| /* |
| * net/dsa/mv88e6xxx.c - Marvell 88e6xxx switch chip support |
| * Copyright (c) 2008 Marvell Semiconductor |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| */ |
| |
| #include <linux/debugfs.h> |
| #include <linux/delay.h> |
| #include <linux/etherdevice.h> |
| #include <linux/if_bridge.h> |
| #include <linux/jiffies.h> |
| #include <linux/list.h> |
| #include <linux/module.h> |
| #include <linux/netdevice.h> |
| #include <linux/phy.h> |
| #include <linux/seq_file.h> |
| #include <net/dsa.h> |
| #include "mv88e6xxx.h" |
| |
| /* MDIO bus access can be nested in the case of PHYs connected to the |
| * internal MDIO bus of the switch, which is accessed via MDIO bus of |
| * the Ethernet interface. Avoid lockdep false positives by using |
| * mutex_lock_nested(). |
| */ |
| static int mv88e6xxx_mdiobus_read(struct mii_bus *bus, int addr, u32 regnum) |
| { |
| int ret; |
| |
| mutex_lock_nested(&bus->mdio_lock, SINGLE_DEPTH_NESTING); |
| ret = bus->read(bus, addr, regnum); |
| mutex_unlock(&bus->mdio_lock); |
| |
| return ret; |
| } |
| |
| static int mv88e6xxx_mdiobus_write(struct mii_bus *bus, int addr, u32 regnum, |
| u16 val) |
| { |
| int ret; |
| |
| mutex_lock_nested(&bus->mdio_lock, SINGLE_DEPTH_NESTING); |
| ret = bus->write(bus, addr, regnum, val); |
| mutex_unlock(&bus->mdio_lock); |
| |
| return ret; |
| } |
| |
| /* If the switch's ADDR[4:0] strap pins are strapped to zero, it will |
| * use all 32 SMI bus addresses on its SMI bus, and all switch registers |
| * will be directly accessible on some {device address,register address} |
| * pair. If the ADDR[4:0] pins are not strapped to zero, the switch |
| * will only respond to SMI transactions to that specific address, and |
| * an indirect addressing mechanism needs to be used to access its |
| * registers. |
| */ |
| static int mv88e6xxx_reg_wait_ready(struct mii_bus *bus, int sw_addr) |
| { |
| int ret; |
| int i; |
| |
| for (i = 0; i < 16; i++) { |
| ret = mv88e6xxx_mdiobus_read(bus, sw_addr, SMI_CMD); |
| if (ret < 0) |
| return ret; |
| |
| if ((ret & SMI_CMD_BUSY) == 0) |
| return 0; |
| } |
| |
| return -ETIMEDOUT; |
| } |
| |
| int __mv88e6xxx_reg_read(struct mii_bus *bus, int sw_addr, int addr, int reg) |
| { |
| int ret; |
| |
| if (sw_addr == 0) |
| return mv88e6xxx_mdiobus_read(bus, addr, reg); |
| |
| /* Wait for the bus to become free. */ |
| ret = mv88e6xxx_reg_wait_ready(bus, sw_addr); |
| if (ret < 0) |
| return ret; |
| |
| /* Transmit the read command. */ |
| ret = mv88e6xxx_mdiobus_write(bus, sw_addr, SMI_CMD, |
| SMI_CMD_OP_22_READ | (addr << 5) | reg); |
| if (ret < 0) |
| return ret; |
| |
| /* Wait for the read command to complete. */ |
| ret = mv88e6xxx_reg_wait_ready(bus, sw_addr); |
| if (ret < 0) |
| return ret; |
| |
| /* Read the data. */ |
| ret = mv88e6xxx_mdiobus_read(bus, sw_addr, SMI_DATA); |
| if (ret < 0) |
| return ret; |
| |
| return ret & 0xffff; |
| } |
| |
| /* Must be called with SMI mutex held */ |
| static int _mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg) |
| { |
| struct mii_bus *bus = dsa_host_dev_to_mii_bus(ds->master_dev); |
| int ret; |
| |
| if (bus == NULL) |
| return -EINVAL; |
| |
| ret = __mv88e6xxx_reg_read(bus, ds->pd->sw_addr, addr, reg); |
| if (ret < 0) |
| return ret; |
| |
| dev_dbg(ds->master_dev, "<- addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n", |
| addr, reg, ret); |
| |
| return ret; |
| } |
| |
| int mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| int ret; |
| |
| mutex_lock(&ps->smi_mutex); |
| ret = _mv88e6xxx_reg_read(ds, addr, reg); |
| mutex_unlock(&ps->smi_mutex); |
| |
| return ret; |
| } |
| |
| int __mv88e6xxx_reg_write(struct mii_bus *bus, int sw_addr, int addr, |
| int reg, u16 val) |
| { |
| int ret; |
| |
| if (sw_addr == 0) |
| return mv88e6xxx_mdiobus_write(bus, addr, reg, val); |
| |
| /* Wait for the bus to become free. */ |
| ret = mv88e6xxx_reg_wait_ready(bus, sw_addr); |
| if (ret < 0) |
| return ret; |
| |
| /* Transmit the data to write. */ |
| ret = mv88e6xxx_mdiobus_write(bus, sw_addr, SMI_DATA, val); |
| if (ret < 0) |
| return ret; |
| |
| /* Transmit the write command. */ |
| ret = mv88e6xxx_mdiobus_write(bus, sw_addr, SMI_CMD, |
| SMI_CMD_OP_22_WRITE | (addr << 5) | reg); |
| if (ret < 0) |
| return ret; |
| |
| /* Wait for the write command to complete. */ |
| ret = mv88e6xxx_reg_wait_ready(bus, sw_addr); |
| if (ret < 0) |
| return ret; |
| |
| return 0; |
| } |
| |
| /* Must be called with SMI mutex held */ |
| static int _mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg, |
| u16 val) |
| { |
| struct mii_bus *bus = dsa_host_dev_to_mii_bus(ds->master_dev); |
| |
| if (bus == NULL) |
| return -EINVAL; |
| |
| dev_dbg(ds->master_dev, "-> addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n", |
| addr, reg, val); |
| |
| return __mv88e6xxx_reg_write(bus, ds->pd->sw_addr, addr, reg, val); |
| } |
| |
| int mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg, u16 val) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| int ret; |
| |
| mutex_lock(&ps->smi_mutex); |
| ret = _mv88e6xxx_reg_write(ds, addr, reg, val); |
| mutex_unlock(&ps->smi_mutex); |
| |
| return ret; |
| } |
| |
| int mv88e6xxx_set_addr_direct(struct dsa_switch *ds, u8 *addr) |
| { |
| REG_WRITE(REG_GLOBAL, GLOBAL_MAC_01, (addr[0] << 8) | addr[1]); |
| REG_WRITE(REG_GLOBAL, GLOBAL_MAC_23, (addr[2] << 8) | addr[3]); |
| REG_WRITE(REG_GLOBAL, GLOBAL_MAC_45, (addr[4] << 8) | addr[5]); |
| |
| return 0; |
| } |
| |
| int mv88e6xxx_set_addr_indirect(struct dsa_switch *ds, u8 *addr) |
| { |
| int i; |
| int ret; |
| |
| for (i = 0; i < 6; i++) { |
| int j; |
| |
| /* Write the MAC address byte. */ |
| REG_WRITE(REG_GLOBAL2, GLOBAL2_SWITCH_MAC, |
| GLOBAL2_SWITCH_MAC_BUSY | (i << 8) | addr[i]); |
| |
| /* Wait for the write to complete. */ |
| for (j = 0; j < 16; j++) { |
| ret = REG_READ(REG_GLOBAL2, GLOBAL2_SWITCH_MAC); |
| if ((ret & GLOBAL2_SWITCH_MAC_BUSY) == 0) |
| break; |
| } |
| if (j == 16) |
| return -ETIMEDOUT; |
| } |
| |
| return 0; |
| } |
| |
| /* Must be called with SMI mutex held */ |
| static int _mv88e6xxx_phy_read(struct dsa_switch *ds, int addr, int regnum) |
| { |
| if (addr >= 0) |
| return _mv88e6xxx_reg_read(ds, addr, regnum); |
| return 0xffff; |
| } |
| |
| /* Must be called with SMI mutex held */ |
| static int _mv88e6xxx_phy_write(struct dsa_switch *ds, int addr, int regnum, |
| u16 val) |
| { |
| if (addr >= 0) |
| return _mv88e6xxx_reg_write(ds, addr, regnum, val); |
| return 0; |
| } |
| |
| #ifdef CONFIG_NET_DSA_MV88E6XXX_NEED_PPU |
| static int mv88e6xxx_ppu_disable(struct dsa_switch *ds) |
| { |
| int ret; |
| unsigned long timeout; |
| |
| ret = REG_READ(REG_GLOBAL, GLOBAL_CONTROL); |
| REG_WRITE(REG_GLOBAL, GLOBAL_CONTROL, |
| ret & ~GLOBAL_CONTROL_PPU_ENABLE); |
| |
| timeout = jiffies + 1 * HZ; |
| while (time_before(jiffies, timeout)) { |
| ret = REG_READ(REG_GLOBAL, GLOBAL_STATUS); |
| usleep_range(1000, 2000); |
| if ((ret & GLOBAL_STATUS_PPU_MASK) != |
| GLOBAL_STATUS_PPU_POLLING) |
| return 0; |
| } |
| |
| return -ETIMEDOUT; |
| } |
| |
| static int mv88e6xxx_ppu_enable(struct dsa_switch *ds) |
| { |
| int ret; |
| unsigned long timeout; |
| |
| ret = REG_READ(REG_GLOBAL, GLOBAL_CONTROL); |
| REG_WRITE(REG_GLOBAL, GLOBAL_CONTROL, ret | GLOBAL_CONTROL_PPU_ENABLE); |
| |
| timeout = jiffies + 1 * HZ; |
| while (time_before(jiffies, timeout)) { |
| ret = REG_READ(REG_GLOBAL, GLOBAL_STATUS); |
| usleep_range(1000, 2000); |
| if ((ret & GLOBAL_STATUS_PPU_MASK) == |
| GLOBAL_STATUS_PPU_POLLING) |
| return 0; |
| } |
| |
| return -ETIMEDOUT; |
| } |
| |
| static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly) |
| { |
| struct mv88e6xxx_priv_state *ps; |
| |
| ps = container_of(ugly, struct mv88e6xxx_priv_state, ppu_work); |
| if (mutex_trylock(&ps->ppu_mutex)) { |
| struct dsa_switch *ds = ((struct dsa_switch *)ps) - 1; |
| |
| if (mv88e6xxx_ppu_enable(ds) == 0) |
| ps->ppu_disabled = 0; |
| mutex_unlock(&ps->ppu_mutex); |
| } |
| } |
| |
