u8 aid) |
| { |
| struct ath6kl_sta *conn = NULL; |
| u8 ctr; |
| |
| for (ctr = 0; ctr < AP_MAX_NUM_STA; ctr++) { |
| if (ar->sta_list[ctr].aid == aid) { |
| conn = &ar->sta_list[ctr]; |
| break; |
| } |
| } |
| return conn; |
| } |
| |
| static void ath6kl_add_new_sta(struct ath6kl *ar, u8 *mac, u16 aid, u8 *wpaie, |
| u8 ielen, u8 keymgmt, u8 ucipher, u8 auth) |
| { |
| struct ath6kl_sta *sta; |
| u8 free_slot; |
| |
| free_slot = aid - 1; |
| |
| sta = &ar->sta_list[free_slot]; |
| memcpy(sta->mac, mac, ETH_ALEN); |
| memcpy(sta->wpa_ie, wpaie, ielen); |
| sta->aid = aid; |
| sta->keymgmt = keymgmt; |
| sta->ucipher = ucipher; |
| sta->auth = auth; |
| |
| ar->sta_list_index = ar->sta_list_index | (1 << free_slot); |
| ar->ap_stats.sta[free_slot].aid = cpu_to_le32(aid); |
| } |
| |
| static void ath6kl_sta_cleanup(struct ath6kl *ar, u8 i) |
| { |
| struct ath6kl_sta *sta = &ar->sta_list[i]; |
| |
| /* empty the queued pkts in the PS queue if any */ |
| spin_lock_bh(&sta->psq_lock); |
| skb_queue_purge(&sta->psq); |
| spin_unlock_bh(&sta->psq_lock); |
| |
| memset(&ar->ap_stats.sta[sta->aid - 1], 0, |
| sizeof(struct wmi_per_sta_stat)); |
| memset(sta->mac, 0, ETH_ALEN); |
| memset(sta->wpa_ie, 0, ATH6KL_MAX_IE); |
| sta->aid = 0; |
| sta->sta_flags = 0; |
| |
| ar->sta_list_index = ar->sta_list_index & ~(1 << i); |
| |
| } |
| |
| static u8 ath6kl_remove_sta(struct ath6kl *ar, u8 *mac, u16 reason) |
| { |
| u8 i, removed = 0; |
| |
| if (is_zero_ether_addr(mac)) |
| return removed; |
| |
| if (is_broadcast_ether_addr(mac)) { |
| ath6kl_dbg(ATH6KL_DBG_TRC, "deleting all station\n"); |
| |
| for (i = 0; i < AP_MAX_NUM_STA; i++) { |
| if (!is_zero_ether_addr(ar->sta_list[i].mac)) { |
| ath6kl_sta_cleanup(ar, i); |
| removed = 1; |
| } |
| } |
| } else { |
| for (i = 0; i < AP_MAX_NUM_STA; i++) { |
| if (memcmp(ar->sta_list[i].mac, mac, ETH_ALEN) == 0) { |
| ath6kl_dbg(ATH6KL_DBG_TRC, |
| "deleting station %pM aid=%d reason=%d\n", |
| mac, ar->sta_list[i].aid, reason); |
| ath6kl_sta_cleanup(ar, i); |
| removed = 1; |
| break; |
| } |
| } |
| } |
| |
| return removed; |
| } |
| |
| enum htc_endpoint_id ath6kl_ac2_endpoint_id(void *devt, u8 ac) |
| { |
| struct ath6kl *ar = devt; |
| return ar->ac2ep_map[ac]; |
| } |
| |
| struct ath6kl_cookie *ath6kl_alloc_cookie(struct ath6kl *ar) |
| { |
| struct ath6kl_cookie *cookie; |
| |
| cookie = ar->cookie_list; |
| if (cookie != NULL) { |
| ar->cookie_list = cookie->arc_list_next; |
| ar->cookie_count--; |
| } |
| |
| return cookie; |
| } |
| |
| void ath6kl_cookie_init(struct ath6kl *ar) |
| { |
| u32 i; |
| |
| ar->cookie_list = NULL; |
| ar->cookie_count = 0; |
| |
| memset(ar->cookie_mem, 0, sizeof(ar->cookie_mem)); |
| |
| for (i = 0; i < MAX_COOKIE_NUM; i++) |
| ath6kl_free_cookie(ar, &ar->cookie_mem[i]); |
| } |
| |
| void ath6kl_cookie_cleanup(struct ath6kl *ar) |
| { |
| ar->cookie_list = NULL; |
| ar->cookie_count = 0; |
| } |
| |
| void ath6kl_free_cookie(struct ath6kl *ar, struct ath6kl_cookie *cookie) |
| { |
| /* Insert first */ |
| |
| if (!ar || !cookie) |
| return; |
| |
| cookie->arc_list_next = ar->cookie_list; |
| ar->cookie_list = cookie; |
| ar->cookie_count++; |
| } |
| |
| /* set the window address register (using 4-byte register access ). */ |
| static int ath6kl_set_addrwin_reg(struct ath6kl *ar, u32 reg_addr, u32 addr) |
| { |
| int status; |
| u8 addr_val[4]; |
| s32 i; |
| |
| /* |
| * Write bytes 1,2,3 of the register to set the upper address bytes, |
| * the LSB is written last to initiate the access cycle |
| */ |
| |
| for (i = 1; i <= 3; i++) { |
| /* |
| * Fill the buffer with the address byte value we want to |
| * hit 4 times. |
| */ |
| memset(addr_val, ((u8 *)&addr)[i], 4); |
| |
| /* |
| * Hit each byte of the register address with a 4-byte |
| * write operation to the same address, this is a harmless |
| * operation. |
| */ |
| status = hif_read_write_sync(ar, reg_addr + i, addr_val, |
| 4, HIF_WR_SYNC_BYTE_FIX); |
| if (status) |
| break; |
| } |
| |
| if (status) { |
| ath6kl_err("failed to write initial bytes of 0x%x to window reg: 0x%X\n", |
| addr, reg_addr); |
| return status; |
| } |
| |
| /* |
| * Write the address register again, this time write the whole |
| * 4-byte value. The effect here is that the LSB write causes the |
| * cycle to start, the extra 3 byte write to bytes 1,2,3 has no |
| * effect since we are writing the same values again |
| */ |
| status = hif_read_write_sync(ar, reg_addr, (u8 *)(&addr), |
| 4, HIF_WR_SYNC_BYTE_INC); |
| |
| if (status) { |
| ath6kl_err("failed to write 0x%x to window reg: 0x%X\n", |
| addr, reg_addr); |
