| /* |
| * PXA2xx SPI DMA engine support. |
| * |
| * Copyright (C) 2013, Intel Corporation |
| * Author: Mika Westerberg <mika.westerberg@linux.intel.com> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| |
| #include <linux/device.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/dmaengine.h> |
| #include <linux/pxa2xx_ssp.h> |
| #include <linux/scatterlist.h> |
| #include <linux/sizes.h> |
| #include <linux/spi/spi.h> |
| #include <linux/spi/pxa2xx_spi.h> |
| |
| #include "spi-pxa2xx.h" |
| |
| static int pxa2xx_spi_map_dma_buffer(struct driver_data *drv_data, |
| enum dma_data_direction dir) |
| { |
| int i, nents, len = drv_data->len; |
| struct scatterlist *sg; |
| struct device *dmadev; |
| struct sg_table *sgt; |
| void *buf, *pbuf; |
| |
| if (dir == DMA_TO_DEVICE) { |
| dmadev = drv_data->tx_chan->device->dev; |
| sgt = &drv_data->tx_sgt; |
| buf = drv_data->tx; |
| drv_data->tx_map_len = len; |
| } else { |
| dmadev = drv_data->rx_chan->device->dev; |
| sgt = &drv_data->rx_sgt; |
| buf = drv_data->rx; |
| drv_data->rx_map_len = len; |
| } |
| |
| nents = DIV_ROUND_UP(len, SZ_2K); |
| if (nents != sgt->nents) { |
| int ret; |
| |
| sg_free_table(sgt); |
| ret = sg_alloc_table(sgt, nents, GFP_ATOMIC); |
| if (ret) |
| return ret; |
| } |
| |
| pbuf = buf; |
| for_each_sg(sgt->sgl, sg, sgt->nents, i) { |
| size_t bytes = min_t(size_t, len, SZ_2K); |
| |
| if (buf) |
| sg_set_buf(sg, pbuf, bytes); |
| else |
| sg_set_buf(sg, drv_data->dummy, bytes); |
| |
| pbuf += bytes; |
| len -= bytes; |
| } |
| |
| nents = dma_map_sg(dmadev, sgt->sgl, sgt->nents, dir); |
| if (!nents) |
| return -ENOMEM; |
| |
| return nents; |
| } |
| |
| static void pxa2xx_spi_unmap_dma_buffer(struct driver_data *drv_data, |
| enum dma_data_direction dir) |
| { |
| struct device *dmadev; |
| struct sg_table *sgt; |
| |
| if (dir == DMA_TO_DEVICE) { |
| dmadev = drv_data->tx_chan->device->dev; |
| sgt = &drv_data->tx_sgt; |
| } else { |
| dmadev = drv_data->rx_chan->device->dev; |
| sgt = &drv_data->rx_sgt; |
| } |
| |
| dma_unmap_sg(dmadev, sgt->sgl, sgt->nents, dir); |
| } |
| |
| static void pxa2xx_spi_unmap_dma_buffers(struct driver_data *drv_data) |
| { |
| if (!drv_data->dma_mapped) |
| return; |
| |
| pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_FROM_DEVICE); |
| pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_TO_DEVICE); |
| |
| drv_data->dma_mapped = 0; |
| } |
| |
| static void pxa2xx_spi_dma_transfer_complete(struct driver_data *drv_data, |
| bool error) |
| { |
| struct spi_message *msg = drv_data->cur_msg; |
| |
| /* |
| * It is possible that one CPU is handling ROR interrupt and other |
| * just gets DMA completion. Calling pump_transfers() twice for the |
| * same transfer leads to problems thus we prevent concurrent calls |
| * by using ->dma_running. |
| */ |
| if (atomic_dec_and_test(&drv_data->dma_running)) { |
| void __iomem *reg = drv_data->ioaddr; |
| |
| /* |
| * If the other CPU is still handling the ROR interrupt we |
| * might not know about the error yet. So we re-check the |
| * ROR bit here before we clear the status register. |
| */ |
| if (!error) { |
| u32 status = read_SSSR(reg) & drv_data->mask_sr; |
| error = status & SSSR_ROR; |
| } |
| |
| /* Clear status & disable interrupts */ |
| write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg); |