| static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps) |
| { |
| struct mv88e6xxx_priv_state *ps = (void *)_ps; |
| |
| schedule_work(&ps->ppu_work); |
| } |
| |
| static int mv88e6xxx_ppu_access_get(struct dsa_switch *ds) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| int ret; |
| |
| mutex_lock(&ps->ppu_mutex); |
| |
| /* If the PHY polling unit is enabled, disable it so that |
| * we can access the PHY registers. If it was already |
| * disabled, cancel the timer that is going to re-enable |
| * it. |
| */ |
| if (!ps->ppu_disabled) { |
| ret = mv88e6xxx_ppu_disable(ds); |
| if (ret < 0) { |
| mutex_unlock(&ps->ppu_mutex); |
| return ret; |
| } |
| ps->ppu_disabled = 1; |
| } else { |
| del_timer(&ps->ppu_timer); |
| ret = 0; |
| } |
| |
| return ret; |
| } |
| |
| static void mv88e6xxx_ppu_access_put(struct dsa_switch *ds) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| |
| /* Schedule a timer to re-enable the PHY polling unit. */ |
| mod_timer(&ps->ppu_timer, jiffies + msecs_to_jiffies(10)); |
| mutex_unlock(&ps->ppu_mutex); |
| } |
| |
| void mv88e6xxx_ppu_state_init(struct dsa_switch *ds) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| |
| mutex_init(&ps->ppu_mutex); |
| INIT_WORK(&ps->ppu_work, mv88e6xxx_ppu_reenable_work); |
| init_timer(&ps->ppu_timer); |
| ps->ppu_timer.data = (unsigned long)ps; |
| ps->ppu_timer.function = mv88e6xxx_ppu_reenable_timer; |
| } |
| |
| int mv88e6xxx_phy_read_ppu(struct dsa_switch *ds, int addr, int regnum) |
| { |
| int ret; |
| |
| ret = mv88e6xxx_ppu_access_get(ds); |
| if (ret >= 0) { |
| ret = mv88e6xxx_reg_read(ds, addr, regnum); |
| mv88e6xxx_ppu_access_put(ds); |
| } |
| |
| return ret; |
| } |
| |
| int mv88e6xxx_phy_write_ppu(struct dsa_switch *ds, int addr, |
| int regnum, u16 val) |
| { |
| int ret; |
| |
| ret = mv88e6xxx_ppu_access_get(ds); |
| if (ret >= 0) { |
| ret = mv88e6xxx_reg_write(ds, addr, regnum, val); |
| mv88e6xxx_ppu_access_put(ds); |
| } |
| |
| return ret; |
| } |
| #endif |
| |
| void mv88e6xxx_poll_link(struct dsa_switch *ds) |
| { |
| int i; |
| |
| for (i = 0; i < DSA_MAX_PORTS; i++) { |
| struct net_device *dev; |
| int uninitialized_var(port_status); |
| int link; |
| int speed; |
| int duplex; |
| int fc; |
| |
| dev = ds->ports[i]; |
| if (dev == NULL) |
| continue; |
| |
| link = 0; |
| if (dev->flags & IFF_UP) { |
| port_status = mv88e6xxx_reg_read(ds, REG_PORT(i), |
| PORT_STATUS); |
| if (port_status < 0) |
| continue; |
| |
| link = !!(port_status & PORT_STATUS_LINK); |
| } |
| |
| if (!link) { |
| if (netif_carrier_ok(dev)) { |
| netdev_info(dev, "link down\n"); |
| netif_carrier_off(dev); |
| } |
| continue; |
| } |
| |
| switch (port_status & PORT_STATUS_SPEED_MASK) { |
| case PORT_STATUS_SPEED_10: |
| speed = 10; |
| break; |
| case PORT_STATUS_SPEED_100: |
| speed = 100; |
| break; |
| case PORT_STATUS_SPEED_1000: |
| speed = 1000; |
| break; |
| default: |
| speed = -1; |
| break; |
| } |
| duplex = (port_status & PORT_STATUS_DUPLEX) ? 1 : 0; |
| fc = (port_status & PORT_STATUS_PAUSE_EN) ? 1 : 0; |
| |
| if (!netif_carrier_ok(dev)) { |
| netdev_info(dev, |
| "link up, %d Mb/s, %s duplex, flow control %sabled\n", |
| speed, |
| duplex ? "full" : "half", |
| fc ? "en" : "dis"); |
| netif_carrier_on(dev); |
| } |
| } |
| } |
| |
| static bool mv88e6xxx_6065_family(struct dsa_switch *ds) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| |
| switch (ps->id) { |
| case PORT_SWITCH_ID_6031: |
| case PORT_SWITCH_ID_6061: |
| case PORT_SWITCH_ID_6035: |
| case PORT_SWITCH_ID_6065: |
| return true; |
| } |
| return false; |
| } |
| |
| static bool mv88e6xxx_6095_family(struct dsa_switch *ds) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| |
| switch (ps->id) { |
| case PORT_SWITCH_ID_6092: |
| case PORT_SWITCH_ID_6095: |
| return true; |
| } |
| return false; |
| } |
| |
| static bool mv88e6xxx_6097_family(struct dsa_switch *ds) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| |
| switch (ps->id) { |
| case PORT_SWITCH_ID_6046: |
| case PORT_SWITCH_ID_6085: |
| case PORT_SWITCH_ID_6096: |
| case PORT_SWITCH_ID_6097: |
| return true; |
| } |
| return false; |
| } |
| |
| static bool mv88e6xxx_6165_family(struct dsa_switch *ds) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| |
| switch (ps->id) { |
| case PORT_SWITCH_ID_6123: |
| case PORT_SWITCH_ID_6161: |
| case PORT_SWITCH_ID_6165: |
| return true; |
| } |
| return false; |
| } |
| |
| static bool mv88e6xxx_6185_family(struct dsa_switch *ds) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| |
| switch (ps->id) { |
| case PORT_SWITCH_ID_6121: |
| case PORT_SWITCH_ID_6122: |
| case PORT_SWITCH_ID_6152: |
| case PORT_SWITCH_ID_6155: |
| case PORT_SWITCH_ID_6182: |
| case PORT_SWITCH_ID_6185: |
| case PORT_SWITCH_ID_6108: |
| case PORT_SWITCH_ID_6131: |
| return true; |
| } |
| return false; |
| } |
| |
| static bool mv88e6xxx_6320_family(struct dsa_switch *ds) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| |
| switch (ps->id) { |
| case PORT_SWITCH_ID_6320: |
| case PORT_SWITCH_ID_6321: |
| return true; |
| } |
| return false; |
| } |
| |
| static bool mv88e6xxx_6351_family(struct dsa_switch *ds) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| |
| switch (ps->id) { |
| case PORT_SWITCH_ID_6171: |
| case PORT_SWITCH_ID_6175: |
| case PORT_SWITCH_ID_6350: |
| case PORT_SWITCH_ID_6351: |
| return true; |
| } |
| return false; |
| } |
| |
| static bool mv88e6xxx_6352_family(struct dsa_switch *ds) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| |
| switch (ps->id) { |
| case PORT_SWITCH_ID_6172: |
| case PORT_SWITCH_ID_6176: |
| case PORT_SWITCH_ID_6240: |
| case PORT_SWITCH_ID_6352: |
| return true; |
| } |
| return false; |
| } |
| |
| /* Must be called with SMI mutex held */ |
| static int _mv88e6xxx_stats_wait(struct dsa_switch *ds) |
| { |
| int ret; |
| int i; |
| |
| for (i = 0; i < 10; i++) { |
| ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_OP); |
| if ((ret & GLOBAL_STATS_OP_BUSY) == 0) |
| return 0; |
| } |
| |
| return -ETIMEDOUT; |
| } |
| |
| /* Must be called with SMI mutex held */ |
| static int _mv88e6xxx_stats_snapshot(struct dsa_switch *ds, int port) |
| { |
| int ret; |
| |
| if (mv88e6xxx_6320_family(ds) || mv88e6xxx_6352_family(ds)) |
| port = (port + 1) << 5; |
| |
| /* Snapshot the hardware statistics counters for this port. */ |
| ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_STATS_OP, |
| GLOBAL_STATS_OP_CAPTURE_PORT | |
| GLOBAL_STATS_OP_HIST_RX_TX | port); |
| if (ret < 0) |
| return ret; |
| |
| /* Wait for the snapshotting to complete. */ |
| ret = _mv88e6xxx_stats_wait(ds); |
| if (ret < 0) |
| return ret; |
| |
| return 0; |
| } |
| |
| /* Must be called with SMI mutex held */ |
| static void _mv88e6xxx_stats_read(struct dsa_switch *ds, int stat, u32 *val) |
| { |
| u32 _val; |
| int ret; |
| |
| *val = 0; |
| |
| ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_STATS_OP, |
| GLOBAL_STATS_OP_READ_CAPTURED | |
| GLOBAL_STATS_OP_HIST_RX_TX | stat); |
| if (ret < 0) |
| return; |
| |
| ret = _mv88e6xxx_stats_wait(ds); |
| if (ret < 0) |
| return; |
| |
| ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_COUNTER_32); |
| if (ret < 0) |
| return; |
| |
| _val = ret << 16; |
| |
| ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_COUNTER_01); |
| if (ret < 0) |
| return; |
| |
| *val = _val | ret; |
| } |
| |
| static struct mv88e6xxx_hw_stat mv88e6xxx_hw_stats[] = { |
| { "in_good_octets", 8, 0x00, }, |
| { "in_bad_octets", 4, 0x02, }, |
| { "in_unicast", 4, 0x04, }, |
| { "in_broadcasts", 4, 0x06, }, |
| { "in_multicasts", 4, 0x07, }, |
| { "in_pause", 4, 0x16, }, |
| { "in_undersize", 4, 0x18, }, |
| { "in_fragments", 4, 0x19, }, |
| { "in_oversize", 4, 0x1a, }, |
| { "in_jabber", 4, 0x1b, }, |
| { "in_rx_error", 4, 0x1c, }, |
| { "in_fcs_error", 4, 0x1d, }, |
| { "out_octets", 8, 0x0e, }, |
| { "out_unicast", 4, 0x10, }, |
| { "out_broadcasts", 4, 0x13, }, |
| { "out_multicasts", 4, 0x12, }, |
| { "out_pause", 4, 0x15, }, |