| return status; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Read from the ATH6KL through its diagnostic window. No cooperation from |
| * the Target is required for this. |
| */ |
| int ath6kl_read_reg_diag(struct ath6kl *ar, u32 *address, u32 *data) |
| { |
| int status; |
| |
| /* set window register to start read cycle */ |
| status = ath6kl_set_addrwin_reg(ar, WINDOW_READ_ADDR_ADDRESS, |
| *address); |
| |
| if (status) |
| return status; |
| |
| /* read the data */ |
| status = hif_read_write_sync(ar, WINDOW_DATA_ADDRESS, (u8 *)data, |
| sizeof(u32), HIF_RD_SYNC_BYTE_INC); |
| if (status) { |
| ath6kl_err("failed to read from window data addr\n"); |
| return status; |
| } |
| |
| return status; |
| } |
| |
| |
| /* |
| * Write to the ATH6KL through its diagnostic window. No cooperation from |
| * the Target is required for this. |
| */ |
| static int ath6kl_write_reg_diag(struct ath6kl *ar, u32 *address, u32 *data) |
| { |
| int status; |
| |
| /* set write data */ |
| status = hif_read_write_sync(ar, WINDOW_DATA_ADDRESS, (u8 *)data, |
| sizeof(u32), HIF_WR_SYNC_BYTE_INC); |
| if (status) { |
| ath6kl_err("failed to write 0x%x to window data addr\n", *data); |
| return status; |
| } |
| |
| /* set window register, which starts the write cycle */ |
| return ath6kl_set_addrwin_reg(ar, WINDOW_WRITE_ADDR_ADDRESS, |
| *address); |
| } |
| |
| int ath6kl_access_datadiag(struct ath6kl *ar, u32 address, |
| u8 *data, u32 length, bool read) |
| { |
| u32 count; |
| int status = 0; |
| |
| for (count = 0; count < length; count += 4, address += 4) { |
| if (read) { |
| status = ath6kl_read_reg_diag(ar, &address, |
| (u32 *) &data[count]); |
| if (status) |
| break; |
| } else { |
| status = ath6kl_write_reg_diag(ar, &address, |
| (u32 *) &data[count]); |
| if (status) |
| break; |
| } |
| } |
| |
| return status; |
| } |
| |
| static void ath6kl_reset_device(struct ath6kl *ar, u32 target_type, |
| bool wait_fot_compltn, bool cold_reset) |
| { |
| int status = 0; |
| u32 address; |
| u32 data; |
| |
| if (target_type != TARGET_TYPE_AR6003) |
| return; |
| |
| data = cold_reset ? RESET_CONTROL_COLD_RST : RESET_CONTROL_MBOX_RST; |
| |
| address = RTC_BASE_ADDRESS; |
| status = ath6kl_write_reg_diag(ar, &address, &data); |
| |
| if (status) |
| ath6kl_err("failed to reset target\n"); |
| } |
| |
| void ath6kl_stop_endpoint(struct net_device *dev, bool keep_profile, |
| bool get_dbglogs) |
| { |
| struct ath6kl *ar = ath6kl_priv(dev); |
| static u8 bcast_mac[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; |
| bool discon_issued; |
| |
| netif_stop_queue(dev); |
| |
| /* disable the target and the interrupts associated with it */ |
| if (test_bit(WMI_READY, &ar->flag)) { |
| discon_issued = (test_bit(CONNECTED, &ar->flag) || |
| test_bit(CONNECT_PEND, &ar->flag)); |
| ath6kl_disconnect(ar); |
| if (!keep_profile) |
| ath6kl_init_profile_info(ar); |
| |
| del_timer(&ar->disconnect_timer); |
| |
| clear_bit(WMI_READY, &ar->flag); |
| ath6kl_wmi_shutdown(ar->wmi); |
| clear_bit(WMI_ENABLED, &ar->flag); |
| ar->wmi = NULL; |
| |
| /* |
| * After wmi_shudown all WMI events will be dropped. We |
| * need to cleanup the buffers allocated in AP mode and |
| * give disconnect notification to stack, which usually |
| * happens in the disconnect_event. Simulate the disconnect |
| * event by calling the function directly. Sometimes |
| * disconnect_event will be received when the debug logs |
| * are collected. |
| */ |
| if (discon_issued) |
| ath6kl_disconnect_event(ar, DISCONNECT_CMD, |
| (ar->nw_type & AP_NETWORK) ? |
| bcast_mac : ar->bssid, |
| 0, NULL, 0); |
| |
| ar->user_key_ctrl = 0; |
| |
| } else { |
| ath6kl_dbg(ATH6KL_DBG_TRC, |
| "%s: wmi is not ready 0x%p 0x%p\n", |
| __func__, ar, ar->wmi); |
| |
| /* Shut down WMI if we have started it */ |
| if (test_bit(WMI_ENABLED, &ar->flag)) { |
| ath6kl_dbg(ATH6KL_DBG_TRC, |
| "%s: shut down wmi\n", __func__); |
| ath6kl_wmi_shutdown(ar->wmi); |
| clear_bit(WMI_ENABLED, &ar->flag); |
| ar->wmi = NULL; |
| } |
| } |
| |
| if (ar->htc_target) { |
| ath6kl_dbg(ATH6KL_DBG_TRC, "%s: shut down htc\n", __func__); |
| htc_stop(ar->htc_target); |
| } |
| |
| /* |
| * Try to reset the device if we can. The driver may have been |
| * configure NOT to reset the target during a debug session. |
| */ |
| ath6kl_dbg(ATH6KL_DBG_TRC, |
| "attempting to reset target on instance destroy\n"); |
| ath6kl_reset_device(ar, ar->target_type, true, true); |
| } |
| |
| static void ath6kl_install_static_wep_keys(struct ath6kl *ar) |
| { |
| u8 index; |
| u8 keyusage; |
| |
| for (index = WMI_MIN_KEY_INDEX; index <= WMI_MAX_KEY_INDEX; index++) { |
| if (ar->wep_key_list[index].key_len) { |