| write_SSSR_CS(drv_data, drv_data->clear_sr); |
| if (!pxa25x_ssp_comp(drv_data)) |
| write_SSTO(0, reg); |
| |
| if (!error) { |
| pxa2xx_spi_unmap_dma_buffers(drv_data); |
| |
| drv_data->tx += drv_data->tx_map_len; |
| drv_data->rx += drv_data->rx_map_len; |
| |
| msg->actual_length += drv_data->len; |
| msg->state = pxa2xx_spi_next_transfer(drv_data); |
| } else { |
| /* In case we got an error we disable the SSP now */ |
| write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg); |
| |
| msg->state = ERROR_STATE; |
| } |
| |
| tasklet_schedule(&drv_data->pump_transfers); |
| } |
| } |
| |
| static void pxa2xx_spi_dma_callback(void *data) |
| { |
| pxa2xx_spi_dma_transfer_complete(data, false); |
| } |
| |
| static struct dma_async_tx_descriptor * |
| pxa2xx_spi_dma_prepare_one(struct driver_data *drv_data, |
| enum dma_transfer_direction dir) |
| { |
| struct pxa2xx_spi_master *pdata = drv_data->master_info; |
| struct chip_data *chip = drv_data->cur_chip; |
| enum dma_slave_buswidth width; |
| struct dma_slave_config cfg; |
| struct dma_chan *chan; |
| struct sg_table *sgt; |
| int nents, ret; |
| |
| switch (drv_data->n_bytes) { |
| case 1: |
| width = DMA_SLAVE_BUSWIDTH_1_BYTE; |
| break; |
| case 2: |
| width = DMA_SLAVE_BUSWIDTH_2_BYTES; |
| break; |
| default: |
| width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| break; |
| } |
| |
| memset(&cfg, 0, sizeof(cfg)); |
| cfg.direction = dir; |
| |
| if (dir == DMA_MEM_TO_DEV) { |
| cfg.dst_addr = drv_data->ssdr_physical; |
| cfg.dst_addr_width = width; |
| cfg.dst_maxburst = chip->dma_burst_size; |
| cfg.slave_id = pdata->tx_slave_id; |
| |
| sgt = &drv_data->tx_sgt; |
| nents = drv_data->tx_nents; |
| chan = drv_data->tx_chan; |
| } else { |
| cfg.src_addr = drv_data->ssdr_physical; |
| cfg.src_addr_width = width; |
| cfg.src_maxburst = chip->dma_burst_size; |
| cfg.slave_id = pdata->rx_slave_id; |
| |
| sgt = &drv_data->rx_sgt; |
| nents = drv_data->rx_nents; |
| chan = drv_data->rx_chan; |
| } |
| |
| ret = dmaengine_slave_config(chan, &cfg); |
| if (ret) { |
| dev_warn(&drv_data->pdev->dev, "DMA slave config failed\n"); |
| return NULL; |
| } |
| |
| return dmaengine_prep_slave_sg(chan, sgt->sgl, nents, dir, |
| DMA_PREP_INTERRUPT | DMA_CTRL_ACK); |
| } |
| |
| static bool pxa2xx_spi_dma_filter(struct dma_chan *chan, void *param) |
| { |
| const struct pxa2xx_spi_master *pdata = param; |
| |
| return chan->chan_id == pdata->tx_chan_id || |
| chan->chan_id == pdata->rx_chan_id; |
| } |
| |
| bool pxa2xx_spi_dma_is_possible(size_t len) |
| { |
| return len <= MAX_DMA_LEN; |
| } |
| |
| int pxa2xx_spi_map_dma_buffers(struct driver_data *drv_data) |
| { |
| const struct chip_data *chip = drv_data->cur_chip; |
| int ret; |
| |
| if (!chip->enable_dma) |
| return 0; |
| |
| /* Don't bother with DMA if we can't do even a single burst */ |
| if (drv_data->len < chip->dma_burst_size) |
| return 0; |
| |
| ret = pxa2xx_spi_map_dma_buffer(drv_data, DMA_TO_DEVICE); |
| if (ret <= 0) { |
| dev_warn(&drv_data->pdev->dev, "failed to DMA map TX\n"); |
| return 0; |
| } |
| |
| drv_data->tx_nents = ret; |
| |
| ret = pxa2xx_spi_map_dma_buffer(drv_data, DMA_FROM_DEVICE); |
| if (ret <= 0) { |
| pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_TO_DEVICE); |
| dev_warn(&drv_data->pdev->dev, "failed to DMA map RX\n"); |
| return 0; |
| } |
| |
| drv_data->rx_nents = ret; |