| { "excessive", 4, 0x11, }, |
| { "collisions", 4, 0x1e, }, |
| { "deferred", 4, 0x05, }, |
| { "single", 4, 0x14, }, |
| { "multiple", 4, 0x17, }, |
| { "out_fcs_error", 4, 0x03, }, |
| { "late", 4, 0x1f, }, |
| { "hist_64bytes", 4, 0x08, }, |
| { "hist_65_127bytes", 4, 0x09, }, |
| { "hist_128_255bytes", 4, 0x0a, }, |
| { "hist_256_511bytes", 4, 0x0b, }, |
| { "hist_512_1023bytes", 4, 0x0c, }, |
| { "hist_1024_max_bytes", 4, 0x0d, }, |
| /* Not all devices have the following counters */ |
| { "sw_in_discards", 4, 0x110, }, |
| { "sw_in_filtered", 2, 0x112, }, |
| { "sw_out_filtered", 2, 0x113, }, |
| |
| }; |
| |
| static bool have_sw_in_discards(struct dsa_switch *ds) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| |
| switch (ps->id) { |
| case PORT_SWITCH_ID_6095: case PORT_SWITCH_ID_6161: |
| case PORT_SWITCH_ID_6165: case PORT_SWITCH_ID_6171: |
| case PORT_SWITCH_ID_6172: case PORT_SWITCH_ID_6176: |
| case PORT_SWITCH_ID_6182: case PORT_SWITCH_ID_6185: |
| case PORT_SWITCH_ID_6352: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| static void _mv88e6xxx_get_strings(struct dsa_switch *ds, |
| int nr_stats, |
| struct mv88e6xxx_hw_stat *stats, |
| int port, uint8_t *data) |
| { |
| int i; |
| |
| for (i = 0; i < nr_stats; i++) { |
| memcpy(data + i * ETH_GSTRING_LEN, |
| stats[i].string, ETH_GSTRING_LEN); |
| } |
| } |
| |
| static uint64_t _mv88e6xxx_get_ethtool_stat(struct dsa_switch *ds, |
| int stat, |
| struct mv88e6xxx_hw_stat *stats, |
| int port) |
| { |
| struct mv88e6xxx_hw_stat *s = stats + stat; |
| u32 low; |
| u32 high = 0; |
| int ret; |
| u64 value; |
| |
| if (s->reg >= 0x100) { |
| ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), |
| s->reg - 0x100); |
| if (ret < 0) |
| return UINT64_MAX; |
| |
| low = ret; |
| if (s->sizeof_stat == 4) { |
| ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), |
| s->reg - 0x100 + 1); |
| if (ret < 0) |
| return UINT64_MAX; |
| high = ret; |
| } |
| } else { |
| _mv88e6xxx_stats_read(ds, s->reg, &low); |
| if (s->sizeof_stat == 8) |
| _mv88e6xxx_stats_read(ds, s->reg + 1, &high); |
| } |
| value = (((u64)high) << 16) | low; |
| return value; |
| } |
| |
| static void _mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds, |
| int nr_stats, |
| struct mv88e6xxx_hw_stat *stats, |
| int port, uint64_t *data) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| int ret; |
| int i; |
| |
| mutex_lock(&ps->smi_mutex); |
| |
| ret = _mv88e6xxx_stats_snapshot(ds, port); |
| if (ret < 0) { |
| mutex_unlock(&ps->smi_mutex); |
| return; |
| } |
| |
| /* Read each of the counters. */ |
| for (i = 0; i < nr_stats; i++) |
| data[i] = _mv88e6xxx_get_ethtool_stat(ds, i, stats, port); |
| |
| mutex_unlock(&ps->smi_mutex); |
| } |
| |
| /* All the statistics in the table */ |
| void |
| mv88e6xxx_get_strings(struct dsa_switch *ds, int port, uint8_t *data) |
| { |
| if (have_sw_in_discards(ds)) |
| _mv88e6xxx_get_strings(ds, ARRAY_SIZE(mv88e6xxx_hw_stats), |
| mv88e6xxx_hw_stats, port, data); |
| else |
| _mv88e6xxx_get_strings(ds, ARRAY_SIZE(mv88e6xxx_hw_stats) - 3, |
| mv88e6xxx_hw_stats, port, data); |
| } |
| |
| int mv88e6xxx_get_sset_count(struct dsa_switch *ds) |
| { |
| if (have_sw_in_discards(ds)) |
| return ARRAY_SIZE(mv88e6xxx_hw_stats); |
| return ARRAY_SIZE(mv88e6xxx_hw_stats) - 3; |
| } |
| |
| void |
| mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds, |
| int port, uint64_t *data) |
| { |
| if (have_sw_in_discards(ds)) |
| _mv88e6xxx_get_ethtool_stats( |
| ds, ARRAY_SIZE(mv88e6xxx_hw_stats), |
| mv88e6xxx_hw_stats, port, data); |
| else |
| _mv88e6xxx_get_ethtool_stats( |
| ds, ARRAY_SIZE(mv88e6xxx_hw_stats) - 3, |
| mv88e6xxx_hw_stats, port, data); |
| } |
| |
| int mv88e6xxx_get_regs_len(struct dsa_switch *ds, int port) |
| { |
| return 32 * sizeof(u16); |
| } |
| |
| void mv88e6xxx_get_regs(struct dsa_switch *ds, int port, |
| struct ethtool_regs *regs, void *_p) |
| { |
| u16 *p = _p; |
| int i; |
| |
| regs->version = 0; |
| |
| memset(p, 0xff, 32 * sizeof(u16)); |
| |
| for (i = 0; i < 32; i++) { |
| int ret; |
| |
| ret = mv88e6xxx_reg_read(ds, REG_PORT(port), i); |
| if (ret >= 0) |
| p[i] = ret; |
| } |
| } |
| |
| /* Must be called with SMI lock held */ |
| static int _mv88e6xxx_wait(struct dsa_switch *ds, int reg, int offset, |
| u16 mask) |
| { |
| unsigned long timeout = jiffies + HZ / 10; |
| |
| while (time_before(jiffies, timeout)) { |
| int ret; |
| |
| ret = _mv88e6xxx_reg_read(ds, reg, offset); |
| if (ret < 0) |
| return ret; |
| if (!(ret & mask)) |
| return 0; |
| |
| usleep_range(1000, 2000); |
| } |
| return -ETIMEDOUT; |
| } |
| |
| static int mv88e6xxx_wait(struct dsa_switch *ds, int reg, int offset, u16 mask) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| int ret; |
| |
| mutex_lock(&ps->smi_mutex); |
| ret = _mv88e6xxx_wait(ds, reg, offset, mask); |
| mutex_unlock(&ps->smi_mutex); |
| |
| return ret; |
| } |
| |
| static int _mv88e6xxx_phy_wait(struct dsa_switch *ds) |
| { |
| return _mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_SMI_OP, |
| GLOBAL2_SMI_OP_BUSY); |
| } |
| |
| int mv88e6xxx_eeprom_load_wait(struct dsa_switch *ds) |
| { |
| return mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_EEPROM_OP, |
| GLOBAL2_EEPROM_OP_LOAD); |
| } |
| |
| int mv88e6xxx_eeprom_busy_wait(struct dsa_switch *ds) |
| { |
| return mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_EEPROM_OP, |
| GLOBAL2_EEPROM_OP_BUSY); |
| } |
| |
| /* Must be called with SMI lock held */ |
| static int _mv88e6xxx_atu_wait(struct dsa_switch *ds) |
| { |
| return _mv88e6xxx_wait(ds, REG_GLOBAL, GLOBAL_ATU_OP, |
| GLOBAL_ATU_OP_BUSY); |
| } |
| |
| /* Must be called with SMI lock held */ |
| static int _mv88e6xxx_scratch_wait(struct dsa_switch *ds) |
| { |
| return _mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_SCRATCH_MISC, |
| GLOBAL2_SCRATCH_BUSY); |
| } |
| |
| /* Must be called with SMI mutex held */ |
| static int _mv88e6xxx_phy_read_indirect(struct dsa_switch *ds, int addr, |
| int regnum) |
| { |
| int ret; |
| |
| ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_OP, |
| GLOBAL2_SMI_OP_22_READ | (addr << 5) | |
| regnum); |
| if (ret < 0) |
| return ret; |
| |
| ret = _mv88e6xxx_phy_wait(ds); |
| if (ret < 0) |
| return ret; |
| |
| return _mv88e6xxx_reg_read(ds, REG_GLOBAL2, GLOBAL2_SMI_DATA); |
| } |
| |
| /* Must be called with SMI mutex held */ |
| static int _mv88e6xxx_phy_write_indirect(struct dsa_switch *ds, int addr, |
| int regnum, u16 val) |
| { |
| int ret; |
| |
| ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_DATA, val); |
| if (ret < 0) |
| return ret; |
| |
| ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_OP, |
| GLOBAL2_SMI_OP_22_WRITE | (addr << 5) | |
| regnum); |
| |
| return _mv88e6xxx_phy_wait(ds); |
| } |
| |
| int mv88e6xxx_get_eee(struct dsa_switch *ds, int port, struct ethtool_eee *e) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| int reg; |
| |
| mutex_lock(&ps->smi_mutex); |
| |
| reg = _mv88e6xxx_phy_read_indirect(ds, port, 16); |
| if (reg < 0) |
| goto out; |
| |
| e->eee_enabled = !!(reg & 0x0200); |
| e->tx_lpi_enabled = !!(reg & 0x0100); |
| |
| reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_STATUS); |
| if (reg < 0) |
| goto out; |
| |
| e->eee_active = !!(reg & PORT_STATUS_EEE); |
| reg = 0; |
| |
| out: |
| mutex_unlock(&ps->smi_mutex); |
| return reg; |
| } |
| |
| int mv88e6xxx_set_eee(struct dsa_switch *ds, int port, |
| struct phy_device *phydev, struct ethtool_eee *e) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| int reg; |
| int ret; |
| |
| mutex_lock(&ps->smi_mutex); |
| |
| ret = _mv88e6xxx_phy_read_indirect(ds, port, 16); |
| if (ret < 0) |
| goto out; |
| |
| reg = ret & ~0x0300; |
| if (e->eee_enabled) |
| reg |= 0x0200; |
| if (e->tx_lpi_enabled) |
| reg |= 0x0100; |
| |
| ret = _mv88e6xxx_phy_write_indirect(ds, port, 16, reg); |
| out: |
| mutex_unlock(&ps->smi_mutex); |
| |
| return ret; |
| } |
| |
| static int _mv88e6xxx_atu_cmd(struct dsa_switch *ds, int fid, u16 cmd) |