| keyusage = GROUP_USAGE; |
| if (index == ar->def_txkey_index) |
| keyusage |= TX_USAGE; |
| |
| ath6kl_wmi_addkey_cmd(ar->wmi, |
| index, |
| WEP_CRYPT, |
| keyusage, |
| ar->wep_key_list[index].key_len, |
| NULL, |
| ar->wep_key_list[index].key, |
| KEY_OP_INIT_VAL, NULL, |
| NO_SYNC_WMIFLAG); |
| } |
| } |
| } |
| |
| static void ath6kl_connect_ap_mode(struct ath6kl *ar, u16 channel, u8 *bssid, |
| u16 listen_int, u16 beacon_int, |
| u8 assoc_resp_len, u8 *assoc_info) |
| { |
| struct net_device *dev = ar->net_dev; |
| struct station_info sinfo; |
| struct ath6kl_req_key *ik; |
| enum crypto_type keyType = NONE_CRYPT; |
| |
| if (memcmp(dev->dev_addr, bssid, ETH_ALEN) == 0) { |
| ik = &ar->ap_mode_bkey; |
| |
| switch (ar->auth_mode) { |
| case NONE_AUTH: |
| if (ar->prwise_crypto == WEP_CRYPT) |
| ath6kl_install_static_wep_keys(ar); |
| break; |
| case WPA_PSK_AUTH: |
| case WPA2_PSK_AUTH: |
| case (WPA_PSK_AUTH|WPA2_PSK_AUTH): |
| switch (ik->ik_type) { |
| case ATH6KL_CIPHER_TKIP: |
| keyType = TKIP_CRYPT; |
| break; |
| case ATH6KL_CIPHER_AES_CCM: |
| keyType = AES_CRYPT; |
| break; |
| default: |
| goto skip_key; |
| } |
| ath6kl_wmi_addkey_cmd(ar->wmi, ik->ik_keyix, keyType, |
| GROUP_USAGE, ik->ik_keylen, |
| (u8 *)&ik->ik_keyrsc, |
| ik->ik_keydata, |
| KEY_OP_INIT_VAL, ik->ik_macaddr, |
| SYNC_BOTH_WMIFLAG); |
| break; |
| } |
| skip_key: |
| set_bit(CONNECTED, &ar->flag); |
| return; |
| } |
| |
| ath6kl_dbg(ATH6KL_DBG_TRC, "new station %pM aid=%d\n", |
| bssid, channel); |
| |
| ath6kl_add_new_sta(ar, bssid, channel, assoc_info, assoc_resp_len, |
| listen_int & 0xFF, beacon_int, |
| (listen_int >> 8) & 0xFF); |
| |
| /* send event to application */ |
| memset(&sinfo, 0, sizeof(sinfo)); |
| |
| /* TODO: sinfo.generation */ |
| /* TODO: need to deliver (Re)AssocReq IEs somehow.. change in |
| * cfg80211 needed, e.g., by adding those into sinfo |
| */ |
| cfg80211_new_sta(ar->net_dev, bssid, &sinfo, GFP_KERNEL); |
| |
| netif_wake_queue(ar->net_dev); |
| |
| return; |
| } |
| |
| /* Functions for Tx credit handling */ |
| void ath6k_credit_init(struct htc_credit_state_info *cred_info, |
| struct list_head *ep_list, |
| int tot_credits) |
| { |
| struct htc_endpoint_credit_dist *cur_ep_dist; |
| int count; |
| |
| cred_info->cur_free_credits = tot_credits; |
| cred_info->total_avail_credits = tot_credits; |
| |
| list_for_each_entry(cur_ep_dist, ep_list, list) { |
| if (cur_ep_dist->endpoint == ENDPOINT_0) |
| continue; |
| |
| cur_ep_dist->cred_min = cur_ep_dist->cred_per_msg; |
| |
| if (tot_credits > 4) |
| if ((cur_ep_dist->svc_id == WMI_DATA_BK_SVC) || |
| (cur_ep_dist->svc_id == WMI_DATA_BE_SVC)) { |
| ath6kl_deposit_credit_to_ep(cred_info, |
| cur_ep_dist, |
| cur_ep_dist->cred_min); |
| cur_ep_dist->dist_flags |= HTC_EP_ACTIVE; |
| } |
| |
| if (cur_ep_dist->svc_id == WMI_CONTROL_SVC) { |
| ath6kl_deposit_credit_to_ep(cred_info, cur_ep_dist, |
| cur_ep_dist->cred_min); |
| /* |
| * Control service is always marked active, it |
| * never goes inactive EVER. |
| */ |
| cur_ep_dist->dist_flags |= HTC_EP_ACTIVE; |
| } else if (cur_ep_dist->svc_id == WMI_DATA_BK_SVC) |
| /* this is the lowest priority data endpoint */ |
| cred_info->lowestpri_ep_dist = cur_ep_dist->list; |
| |
| /* |
| * Streams have to be created (explicit | implicit) for all |
| * kinds of traffic. BE endpoints are also inactive in the |
| * beginning. When BE traffic starts it creates implicit |
| * streams that redistributes credits. |
| * |
| * Note: all other endpoints have minimums set but are |
| * initially given NO credits. credits will be distributed |
| * as traffic activity demands |
| */ |
| } |
| |
| WARN_ON(cred_info->cur_free_credits <= 0); |
| |
| list_for_each_entry(cur_ep_dist, ep_list, list) { |
| if (cur_ep_dist->endpoint == ENDPOINT_0) |
| continue; |
| |
| if (cur_ep_dist->svc_id == WMI_CONTROL_SVC) |
| cur_ep_dist->cred_norm = cur_ep_dist->cred_per_msg; |
| else { |
| /* |
| * For the remaining data endpoints, we assume that |
| * each cred_per_msg are the same. We use a simple |
| * calculation here, we take the remaining credits |
| * and determine how many max messages this can |
| * cover and then set each endpoint's normal value |
| * equal to 3/4 this amount. |
| */ |
| count = (cred_info->cur_free_credits / |
| cur_ep_dist->cred_per_msg) |
| * cur_ep_dist->cred_per_msg; |
| count = (count * 3) >> 2; |
| count = max(count, cur_ep_dist->cred_per_msg); |
| cur_ep_dist->cred_norm = count; |
| |
| } |
| } |
| } |
| |
| /* initialize and setup credit distribution */ |
| int ath6k_setup_credit_dist(void *htc_handle, |
| struct htc_credit_state_info *cred_info) |
| { |
| u16 servicepriority[5]; |