| return 1; |
| } |
| |
| irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data) |
| { |
| u32 status; |
| |
| status = read_SSSR(drv_data->ioaddr) & drv_data->mask_sr; |
| if (status & SSSR_ROR) { |
| dev_err(&drv_data->pdev->dev, "FIFO overrun\n"); |
| |
| dmaengine_terminate_all(drv_data->rx_chan); |
| dmaengine_terminate_all(drv_data->tx_chan); |
| |
| pxa2xx_spi_dma_transfer_complete(drv_data, true); |
| return IRQ_HANDLED; |
| } |
| |
| return IRQ_NONE; |
| } |
| |
| int pxa2xx_spi_dma_prepare(struct driver_data *drv_data, u32 dma_burst) |
| { |
| struct dma_async_tx_descriptor *tx_desc, *rx_desc; |
| |
| tx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_MEM_TO_DEV); |
| if (!tx_desc) { |
| dev_err(&drv_data->pdev->dev, |
| "failed to get DMA TX descriptor\n"); |
| return -EBUSY; |
| } |
| |
| rx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_DEV_TO_MEM); |
| if (!rx_desc) { |
| dev_err(&drv_data->pdev->dev, |
| "failed to get DMA RX descriptor\n"); |
| return -EBUSY; |
| } |
| |
| /* We are ready when RX completes */ |
| rx_desc->callback = pxa2xx_spi_dma_callback; |
| rx_desc->callback_param = drv_data; |
| |
| dmaengine_submit(rx_desc); |
| dmaengine_submit(tx_desc); |
| return 0; |
| } |
| |
| void pxa2xx_spi_dma_start(struct driver_data *drv_data) |
| { |
| dma_async_issue_pending(drv_data->rx_chan); |
| dma_async_issue_pending(drv_data->tx_chan); |
| |
| atomic_set(&drv_data->dma_running, 1); |
| } |
| |
| int pxa2xx_spi_dma_setup(struct driver_data *drv_data) |
| { |
| struct pxa2xx_spi_master *pdata = drv_data->master_info; |
| struct device *dev = &drv_data->pdev->dev; |
| dma_cap_mask_t mask; |
| |
| dma_cap_zero(mask); |
| dma_cap_set(DMA_SLAVE, mask); |
| |
| drv_data->dummy = devm_kzalloc(dev, SZ_2K, GFP_KERNEL); |
| if (!drv_data->dummy) |
| return -ENOMEM; |
| |
| drv_data->tx_chan = dma_request_slave_channel_compat(mask, |
| pxa2xx_spi_dma_filter, pdata, dev, "tx"); |
| if (!drv_data->tx_chan) |
| return -ENODEV; |
| |
| drv_data->rx_chan = dma_request_slave_channel_compat(mask, |
| pxa2xx_spi_dma_filter, pdata, dev, "rx"); |
| if (!drv_data->rx_chan) { |
| dma_release_channel(drv_data->tx_chan); |
| drv_data->tx_chan = NULL; |
| return -ENODEV; |
| } |
| |
| return 0; |
| } |
| |
| void pxa2xx_spi_dma_release(struct driver_data *drv_data) |
| { |
| if (drv_data->rx_chan) { |
| dmaengine_terminate_all(drv_data->rx_chan); |
| dma_release_channel(drv_data->rx_chan); |
| sg_free_table(&drv_data->rx_sgt); |
| drv_data->rx_chan = NULL; |
| } |
| if (drv_data->tx_chan) { |
| dmaengine_terminate_all(drv_data->tx_chan); |
| dma_release_channel(drv_data->tx_chan); |
| sg_free_table(&drv_data->tx_sgt); |
| drv_data->tx_chan = NULL; |
| } |
| } |
| |
| void pxa2xx_spi_dma_resume(struct driver_data *drv_data) |
| { |
| } |
| |
| int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip, |
| struct spi_device *spi, |
| u8 bits_per_word, u32 *burst_code, |
| u32 *threshold) |
| { |
| struct pxa2xx_spi_chip *chip_info = spi->controller_data; |
| |
| /* |
| * If the DMA burst size is given in chip_info we use that, |
| * otherwise we use the default. Also we use the default FIFO |
| * thresholds for now. |
| */ |
| *burst_code = chip_info ? chip_info->dma_burst_size : 16; |
| *threshold = SSCR1_RxTresh(RX_THRESH_DFLT) |
| | SSCR1_TxTresh(TX_THRESH_DFLT); |
| |
| return 0; |
| } |