| { |
| int ret; |
| |
| ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_FID, fid); |
| if (ret < 0) |
| return ret; |
| |
| ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_OP, cmd); |
| if (ret < 0) |
| return ret; |
| |
| return _mv88e6xxx_atu_wait(ds); |
| } |
| |
| static int _mv88e6xxx_flush_fid(struct dsa_switch *ds, int fid) |
| { |
| int ret; |
| |
| ret = _mv88e6xxx_atu_wait(ds); |
| if (ret < 0) |
| return ret; |
| |
| return _mv88e6xxx_atu_cmd(ds, fid, GLOBAL_ATU_OP_FLUSH_NON_STATIC_DB); |
| } |
| |
| static int mv88e6xxx_set_port_state(struct dsa_switch *ds, int port, u8 state) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| int reg, ret = 0; |
| u8 oldstate; |
| |
| mutex_lock(&ps->smi_mutex); |
| |
| reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_CONTROL); |
| if (reg < 0) { |
| ret = reg; |
| goto abort; |
| } |
| |
| oldstate = reg & PORT_CONTROL_STATE_MASK; |
| if (oldstate != state) { |
| /* Flush forwarding database if we're moving a port |
| * from Learning or Forwarding state to Disabled or |
| * Blocking or Listening state. |
| */ |
| if (oldstate >= PORT_CONTROL_STATE_LEARNING && |
| state <= PORT_CONTROL_STATE_BLOCKING) { |
| ret = _mv88e6xxx_flush_fid(ds, ps->fid[port]); |
| if (ret) |
| goto abort; |
| } |
| reg = (reg & ~PORT_CONTROL_STATE_MASK) | state; |
| ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL, |
| reg); |
| } |
| |
| abort: |
| mutex_unlock(&ps->smi_mutex); |
| return ret; |
| } |
| |
| /* Must be called with smi lock held */ |
| static int _mv88e6xxx_update_port_config(struct dsa_switch *ds, int port) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| u8 fid = ps->fid[port]; |
| u16 reg = fid << 12; |
| |
| if (dsa_is_cpu_port(ds, port)) |
| reg |= ds->phys_port_mask; |
| else |
| reg |= (ps->bridge_mask[fid] | |
| (1 << dsa_upstream_port(ds))) & ~(1 << port); |
| |
| return _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_BASE_VLAN, reg); |
| } |
| |
| /* Must be called with smi lock held */ |
| static int _mv88e6xxx_update_bridge_config(struct dsa_switch *ds, int fid) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| int port; |
| u32 mask; |
| int ret; |
| |
| mask = ds->phys_port_mask; |
| while (mask) { |
| port = __ffs(mask); |
| mask &= ~(1 << port); |
| if (ps->fid[port] != fid) |
| continue; |
| |
| ret = _mv88e6xxx_update_port_config(ds, port); |
| if (ret) |
| return ret; |
| } |
| |
| return _mv88e6xxx_flush_fid(ds, fid); |
| } |
| |
| /* Bridge handling functions */ |
| |
| int mv88e6xxx_join_bridge(struct dsa_switch *ds, int port, u32 br_port_mask) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| int ret = 0; |
| u32 nmask; |
| int fid; |
| |
| /* If the bridge group is not empty, join that group. |
| * Otherwise create a new group. |
| */ |
| fid = ps->fid[port]; |
| nmask = br_port_mask & ~(1 << port); |
| if (nmask) |
| fid = ps->fid[__ffs(nmask)]; |
| |
| nmask = ps->bridge_mask[fid] | (1 << port); |
| if (nmask != br_port_mask) { |
| netdev_err(ds->ports[port], |
| "join: Bridge port mask mismatch fid=%d mask=0x%x expected 0x%x\n", |
| fid, br_port_mask, nmask); |
| return -EINVAL; |
| } |
| |
| mutex_lock(&ps->smi_mutex); |
| |
| ps->bridge_mask[fid] = br_port_mask; |
| |
| if (fid != ps->fid[port]) { |
| clear_bit(ps->fid[port], ps->fid_bitmap); |
| ps->fid[port] = fid; |
| ret = _mv88e6xxx_update_bridge_config(ds, fid); |
| } |
| |
| mutex_unlock(&ps->smi_mutex); |
| |
| return ret; |
| } |
| |
| int mv88e6xxx_leave_bridge(struct dsa_switch *ds, int port, u32 br_port_mask) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| u8 fid, newfid; |
| int ret; |
| |
| fid = ps->fid[port]; |
| |
| if (ps->bridge_mask[fid] != br_port_mask) { |
| netdev_err(ds->ports[port], |
| "leave: Bridge port mask mismatch fid=%d mask=0x%x expected 0x%x\n", |
| fid, br_port_mask, ps->bridge_mask[fid]); |
| return -EINVAL; |
| } |
| |
| /* If the port was the last port of a bridge, we are done. |
| * Otherwise assign a new fid to the port, and fix up |
| * the bridge configuration. |
| */ |
| if (br_port_mask == (1 << port)) |
| return 0; |
| |
| mutex_lock(&ps->smi_mutex); |
| |
| newfid = find_next_zero_bit(ps->fid_bitmap, VLAN_N_VID, 1); |
| if (unlikely(newfid > ps->num_ports)) { |
| netdev_err(ds->ports[port], "all first %d FIDs are used\n", |
| ps->num_ports); |
| ret = -ENOSPC; |
| goto unlock; |
| } |
| |
| ps->fid[port] = newfid; |
| set_bit(newfid, ps->fid_bitmap); |
| ps->bridge_mask[fid] &= ~(1 << port); |
| ps->bridge_mask[newfid] = 1 << port; |
| |
| ret = _mv88e6xxx_update_bridge_config(ds, fid); |
| if (!ret) |
| ret = _mv88e6xxx_update_bridge_config(ds, newfid); |
| |
| unlock: |
| mutex_unlock(&ps->smi_mutex); |
| |
| return ret; |
| } |
| |
| int mv88e6xxx_port_stp_update(struct dsa_switch *ds, int port, u8 state) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| int stp_state; |
| |
| switch (state) { |
| case BR_STATE_DISABLED: |
| stp_state = PORT_CONTROL_STATE_DISABLED; |
| break; |
| case BR_STATE_BLOCKING: |
| case BR_STATE_LISTENING: |
| stp_state = PORT_CONTROL_STATE_BLOCKING; |
| break; |
| case BR_STATE_LEARNING: |
| stp_state = PORT_CONTROL_STATE_LEARNING; |
| break; |
| case BR_STATE_FORWARDING: |
| default: |
| stp_state = PORT_CONTROL_STATE_FORWARDING; |
| break; |
| } |
| |
| netdev_dbg(ds->ports[port], "port state %d [%d]\n", state, stp_state); |
| |
| /* mv88e6xxx_port_stp_update may be called with softirqs disabled, |
| * so we can not update the port state directly but need to schedule it. |
| */ |
| ps->port_state[port] = stp_state; |
| set_bit(port, &ps->port_state_update_mask); |
| schedule_work(&ps->bridge_work); |
| |
| return 0; |
| } |
| |
| static int _mv88e6xxx_atu_mac_write(struct dsa_switch *ds, |
| const u8 addr[ETH_ALEN]) |
| { |
| int i, ret; |
| |
| for (i = 0; i < 3; i++) { |
| ret = _mv88e6xxx_reg_write( |
| ds, REG_GLOBAL, GLOBAL_ATU_MAC_01 + i, |
| (addr[i * 2] << 8) | addr[i * 2 + 1]); |
| if (ret < 0) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int _mv88e6xxx_atu_mac_read(struct dsa_switch *ds, u8 addr[ETH_ALEN]) |
| { |
| int i, ret; |
| |
| for (i = 0; i < 3; i++) { |
| ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, |
| GLOBAL_ATU_MAC_01 + i); |
| if (ret < 0) |
| return ret; |
| addr[i * 2] = ret >> 8; |
| addr[i * 2 + 1] = ret & 0xff; |
| } |
| |
| return 0; |
| } |
| |
| static int _mv88e6xxx_atu_load(struct dsa_switch *ds, |
| struct mv88e6xxx_atu_entry *entry) |
| { |
| u16 reg = 0; |
| int ret; |
| |
| ret = _mv88e6xxx_atu_wait(ds); |
| if (ret < 0) |
| return ret; |
| |
| ret = _mv88e6xxx_atu_mac_write(ds, entry->mac); |
| if (ret < 0) |
| return ret; |
| |
| if (entry->state != GLOBAL_ATU_DATA_STATE_UNUSED) { |
| unsigned int mask, shift; |
| |
| if (entry->trunk) { |
| reg |= GLOBAL_ATU_DATA_TRUNK; |
| mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK; |
| shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT; |
| } else { |
| mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK; |
| shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT; |
| } |
| |
| reg |= (entry->portv_trunkid << shift) & mask; |
| } |
| |
| reg |= entry->state & GLOBAL_ATU_DATA_STATE_MASK; |
| |
| ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_DATA, reg); |
| if (ret < 0) |
| return ret; |
| |
| return _mv88e6xxx_atu_cmd(ds, entry->fid, GLOBAL_ATU_OP_LOAD_DB); |
| } |
| |
| static int _mv88e6xxx_atu_getnext(struct dsa_switch *ds, u16 fid, |
| const u8 addr[ETH_ALEN], |
| struct mv88e6xxx_atu_entry *entry) |
| { |
| struct mv88e6xxx_atu_entry next = { 0 }; |
| int ret; |
| |
| next.fid = fid; |
| |
| ret = _mv88e6xxx_atu_wait(ds); |
| if (ret < 0) |
| return ret; |
| |
| ret = _mv88e6xxx_atu_mac_write(ds, addr); |
| if (ret < 0) |
| return ret; |
| |
| ret = _mv88e6xxx_atu_cmd(ds, fid, GLOBAL_ATU_OP_GET_NEXT_DB); |
| if (ret < 0) |
| return ret; |
| |
| ret = _mv88e6xxx_atu_mac_read(ds, next.mac); |
| if (ret < 0) |
| return ret; |
| |
| ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_ATU_DATA); |