| |
| memset(cred_info, 0, sizeof(struct htc_credit_state_info)); |
| |
| servicepriority[0] = WMI_CONTROL_SVC; /* highest */ |
| servicepriority[1] = WMI_DATA_VO_SVC; |
| servicepriority[2] = WMI_DATA_VI_SVC; |
| servicepriority[3] = WMI_DATA_BE_SVC; |
| servicepriority[4] = WMI_DATA_BK_SVC; /* lowest */ |
| |
| /* set priority list */ |
| htc_set_credit_dist(htc_handle, cred_info, servicepriority, 5); |
| |
| return 0; |
| } |
| |
| /* reduce an ep's credits back to a set limit */ |
| static void ath6k_reduce_credits(struct htc_credit_state_info *cred_info, |
| struct htc_endpoint_credit_dist *ep_dist, |
| int limit) |
| { |
| int credits; |
| |
| ep_dist->cred_assngd = limit; |
| |
| if (ep_dist->credits <= limit) |
| return; |
| |
| credits = ep_dist->credits - limit; |
| ep_dist->credits -= credits; |
| cred_info->cur_free_credits += credits; |
| } |
| |
| static void ath6k_credit_update(struct htc_credit_state_info *cred_info, |
| struct list_head *epdist_list) |
| { |
| struct htc_endpoint_credit_dist *cur_dist_list; |
| |
| list_for_each_entry(cur_dist_list, epdist_list, list) { |
| if (cur_dist_list->endpoint == ENDPOINT_0) |
| continue; |
| |
| if (cur_dist_list->cred_to_dist > 0) { |
| cur_dist_list->credits += |
| cur_dist_list->cred_to_dist; |
| cur_dist_list->cred_to_dist = 0; |
| if (cur_dist_list->credits > |
| cur_dist_list->cred_assngd) |
| ath6k_reduce_credits(cred_info, |
| cur_dist_list, |
| cur_dist_list->cred_assngd); |
| |
| if (cur_dist_list->credits > |
| cur_dist_list->cred_norm) |
| ath6k_reduce_credits(cred_info, cur_dist_list, |
| cur_dist_list->cred_norm); |
| |
| if (!(cur_dist_list->dist_flags & HTC_EP_ACTIVE)) { |
| if (cur_dist_list->txq_depth == 0) |
| ath6k_reduce_credits(cred_info, |
| cur_dist_list, 0); |
| } |
| } |
| } |
| } |
| |
| /* |
| * HTC has an endpoint that needs credits, ep_dist is the endpoint in |
| * question. |
| */ |
| void ath6k_seek_credits(struct htc_credit_state_info *cred_info, |
| struct htc_endpoint_credit_dist *ep_dist) |
| { |
| struct htc_endpoint_credit_dist *curdist_list; |
| int credits = 0; |
| int need; |
| |
| if (ep_dist->svc_id == WMI_CONTROL_SVC) |
| goto out; |
| |
| if ((ep_dist->svc_id == WMI_DATA_VI_SVC) || |
| (ep_dist->svc_id == WMI_DATA_VO_SVC)) |
| if ((ep_dist->cred_assngd >= ep_dist->cred_norm)) |
| goto out; |
| |
| /* |
| * For all other services, we follow a simple algorithm of: |
| * |
| * 1. checking the free pool for credits |
| * 2. checking lower priority endpoints for credits to take |
| */ |
| |
| credits = min(cred_info->cur_free_credits, ep_dist->seek_cred); |
| |
| if (credits >= ep_dist->seek_cred) |
| goto out; |
| |
| /* |
| * We don't have enough in the free pool, try taking away from |
| * lower priority services The rule for taking away credits: |
| * |
| * 1. Only take from lower priority endpoints |
| * 2. Only take what is allocated above the minimum (never |
| * starve an endpoint completely) |
| * 3. Only take what you need. |
| */ |
| |
| list_for_each_entry_reverse(curdist_list, |
| &cred_info->lowestpri_ep_dist, |
| list) { |
| if (curdist_list == ep_dist) |
| break; |
| |
| need = ep_dist->seek_cred - cred_info->cur_free_credits; |
| |
| if ((curdist_list->cred_assngd - need) >= |
| curdist_list->cred_min) { |
| /* |
| * The current one has been allocated more than |
| * it's minimum and it has enough credits assigned |
| * above it's minimum to fulfill our need try to |
| * take away just enough to fulfill our need. |
| */ |
| ath6k_reduce_credits(cred_info, curdist_list, |
| curdist_list->cred_assngd - need); |
| |
| if (cred_info->cur_free_credits >= |
| ep_dist->seek_cred) |
| break; |
| } |
| |
| if (curdist_list->endpoint == ENDPOINT_0) |
| break; |
| } |
| |
| credits = min(cred_info->cur_free_credits, ep_dist->seek_cred); |
| |
| out: |
| /* did we find some credits? */ |
| if (credits) |
| ath6kl_deposit_credit_to_ep(cred_info, ep_dist, credits); |
| |
| ep_dist->seek_cred = 0; |
| } |
| |
| /* redistribute credits based on activity change */ |
| static void ath6k_redistribute_credits(struct htc_credit_state_info *info, |
| struct list_head *ep_dist_list) |
| { |
| struct htc_endpoint_credit_dist *curdist_list; |
| |
| list_for_each_entry(curdist_list, ep_dist_list, list) { |
| if (curdist_list->endpoint == ENDPOINT_0) |
| continue; |
| |
| if ((curdist_list->svc_id == WMI_DATA_BK_SVC) || |
| (curdist_list->svc_id == WMI_DATA_BE_SVC)) |
| curdist_list->dist_flags |= HTC_EP_ACTIVE; |
| |
| if ((curdist_list->svc_id != WMI_CONTROL_SVC) && |
| !(curdist_list->dist_flags & HTC_EP_ACTIVE)) { |
| if (curdist_list->txq_depth == 0) |
| ath6k_reduce_credits(info, |