| if (ret < 0) |
| return ret; |
| |
| next.state = ret & GLOBAL_ATU_DATA_STATE_MASK; |
| if (next.state != GLOBAL_ATU_DATA_STATE_UNUSED) { |
| unsigned int mask, shift; |
| |
| if (ret & GLOBAL_ATU_DATA_TRUNK) { |
| next.trunk = true; |
| mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK; |
| shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT; |
| } else { |
| next.trunk = false; |
| mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK; |
| shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT; |
| } |
| |
| next.portv_trunkid = (ret & mask) >> shift; |
| } |
| |
| *entry = next; |
| return 0; |
| } |
| |
| static int _mv88e6xxx_port_vid_to_fid(struct dsa_switch *ds, int port, u16 vid) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| |
| if (vid == 0) |
| return ps->fid[port]; |
| |
| return -ENOENT; |
| } |
| |
| static int _mv88e6xxx_port_fdb_load(struct dsa_switch *ds, int port, u16 vid, |
| const u8 addr[ETH_ALEN], u8 state) |
| { |
| struct mv88e6xxx_atu_entry entry = { 0 }; |
| int ret; |
| |
| ret = _mv88e6xxx_port_vid_to_fid(ds, port, vid); |
| if (ret < 0) |
| return ret; |
| |
| entry.fid = ret; |
| entry.state = state; |
| ether_addr_copy(entry.mac, addr); |
| if (state != GLOBAL_ATU_DATA_STATE_UNUSED) { |
| entry.trunk = false; |
| entry.portv_trunkid = BIT(port); |
| } |
| |
| return _mv88e6xxx_atu_load(ds, &entry); |
| } |
| |
| int mv88e6xxx_port_fdb_add(struct dsa_switch *ds, int port, u16 vid, |
| const u8 addr[ETH_ALEN]) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| u8 state = is_multicast_ether_addr(addr) ? |
| GLOBAL_ATU_DATA_STATE_MC_STATIC : |
| GLOBAL_ATU_DATA_STATE_UC_STATIC; |
| int ret; |
| |
| mutex_lock(&ps->smi_mutex); |
| ret = _mv88e6xxx_port_fdb_load(ds, port, vid, addr, state); |
| mutex_unlock(&ps->smi_mutex); |
| |
| return ret; |
| } |
| |
| int mv88e6xxx_port_fdb_del(struct dsa_switch *ds, int port, u16 vid, |
| const u8 addr[ETH_ALEN]) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| u8 state = GLOBAL_ATU_DATA_STATE_UNUSED; |
| int ret; |
| |
| mutex_lock(&ps->smi_mutex); |
| ret = _mv88e6xxx_port_fdb_load(ds, port, vid, addr, state); |
| mutex_unlock(&ps->smi_mutex); |
| |
| return ret; |
| } |
| |
| int mv88e6xxx_port_fdb_getnext(struct dsa_switch *ds, int port, u16 *vid, |
| u8 addr[ETH_ALEN], bool *is_static) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| struct mv88e6xxx_atu_entry next; |
| u16 fid; |
| int ret; |
| |
| mutex_lock(&ps->smi_mutex); |
| |
| ret = _mv88e6xxx_port_vid_to_fid(ds, port, *vid); |
| if (ret < 0) |
| goto unlock; |
| fid = ret; |
| |
| do { |
| if (is_broadcast_ether_addr(addr)) { |
| ret = -ENOENT; |
| goto unlock; |
| } |
| |
| ret = _mv88e6xxx_atu_getnext(ds, fid, addr, &next); |
| if (ret < 0) |
| goto unlock; |
| |
| ether_addr_copy(addr, next.mac); |
| |
| if (next.state == GLOBAL_ATU_DATA_STATE_UNUSED) |
| continue; |
| } while (next.trunk || (next.portv_trunkid & BIT(port)) == 0); |
| |
| *is_static = next.state == (is_multicast_ether_addr(addr) ? |
| GLOBAL_ATU_DATA_STATE_MC_STATIC : |
| GLOBAL_ATU_DATA_STATE_UC_STATIC); |
| unlock: |
| mutex_unlock(&ps->smi_mutex); |
| |
| return ret; |
| } |
| |
| static void mv88e6xxx_bridge_work(struct work_struct *work) |
| { |
| struct mv88e6xxx_priv_state *ps; |
| struct dsa_switch *ds; |
| int port; |
| |
| ps = container_of(work, struct mv88e6xxx_priv_state, bridge_work); |
| ds = ((struct dsa_switch *)ps) - 1; |
| |
| while (ps->port_state_update_mask) { |
| port = __ffs(ps->port_state_update_mask); |
| clear_bit(port, &ps->port_state_update_mask); |
| mv88e6xxx_set_port_state(ds, port, ps->port_state[port]); |
| } |
| } |
| |
| static int mv88e6xxx_setup_port(struct dsa_switch *ds, int port) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| int ret, fid; |
| u16 reg; |
| |
| mutex_lock(&ps->smi_mutex); |
| |
| if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) || |
| mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) || |
| mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds) || |
| mv88e6xxx_6065_family(ds) || mv88e6xxx_6320_family(ds)) { |
| /* MAC Forcing register: don't force link, speed, |
| * duplex or flow control state to any particular |
| * values on physical ports, but force the CPU port |
| * and all DSA ports to their maximum bandwidth and |
| * full duplex. |
| */ |
| reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_PCS_CTRL); |
| if (dsa_is_cpu_port(ds, port) || |
| ds->dsa_port_mask & (1 << port)) { |
| reg |= PORT_PCS_CTRL_FORCE_LINK | |
| PORT_PCS_CTRL_LINK_UP | |
| PORT_PCS_CTRL_DUPLEX_FULL | |
| PORT_PCS_CTRL_FORCE_DUPLEX; |
| if (mv88e6xxx_6065_family(ds)) |
| reg |= PORT_PCS_CTRL_100; |
| else |
| reg |= PORT_PCS_CTRL_1000; |
| } else { |
| reg |= PORT_PCS_CTRL_UNFORCED; |
| } |
| |
| ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), |
| PORT_PCS_CTRL, reg); |
| if (ret) |
| goto abort; |
| } |
| |
| /* Port Control: disable Drop-on-Unlock, disable Drop-on-Lock, |
| * disable Header mode, enable IGMP/MLD snooping, disable VLAN |
| * tunneling, determine priority by looking at 802.1p and IP |
| * priority fields (IP prio has precedence), and set STP state |
| * to Forwarding. |
| * |
| * If this is the CPU link, use DSA or EDSA tagging depending |
| * on which tagging mode was configured. |
| * |
| * If this is a link to another switch, use DSA tagging mode. |
| * |
| * If this is the upstream port for this switch, enable |
| * forwarding of unknown unicasts and multicasts. |
| */ |
| reg = 0; |
| if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) || |
| mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) || |
| mv88e6xxx_6095_family(ds) || mv88e6xxx_6065_family(ds) || |
| mv88e6xxx_6185_family(ds) || mv88e6xxx_6320_family(ds)) |
| reg = PORT_CONTROL_IGMP_MLD_SNOOP | |
| PORT_CONTROL_USE_TAG | PORT_CONTROL_USE_IP | |
| PORT_CONTROL_STATE_FORWARDING; |
| if (dsa_is_cpu_port(ds, port)) { |
| if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds)) |
| reg |= PORT_CONTROL_DSA_TAG; |
| if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) || |
| mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) || |
| mv88e6xxx_6320_family(ds)) { |
| if (ds->dst->tag_protocol == DSA_TAG_PROTO_EDSA) |
| reg |= PORT_CONTROL_FRAME_ETHER_TYPE_DSA; |
| else |
| reg |= PORT_CONTROL_FRAME_MODE_DSA; |
| } |
| |
| if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) || |
| mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) || |
| mv88e6xxx_6095_family(ds) || mv88e6xxx_6065_family(ds) || |
| mv88e6xxx_6185_family(ds) || mv88e6xxx_6320_family(ds)) { |
| if (ds->dst->tag_protocol == DSA_TAG_PROTO_EDSA) |
| reg |= PORT_CONTROL_EGRESS_ADD_TAG; |
| } |
| } |
| if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) || |
| mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) || |
| mv88e6xxx_6095_family(ds) || mv88e6xxx_6065_family(ds) || |
| mv88e6xxx_6320_family(ds)) { |
| if (ds->dsa_port_mask & (1 << port)) |
| reg |= PORT_CONTROL_FRAME_MODE_DSA; |
| if (port == dsa_upstream_port(ds)) |
| reg |= PORT_CONTROL_FORWARD_UNKNOWN | |
| PORT_CONTROL_FORWARD_UNKNOWN_MC; |
| } |
| if (reg) { |
| ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), |
| PORT_CONTROL, reg); |
| if (ret) |
| goto abort; |
| } |
| |
| /* Port Control 2: don't force a good FCS, set the maximum |
| * frame size to 10240 bytes, don't let the switch add or |
| * strip 802.1q tags, don't discard tagged or untagged frames |
| * on this port, do a destination address lookup on all |
| * received packets as usual, disable ARP mirroring and don't |
| * send a copy of all transmitted/received frames on this port |
| * to the CPU. |
| */ |
| reg = 0; |
| if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) || |
| mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) || |
| mv88e6xxx_6095_family(ds) || mv88e6xxx_6320_family(ds)) |
| reg = PORT_CONTROL_2_MAP_DA; |
| |
| if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) || |
| mv88e6xxx_6165_family(ds) || mv88e6xxx_6320_family(ds)) |
| reg |= PORT_CONTROL_2_JUMBO_10240; |
| |
| if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds)) { |
| /* Set the upstream port this port should use */ |
| reg |= dsa_upstream_port(ds); |
| /* enable forwarding of unknown multicast addresses to |
| * the upstream port |
| */ |
| if (port == dsa_upstream_port(ds)) |
| reg |= PORT_CONTROL_2_FORWARD_UNKNOWN; |
| } |
| |
| if (reg) { |
| ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), |
| PORT_CONTROL_2, reg); |
| if (ret) |
| goto abort; |
| } |
| |
| /* Port Association Vector: when learning source addresses |
| * of packets, add the address to the address database using |
| * a port bitmap that has only the bit for this port set and |
| * the other bits clear. |
| */ |
| ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_ASSOC_VECTOR, |
| 1 << port); |
| if (ret) |
| goto abort; |
| |
| /* Egress rate control 2: disable egress rate control. */ |
| ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_RATE_CONTROL_2, |
| 0x0000); |
| if (ret) |
| goto abort; |
| |
| if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) || |
| mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) || |
| mv88e6xxx_6320_family(ds)) { |
| /* Do not limit the period of time that this port can |
| * be paused for by the remote end or the period of |
| * time that this port can pause the remote end. |
| */ |
| ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), |
| PORT_PAUSE_CTRL, 0x0000); |
| if (ret) |
| goto abort; |
| |
| /* Port ATU control: disable limiting the number of |
| * address database entries that this port is allowed |
| * to use. |
| */ |
| ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), |
| PORT_ATU_CONTROL, 0x0000); |
| /* Priority Override: disable DA, SA and VTU priority |
| * override. |
| */ |
| ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), |
| PORT_PRI_OVERRIDE, 0x0000); |
| if (ret) |
| goto abort; |
| |
| /* Port Ethertype: use the Ethertype DSA Ethertype |
| * value. |
| */ |
| ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), |
| PORT_ETH_TYPE, ETH_P_EDSA); |
| if (ret) |
| goto abort; |
| /* Tag Remap: use an identity 802.1p prio -> switch |
| * prio mapping. |
| */ |
| ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), |
| PORT_TAG_REGMAP_0123, 0x3210); |
| if (ret) |
| goto abort; |
| |
| /* Tag Remap 2: use an identity 802.1p prio -> switch |
| * prio mapping. |
| */ |
| ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), |
| PORT_TAG_REGMAP_4567, 0x7654); |
| if (ret) |
| goto abort; |
| } |
| |
| if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) || |
| mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) || |
| mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds) || |
| mv88e6xxx_6320_family(ds)) { |
| /* Rate Control: disable ingress rate limiting. */ |
| ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), |
| PORT_RATE_CONTROL, 0x0001); |
| if (ret) |
| goto abort; |
| } |
| |
| /* Port Control 1: disable trunking, disable sending |
| * learning messages to this port. |
| */ |
| ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL_1, 0x0000); |
| if (ret) |
| goto abort; |
| |
| /* Port based VLAN map: give each port its own address |
| * database, allow the CPU port to talk to each of the 'real' |
| * ports, and allow each of the 'real' ports to only talk to |
| * the upstream port. |
| */ |
| fid = port + 1; |
| ps->fid[port] = fid; |
| set_bit(fid, ps->fid_bitmap); |
| |
| if (!dsa_is_cpu_port(ds, port)) |
| ps->bridge_mask[fid] = 1 << port; |
| |
| ret = _mv88e6xxx_update_port_config(ds, port); |
| if (ret) |
| goto abort; |
| |
| /* Default VLAN ID and priority: don't set a default VLAN |
| * ID, and set the default packet priority to zero. |
| */ |
| ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_DEFAULT_VLAN, |
| 0x0000); |
| abort: |
| mutex_unlock(&ps->smi_mutex); |
| return ret; |
| } |
| |
| int mv88e6xxx_setup_ports(struct dsa_switch *ds) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| int ret; |
| int i; |
| |
| for (i = 0; i < ps->num_ports; i++) { |
| ret = mv88e6xxx_setup_port(ds, i); |
| if (ret < 0) |
| return ret; |
| } |
| return 0; |
| } |
| |
| static int mv88e6xxx_regs_show(struct seq_file *s, void *p) |
| { |
| struct dsa_switch *ds = s->private; |
| |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| int reg, port; |
| |
| seq_puts(s, " GLOBAL GLOBAL2 "); |
| for (port = 0 ; port < ps->num_ports; port++) |
| seq_printf(s, " %2d ", port); |
| seq_puts(s, "\n"); |
| |
| for (reg = 0; reg < 32; reg++) { |
| seq_printf(s, "%2x: ", reg); |
| seq_printf(s, " %4x %4x ", |
| mv88e6xxx_reg_read(ds, REG_GLOBAL, reg), |
| mv88e6xxx_reg_read(ds, REG_GLOBAL2, reg)); |
| |
| for (port = 0 ; port < ps->num_ports; port++) |
| seq_printf(s, "%4x ", |
| mv88e6xxx_reg_read(ds, REG_PORT(port), reg)); |
| seq_puts(s, "\n"); |
| } |
| |
| return 0; |
| } |
| |
| static int mv88e6xxx_regs_open(struct inode *inode, struct file *file) |
| { |
| return single_open(file, mv88e6xxx_regs_show, inode->i_private); |
| } |
| |
| static const struct file_operations mv88e6xxx_regs_fops = { |
| .open = mv88e6xxx_regs_open, |
| .read = seq_read, |
| .llseek = no_llseek, |
| .release = single_release, |
| .owner = THIS_MODULE, |
| }; |
| |
| static void mv88e6xxx_atu_show_header(struct seq_file *s) |
| { |
| seq_puts(s, "DB T/P Vec State Addr\n"); |
| } |
| |
| static void mv88e6xxx_atu_show_entry(struct seq_file *s, int dbnum, |
| unsigned char *addr, int data) |
| { |
| bool trunk = !!(data & GLOBAL_ATU_DATA_TRUNK); |
| int portvec = ((data & GLOBAL_ATU_DATA_PORT_VECTOR_MASK) >> |
| GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT); |
| int state = data & GLOBAL_ATU_DATA_STATE_MASK; |
| |
| seq_printf(s, "%03x %5s %10pb %x %pM\n", |
| dbnum, (trunk ? "Trunk" : "Port"), &portvec, state, addr); |
| } |
| |
| static int mv88e6xxx_atu_show_db(struct seq_file *s, struct dsa_switch *ds, |
| int dbnum) |
| { |
| unsigned char bcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; |
| unsigned char addr[6]; |
| int ret, data, state; |
| |
| ret = _mv88e6xxx_atu_mac_write(ds, bcast); |
| if (ret < 0) |
| return ret; |
| |
| do { |
| ret = _mv88e6xxx_atu_cmd(ds, dbnum, GLOBAL_ATU_OP_GET_NEXT_DB); |
| if (ret < 0) |
| return ret; |
| data = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_ATU_DATA); |
| if (data < 0) |
| return data; |
| |
| state = data & GLOBAL_ATU_DATA_STATE_MASK; |
| if (state == GLOBAL_ATU_DATA_STATE_UNUSED) |
| break; |
| ret = _mv88e6xxx_atu_mac_read(ds, addr); |
| if (ret < 0) |
| return ret; |
| mv88e6xxx_atu_show_entry(s, dbnum, addr, data); |
| } while (state != GLOBAL_ATU_DATA_STATE_UNUSED); |
| |
| return 0; |
| } |
| |
| static int mv88e6xxx_atu_show(struct seq_file *s, void *p) |
| { |
| struct dsa_switch *ds = s->private; |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| int dbnum; |
| |
| mv88e6xxx_atu_show_header(s); |
| |
| for (dbnum = 0; dbnum < 255; dbnum++) { |
| mutex_lock(&ps->smi_mutex); |
| mv88e6xxx_atu_show_db(s, ds, dbnum); |
| mutex_unlock(&ps->smi_mutex); |
| } |
| |
| return 0; |
| } |
| |
| static int mv88e6xxx_atu_open(struct inode *inode, struct file *file) |
| { |
| return single_open(file, mv88e6xxx_atu_show, inode->i_private); |
| } |
| |
| static const struct file_operations mv88e6xxx_atu_fops = { |
| .open = mv88e6xxx_atu_open, |
| .read = seq_read, |
| .llseek = no_llseek, |
| .release = single_release, |
| .owner = THIS_MODULE, |
| }; |
| |
| static void mv88e6xxx_stats_show_header(struct seq_file *s, |
| struct mv88e6xxx_priv_state *ps) |
| { |
| int port; |
| |
| seq_puts(s, " Statistic "); |
| for (port = 0 ; port < ps->num_ports; port++) |
| seq_printf(s, "Port %2d ", port); |
| seq_puts(s, "\n"); |
| } |
| |
| static int mv88e6xxx_stats_show(struct seq_file *s, void *p) |
| { |
| struct dsa_switch *ds = s->private; |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| struct mv88e6xxx_hw_stat *stats = mv88e6xxx_hw_stats; |
| int port, stat, max_stats; |