| curdist_list, 0); |
| else |
| ath6k_reduce_credits(info, |
| curdist_list, |
| curdist_list->cred_min); |
| } |
| } |
| } |
| |
| /* |
| * |
| * This function is invoked whenever endpoints require credit |
| * distributions. A lock is held while this function is invoked, this |
| * function shall NOT block. The ep_dist_list is a list of distribution |
| * structures in prioritized order as defined by the call to the |
| * htc_set_credit_dist() api. |
| */ |
| void ath6k_credit_distribute(struct htc_credit_state_info *cred_info, |
| struct list_head *ep_dist_list, |
| enum htc_credit_dist_reason reason) |
| { |
| switch (reason) { |
| case HTC_CREDIT_DIST_SEND_COMPLETE: |
| ath6k_credit_update(cred_info, ep_dist_list); |
| break; |
| case HTC_CREDIT_DIST_ACTIVITY_CHANGE: |
| ath6k_redistribute_credits(cred_info, ep_dist_list); |
| break; |
| default: |
| break; |
| } |
| |
| WARN_ON(cred_info->cur_free_credits > cred_info->total_avail_credits); |
| WARN_ON(cred_info->cur_free_credits < 0); |
| } |
| |
| void disconnect_timer_handler(unsigned long ptr) |
| { |
| struct net_device *dev = (struct net_device *)ptr; |
| struct ath6kl *ar = ath6kl_priv(dev); |
| |
| ath6kl_init_profile_info(ar); |
| ath6kl_disconnect(ar); |
| } |
| |
| void ath6kl_disconnect(struct ath6kl *ar) |
| { |
| if (test_bit(CONNECTED, &ar->flag) || |
| test_bit(CONNECT_PEND, &ar->flag)) { |
| ath6kl_wmi_disconnect_cmd(ar->wmi); |
| /* |
| * Disconnect command is issued, clear the connect pending |
| * flag. The connected flag will be cleared in |
| * disconnect event notification. |
| */ |
| clear_bit(CONNECT_PEND, &ar->flag); |
| } |
| } |
| |
| /* WMI Event handlers */ |
| |
| static const char *get_hw_id_string(u32 id) |
| { |
| switch (id) { |
| case AR6003_REV1_VERSION: |
| return "1.0"; |
| case AR6003_REV2_VERSION: |
| return "2.0"; |
| case AR6003_REV3_VERSION: |
| return "2.1.1"; |
| default: |
| return "unknown"; |
| } |
| } |
| |
| void ath6kl_ready_event(void *devt, u8 *datap, u32 sw_ver, u32 abi_ver) |
| { |
| struct ath6kl *ar = devt; |
| struct net_device *dev = ar->net_dev; |
| |
| memcpy(dev->dev_addr, datap, ETH_ALEN); |
| ath6kl_dbg(ATH6KL_DBG_TRC, "%s: mac addr = %pM\n", |
| __func__, dev->dev_addr); |
| |
| ar->version.wlan_ver = sw_ver; |
| ar->version.abi_ver = abi_ver; |
| |
| snprintf(ar->wdev->wiphy->fw_version, |
| sizeof(ar->wdev->wiphy->fw_version), |
| "%u.%u.%u.%u", |
| (ar->version.wlan_ver & 0xf0000000) >> 28, |
| (ar->version.wlan_ver & 0x0f000000) >> 24, |
| (ar->version.wlan_ver & 0x00ff0000) >> 16, |
| (ar->version.wlan_ver & 0x0000ffff)); |
| |
| /* indicate to the waiting thread that the ready event was received */ |
| set_bit(WMI_READY, &ar->flag); |
| wake_up(&ar->event_wq); |
| |
| ath6kl_info("hw %s fw %s\n", |
| get_hw_id_string(ar->wdev->wiphy->hw_version), |
| ar->wdev->wiphy->fw_version); |
| } |
| |
| void ath6kl_scan_complete_evt(struct ath6kl *ar, int status) |
| { |
| ath6kl_cfg80211_scan_complete_event(ar, status); |
| |
| if (!ar->usr_bss_filter) |
| ath6kl_wmi_bssfilter_cmd(ar->wmi, NONE_BSS_FILTER, 0); |
| |
| ath6kl_dbg(ATH6KL_DBG_WLAN_SCAN, "scan complete: %d\n", status); |
| } |
| |
| void ath6kl_connect_event(struct ath6kl *ar, u16 channel, u8 *bssid, |
| u16 listen_int, u16 beacon_int, |
| enum network_type net_type, u8 beacon_ie_len, |
| u8 assoc_req_len, u8 assoc_resp_len, |
| u8 *assoc_info) |
| { |
| unsigned long flags; |
| |
| if (ar->nw_type == AP_NETWORK) { |
| ath6kl_connect_ap_mode(ar, channel, bssid, listen_int, |
| beacon_int, assoc_resp_len, |
| assoc_info); |
| return; |
| } |
| |
| ath6kl_cfg80211_connect_event(ar, channel, bssid, |
| listen_int, beacon_int, |
| net_type, beacon_ie_len, |
| assoc_req_len, assoc_resp_len, |
| assoc_info); |
| |
| memcpy(ar->bssid, bssid, sizeof(ar->bssid)); |
| ar->bss_ch = channel; |
| |
| if ((ar->nw_type == INFRA_NETWORK)) |
| ath6kl_wmi_listeninterval_cmd(ar->wmi, ar->listen_intvl_t, |
| ar->listen_intvl_b); |
| |
| netif_wake_queue(ar->net_dev); |
| |
| /* Update connect & link status atomically */ |
| spin_lock_irqsave(&ar->lock, flags); |
| set_bit(CONNECTED, &ar->flag); |
| clear_bit(CONNECT_PEND, &ar->flag); |
| netif_carrier_on(ar->net_dev); |
| spin_unlock_irqrestore(&ar->lock, flags); |
| |
| aggr_reset_state(ar->aggr_cntxt); |
| ar->reconnect_flag = 0; |
| |
| if ((ar->nw_type == ADHOC_NETWORK) && ar->ibss_ps_enable) { |
| memset(ar->node_map, 0, sizeof(ar->node_map)); |
| ar->node_num = 0; |
| ar->next_ep_id = ENDPOINT_2; |
| } |
| |
| if (!ar->usr_bss_filter) |
| ath6kl_wmi_bssfilter_cmd(ar->wmi, NONE_BSS_FILTER, 0); |
| } |
| |
| void ath6kl_tkip_micerr_event(struct ath6kl *ar, u8 keyid, bool ismcast) |