| uint64_t value; |
| |
| if (have_sw_in_discards(ds)) |
| max_stats = ARRAY_SIZE(mv88e6xxx_hw_stats); |
| else |
| max_stats = ARRAY_SIZE(mv88e6xxx_hw_stats) - 3; |
| |
| mv88e6xxx_stats_show_header(s, ps); |
| |
| mutex_lock(&ps->smi_mutex); |
| |
| for (stat = 0; stat < max_stats; stat++) { |
| seq_printf(s, "%19s: ", stats[stat].string); |
| for (port = 0 ; port < ps->num_ports; port++) { |
| _mv88e6xxx_stats_snapshot(ds, port); |
| value = _mv88e6xxx_get_ethtool_stat(ds, stat, stats, |
| port); |
| seq_printf(s, "%8llu ", value); |
| } |
| seq_puts(s, "\n"); |
| } |
| mutex_unlock(&ps->smi_mutex); |
| |
| return 0; |
| } |
| |
| static int mv88e6xxx_stats_open(struct inode *inode, struct file *file) |
| { |
| return single_open(file, mv88e6xxx_stats_show, inode->i_private); |
| } |
| |
| static const struct file_operations mv88e6xxx_stats_fops = { |
| .open = mv88e6xxx_stats_open, |
| .read = seq_read, |
| .llseek = no_llseek, |
| .release = single_release, |
| .owner = THIS_MODULE, |
| }; |
| |
| static int mv88e6xxx_device_map_show(struct seq_file *s, void *p) |
| { |
| struct dsa_switch *ds = s->private; |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| int target, ret; |
| |
| seq_puts(s, "Target Port\n"); |
| |
| mutex_lock(&ps->smi_mutex); |
| for (target = 0; target < 32; target++) { |
| ret = _mv88e6xxx_reg_write( |
| ds, REG_GLOBAL2, GLOBAL2_DEVICE_MAPPING, |
| target << GLOBAL2_DEVICE_MAPPING_TARGET_SHIFT); |
| if (ret < 0) |
| goto out; |
| ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL2, |
| GLOBAL2_DEVICE_MAPPING); |
| seq_printf(s, " %2d %2d\n", target, |
| ret & GLOBAL2_DEVICE_MAPPING_PORT_MASK); |
| } |
| out: |
| mutex_unlock(&ps->smi_mutex); |
| |
| return 0; |
| } |
| |
| static int mv88e6xxx_device_map_open(struct inode *inode, struct file *file) |
| { |
| return single_open(file, mv88e6xxx_device_map_show, inode->i_private); |
| } |
| |
| static const struct file_operations mv88e6xxx_device_map_fops = { |
| .open = mv88e6xxx_device_map_open, |
| .read = seq_read, |
| .llseek = no_llseek, |
| .release = single_release, |
| .owner = THIS_MODULE, |
| }; |
| |
| static int mv88e6xxx_scratch_show(struct seq_file *s, void *p) |
| { |
| struct dsa_switch *ds = s->private; |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| int reg, ret; |
| |
| seq_puts(s, "Register Value\n"); |
| |
| mutex_lock(&ps->smi_mutex); |
| for (reg = 0; reg < 0x80; reg++) { |
| ret = _mv88e6xxx_reg_write( |
| ds, REG_GLOBAL2, GLOBAL2_SCRATCH_MISC, |
| reg << GLOBAL2_SCRATCH_REGISTER_SHIFT); |
| if (ret < 0) |
| goto out; |
| |
| ret = _mv88e6xxx_scratch_wait(ds); |
| if (ret < 0) |
| goto out; |
| |
| ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL2, |
| GLOBAL2_SCRATCH_MISC); |
| seq_printf(s, " %2x %2x\n", reg, |
| ret & GLOBAL2_SCRATCH_VALUE_MASK); |
| } |
| out: |
| mutex_unlock(&ps->smi_mutex); |
| |
| return 0; |
| } |
| |
| static int mv88e6xxx_scratch_open(struct inode *inode, struct file *file) |
| { |
| return single_open(file, mv88e6xxx_scratch_show, inode->i_private); |
| } |
| |
| static const struct file_operations mv88e6xxx_scratch_fops = { |
| .open = mv88e6xxx_scratch_open, |
| .read = seq_read, |
| .llseek = no_llseek, |
| .release = single_release, |
| .owner = THIS_MODULE, |
| }; |
| |
| int mv88e6xxx_setup_common(struct dsa_switch *ds) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| char *name; |
| |
| mutex_init(&ps->smi_mutex); |
| |
| ps->id = REG_READ(REG_PORT(0), PORT_SWITCH_ID) & 0xfff0; |
| |
| INIT_WORK(&ps->bridge_work, mv88e6xxx_bridge_work); |
| |
| name = kasprintf(GFP_KERNEL, "dsa%d", ds->index); |
| ps->dbgfs = debugfs_create_dir(name, NULL); |
| kfree(name); |
| |
| debugfs_create_file("regs", S_IRUGO, ps->dbgfs, ds, |
| &mv88e6xxx_regs_fops); |
| |
| debugfs_create_file("atu", S_IRUGO, ps->dbgfs, ds, |
| &mv88e6xxx_atu_fops); |
| |
| debugfs_create_file("stats", S_IRUGO, ps->dbgfs, ds, |
| &mv88e6xxx_stats_fops); |
| |
| debugfs_create_file("device_map", S_IRUGO, ps->dbgfs, ds, |
| &mv88e6xxx_device_map_fops); |
| |
| debugfs_create_file("scratch", S_IRUGO, ps->dbgfs, ds, |
| &mv88e6xxx_scratch_fops); |
| return 0; |
| } |
| |
| int mv88e6xxx_setup_global(struct dsa_switch *ds) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| int ret; |
| int i; |
| |
| /* Set the default address aging time to 5 minutes, and |
| * enable address learn messages to be sent to all message |
| * ports. |
| */ |
| REG_WRITE(REG_GLOBAL, GLOBAL_ATU_CONTROL, |
| 0x0140 | GLOBAL_ATU_CONTROL_LEARN2ALL); |
| |
| /* Configure the IP ToS mapping registers. */ |
| REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_0, 0x0000); |
| REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_1, 0x0000); |
| REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_2, 0x5555); |
| REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_3, 0x5555); |
| REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_4, 0xaaaa); |
| REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_5, 0xaaaa); |
| REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_6, 0xffff); |
| REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_7, 0xffff); |
| |
| /* Configure the IEEE 802.1p priority mapping register. */ |
| REG_WRITE(REG_GLOBAL, GLOBAL_IEEE_PRI, 0xfa41); |
| |
| /* Send all frames with destination addresses matching |
| * 01:80:c2:00:00:0x to the CPU port. |
| */ |
| REG_WRITE(REG_GLOBAL2, GLOBAL2_MGMT_EN_0X, 0xffff); |
| |
| /* Ignore removed tag data on doubly tagged packets, disable |
| * flow control messages, force flow control priority to the |
| * highest, and send all special multicast frames to the CPU |
| * port at the highest priority. |
| */ |
| REG_WRITE(REG_GLOBAL2, GLOBAL2_SWITCH_MGMT, |
| 0x7 | GLOBAL2_SWITCH_MGMT_RSVD2CPU | 0x70 | |
| GLOBAL2_SWITCH_MGMT_FORCE_FLOW_CTRL_PRI); |
| |
| /* Program the DSA routing table. */ |
| for (i = 0; i < 32; i++) { |
| int nexthop = 0x1f; |
| |
| if (ds->pd->rtable && |
| i != ds->index && i < ds->dst->pd->nr_chips) |
| nexthop = ds->pd->rtable[i] & 0x1f; |
| |
| REG_WRITE(REG_GLOBAL2, GLOBAL2_DEVICE_MAPPING, |
| GLOBAL2_DEVICE_MAPPING_UPDATE | |
| (i << GLOBAL2_DEVICE_MAPPING_TARGET_SHIFT) | |
| nexthop); |
| } |
| |
| /* Clear all trunk masks. */ |
| for (i = 0; i < 8; i++) |
| REG_WRITE(REG_GLOBAL2, GLOBAL2_TRUNK_MASK, |
| 0x8000 | (i << GLOBAL2_TRUNK_MASK_NUM_SHIFT) | |
| ((1 << ps->num_ports) - 1)); |
| |
| /* Clear all trunk mappings. */ |
| for (i = 0; i < 16; i++) |
| REG_WRITE(REG_GLOBAL2, GLOBAL2_TRUNK_MAPPING, |
| GLOBAL2_TRUNK_MAPPING_UPDATE | |
| (i << GLOBAL2_TRUNK_MAPPING_ID_SHIFT)); |
| |
| if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) || |
| mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) || |
| mv88e6xxx_6320_family(ds)) { |
| /* Send all frames with destination addresses matching |
| * 01:80:c2:00:00:2x to the CPU port. |
| */ |
| REG_WRITE(REG_GLOBAL2, GLOBAL2_MGMT_EN_2X, 0xffff); |
| |
| /* Initialise cross-chip port VLAN table to reset |
| * defaults. |
| */ |
| REG_WRITE(REG_GLOBAL2, GLOBAL2_PVT_ADDR, 0x9000); |
| |
| /* Clear the priority override table. */ |
| for (i = 0; i < 16; i++) |
| REG_WRITE(REG_GLOBAL2, GLOBAL2_PRIO_OVERRIDE, |
| 0x8000 | (i << 8)); |
| } |
| |
| if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) || |
| mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) || |
| mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds) || |
| mv88e6xxx_6320_family(ds)) { |
| /* Disable ingress rate limiting by resetting all |
| * ingress rate limit registers to their initial |
| * state. |
| */ |
| for (i = 0; i < ps->num_ports; i++) |
| REG_WRITE(REG_GLOBAL2, GLOBAL2_INGRESS_OP, |
| 0x9000 | (i << 8)); |
| } |
| |
| /* Clear the statistics counters for all ports */ |
| REG_WRITE(REG_GLOBAL, GLOBAL_STATS_OP, GLOBAL_STATS_OP_FLUSH_ALL); |
| |
| /* Wait for the flush to complete. */ |
| mutex_lock(&ps->smi_mutex); |
| ret = _mv88e6xxx_stats_wait(ds); |
| mutex_unlock(&ps->smi_mutex); |
| |
| return ret; |
| } |
| |
| int mv88e6xxx_switch_reset(struct dsa_switch *ds, bool ppu_active) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| u16 is_reset = (ppu_active ? 0x8800 : 0xc800); |
| unsigned long timeout; |
| int ret; |
| int i; |
| |
| /* Set all ports to the disabled state. */ |
| for (i = 0; i < ps->num_ports; i++) { |
| ret = REG_READ(REG_PORT(i), PORT_CONTROL); |
| REG_WRITE(REG_PORT(i), PORT_CONTROL, ret & 0xfffc); |
| } |
| |
| /* Wait for transmit queues to drain. */ |
| usleep_range(2000, 4000); |
| |
| /* Reset the switch. Keep the PPU active if requested. The PPU |
| * needs to be active to support indirect phy register access |
| * through global registers 0x18 and 0x19. |
| */ |
| if (ppu_active) |
| REG_WRITE(REG_GLOBAL, 0x04, 0xc000); |
| else |
| REG_WRITE(REG_GLOBAL, 0x04, 0xc400); |
| |
| /* Wait up to one second for reset to complete. */ |
| timeout = jiffies + 1 * HZ; |
| while (time_before(jiffies, timeout)) { |
| ret = REG_READ(REG_GLOBAL, 0x00); |
| if ((ret & is_reset) == is_reset) |
| break; |
| usleep_range(1000, 2000); |
| } |
| if (time_after(jiffies, timeout)) |
| return -ETIMEDOUT; |
| |
| return 0; |
| } |
| |
| int mv88e6xxx_phy_page_read(struct dsa_switch *ds, int port, int page, int reg) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| int ret; |
| |
| mutex_lock(&ps->smi_mutex); |
| ret = _mv88e6xxx_phy_write_indirect(ds, port, 0x16, page); |
| if (ret < 0) |
| goto error; |
| ret = _mv88e6xxx_phy_read_indirect(ds, port, reg); |
| error: |
| _mv88e6xxx_phy_write_indirect(ds, port, 0x16, 0x0); |
| mutex_unlock(&ps->smi_mutex); |
| return ret; |
| } |
| |
| int mv88e6xxx_phy_page_write(struct dsa_switch *ds, int port, int page, |
| int reg, int val) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| int ret; |
| |
| mutex_lock(&ps->smi_mutex); |
| ret = _mv88e6xxx_phy_write_indirect(ds, port, 0x16, page); |
| if (ret < 0) |
| goto error; |
| |
| ret = _mv88e6xxx_phy_write_indirect(ds, port, reg, val); |
| error: |
| _mv88e6xxx_phy_write_indirect(ds, port, 0x16, 0x0); |
| mutex_unlock(&ps->smi_mutex); |
| return ret; |
| } |
| |
| static int mv88e6xxx_port_to_phy_addr(struct dsa_switch *ds, int port) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| |
| if (port >= 0 && port < ps->num_ports) |
| return port; |
| return -EINVAL; |
| } |
| |
| int |
| mv88e6xxx_phy_read(struct dsa_switch *ds, int port, int regnum) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| int addr = mv88e6xxx_port_to_phy_addr(ds, port); |
| int ret; |
| |
| if (addr < 0) |
| return addr; |
| |
| mutex_lock(&ps->smi_mutex); |
| ret = _mv88e6xxx_phy_read(ds, addr, regnum); |
| mutex_unlock(&ps->smi_mutex); |
| return ret; |
| } |
| |
| int |
| mv88e6xxx_phy_write(struct dsa_switch *ds, int port, int regnum, u16 val) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| int addr = mv88e6xxx_port_to_phy_addr(ds, port); |
| int ret; |
| |
| if (addr < 0) |
| return addr; |
| |
| mutex_lock(&ps->smi_mutex); |
| ret = _mv88e6xxx_phy_write(ds, addr, regnum, val); |
| mutex_unlock(&ps->smi_mutex); |
| return ret; |
| } |
| |
| int |
| mv88e6xxx_phy_read_indirect(struct dsa_switch *ds, int port, int regnum) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| int addr = mv88e6xxx_port_to_phy_addr(ds, port); |
| int ret; |
| |
| if (addr < 0) |
| return addr; |
| |
| mutex_lock(&ps->smi_mutex); |
| ret = _mv88e6xxx_phy_read_indirect(ds, addr, regnum); |
| mutex_unlock(&ps->smi_mutex); |
| return ret; |
| } |
| |
| int |
| mv88e6xxx_phy_write_indirect(struct dsa_switch *ds, int port, int regnum, |
| u16 val) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| int addr = mv88e6xxx_port_to_phy_addr(ds, port); |
| int ret; |
| |
| if (addr < 0) |
| return addr; |
| |
| mutex_lock(&ps->smi_mutex); |
| ret = _mv88e6xxx_phy_write_indirect(ds, addr, regnum, val); |
| mutex_unlock(&ps->smi_mutex); |
| return ret; |
| } |
| |
| #ifdef CONFIG_NET_DSA_HWMON |
| |
| static int mv88e61xx_get_temp(struct dsa_switch *ds, int *temp) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| int ret; |
| int val; |
| |
| *temp = 0; |
| |
| mutex_lock(&ps->smi_mutex); |
| |
| ret = _mv88e6xxx_phy_write(ds, 0x0, 0x16, 0x6); |
| if (ret < 0) |
| goto error; |
| |
| /* Enable temperature sensor */ |
| ret = _mv88e6xxx_phy_read(ds, 0x0, 0x1a); |
| if (ret < 0) |
| goto error; |
| |
| ret = _mv88e6xxx_phy_write(ds, 0x0, 0x1a, ret | (1 << 5)); |
| if (ret < 0) |
| goto error; |
| |
| /* Wait for temperature to stabilize */ |
| usleep_range(10000, 12000); |
| |
| val = _mv88e6xxx_phy_read(ds, 0x0, 0x1a); |
| if (val < 0) { |
| ret = val; |
| goto error; |
| } |
| |
| /* Disable temperature sensor */ |
| ret = _mv88e6xxx_phy_write(ds, 0x0, 0x1a, ret & ~(1 << 5)); |
| if (ret < 0) |
| goto error; |
| |
| *temp = ((val & 0x1f) - 5) * 5; |
| |
| error: |
| _mv88e6xxx_phy_write(ds, 0x0, 0x16, 0x0); |
| mutex_unlock(&ps->smi_mutex); |
| return ret; |
| } |
| |
| static int mv88e63xx_get_temp(struct dsa_switch *ds, int *temp) |
| { |
| int phy = mv88e6xxx_6320_family(ds) ? 3 : 0; |
| int ret; |
| |
| *temp = 0; |
| |
| ret = mv88e6xxx_phy_page_read(ds, phy, 6, 27); |
| if (ret < 0) |
| return ret; |
| |
| *temp = (ret & 0xff) - 25; |
| |
| return 0; |
| } |
| |
| int mv88e6xxx_get_temp(struct dsa_switch *ds, int *temp) |
| { |
| if (mv88e6xxx_6320_family(ds) || mv88e6xxx_6352_family(ds)) |
| return mv88e63xx_get_temp(ds, temp); |
| |
| return mv88e61xx_get_temp(ds, temp); |
| } |
| |
| int mv88e6xxx_get_temp_limit(struct dsa_switch *ds, int *temp) |
| { |
| int phy = mv88e6xxx_6320_family(ds) ? 3 : 0; |
| int ret; |
| |
| if (!mv88e6xxx_6320_family(ds) && !mv88e6xxx_6352_family(ds)) |
| return -EOPNOTSUPP; |
| |
| *temp = 0; |
| |
| ret = mv88e6xxx_phy_page_read(ds, phy, 6, 26); |
| if (ret < 0) |
| return ret; |
| |
| *temp = (((ret >> 8) & 0x1f) * 5) - 25; |
| |
| return 0; |
| } |
| |
| int mv88e6xxx_set_temp_limit(struct dsa_switch *ds, int temp) |
| { |
| int phy = mv88e6xxx_6320_family(ds) ? 3 : 0; |
| int ret; |
| |
| if (!mv88e6xxx_6320_family(ds) && !mv88e6xxx_6352_family(ds)) |
| return -EOPNOTSUPP; |
| |
| ret = mv88e6xxx_phy_page_read(ds, phy, 6, 26); |
| if (ret < 0) |
| return ret; |
| temp = clamp_val(DIV_ROUND_CLOSEST(temp, 5) + 5, 0, 0x1f); |
| return mv88e6xxx_phy_page_write(ds, phy, 6, 26, |
| (ret & 0xe0ff) | (temp << 8)); |
| } |
| |
| int mv88e6xxx_get_temp_alarm(struct dsa_switch *ds, bool *alarm) |
| { |
| int phy = mv88e6xxx_6320_family(ds) ? 3 : 0; |
| int ret; |
| |
| if (!mv88e6xxx_6320_family(ds) && !mv88e6xxx_6352_family(ds)) |
| return -EOPNOTSUPP; |
| |
| *alarm = false; |
| |
| ret = mv88e6xxx_phy_page_read(ds, phy, 6, 26); |
| if (ret < 0) |
| return ret; |
| |
| *alarm = !!(ret & 0x40); |
| |
| return 0; |
| } |
| #endif /* CONFIG_NET_DSA_HWMON */ |
| |
| static int __init mv88e6xxx_init(void) |
| { |
| #if IS_ENABLED(CONFIG_NET_DSA_MV88E6131) |
| register_switch_driver(&mv88e6131_switch_driver); |
| #endif |
| #if IS_ENABLED(CONFIG_NET_DSA_MV88E6123_61_65) |
| register_switch_driver(&mv88e6123_61_65_switch_driver); |
| #endif |
| #if IS_ENABLED(CONFIG_NET_DSA_MV88E6352) |
| register_switch_driver(&mv88e6352_switch_driver); |
| #endif |
| #if IS_ENABLED(CONFIG_NET_DSA_MV88E6171) |
| register_switch_driver(&mv88e6171_switch_driver); |
| #endif |
| return 0; |
| } |
| module_init(mv88e6xxx_init); |
| |
| static void __exit mv88e6xxx_cleanup(void) |
| { |
| #if IS_ENABLED(CONFIG_NET_DSA_MV88E6171) |
| unregister_switch_driver(&mv88e6171_switch_driver); |
| #endif |
| #if IS_ENABLED(CONFIG_NET_DSA_MV88E6352) |
| unregister_switch_driver(&mv88e6352_switch_driver); |
| #endif |
| #if IS_ENABLED(CONFIG_NET_DSA_MV88E6123_61_65) |
| unregister_switch_driver(&mv88e6123_61_65_switch_driver); |
| #endif |
| #if IS_ENABLED(CONFIG_NET_DSA_MV88E6131) |
| unregister_switch_driver(&mv88e6131_switch_driver); |
| #endif |
| } |
| module_exit(mv88e6xxx_cleanup); |
| |
| MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>"); |
| MODULE_DESCRIPTION("Driver for Marvell 88E6XXX ethernet switch chips"); |
| MODULE_LICENSE("GPL"); |