| { |
| struct ath6kl_sta *sta; |
| u8 tsc[6]; |
| /* |
| * For AP case, keyid will have aid of STA which sent pkt with |
| * MIC error. Use this aid to get MAC & send it to hostapd. |
| */ |
| if (ar->nw_type == AP_NETWORK) { |
| sta = ath6kl_find_sta_by_aid(ar, (keyid >> 2)); |
| if (!sta) |
| return; |
| |
| ath6kl_dbg(ATH6KL_DBG_TRC, |
| "ap tkip mic error received from aid=%d\n", keyid); |
| |
| memset(tsc, 0, sizeof(tsc)); /* FIX: get correct TSC */ |
| cfg80211_michael_mic_failure(ar->net_dev, sta->mac, |
| NL80211_KEYTYPE_PAIRWISE, keyid, |
| tsc, GFP_KERNEL); |
| } else |
| ath6kl_cfg80211_tkip_micerr_event(ar, keyid, ismcast); |
| |
| } |
| |
| static void ath6kl_update_target_stats(struct ath6kl *ar, u8 *ptr, u32 len) |
| { |
| struct wmi_target_stats *tgt_stats = |
| (struct wmi_target_stats *) ptr; |
| struct target_stats *stats = &ar->target_stats; |
| struct tkip_ccmp_stats *ccmp_stats; |
| struct bss *conn_bss = NULL; |
| struct cserv_stats *c_stats; |
| u8 ac; |
| |
| if (len < sizeof(*tgt_stats)) |
| return; |
| |
| /* update the RSSI of the connected bss */ |
| if (test_bit(CONNECTED, &ar->flag)) { |
| conn_bss = ath6kl_wmi_find_node(ar->wmi, ar->bssid); |
| if (conn_bss) { |
| c_stats = &tgt_stats->cserv_stats; |
| conn_bss->ni_rssi = |
| a_sle16_to_cpu(c_stats->cs_ave_beacon_rssi); |
| conn_bss->ni_snr = |
| tgt_stats->cserv_stats.cs_ave_beacon_snr; |
| ath6kl_wmi_node_return(ar->wmi, conn_bss); |
| } |
| } |
| |
| ath6kl_dbg(ATH6KL_DBG_TRC, "updating target stats\n"); |
| |
| stats->tx_pkt += le32_to_cpu(tgt_stats->stats.tx.pkt); |
| stats->tx_byte += le32_to_cpu(tgt_stats->stats.tx.byte); |
| stats->tx_ucast_pkt += le32_to_cpu(tgt_stats->stats.tx.ucast_pkt); |
| stats->tx_ucast_byte += le32_to_cpu(tgt_stats->stats.tx.ucast_byte); |
| stats->tx_mcast_pkt += le32_to_cpu(tgt_stats->stats.tx.mcast_pkt); |
| stats->tx_mcast_byte += le32_to_cpu(tgt_stats->stats.tx.mcast_byte); |
| stats->tx_bcast_pkt += le32_to_cpu(tgt_stats->stats.tx.bcast_pkt); |
| stats->tx_bcast_byte += le32_to_cpu(tgt_stats->stats.tx.bcast_byte); |
| stats->tx_rts_success_cnt += |
| le32_to_cpu(tgt_stats->stats.tx.rts_success_cnt); |
| |
| for (ac = 0; ac < WMM_NUM_AC; ac++) |
| stats->tx_pkt_per_ac[ac] += |
| le32_to_cpu(tgt_stats->stats.tx.pkt_per_ac[ac]); |
| |
| stats->tx_err += le32_to_cpu(tgt_stats->stats.tx.err); |
| stats->tx_fail_cnt += le32_to_cpu(tgt_stats->stats.tx.fail_cnt); |
| stats->tx_retry_cnt += le32_to_cpu(tgt_stats->stats.tx.retry_cnt); |
| stats->tx_mult_retry_cnt += |
| le32_to_cpu(tgt_stats->stats.tx.mult_retry_cnt); |
| stats->tx_rts_fail_cnt += |
| le32_to_cpu(tgt_stats->stats.tx.rts_fail_cnt); |
| stats->tx_ucast_rate = |
| ath6kl_wmi_get_rate(a_sle32_to_cpu(tgt_stats->stats.tx.ucast_rate)); |
| |
| stats->rx_pkt += le32_to_cpu(tgt_stats->stats.rx.pkt); |
| stats->rx_byte += le32_to_cpu(tgt_stats->stats.rx.byte); |
| stats->rx_ucast_pkt += le32_to_cpu(tgt_stats->stats.rx.ucast_pkt); |
| stats->rx_ucast_byte += le32_to_cpu(tgt_stats->stats.rx.ucast_byte); |
| stats->rx_mcast_pkt += le32_to_cpu(tgt_stats->stats.rx.mcast_pkt); |
| stats->rx_mcast_byte += le32_to_cpu(tgt_stats->stats.rx.mcast_byte); |
| stats->rx_bcast_pkt += le32_to_cpu(tgt_stats->stats.rx.bcast_pkt); |
| stats->rx_bcast_byte += le32_to_cpu(tgt_stats->stats.rx.bcast_byte); |
| stats->rx_frgment_pkt += le32_to_cpu(tgt_stats->stats.rx.frgment_pkt); |
| stats->rx_err += le32_to_cpu(tgt_stats->stats.rx.err); |
| stats->rx_crc_err += le32_to_cpu(tgt_stats->stats.rx.crc_err); |
| stats->rx_key_cache_miss += |
| le32_to_cpu(tgt_stats->stats.rx.key_cache_miss); |
| stats->rx_decrypt_err += le32_to_cpu(tgt_stats->stats.rx.decrypt_err); |
| stats->rx_dupl_frame += le32_to_cpu(tgt_stats->stats.rx.dupl_frame); |
| stats->rx_ucast_rate = |
| ath6kl_wmi_get_rate(a_sle32_to_cpu(tgt_stats->stats.rx.ucast_rate)); |
| |
| ccmp_stats = &tgt_stats->stats.tkip_ccmp_stats; |
| |
| stats->tkip_local_mic_fail += |
| le32_to_cpu(ccmp_stats->tkip_local_mic_fail); |
| stats->tkip_cnter_measures_invoked += |
| le32_to_cpu(ccmp_stats->tkip_cnter_measures_invoked); |
| stats->tkip_fmt_err += le32_to_cpu(ccmp_stats->tkip_fmt_err); |
| |
| stats->ccmp_fmt_err += le32_to_cpu(ccmp_stats->ccmp_fmt_err); |
| stats->ccmp_replays += le32_to_cpu(ccmp_stats->ccmp_replays); |
| |
| stats->pwr_save_fail_cnt += |
| le32_to_cpu(tgt_stats->pm_stats.pwr_save_failure_cnt); |
| stats->noise_floor_calib = |
| a_sle32_to_cpu(tgt_stats->noise_floor_calib); |
| |
| stats->cs_bmiss_cnt += |
| le32_to_cpu(tgt_stats->cserv_stats.cs_bmiss_cnt); |
| stats->cs_low_rssi_cnt += |
| le32_to_cpu(tgt_stats->cserv_stats.cs_low_rssi_cnt); |
| stats->cs_connect_cnt += |
| le16_to_cpu(tgt_stats->cserv_stats.cs_connect_cnt); |
| stats->cs_discon_cnt += |
| le16_to_cpu(tgt_stats->cserv_stats.cs_discon_cnt); |
| |
| stats->cs_ave_beacon_rssi = |
| a_sle16_to_cpu(tgt_stats->cserv_stats.cs_ave_beacon_rssi); |
| |
| stats->cs_last_roam_msec = |
| tgt_stats->cserv_stats.cs_last_roam_msec; |
| stats->cs_snr = tgt_stats->cserv_stats.cs_snr; |
| stats->cs_rssi = a_sle16_to_cpu(tgt_stats->cserv_stats.cs_rssi); |
| |
| stats->lq_val = le32_to_cpu(tgt_stats->lq_val); |
| |
| stats->wow_pkt_dropped += |
| le32_to_cpu(tgt_stats->wow_stats.wow_pkt_dropped); |
| stats->wow_host_pkt_wakeups += |
| tgt_stats->wow_stats.wow_host_pkt_wakeups; |
| stats->wow_host_evt_wakeups += |
| tgt_stats->wow_stats.wow_host_evt_wakeups; |
| stats->wow_evt_discarded += |
| le16_to_cpu(tgt_stats->wow_stats.wow_evt_discarded); |
| |
| if (test_bit(STATS_UPDATE_PEND, &ar->flag)) { |
| clear_bit(STATS_UPDATE_PEND, &ar->flag); |
| wake_up(&ar->event_wq); |
| } |
| } |
| |
| static void ath6kl_add_le32(__le32 *var, __le32 val) |
| { |
| *var = cpu_to_le32(le32_to_cpu(*var) + le32_to_cpu(val)); |
| } |
| |
| void ath6kl_tgt_stats_event(struct ath6kl *ar, u8 *ptr, u32 len) |
| { |
| struct wmi_ap_mode_stat *p = (struct wmi_ap_mode_stat *) ptr; |
| struct wmi_ap_mode_stat *ap = &ar->ap_stats; |
| struct wmi_per_sta_stat *st_ap, *st_p; |
| u8 ac; |
| |
| if (ar->nw_type == AP_NETWORK) { |
| if (len < sizeof(*p)) |
| return; |
| |
| for (ac = 0; ac < AP_MAX_NUM_STA; ac++) { |
| st_ap = &ap->sta[ac]; |
| st_p = &p->sta[ac]; |
| |
| ath6kl_add_le32(&st_ap->tx_bytes, st_p->tx_bytes); |
| ath6kl_add_le32(&st_ap->tx_pkts, st_p->tx_pkts); |
| ath6kl_add_le32(&st_ap->tx_error, st_p->tx_error); |
| ath6kl_add_le32(&st_ap->tx_discard, st_p->tx_discard); |
| ath6kl_add_le32(&st_ap->rx_bytes, st_p->rx_bytes); |
| ath6kl_add_le32(&st_ap->rx_pkts, st_p->rx_pkts); |
| ath6kl_add_le32(&st_ap->rx_error, st_p->rx_error); |
| ath6kl_add_le32(&st_ap->rx_discard, st_p->rx_discard); |
| } |
| |
| } else { |
| ath6kl_update_target_stats(ar, ptr, len); |
| } |
| } |
| |
| void ath6kl_wakeup_event(void *dev) |
| { |
| struct ath6kl *ar = (struct ath6kl *) dev; |
| |
| wake_up(&ar->event_wq); |
| } |
| |
| void ath6kl_txpwr_rx_evt(void *devt, u8 tx_pwr) |
| { |
| struct ath6kl *ar = (struct ath6kl *) devt; |
| |
| ar->tx_pwr = tx_pwr; |
| wake_up(&ar->event_wq); |
| } |
| |
| void ath6kl_pspoll_event(struct ath6kl *ar, u8 aid) |
| { |
| struct ath6kl_sta *conn; |
| struct sk_buff *skb; |
| bool psq_empty = false; |
| |
| conn = ath6kl_find_sta_by_aid(ar, aid); |
| |
| if (!conn) |
| return; |
| /* |
| * Send out a packet queued on ps queue. When the ps queue |
| * becomes empty update the PVB for this station. |
| */ |
| spin_lock_bh(&conn->psq_lock); |
| psq_empty = skb_queue_empty(&conn->psq); |
| spin_unlock_bh(&conn->psq_lock); |
| |
| if (psq_empty) |
| /* TODO: Send out a NULL data frame */ |
| return; |
| |
| spin_lock_bh(&conn->psq_lock); |
| skb = skb_dequeue(&conn->psq); |
| spin_unlock_bh(&conn->psq_lock); |
| |
| conn->sta_flags |= STA_PS_POLLED; |
| ath6kl_data_tx(skb, ar->net_dev); |
| conn->sta_flags &= ~STA_PS_POLLED; |
| |
| spin_lock_bh(&conn->psq_lock); |
| psq_empty = skb_queue_empty(&conn->psq); |
| spin_unlock_bh(&conn->psq_lock); |
| |
| if (psq_empty) |
| ath6kl_wmi_set_pvb_cmd(ar->wmi, conn->aid, 0); |
| } |
| |
| void ath6kl_dtimexpiry_event(struct ath6kl *ar) |
| { |
| bool mcastq_empty = false; |
| struct sk_buff *skb; |
| |
| /* |
| * If there are no associated STAs, ignore the DTIM expiry event. |
| * There can be potential race conditions where the last associated |
| * STA may disconnect & before the host could clear the 'Indicate |
| * DTIM' request to the firmware, the firmware would have just |
| * indicated a DTIM expiry event. The race is between 'clear DTIM |
| * expiry cmd' going from the host to the firmware & the DTIM |
| * expiry event happening from the firmware to the host. |
| */ |
| if (!ar->sta_list_index) |
| return; |
| |
| spin_lock_bh(&ar->mcastpsq_lock); |
| mcastq_empty = skb_queue_empty(&ar->mcastpsq); |
| spin_unlock_bh(&ar->mcastpsq_lock); |
| |
| if (mcastq_empty) |
| return; |
| |
| /* set the STA flag to dtim_expired for the frame to go out */ |
| set_bit(DTIM_EXPIRED, &ar->flag); |
| |
| spin_lock_bh(&ar->mcastpsq_lock); |
| while ((skb = skb_dequeue(&ar->mcastpsq)) != NULL) { |
| spin_unlock_bh(&ar->mcastpsq_lock); |
| |
| ath6kl_data_tx(skb, ar->net_dev); |
| |
| spin_lock_bh(&ar->mcastpsq_lock); |
| } |
| spin_unlock_bh(&ar->mcastpsq_lock); |
| |
| clear_bit(DTIM_EXPIRED, &ar->flag); |
| |
| /* clear the LSB of the BitMapCtl field of the TIM IE */ |
| ath6kl_wmi_set_pvb_cmd(ar->wmi, MCAST_AID, 0); |
| } |
| |
| void ath6kl_disconnect_event(struct ath6kl *ar, u8 reason, u8 *bssid, |
| u8 assoc_resp_len, u8 *assoc_info, |
| u16 prot_reason_status) |
| { |
| struct bss *wmi_ssid_node = NULL; |
| unsigned long flags; |
| |
| if (ar->nw_type == AP_NETWORK) { |
| if (!ath6kl_remove_sta(ar, bssid, prot_reason_status)) |
| return; |
| |
| /* if no more associated STAs, empty the mcast PS q */ |
| if (ar->sta_list_index == 0) { |
| spin_lock_bh(&ar->mcastpsq_lock); |
| skb_queue_purge(&ar->mcastpsq); |
| spin_unlock_bh(&ar->mcastpsq_lock); |
| |
| /* clear the LSB of the TIM IE's BitMapCtl field */ |
| if (test_bit(WMI_READY, &ar->flag)) |
| ath6kl_wmi_set_pvb_cmd(ar->wmi, MCAST_AID, 0); |
| } |
| |
| if (!is_broadcast_ether_addr(bssid)) { |
| /* send event to application */ |
| cfg80211_del_sta(ar->net_dev, bssid, GFP_KERNEL); |
| } |
| |
| clear_bit(CONNECTED, &ar->flag); |
| return; |
| } |
| |
| ath6kl_cfg80211_disconnect_event(ar, reason, bssid, |
| assoc_resp_len, assoc_info, |
| prot_reason_status); |
| |
| aggr_reset_state(ar->aggr_cntxt); |
| |
| del_timer(&ar->disconnect_timer); |
| |
| ath6kl_dbg(ATH6KL_DBG_WLAN_CONNECT, |
| "disconnect reason is %d\n", reason); |
| |
| /* |
| * If the event is due to disconnect cmd from the host, only they |
| * the target would stop trying to connect. Under any other |
| * condition, target would keep trying to connect. |
| */ |
| if (reason == DISCONNECT_CMD) { |
| if (!ar->usr_bss_filter && test_bit(WMI_READY, &ar->flag)) |
| ath6kl_wmi_bssfilter_cmd(ar->wmi, NONE_BSS_FILTER, 0); |
| } else { |
| set_bit(CONNECT_PEND, &ar->flag); |
| if (((reason == ASSOC_FAILED) && |
| (prot_reason_status == 0x11)) || |
| ((reason == ASSOC_FAILED) && (prot_reason_status == 0x0) |
| && (ar->reconnect_flag == 1))) { |
| set_bit(CONNECTED, &ar->flag); |
| return; |
| } |
| } |
| |
| if ((reason == NO_NETWORK_AVAIL) && test_bit(WMI_READY, &ar->flag)) { |
| ath6kl_wmi_node_free(ar->wmi, bssid); |
| |
| /* |
| * In case any other same SSID nodes are present remove it, |
| * since those nodes also not available now. |
| */ |
| do { |
| /* |
| * Find the nodes based on SSID and remove it |
| * |
| * Note: This case will not work out for |
| * Hidden-SSID |
| */ |
| wmi_ssid_node = ath6kl_wmi_find_ssid_node(ar->wmi, |
| ar->ssid, |
| ar->ssid_len, |
| false, |
| true); |
| |
| if (wmi_ssid_node) |
| ath6kl_wmi_node_free(ar->wmi, |
| wmi_ssid_node->ni_macaddr); |
| |
| } while (wmi_ssid_node); |
| } |
| |
| /* update connect & link status atomically */ |
| spin_lock_irqsave(&ar->lock, flags); |
| clear_bit(CONNECTED, &ar->flag); |
| netif_carrier_off(ar->net_dev); |
| spin_unlock_irqrestore(&ar->lock, flags); |
| |
| if ((reason != CSERV_DISCONNECT) || (ar->reconnect_flag != 1)) |
| ar->reconnect_flag = 0; |
| |
| if (reason != CSERV_DISCONNECT) |
| ar->user_key_ctrl = 0; |
| |
| netif_stop_queue(ar->net_dev); |
| memset(ar->bssid, 0, sizeof(ar->bssid)); |
| ar->bss_ch = 0; |
| |
| ath6kl_tx_data_cleanup(ar); |
| } |
| |
| static int ath6kl_open(struct net_device *dev) |
| { |
| struct ath6kl *ar = ath6kl_priv(dev); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&ar->lock, flags); |
| |
| ar->wlan_state = WLAN_ENABLED; |
| |
| if (test_bit(CONNECTED, &ar->flag)) { |
| netif_carrier_on(dev); |
| netif_wake_queue(dev); |
| } else |
| netif_carrier_off(dev); |
| |
| spin_unlock_irqrestore(&ar->lock, flags); |
| |
| return 0; |
| } |
| |
| static int ath6kl_close(struct net_device *dev) |
| { |
| struct ath6kl *ar = ath6kl_priv(dev); |
| |
| netif_stop_queue(dev); |
| |
| ath6kl_disconnect(ar); |
| |
| if (test_bit(WMI_READY, &ar->flag)) { |
| if (ath6kl_wmi_scanparams_cmd(ar->wmi, 0xFFFF, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0)) |
| return -EIO; |
| |
| ar->wlan_state = WLAN_DISABLED; |
| } |
| |
| ath6kl_cfg80211_scan_complete_event(ar, -ECANCELED); |
| |
| return 0; |
| } |
| |
| static struct net_device_stats *ath6kl_get_stats(struct net_device *dev) |
| { |
| struct ath6kl *ar = ath6kl_priv(dev); |
| |
| return &ar->net_stats; |
| } |
| |
| static struct net_device_ops ath6kl_netdev_ops = { |
| .ndo_open = ath6kl_open, |
| .ndo_stop = ath6kl_close, |
| .ndo_start_xmit = ath6kl_data_tx, |
| .ndo_get_stats = ath6kl_get_stats, |
| }; |
| |
| void init_netdev(struct net_device *dev) |
| { |
| dev->netdev_ops = &ath6kl_netdev_ops; |
| dev->watchdog_timeo = ATH6KL_TX_TIMEOUT; |
| |
| dev->needed_headroom = ETH_HLEN; |
| dev->needed_headroom += sizeof(struct ath6kl_llc_snap_hdr) + |
| sizeof(struct wmi_data_hdr) + HTC_HDR_LENGTH |
| + WMI_MAX_TX_META_SZ; |
| |
| return; |
| } |